Employee Timetabling

Contents
1. Workforce allocation and Employee Timetabling
2. An Algorithm for Single Shift Schedules

Literature:
Operations Scheduling with Applications in Manufacturing and Services, Michael Pinedo and Xiuli Chao, McGraw Hill, 2000.
Chapter 9
or

Workforce allocation and employee timetabling

- Workforce allocation and employee timetabling deals with the arrangement of work schedules and the assignment of personnel to shifts to cover the demand for resources that vary over time.

Terminology:
employee timetabling
personnel scheduling
workforce scheduling

Single Shift Schedules

Problem Statement
Find the minimum number of employees W, required to cover a 7-day-a-week operation so that the following constraints are satisfied:
- the demand per day $n_j, j=1,...,7$ is met (n_1 is Sunday, n_7 is Saturday)
- each employee is given k_1 out of every k_2 weekends off
- each employee works exactly 5 out of 7 days (from Sunday to Saturday)
- each employee works no more than 6 consecutive days

Constraints
1. Weekend constraints
 In k_2 weeks each employee is available for $k_2 - k_1$ weekends
 $n = \max(n_1, n_7)$
 $(k_2-k_1)W \geq k_2 n$
 $W \geq \frac{k_2 n}{k_2 - k_1}$

2. Total demand constraint
 $5W \geq \sum_{j=1}^{7} n_j$
 $W \geq \lceil \frac{1}{5} \sum_{j=1}^{7} n_j \rceil$

3. Maximum daily demand
 $W \geq \max(n_1,...,n_7)$

Algorithm and Example

<table>
<thead>
<tr>
<th>Day</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thur</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

- Employee requires 3 out of 5 weekends off: $k_1 = 3, k_2 = 5$

Step 1. Compute the minimum workforce.
W is equal to the maximum of the three lower bounds given in constraints 1, 2 and 3.

$W \geq \frac{5 \cdot 3}{2} = 8$
$W \geq \frac{35}{5} = 7$
$W \geq ?$
$W = 8, n = 3$

Step 2. Schedule the weekends off
1. Assign the first weekend off to the first $(W-n)$ employees.
2. Assign the second weekend off to the next $(W-n)$ employees.
3. This process continues cyclically. Employee 1 is treated as the next employee after employee W.

$W - n = 8 - 3 = 5$

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>F</th>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
Step 3. Determine the additional off-day pairs
Total number of days off: 2W (everybody has 2 days off in a week)
W-n Saturdays and W-n Sundays are already assigned off (2W - 2n) therefore
2n days have to be assigned
\[S_j = W - n_j \quad \text{surplus employees for day } j \]
\[S_{i \neq j} = W - n_j \quad \text{for } j = 2, \ldots, 6 \]

Iteratively, construct a list of \(n \) pairs of off-days:
1. Choose day \(k \) such that \(S_k = \max (S_0, \ldots, S_7) \)
2. Choose any \(i \neq k \) such that \(S_i > 0 \). If \(S_i = 0 \) for all \(i \neq k \), set \(i = k \)
3. Add the pair \((k, i)\) to the list and decrease \(S_i \) and \(S_k \) by 1.
Repeat this procedure \(n \) times.

\[\sum_{j=0}^{7} S_j = \sum_{j=0}^{7} (W - n_j) + n - n_k + n - n_i, \]
\[= 5W - \sum_{j=1}^{7} n_j + 2n \]
(totals demand constraint)
\[\geq 2n \]

Step 4. Assigning off-day pairs in week 1.
1. Categorise employees

<table>
<thead>
<tr>
<th>Category</th>
<th>Weekend 1</th>
<th>Weekend 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 off</td>
<td>no off days needed</td>
<td>off</td>
</tr>
<tr>
<td>T2 off</td>
<td>1 off day needed</td>
<td>on</td>
</tr>
<tr>
<td>T3 on</td>
<td>1 off day needed</td>
<td>off</td>
</tr>
<tr>
<td>T4 on</td>
<td>2 off days needed</td>
<td>on</td>
</tr>
</tbody>
</table>

\[|T3| + |T4| = n \quad \text{(from weekend 1)} \]
\[|T2| + |T4| = n \quad \text{(from weekend } i + 1) \]

⇒ \[|T2| = |T3| \]
Pair T2 with T3.

2. Assigning off-day pairs
First assign pairs of days to the T4 employees
Assign to T3 and T2: T3 the earliest day of the pair, T2 the latest

Step 5. Assigning off-day pairs in week \(i \)
1. Categorise employees
2. Assigning off-day pairs
Case I. There is a nondistinct pair \((k, k)\) week \(i \) is scheduled in the same way as week 1 and is independent of week \((i-1)\).
Case II. All the pairs are distinct
All employees of type T3 and T4 in week \(i \) are associated with the same pair of off days which they received in week \((i-1)\).
T4 is given both days off
T3 gets the earliest day of the associated pair

Example

<table>
<thead>
<tr>
<th>Day</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>required</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[W \geq \left\lceil \frac{3 + 2}{3 - 2} \right\rceil = 3 \]
\[W \geq \frac{16}{5} = 3 \]
\[W \geq 3 \]
\[W = 3, n = 2 \]

employee requires 1 out of 3 weekends off
\[k_1 = 1, k_2 = 3 \]
Discussion

- There exist enough distinct off-days pairs to cover T4 employees.
- The algorithm will never assign a Saturday or Sunday surplus day off to an employee who already has that weekend off.
- Each employee works at least k_1 out of k_2 weekends off.
- Each employee works exactly 5 days per week from Sunday to Saturday.
- No employee works more than 5 consecutive days if all off-day pairs are distinct.
- No employee works more than 6 consecutive days when some off-day pairs are not distinct.

Summary

- This algorithm for single shift scheduling gives the bound for workforce size.
- The algorithm works by giving days off rather than scheduling to meet minimum daily needs.
- Single shift scheduling is a building block for the shift scheduling.