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HOTELLING’S “MAIN STREET” WITH MORE THAN TWO
COMPETITORS*

Nicholas Economides
Stern School of Business, New York University, New York, NY 10012

ABSTRACT. I analvze oligopolistic competition among three or more firms located on
Hotelling’s (1929) Main Street and show that in contrast with Hotelling’s duopoly, the
symmetric locational structure supports a noncooperative equilibrium in prices. However, ina
two-stage game of location choice in the first stage, and price choice in the second stage, there
exists no subgame-perfect equilibrium where the whole market is served. This is because,
starting from any locational pattern, firms have incentives to move toward the central firm.
This strong version of the Principle of Minimum Differentiation destroys the possibility of a
locational equilibrium. The results are a direct consequence of the existence of boundaries in
the space of location. The zharp difference between these results and those of the standard
circular model (whose product space lacks boundaries) shows that the general use of the
circular model as an approximation to the line interval model may be unwarranted.

1. INTRODUCTION

Hotelling’s (1929) duopoly model of locationally differentiated products has
been recently reexamined by D’Aspremont, Gabszewicz and Thisse (1979) and
Economides (1984), among others. Similar models with a larger number of firms
have been analyzed by Lancaster (1979), Salop (1979), Novshek (1980), and
Economides (1983, 1989), among others. Problems of nonexistence of a noncooper-
ative equilibrium arise in the context of a game of price competition with fixed
differentiated products, as firms find it more profitable to undercut their oppo-
nents. In a game where firms choose product varieties, expecting to receive the
equilibrium profits of the short-run price subgame played for the chosen locations,
Hotelling claimed that firms will try to produce extremely similar products. This
acclaimed “Principle of Minimum Differentiation” was shown to be incorrect by
D’Aspremont et al. (1979) when consumers have a high reservation price and will
buy a differentiated product at any cost. The opposite result, local monopolization
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of markets has been established when the reservation price is low (Economides,
1984).

In duopoly, the problem of nonexistence of a noncooperative equilibrium in the
short-run price game (where variety specifications are fixed) arises from the fact
that some consumers (located in terms of their most preferred variety close to the
edge of the market) are captured by their closest firm for a large range of prices.
Then, at some low price, these consumers are lured by the distant firm. This
creates incentives to undercut the opponent firm, and shatters the possibility of a
price equilibrium.

For the oligopoly model of n firms located on a circumference, it has been
shown (Salop, 1979) that a symmetric equilibrium (where successive firms are
equidistant and firms charge the same price) exists in the short-run price game.
Further, the symmetric configuration is a noncooperative equilibrium in the
long-run varieties game (Economides, 1989).

The circumference model is a good paradigm for some characteristics, such as
color. In the locational interpretation, the circumference model describes well the
choices of consumers distributed along the coastline of a lake. For most goods,
however, it is appropriate to use a line interval [a, b] as the space of potential
products. For a serious study of the spatial economy, the simplicity and symmetry
of the circular model cannot sufficiently compensate for its lack of the appropriate

_structure. Thus, despite the mathematical difficulties. the analysis turns to the
study of oligopolistic competition among n > 3 firms. each producing a product
located on the line interval [0, 1]. This paper bridges the gap between the duopoly
model on [0, 1] of Hotelling (1929) and the oligopoly circumference model of Salop
(1979).

The existence of endpoints in the space of characteristics produces results
which are qualitatively different from the ones of the circumference model. We
show that problems of nonexistence of equilibrium in the short-run price game are
diminished. Severe nonexistence problems arise, however, at the stage of variety
choice if firms anticipate the impact of their relocation on equilibrium prices in the
following stage. As long as the whole market is served, irrespective of the locational
pattern, all firms except the center firm have incentives to move towards the center
firm. Therefore there exist no subgame-perfect equilibria in the two-stage game
where locations are chosen in the first stage and prices in the second.?

Difficulties with the existence of equilibrium arise in this model at the variety
choice stage and not in the stage of price choice as in the duopoly of Hotelling (1929)

!'See Lerner and Singer (1937) and Eaton and Lipsey (1975) for an analysis of the Hotelling model
with fixed prices.

In a circular model, Schulz and Stahl (1985) demonstrate nonexistence of equilibrium in a
simultaneous price-location game, as well as in a sequential location-price game with different costs. Ina
model of intersecting roadways, Braid (1989) also shows lack of existence of a noncooperative spatial
equilibrium in the location stage as firms tend to agglomerate, Klein (1991) shows that a symmetric
equilibrium exists for a two-dimensional disk market provided that there is sufficient elasticity in the
demand generated by consumers ‘‘residing” at each point on the disk. This becomes possible essentially
because of the existence of an added dimension of locational competition.
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and D’Aspremont et al. (1979). The incentives to undercut in the price stage are
diminished as the number of active firms increases from two to three or more. We
analyze and establish the noncooperative equilibrium price structure of the
symmetric locational configuration. The price equilibrium cannot be totally
symmetric, as in the circle models of Salop (1979) and Novshek (1980), because the
existence of endpoints in the market creates potential market power for the two
firms near them. When reservation prices are high so that all consumers buy a
differentiated product (‘‘competitive” case), equilibrium prices are high near the
edges of the market and decrease at a decreasing rate as we look at firms located
closer to the center of the market. Thus, the equilibrium price structure is
U-shaped as a function of distance from the left endpoint of the interval.

When the reservation prices are low, two more equilibrium structures can
arise. The first is a “‘local monopolistic” price-location structure where firms seem
not to be in direct competition, since at equilibrium there are some consumers
between any two firms who prefer not to buy any differentiated product at the
going prices. At the second type of equilibrium, all firms use prices which put them
at the kink of the demand curve, so that the consumer who is indifferent between
buying from firm j or j + 1 is also indifferent between buying and not buying any
differentiated product.

We show that equal-profits equilibria do not exist when firms are in direct
competition. It is possible to characterize and establish, however, the existence of
free-entry equilibria.

The rest of the paper is organized as follows. The basic model is set up in
Section 2, and in Section 3 we characterize the “‘competitive’ equilibria of the price
game. In Section 4 we analyze the choice of varieties and in Section 5 we show the
existence of equispaced ‘‘competitive” equilibria in the price game and characterize
them. In Section 6 we analyze “local monopolistic”’ and “kink” equilibria, and in
Section 7 we discuss entry. In Section 8 we present concluding remarks.

2. THE MODEL

A consumer of type w is endowed with a utility function in money I (Hicksian
composite good) and a unit of a differentiated product z of the following form:

Ud,2)=1+k— \Nw - z|

The utility function is separable, with a peak (in the space of characteristics) at w,
and linear in the distance from w in the same space. Variable k represents the
maximum amount of money that any consumer is willing to pay for a unit of the
differentiated good, that is, & is his reservation price.

Given products x,, . . ., x, offered at prices P,, . . ., P,, consumer w selects the .
one that maximizes U,(I — P, x;). He has the option of buying no differentiated

product and receiving utility U%(I) = I. Consumers are distributed uniformly in
[0, 1] according to the commodity type they like most (the peak of their utility
functions in the space of commodities).

Production technology of every variety is through constant returns to scale
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with marginal cost m. Firm j sells product x; at price P; = p; + m. Variable p; is
defined as the increment of price above the constant marginal cost m.

Competition is described with the help of two games. In the short-run game,
all firms consider the products’ specifications as given and use prices as strategic
variables. Letting x = (x,, ..., x,), firm j’s objective function is [T, = Il(p,, .. .,
P»|X). Clearly, the game where firm j uses price P; as its strategy is equivalent to a
game where firmj uses the increment of price above marginal cost p; = P, — m asits
strategy. An n-tuple (p%, ..., p¥) = p*(X) is a noncooperative equilibrium for the
short-run game if no firm finds it profitable to depart unilaterally from its chosen
strategy, that is, if

Hj(p’f, e ’p}‘—hpj’p_;ﬂb e :p:lx) = Hj(px,X)

for allj and all p;.

Under some circumstances, firms may change technology without cost in the
long run. We then define a long-run game in which firms choose varieties. The
long-run game in varieties is well defined for those n-tuples of varieties (locations)
that result in a unique Nash equilibrium in the short-run game. In the long-run
game, firms choose varieties (locations) expecting to receive the payoff that
corresponds to the Nash equilibrium prices of the short-run game which is played
for these locations. Let IT/(x) = I1(p*(x), x) be the payoff function of player, in the
long-run game, where p} = p7(x) is the Nash equilibrium increment of price above

" marginal cost in the short-run game played for locations x = (xy,..., x,), all
distinct. A subgame-perfect equilibrium of the two-stage game is a noncooperative
equilibrium of the varieties stage where firms use [T[/(x),j = 1...., n, as objective
functions.

3. NONCOOPERATIVE EQUILIBRIA IN PRICES

In this section we derive the equilibrium price structure in the price game and
distinguish those configurations of reservation price, spacing, and prices at which
neighboring firms are in direct competition with each other. The “competitive”
configuration, where firm j is in direct competition with its immediate neighbors,
occurs under two conditions

p, < min [2k — 2m ~ N(x; — x;_1) — pj_1, 2k — 2m — Mx,_; — xj) — pj.1]
p, > max [pj—l - )\(xj - xj—l)ypj+1 - )\(xj+1 - xj)]

The first condition guarantees that the worst-off consumers between firm j and its
neighbors prefer to buy a differentiated product rather than not. The second
condition guarantees that all firms have positive demand. Under these conditions
the marginal consumers to its left and right of firmj,j = 1,j # n are

Ej = [xJ +x}‘—1 + (PJ ‘p_,_1)/7\]/2 Ej+1 = [xj + xj+1 + (pj+1 —pj)/)\]/z
The profit function for firm j (for the ‘“‘competitive” region) is
0 =p )" d2 = pGs =)
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It is maximized with respect to p; at®
P = [pje1 + pjoy + Mxjeq — x;-1)]/4

The first and last firms face competition from one side only. The profit function of
the first firmis: Il = pZ, = p;[x; + x5 + (py — p;)/\]/2.If at the Nash equilibrium
in prices, firmj = 1 faces competition from its closest (second) firm, i.e., under

P2 — ANxy—x)) <p, <min[k —m — \x;, 2k — 2m — p; — NMxy — x,)]

then its “candidate’ Nash equilibrium increment of price above marginal cost is
given by pT = [p, + Mx; + x,)1/2. Similarly, p7* = [p,_, + M2 = (x, + x,_))]/2.

Let p* = (p%, ..., p%) be the vector of equilibrium increments of prices above
marginal cost and let A be a matrix with all elements zero except a;; = 1 for all ;
a9 =—Y,0;;,) = —Vs,foralli # 1;anda,, ;= ~Y,a;;_; = ~Viforalli = 1,i = n.
Then the first-order conditions are summarized as

(L) Ap* =y

where y; = NMxy + x5)/2, ¥, = N1 — (x,_; + x,)/2], and y; = Mx,_; — x;_1)/4forj =
2,...,n—1.
The inverse of A exists and the first-order conditions can be solved for

(2) p* = A— ly

The inverse of A is given by the following Lemma proved in Appendix A. Corollary
1, also proved in Appendix A, notes further properties of A,

LEMMA 1: The inverse of A exists and is given by A™* = B with representa-
tive element b, ;, where b,; = 2[p! ™ + p " 1/{V8loy ™" — p5 7 11b,, = 2[p7 ™ + p3~]
loi™ + pi ' UV3lor™ — ps Tl forn — 12 2 2andj 2 14, by = 200 +
P8 lpi 405/ {Y3lor ™ — p3 W forn — 12 j > 2andi > j, and b, = 2[p{™ +
pi 1/ (V3lpr ™ — pi11), where p, = 2 + Y3 and p, = 2 — \/3 are the solutions of p? -
4p+ 1 =0,

Note that matrix A, as well as its inverse A™}, are independent of the locations of
firms x. This is due to the linearity of transportation costs. Matrix A is dependent
on the locations of firms for nonlinear transportation costs as in Economides
(1989).

COROLLARY 1: All elements of A™! are positive. The sum of the elements of each
rowof A is equal to 2.

PROPOSITION 1: The first-order cond:tions for a short-run equilibrium have the
solution p* = A™! - y, where A™! is given by Lemma 1. At equilibrium, profits are

3This formula holds only if all locations are distinct. If the locations of two firms coincide, then
Bertrand competition drives the price differential over marginal cost to zero.
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[,(p* = (pj")2/)\ for interior firms, j # 1, # n and I1,(p™) = (pj*)g/(Z)\) for corner
firms,j = 1orn.

One candidate equilibrium locational structure is the one where all firms have
equal profits. This impliesp, =p,j # lornandp, =p, = pV2. Distances between
consecutive firms starting from the second firm are all equal, x,_; — x, = p/A,j €
(2,..., n — 2}, while distances closer to the edge are x;, = 1 — x, = 3p(y2 -

D/@2N), 29 —x; =%, — x,_; = p(2 ~ \/2)/)\, and p = A/(,2 + n — 2). These
distances are smaller than the ones of interior firms, x, — x; < x; < x,; — x,.
However, this locational structure does not constitute a noncooperative equilib-
rium because the second [(n — 1)st] firm has an incentive to undercut the first
(nth) firm. The first firm has a high price and is relatively close to the second
firm. It takes a relatively small decrease in the price of the second firm to
undercut the price of the first firm, drive it out of business, and take over all
customers in [0, x,]. This is summarized in Proposition 2 and 1s formally proved
in Appendix A.

PROPOSITION 2: No (locational) market structure can support an equilibrium
where all firms make equal profits.

4. “COMPETITIVE” EQUILIBRIA WITH FLEXIBILITY IN RELOCATION

Before discussing in detail a locational structure which does constitute a
short-run equilibrium (by fulfilling the appropriate suffictent conditions for
existence of a price equilibrium), we show that in the long-run game with no
relocation costs there is no equilibrium where the firms are in direct competition.
Formally, we show that the two-stage game, of location (variety) choice in the first
stage, and price choice in the second, does not have a perfect equilibrium.

From the first-order conditions of the price stage (which are necessary for
equilibrium), we have deduced in Proposition 1 the equilibrium profits of the price
stage parametrically for a varieties vector x. Because firms anticipate the price
equilibria when they choose varieties, the equilibrium profits of the price stage
constitute the objective functions of the varieties’ choice stage

II'(x) = [I(p*(x), x) = PH?/\ (j=2,...,n—1)
HJ"(X) = [1(p*(x), x) = (pf)z/(Z)\) (j=1lorn)

Firm j has an incentive to relocate marginally from its position x, towards the
direction which makes dII)/dx, positive. For both internal and corner firms,
sgn(dIT’/dx,) = sgn(dp}/dx,). Differentiating p* = A™'y with respect tox,,j = 1, n,
we have dp¥/dx, = A™' dy/dx,, wheredy,/dx, = Ofori =j ~ 1,j + 1anddy,_,/dx, =
N4,dy,.1/dx, = =\/4. Thus, dp}/dx, = Mb, ,_, — b, ,,,)/4, which can be calculated
directly from Lemma 1. For j = 1 we have dy,/dx, = dy,/dx, = \/2, so that
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dp,/dx, = Nb; ; + b, ;_1)/2, and similarly for j = n. We show in Appendix A that
LEMMA 2:dpj/dx; > 0 (<0) is equivalentto (n + 1)/2 > j(<j.

Thus, all firms, irrespective of the locational pattern, have incentives to relocate
towards the middle firm in the market. It immediately follows that there exists no
perfect equilibrium in the game played for high reservation prices. There are two
important features of this result. First, it is ordinal in nature. Side-firms try to
move towards the central firm (or two central firms if n is even * and not the central
point of the market. Only the order of the firms is important. The actual distances
between firms play no role. Second, this result is immediately tied to the inevitable
asymmetry of competition among more than two firms located in the interval [0, 1].
For a noncentral irm [j = (n + 1)/2forn odd, orj # n/2,j = 1 + n/2 for n even},
the world to its left is different than the world to its right. Thus the incentives of a
movement dx, on p¥,; and p}_, are not of equal and opposite signs as in the circular
model (Economides, 1983). From (1), dp}/dx; = dp}_,/dx, + dp},,/dx, but the
right-hand side is not equal to zero for noncentral firms.* These results are
summarized in Theorem 1.

THEOREM 1: There is no equilibrium in a “competitive’’ configuration in the
varieties (long-run) game which is subgame perfect in the price subgame because all
. firms want to relocate towards the central firm.

A movement by firm j has a ripple effect through the industry. After firm j
moves marginally to the right a new equilibrium is established where all firms to its
right have lower prices (and profits) and the decrease is largest for firmj + 1. This
reflects the increased intensity of competition after firm j came closer. At the new
equilibrium, all firms to the left of j have higher prices and the increase is largest
for firmj — 1. These effects are qualitatively independent of the location of the firm
J in relation to the center of the market (and therefore qualitatively independent of
the direction of change of its own price p}). This is summarized in Proposition 3
which is proved in Appendix A.

“Even in the limit, as the number of firms goes to infinity, equilibrium price of off-center firm j
changes significantly in its location

lim dpfdx, = {\Mp] — 1Y/2V3){lim (p3*V*2 — 1)/[pf "2+ P(p} ! — p3~ )]}
n—x n—x

=Ap?-1/(2V3) > 0iffn -2/ +1>0, ie.,j<(n-+1)/2

This contrasts with the results of Economides (1983) and Braid (1989), where it is shown that marginal
relocational effects on prices are zero in a symmetric locational pattern on an indinite line. However, the
effect of relocation on equilibrium profits of an off-center firm is zero in the limit. because its equilibrium
price is zero in the limit, limn—xp} = 0 =

lim dT(p*)/d, = (2/\)(lim p)(lim dpjfdx,) = 0

Thus, the relocation tendencies in the limit conform to Economides (1983) and Braid (1989).
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PROPOSITION 3: A movement of firm j in the direction of firm i decreases the price
and profits of firm i, and the absolute effect is larger the smaller the difference in the
order of the firms, |i — j|.

5. EQUISPACED “COMPETITIVE” EQUILIBRIUM

When the costs of changing product specification are high, the short-run
equilibrium could be sustained in the long run. As pointed out in Section 3, not all
locational structures allow for an equilibrium in the short-run game in prices, and
in particular the equal-profits configuration does not constitute a noncooperative
equilibrium. Here we propose and analyze the structure of n equispaced symmetri-
cally located firms, x; =dandx, =1 - x, = c. We assume that the maximal
number of firms are actlve in the market, so that (n — 1)d < 1 < nd.® Then ¥ =
Nd/2,forj=2,...,n —1,andy, =y, = Mc + d/2). This is called the symmetric
locational conﬁguration In the expression for equilibrium increments of prices
above margmal cost, p* = Ay, the sum of the first and the last elements of each
row of A™! plays a SIgmﬁcant role since it adds to prices a proportion of c. Let e;
represent the sum of the first and the last elements of rowj of A™%, (e, ..., e,) =

1(1,0,...,0,1). In our notation, e; = b, + b;,. Then, the candidate
(ﬁrst-order) Nash equilibrium price diﬁ'erentials over marginal cost fulfill

(3a) pf=\d + ce))

where

202 — \3)7 11 + (2 4 V3D + (2 + V3)I71(1 + (2 — {3y 1)]
V3L2 + V31 ~ (2 — {3)r1]

PROPOSITION 4: ¢; (and therefore p}) decreases in j for all j < n/2, increasesin j
for allj > n/2, and is strictly convex as a function of j.® Further, pj(n)isdecreasing
inn.

Proof: See Appendix A.

(3b) ej =

By the above proposition the successive differences in prices increase as we go
from the first to the last firm. This establishes a convex, symmetric, U-shaped price
structure. The center firm charges the lowest price and the firms at the edge of the
market charge the highest. See Figure 1.

It is easy to understand that the first and the last firms (which face
competition from one side only) have monopoly power and that they exploit this
power by charging high prices. The interesting element in this Nash equilibrium
configuration is that some of the monopoly power of the first and last firms is
transferred to their neighbors. The receivers transfer some of this monopoly power
to their neighbors on the other side, and so on. All these transfers of monopoly
power can be thought of as being done through prices. The corner firm quotes a

SThatis, (n — 1)d + 2c = land ¢ < d/2.
SExcept in the special case of ¢ = 0 when prices of all firms are equal.
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O Xy Xo X3 X4 X1
FIGURE 1: Equilibrium Prices.

high price and through this action it allows the second firm to charge a relatively
high price and so on.”

From Proposition 1, profits of an interior firm in the variety stage are I/ =
(p*)z/ A while the profits of an endpoint firm are IT) = (p*)z/ (2N). It is easxly seen
. that [T} < II5 so that the second firm has the hlghest proﬁts in the industry.® The
second firm is in a very privileged position as it is neighboring the firm with the
highest price and at the same time it has significant potential demand. The first
firm is in a privileged position too, since it faces competition from only one side. But
its potential demand is lower than the potential demand of an interior firm since
¢ < d/2. Its relative position in profitability depends crucially on its closeness to the
edge, that is, on the length c¢. For ¢ = 0, all firms have equal prices and the edge
firms make the lowest profits. On the other extreme, for ¢ nearly d/2andn > 5the
edge firms are the second most profitable ones in the industry.

The prices derived from the first-order conditions [Equations (3a-b)] will
constitute a Nash equilibrium if, for each firm j, p}is the global maximizer of IT;
when opponents play p%; = (p},...,pf 1, )1, - . ., P3). As long as both neighbors
of firmj have positive demand and compete directly with firmj, II, is concave in p,.
However, for a low enough price, firmj can drive one or both of its neighbors out of
business. Say firmj + 1 is pushed out of business by firm j. At the price where this
happens there is an upward jump in the demand and profits of firm j as all the
customers to the right of x, ., previously served by firm j + 1 are won by firm . For
lower prices, firm j competes with firmsj — 1 andj + 2 and its profit function is
concave in p; until it drives another neighbor out of business. Clearly, then, it has to
be checked that the profits of firm j at the first-order prices are higher than the

"This result is interesting in view of ten Raa (1984, p. 113) who found (in a nonstrategic setting)
that a unimodal density of housing was necessary to result in a spatial equilibrium.

BIF < IIf = pt < pIV'2 = ce, +d < V2ce, + d) = (e, — €,V2)/(V2 — 1) < d/c, which is true
because min (d/c¢) = 2 while the left-hand side varies from 0.94 for n = 3 to 1.73 for large n.
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profits at the prices which drive one or more of its neighbors out of business. We call
such prices ‘“‘undercutting prices.”

Three factors are critical in establishing the profitability or lack of profitability
of undercutting. First, the decrease in the price which is necessary to achieve
undercutting. Calling p} the highest price of firmj which undercuts firm;j — 1, this
decrease has to be at least p¥— p/ = p¥— p}_ | + Ad, which depends on the difference
of equilibrium prices of neighbors and on the distance between them. The second
factor is the extent of equilibrium demand which will have to be sold at the lower
undercutting prices. The third factor is the extent of gain in the demand achieved
by undercutting. For pto be the global maximizer in a “‘competitive” configuration
(where all consumers are served and they are strictly better off buying a
differentiated product) it is also necessary that firm j does not find it profitable to
increase its price so high that it becomes a local monopolist (and not all consumers
are served in [x;, x;,,]). If the reservation price is sufficiently low, firms are forced to
be local monopolists, while, if the reservation price is sufficiently high, a Nash
equilibrium of a ““competitive’ configuration exists. It can be shown that,

THEOREM 2: For sufficiently high reservation prices, i.e., either {(k — m)/\ =
3d/2+c(2 + 3ey)/4and 0 < ¢ < 2d/(6 — ey)}or{(k —m)/\ = d +c(2 + e,/2) and
2d/(6 — e,) < ¢ < d/2}, a “competitive” price equilibrium exists in the symmetric
locational configuration forn > 4. Forn = 3itis further required that c/d < 0.435.

The proof of Theorem 2 involves a detailed examination of all the possibilities
of undercutting and the determination that undercutting is unprofitable. It uses
the intuition developed above on the merits of undercutting. The proof, based on
four lemmata, is available from the author upon request. It is also contained in
Economides (1992).

Theorem 2 extends the results of D’ Aspremont, Gabszewicz and Thisse (1979)
that corrected Hotelling (1929). They showed that in the original model of
Hotelling a price equilibrium exists for locations x, € [0, }4] and x, € [34, 1] (in a
symmetric setting). This is similar to the condition used in Theorem 2 that the
length of the interval to the left of the first and to the right of the last firm is smaller
than half the distance between consecutive firms, ¢ < d/2.

Note that in this paper it is not the finite reservation price—Hotelling’s
reservation price was infinite—which helps establish the existence of equilibrium
as in the duopoly model of Economides (1984). Theorem 2 says that a “‘competitive”
Nash equilibrium exists for large and even infinite reservation prices k.

6. “LOCAL MONOPOLISTIC” AND “KINK” EQUILIBRIA

When the reservation price & is low, the possibility arises for the existence of
equilibria where all firms are local monopolists, so that between any two firms
there are some consumers who prefer not to buy any differentiated product at the
going prices. In the local monopolistic price region, demand is D; = 2(k — m — p;)/
A, and the internal maximizing increment of price above marginal cost is p} =
(& — m)/2. A local monopolistic equilibrium will exist if the distances between the
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firms are large relative to the reservation price, that is, if for all
(4) xj - xj_l > (k - m)/)\

For any reservation price £ it is the equispaced configuration which accommodates
the largest number of local monopolistic firms, n = N/(k — m). If there are n <
N/ (k — m) firms in the market then there is an infinity of locational equilibria, all
fulfilling Equation (4).

In the long run, firms in local monopolistic configurations have no incentives
to relocate. Marginal relocations which do not violate (4) leave profits unchanged. If
a relocation of firm violates (4), then the demand faced by firmj will be lower after
the relocation, and will result in a lower equilibrium price and profits. Thus, it has
Jjust been shown that

THEOREM 3: There exist subgame perfect n-firm locational equilibria if n <
A (k — m), that is, for low reservation prices. Such equilibria fulfill x; — x;_, >
(k — m)/N\, so that at equilibrium there are some consumers betiveen any two firms
who do not buy any differentiated product.

At the price where the gap of nonserved consumers located between the firms
closes, the demand function exhibits a kink which results in a decrease of the
. derivative of the profit function at that point. This creates the possibility that the
global maximizer of Il; is at the kink. We call this location-price configuration,
where consumers who are indifferent between buying from the two firms are also
indifferent between buying and not buying a differentiated product, a kink
configuration.® Calling z the marginal consumer between x; and x;,, at the kink
configuration, p; + Mz — x;) = (k — m) = p;; + AMx;,; — 2), sothat

(5) D, T Djat )\(xj+1 - xj) =2k —m)

For this configuration to constitute a noncooperative equilibrium in prices it is
required that for all j

(6a) lim,_,0I1;(2k — 2m — p;,y — N4y — %) — €)/dp, > 0
(Gb) Iime_.oanj(.?k - 2m - pj+1 - )\(xj+1 - xj) + E)/apj < 0

Conditions (6a-b) are equivalent'® to \d < (¢ —m) < 3Ad/2. For the
symmetric locational configuration introduced in Section 5, Condition (5) implies
immediately that p;_, = p;_,. There are n — 2 conditions on 7 prices. Clearly, there
is no unique kink equilibrium. The symmetric configuration suggests that the price
differential over marginal cost at the kink configuration is equal for all firms, p =
k — m — Ad/2. Undercutting is unprofitable as it involves the use of a negative price
differential over marginal cost, p* < p — A\d = & — m — 3A\d, 2 < 0. Thus, kink

®Beckmann (1972) and Salop (1979) observed the importance of kink equilibria.

“Evaluating dI1/3p, at p, = k — m — Ad/2 + € we have that lime~0 oIl (k — m ~ Ad/2 + €)/dp, =
2(0Md + m —~ k)/\ < 0 implies \d < & — m. Similarly, lime~0 6IL(k ~m — \d/2 - €)/dp, > 0 implies
3\d < 2(k — m).
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equilibria exist in the short run for an intermediate range of prices.!! At the
symmetric equilibrium selection, all firms have equal prices and the first firm has
the lowest profits since it has the lowest potential demand.

THEOREM 4: Price equilibria at the kink of the demand function exist for the
symmetric locational configuration for intermediate reservation prices k, Ad < k —
m < 3xd/2.

For the symmetric locational configuration introduced in Section 5, we note
that equilibrium prices do not depend on ¢ for the local monopolistic configuration
and the symmetric selection of the kink configuration. In the ‘“‘competitive” case
equilibrium prices do not depend on ¢ only when ¢ = 0.

For the symmetric locational configuration introduced in Section 5, an
asymmetric kink equilibrium price structure has alternating prices (p*, p% p!,
p?, ...). It canbe shown that 4%/3 — Ad < p},p? < 3k/2 — \d, withp! + p% = 2k —
Ad. Equilibrium existence requires, again, Ad < £ — m < 3\d/2. Note that these
equilibria are independent of c.

COROLLARY 2: A continuum of asymmetric price equilibria at the kink of the
demand function with alternating prices ( p*, p% p', p% . . .) exists for the symmetric

locational configuration for intermediate reservation prices k, Add < k —m < 3Ad/2
withp' + p* =2k — M.

In general, for every varieties vector x = (x,, ..., x,,), there is a continuum of
kink configurations where Equations (5) and (6a-b) hold for all j. Further, these
equilibria result in differing prices and profits. A marginal relocation of a firm from
a kink configuration will again result in a kink configuration. However, there is no
accepted way to select among these noncooperative equilibria. Since it is unclear
which short-run equilibrium will result, we cannot evaluate the long-run profit
function. Unfortunately, not much else can be said about the long-run pattern in
this intermediate case.

7. ENTRY

In the very long run we allow entry and exit. Potential entrants have the same
production technology as the already active firms and entry entails an extra set-up
cost F. We have shown (in Proposition 2) that no noncooperative equilibrium exists
where all firms make equal profits. Thus, we have to specifiy the relative profits
position of the entrant. Let us assume that the entrant has pessimistic expecta-
tions. When he enters he expects to receive the lowest profits among the active
firms in the market, [15(n — 1) = I™(n) = min, [1*(n) — F, where [1%(n — 1) are the
expected profits of the entrant given n» — 1 firms already active in the market.

]t is also checked that lime-o aIil(k ~m—M/2-¢€)/ap,=(m—k + M2 + 3d/2))/(2\) > 0,
and lime—0 oIl (k2 —~m ~ Ad/2 + €)/ap; =(Ac —k + m + A)/X < 0.
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The free-entry'? noncooperative equilibrium number of firms n* with pessimis-
tic entry expectations (of potential entrants) has to fulfill [I"(n*) > 0 and
II"™(n* + 1) < 0. Any expectations of the entrant other than pessimistic can only
lead to perpetual entry disequilibrium. If the nth entrant expects to get more than
IT™(n) he will enter even when I[1"(n) is negative, which should result in the exiting
of the firm making the lowest profits. However, note that, whatever the expecta-
tions of the potential entrant, the number of active firms in the industry will be the
same n* defined above. The industry can only hold a maximum of n* profitable
firms. -

I assume that the locational structure remains invariant when the additional
firm enters. There is no locational structure implied by an equal profits equilib-
rium, since by Proposition 2 such an equilibrium does not exist. Further, by
Theorem 1 there exists no location-price structure which constitutes a perfect
equilibrium in the variety-price game. Thus, any locational structure which results
in a short-run equilibrium can be considered.

I consider in detail the symmetric structure studied in Section 5. For every
number of firms n, there exist many combinations of distances d and ¢ which fulfill
the original requirement (n — 1)d + 2¢ = 1 < nd. I pin down the locational
structure by defining ¢ = 8d, 0 < 8 < Y4, and considering 8 as a parameter.'® Thus,
the ratios of the distances between firms are kept independent of the number of
. firms. Define this as the fixed-distance-ratios symmetric configuration. At the
competitive equilibrium the worst-off firm is the middle one,j = (n + 1)/2forodd n
(alternatively j = n/2 orj = 1 + n/2 for even n). Quantities p} ,(n) and II}%,(n)
decrease in n (and asymptotically tend to zero). Thus, there exists a unique solution
7 to IT},5(n) = F which is equivalent to II"(Z) = 0. Then the free-entry equilibrium
number of firms is n* = I(n) where I(x) represents the integer part of x.

THEOREM 5: In the symmetric fixed-distance-ratios competitive locational struc-
ture there exists a unique free-entry equilibrium number of firms n*.

COROLLARY 3: The equilibrium number of firms n* decreases in the setup cost F.

Similar analysis can be applied to the equilibria at the kink. For the symmetric
selection, the edge firm makes the lowest profits,'* which increase in d and thus
decrease in n. Thus, Theorem 5 and Corollary 3 also hold for kink equilibria
configurations. In the local monopolistic configuration (minimum) equilibrium
profits [I™ = (¢ — m)?/(2\) — F are independent of the number of firms n. Thus,
there can be three cases: either IT"(n) < O for all n and there are no firms in the

2This is a free-entry equilibrium in the sense that all firms have access to the same technology
and can enter without a cost impediment compared to other firms which are already active in the
market.

BWhen there are n firms in the market the distance between interior firmsisd = 1(n — 1 + 28).

1The profits of the edge firm are (¢ — Ad/2)(c + d/2) = d(u + V.)(k — Ad/2), which has deriva-
tive (i + 1)k ~ Ad) > 0.
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industry; or II™(n) > 0 for all n which result in local monopolistic configurations
and then entry drives the distance down to the kink configuration; or I1"(n) = 0 for
all n, a knife-edge case with an indeterminate number of firms. Therefore Theorem
5 holds for the local monopolistic case.*

8. CONCLUDING REMARKS

We have analyzed oligopolistic competition of more than two firms with
products defined by their characteristics, using [0, 1] as the space of characteristics.
It has been shown that standard results of the traditional model (which used the
circumference as the product space) do not hold for the [0, 1] model. In particular,
there exists no subgame-perfect equilibrium in the two-stage varieties-prices game
in which the whole market is served. Equilibrium existence breaks down in the
stage of variety choice as firms, starting from any locational pattern, would like to
relocate closer to the central firm. This result can be thought of as a strong form of
the “Principle of Minimum Differentiation.” Indeed, it is so strong that no
locational equilibrium exists as a direct consequence of it, provided that firms can
relocate costlessly.

For a symmetric locational structure, I have shown the existence of a
noncooperative equilibrium price structure. Such an equilibrium exists even for
high reservation prices—although for such prices it fails in duopoly. Firms near the
endpoints of the space of characteristics quote the highest prices, and prices
decrease as one moves to interior firms.

Whatever the locational pattern, it has been shown that there is no short-run
noncooperative price equilibrium where all firms make equal profits. Despite the
profits inequality, we showed the existence and characterization of free-entry
equilibria.

Traditionally the symmetric circumference model of differentiated products
has been used as an approximation to models that use an interval [a, b] as the
product space. This paper plainly shows that the results of the two models are quite
different, and therefore we can no longer use the simple circular symmetric model
to approximate most real-world differentiated markets where products are natu-
rally ordered by a characteristic which has a natural real interval domain.
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APPENDIX A:

Proof of Lemma 1
I first derive the first column of B. By the definition of Bas B = A™*

(A1) —bi,1/4 + b1+1,1 - bi+2,1/4 =0
(A2) bl,l - b2,1/2 =1
(A3) _bn_1’1/2 + bn,l = 0

From (A1) it follows that b;; = ky,pi™! + k, 105!, where p; = 2 + /3 and p, = 2 —
V3 are the solutions of p? — 4p + 1 = 0. Imposing (A2) and (A3) it follows that
kyy = 2057 /(V3[p7 ™ — 37T and by, = 2077/(V3lp7 ™} ~ 371} so that

(A4) b1 = 20p} ™ + p3~V/{V3loT ™ — o5 7Y)

Similarly, the elements of the last column of B are

(A5) bin = 207 + 51/ (V30T — 0571

I now derive the general interior column of B, j # 1 or n. By the definition of B
(A6) by;—by;/2=0

(A7) —=b; i/4 +biy1,j = bisg;/4=0 (G <j—2o0riz=})
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(A8) _bj-l.j/4 + bj,j - bj+1,j/4 =1 (l =j - 1)

(Ag) —b,,_l‘j/2 + bn,j = 0

From (A7) it follows that b, ; = k,{p{™" + p5 '1fori <jandb, ;= &} [p}~* + p}~] for
i 2 j. Fori = j these two expressions gave the same value. Thus, k)/k; = [p{™" +
51/ [p}™ + o3 71andk, = 2[p}7 + p371/{y3[p;™" — p3~'1}. Therefore

(A10) by =20p}7 + p3 1 [\ + p5 V(YOI — 0371} G <))
(A1) b ;=20p{ " +p5 1ol + o3 UVBlT ™ ~ 057} G 2) M

Proof of Corollary 1

Clearly all elements d; ; of B = A™!are positive. Let /= (1,..., 1)’ be a vector
of 1s, let v; = T, b; ; be the sum of row i and let d be the vector of v;s. A-B =1
implies ¢ = A - v. This has a unique solution, v = A™! - /. The solution is v = 2¢,
sincel =223",a,  foralli.Thus, 2,0, ;=2. W

Note that the proof only used the invertability of A and the fact that the rows
of A and I summed to a constant. Thus it applies to similar matrices, like A* which
appears in the first-order conditions of a circular market which is identical to A
except foral, = a}, = —Ysandal,=a}, .= —Ya.

Proof of Proposition 2

I derive the equal profits locational structure for odd n = 2g — 1. The proof for
n = 2q is similar. The equilibrium prices and locations have to fulfill

[A12(1)] P2 = 1/2) = N(x, + x5)/2
[A12(2)] P8 — /2)/4 = Nxz — x;)/4
[A12(])] p/2 = )\(xj+1 — xj'_l)/4

Add relations [A12(1)] and (g) to relations [A12(2)] through (g — 1) multiplied by 2.
The left-hand side is LHS = p[y2 — % + % — V% + 2(q — 3)/2 + Y] = p[y2 +
29 — 31/2 = p(y2 + n — 2)/2. The right-hand side, after some cancellations is
RHS = Nx,,1/2 + x,.,/2 + x,]/2 = Mx, =\/2, so that p(n) = 1/(/2 +n—2).xy — x,
=p(2 — \72)/ A, x, = 3p(y2 — 1)/(2\). The undercutting price for the second firm is
p* = py2 — \Mx, — x;) = 2p(y2 — 1). Demand at this price is D* > x, = p(y/2 +
1)/(2)), so that undercutting profits minus candidate equilibrium profits are IT* —
IT* > p2[2(2 — 1)(42 + 1)/2 — 1}/x = 0. Thus, undercutting by the second firm is
profitable. W

Proof of Lemma 2

Forj=1,n, we have dp;/dx; = Abj j-y — bjjs1)/4. From Lemma 1, b; ; ; —
by = 2{[07 74! + 37 Y + 05711 = (01 + 05 14 + phl}/Y3lp1 ! — p57']}. The
term in the first outer brackets is equal to p?~%*2 + pl"%*2 — p17% — p2¥ =
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(pl _ 1)(pn 2 n 2}+2) = 101 _ 1)(p2n 4+2 _ l)pf("‘2j+2). Thus, dpj/dxj >0 o
2n -2/ + 1) > 0 = j < (n + 1)/2. Similarly, dp;/dx; < 0 < j > (n + 1)/2. For
J =1, wehavedp,/dx, = \b; ; + b; ;_1)/ 2 > 0, whlch is positive since all bs are
positive. A similar proof <hows that dpn/dx <0. W

Proof of Proposition 3

The mathematical statement of Proposition 3 is: dp¥/dx; > 0 for i < j and
increases with i, while dp}/dx; < 0 fori > j and decreases i 1n absolute value with 7.

Now,dp/dx; = A~ ldy/d.x impliesdp}/dx; = N}, ;_, — b; ;_;)/4, whichfori < j
is proportlonal and of the same sign as p?*1 4 pp It (on Sy pp ¥y =(p2 - 1)
(pl_J — p27*Yy > 0, and the proportionality coefficient, 2(pi™* + p 1)/ \/3[p" 1_
p2 ]} is increasing in i. For i > j, dp}/dx; 1s proportional and of the same sign as
P2+ ot = (ph + ph) = (1 - pl)(p — p%) < 0 and the proportionality
coefficient, 2(p7 ™1 + p3™)/{y 3[p7~! — pi~'1},is decreasingini. M

Proof of Proposttion 4

The difference of successive. differences of the es is 3 = (e;,; — ¢) —
(ej—ei_1) =€, +e_, — 2¢ =¢, +e_; —4e + 2, =0 + 2¢ > 0, which
establishes convexity.

Define the difference of successive e;s as f(j) = e;.; — ;. f (J) is proportlonal
to (and of the opposite sign as) (1 + \/3)[p1"J - i 1] + (\3 - Dlpyt = p3¥ 1.
For even n = 2q, f(n/2) = 0. By the convexity argument, f(;) is increasing in j.
Therefore f(j) < Oforj < n/2and f(j) > Oforj > n/2. Forodd n = 2q + 1,
observe that n > 2j implies that both the first and second brackets of the above
expression are positive, and thus f(j) < 0 forj < n/2. Similarly, n < 2j implies
that both the first and the second brackets are negative and therefore f (j) < 0.

To show that e;(n) decreases in n, first note that ¢; can be written as ¢; =
20p%5 L + p2 )/ [\/3(1 — p3~1]. Now, since p, < 1, the denommator isincreasingin n
while the numerator is decreasing in n, and therefore e; decreasesinn. W
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