Transportation Models

• large variety of models due to the many modes of transportation
 – roads
 – railroad
 – shipping
 – airlines

• as a consequence different type of equipment and resources with different characteristics are involved
 – cars, trucks, roads
 – trains, tracks and stations
 – ships and ports
 – planes and airports

• consider two specific problems
Tanker Scheduling

Basic Characteristics

- consider the problem from the view of a company
- the planning process normally is done in a 'rolling horizon' fashion
- company operates a fleet of ships consisting of
 - own ships \(\{1, \ldots, T\} \)
 - chartered ships
- the operating costs of these two types are different
- only the own ships are scheduled
- using chartered ships only leads to costs which are given by the spot market
Tanker Scheduling

Basic Characteristics (cont.)

- each own ship i is characterized by its
 - capacity cap_i
 - draught dr_i
 - range of possible speeds
 - location l_i and time r_i at which it is ready to start next trip
 - . . .

Tanker Scheduling

Basic Characteristics (cont.)

- the company has n cargos to be transported
- cargo j is characterized by
 - type t_j (e.g. crude type)
 - quantity p_j
 - load port $port^l_j$ and delivery port $port^d_j$
 - time windows $[r^l_j, d^l_j]$ and $[r^d_j, d^d_j]$ for loading and delivery
 - load and unload times t^l_j and t^d_j
 - costs c^*_j denoting the price which has to be paid on the spot market to transport cargo j
Tanker Scheduling

Basic Characteristics (cont.)

- there are p different ports
- port k is characterized by
 - its location
 - limitations on the physical characteristics (e.g. length, draught, deadweight, ...) of the ships which may enter the port
 - local government rules (e.g. in Nigeria a ship has to be loaded above 90% to be allowed to sail)
 -
 -
 - ...
Tanker Scheduling

Basic Characteristics (cont.)

- the objective is to minimize the total cost of transporting all cargos
- hereby a cargo can be assigned to a ship of the company or ’sold’ on the spot market and thus be transported by a chartered ship
- costs consist of
 - operating costs for own ships
 - spot charter rates
 - fuel costs
 - port charges, which depend on the deadweight of the ship
Tanker Scheduling

ILP modeling

- straightforward choice of variables would be to use $0-1$-variables for assigning cargos to ships
- problem: these assignment variables do not define the schedule/route for the ship and thus feasibility and costs of the assignment can not be determined
- alternative approach: generate a set of possible schedules/routes for each ship and afterwards use assignment variables to assign schedules/routes to ships
- problem splits up into two subproblems:
 - generate schedules for ships
 - assign schedules to ships
Tanker Scheduling

ILP modeling - generate schedules

- a schedule for a ship consist of an assignment of cargos to the ship and a sequence in which the corresponding ports are visited
- generation of schedules can be done by ad-hoc heuristics which consider
 - ship constraints like capacity, speed, availability, . . .
 - port constraints
 - time windows of cargos
- each schedule leads to a certain cost
- for each ship enough potential schedules should be generated in order to get feasible and good solutions for the second subproblem
Tanker Scheduling

ILP modeling - generate schedules (cont.)

- the output of the first subproblem is
 - a set S_i of possible schedules for ship i
 - each schedule $l \in S_i$ is characterized by
 * a vector $(a_{i1}^l, \ldots, a_{in}^l)$ where $a_{ij}^l = 1$ if cargo j is transported by ship i in schedule l and 0 otherwise
 * costs c_i^l denoting the incremental costs of operating ship i under schedule l versus keeping it idle over the planning horizon
 * profit $\pi_i^l = \sum_{j=1}^n a_{ij}^l c_j^* - c_i^l$ by using schedule l for ship i instead of paying the spot market
Remarks:

- All the feasibility constraints of the ports and ships are now within the schedule.
- All cost aspects are summarized in the values c^l_i resp. π^l_i.
- The sequences belonging to the schedules determine feasibility and the costs c^l_i but are not part of the output since they are not needed in the second subproblem.
Tanker Scheduling

ILP modeling - assign schedules to ships

- variables $x^l_i = \begin{cases} 1 & \text{if ship } i \text{ follows schedule } l \\ 0 & \text{else} \end{cases}$

- objective: $\max \sum_{i=1}^{T} \sum_{l \in S_i} \pi^l_i x^l_i$

- constraint:

 $- \sum_{i=1}^{T} \sum_{l \in S_i} a_{ij}^l x^l_i \leq 1; \quad j = 1, \ldots, n$ (each cargo at most once)

 $- \sum_{l \in S_i} x^l_i \leq 1; \quad i = 1, \ldots, T$ (each ship at most one schedule)
Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

- the ILP model is a set-packing problem and well studied in the literature

- can be solved by branch and bound procedures

- possible branchings:
 - chose a variable x^l_i and branch on the two possibilities $x^l_i = 0$ and $x^l_i = 1$
 select x^l_i on base of the solution of the LP-relaxation: choose a variable with value close to 0.5
 - chose a ship i and branch on the possible schedules $l \in S_i$
 selection of ship i is e.g. be done using the LP-relaxation: choose a ship with a highly fractional solution
Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

- lower bounds can be achieved by generating feasible solutions via clever heuristics (feasible solution = lower bound since we have a maximization problem)

- upper bounds can be obtained via relaxing the integrality constraints and solving the resulting LP (note, that this LP-solution is also used for branching!)

- for a small example, the behavior of the branch and bound method is given in the handouts
Remarks Two Phase Approach

- in general the solution after solving the two subproblems is only a heuristic solution of the overall problem.

- if in the first subproblem all possible schedules/routes for each ship are generated (i.e. S_i is equal to the set S_{i}^{all} of all feasible schedules for ship i), the optimal solution of the second subproblem is an optimal solution for the overall problem.

- for real life instances the cardinalities of the sets S_{i}^{all} are too large to allow a complete generation (i.e. S_i is always a (small) subset of S_{i}^{all}).

- column generation can be used to improve the overall quality of the resulting solution.
Train Timetabling

General Remarks

- in the railway world lots of scheduling problems are of importance
 - scheduling trains in a timetable
 - routing of material
 - staff planning
 - ...
- currently lots of subproblems are investigated
- the goal is to achieve an overall decision support system for the whole planning process
- we consider one important subproblem
Train Timetabling

Decomposition of the Train Timetabling

- mostly the overall railway network consists of some major stations and ‘lines/corridors’ connecting them

- a corridor normally consists of two independent one-way tracks

- having good timetables for the trains in the corridors makes it often easy to find timetables for the trains on the other lines
Train Timetabling

Scheduling Train on a Track

- consider a track between two mayor stations
- in between the two mayor stations several smaller stations exists

R RN RA CS NI G GG GC W U
R Rotterdam Centraal CS Capelle Schollevaar GG Gouda Goverwelle
RN Rotterdam Noord NI Nieuwerkerk ad IJssel W Woerden
RA Rotterdam Alexander G Gouda U Utrecht Centraal

- trains may or may not stop at these stations
- trains can only overtake each other at stations
Train Timetabling

Problem Definition Track Scheduling

- time period 1, \ldots, q, where q is the length of the planning period (typically measured in minutes; e.g. \(q = 1440 \))
- \(L + 1 \) stations 0, \ldots, \(L \)
- \(L \) consecutive links;
- link \(j \) connects station \(j - 1 \) and \(j \)
- trains travel in the direction from station 0 to \(L \)
- \(T \): set of trains that are candidates to run during planning period
- for link \(j \), \(T_j \subseteq T \) denotes the trains passing the link
Train Timetabling

Problem Definition Track Scheduling (cont.)

- Train schedules are usually depicted in so-called time-space diagrams.

- Diagrams enable user to see conflicts.
Train Timetabling

Problem Definition Track Scheduling (cont.)

- train schedules are usually depicted in so-called time-space diagrams

- diagrams enable user to see conflicts
Train Timetabling

Problem Definition Track Scheduling (cont.)

- each train has an most desirable timetable (arrivals, departures, travel time on links, stopping time at stations), achieved e.g. via marketing department
- putting all these most desirable timetables together, surely will lead to conflicts on the track
- possibilities to change a timetable:
 - slow down train on link
 - increase stopping time at a station
 - modify departure time at first station
 - cancel the train
Train Timetabling

Problem Definition Track Scheduling (cont.)

- cost of deviating from a given time \hat{t}:
 - specifies the revenue loss due to a deviation from \hat{t}
 - the cost function has its minimum in \hat{t}, is convex, and often modeled by a piecewise linear function

- piecewise linear helps in ILP models!
Train Timetabling

Variables for Track Scheduling

- variables represent departure and arrival times from stations
 - y_{ij}: time train i enters link j
 - $= \text{time train } i \text{ departs from station } j - 1$
 - (defined if $i \in T_j$)
 - z_{ij}: time train i leaves link j
 - $= \text{time train } i \text{ arrives at station } j$
 - (defined if $i \in T_j$)

- $c_{ij}^d(y_{ij})$ ($c_{ij}^a(z_{ij})$) denotes the cost resulting from the deviation of the departure time y_{ij} (arrival time z_{ij}) from its most desirable value
Train Timetabling

Variables for Track Scheduling (cont.)

- variables resulting from the departures and arrivals times:
 \[\tau_{ij} = z_{ij} - y_{ij} \]: travel time of train \(i \) on link \(j \)

 \[\delta_{ij} = y_{i,j+1} - z_{ij} \]: stopping time of train \(i \) at station \(j \)

- \(c^\tau_{ij}(\tau_{ij}) \) \((c^\delta_{ij}(\delta_{ij})) \) denotes the cost resulting from the deviation of the travel time \(\tau_{ij} \) (stopping time \(\delta_{ij} \)) from its most desirable value

- all cost functions \(c^d_{ij}, c^a_{ij}, c^\tau_{ij}, c^\delta_{ij} \) have the mentioned structure
Train Timetabling

Objective function

- minimize

\[
\sum_{j=1}^{L} \sum_{i \in T_j} (c_{ij}^d(y_{ij}) + c_{ij}^a(z_{ij}) + c_{ij}^T(z_{ij} - y_{ij})) + \sum_{j=1}^{L-1} \sum_{i \in T_j} c_{ij}^\delta(y_{i,j+1} - z_{ij})
\]
Train Timetabling

Constraints

- minimum travel times for train i over link j: τ_{ij}^{min}
- minimum stopping times for train i at station j: δ_{ij}^{min}
- safety distance:
 - minimum headway between departure times of train h and train i from station j: H_{hij}^d
 - minimum headway between arrival times of train h and train i from station j: H_{hij}^a
- lower and upper bounds on departure and arrival times:
 $y_{ij}^{min}, y_{ij}^{max}, z_{ij}^{min}, z_{ij}^{max}$
Train Timetabling

Constraints (cont.)

- to be able to model the minimum headway constraints, variables have to be introduced which control the order of the trains on the links
- \(x_{hi,j} = \begin{cases}
1 & \text{if train } h \text{ immediately preceeds train } i \text{ on link } j \\
0 & \text{else}
\end{cases} \)
- using the variables \(x_{hi,j} \), the minimum headway constraints can be formulated via ’big M’-constraints:

\[
\begin{align*}
 y_{i,j+1} - y_{h,j+1} + (1 - x_{hi,j})M & \geq H_{hi,j}^d \\
 z_{ij} - z_{hj} + (1 - x_{hi,j})M & \geq H_{hi,j}^a
\end{align*}
\]
Train Timetabling

Constraints (cont.)

- two dummy trains 0 and * are added, representing the start and end of the planning period (fix departure and arrival times appropriate ensuring that 0 is sequenced before all other trains and * after all other trains)
Train Timetabling

Constraints (cont.)

\[y_{ij} \geq y_{ij}^{\text{min}} \quad j = 1, \ldots, L; \ i \in T_j \]
\[y_{ij} \leq y_{ij}^{\text{max}} \quad j = 1, \ldots, L; \ i \in T_j \]
\[z_{ij} \geq z_{ij}^{\text{min}} \quad j = 1, \ldots, L; \ i \in T_j \]
\[z_{ij} \leq z_{ij}^{\text{max}} \quad j = 1, \ldots, L; \ i \in T_j \]
\[z_{ij} - y_{ij} \geq \tau_{ij}^{\text{min}} \quad j = 1, \ldots, L; \ i \in T_j \]
\[y_{i,j+1} - z_{ij} \geq \delta_{ij}^{\text{min}} \quad j = 1, \ldots, L - 1; \ i \in T_j \]
\[y_{i,j+1} - y_{h,j+1} + (1 - x_{hij})M \geq H_{hij}^d \quad j = 0, \ldots, L - 1; \ i, h \in T_j \]
\[z_{ij} - z_{hj} + (1 - x_{hij})M \geq H_{hij}^a \quad j = 1, \ldots, L; \ i, h \in T_j \]
\[\sum_{h \in T_j \setminus \{i\}} x_{hij} = 1 \quad j = 1, \ldots, L; \ i \in T_j \]
\[x_{hij} \in \{0, 1\} \quad j = 1, \ldots, L; \ i, h \in T_j \]
Train Timetabling

Remarks on ILP Model

- the number of 0-1 variables gets already for moderate instances quite large
- the single track problem is only a subproblem in the whole timetabling process and needs therefore to be solved often
- as a consequence, the computational time for solving the single track problem must be small
- this asks for heuristic approaches to solve the single track problem
Train Timetabling

Decomposition Approach: General Idea

- schedule the trains iteratively one by one
- initially, the two dummy trains 0 and * are scheduled
- the selection of the next train to be scheduled is done on base of priorities
- possible priorities are
 - earliest desired departure time
 - decreasing order of importance (importance may be e.g. measured by train type, speed, expected revenue, ...)
 - smallest flexibility in departure and arrival
 - combinations of the above
Train Timetabling

Decomposition Approach: Realization

- T_0: set of already scheduled trains
- initially $T_0 = \{0,*\}$
- after each iteration a schedule of the trains from T_0 is given
- however, for the next iteration only the sequence in which the trains from T_0 traverse the links is taken into account
- $S_j = (0 = j_0, j_1, \ldots, j_n, j_{n+1} = *):$ sequence of trains from T_0 on link j
- if train k is chosen to be scheduled in an iteration, we have to insert k in all sequences S_j where $k \in T_j$
- this problem is called $Insert(k, T_0)$
Train Timetabling

ILP Formulation of $\text{Insert}(k, T_0)$

Adapt the 'standard' constraints and the objective to T_0:

$$\min \sum_{j=1}^{L} \sum_{i \in T_j} (c_{ij}^d(y_{ij}) + c_{ij}^a(z_{ij}) + c_{ij}^\tau(z_{ij} - y_{ij}))$$

$$+ \sum_{j=1}^{L_1} \sum_{i \in T_j} c_{ij}^\delta(y_{i,j+1} - z_{ij})$$

subject to

$$y_{ij} \geq y_{ij}^{\min} \quad j = 1, \ldots, L; \ i \in T_0 \cap T_j$$

$$y_{ij} \leq y_{ij}^{\max} \quad j = 1, \ldots, L; \ i \in T_0 \cap T_j$$

$$z_{ij} \geq z_{ij}^{\min} \quad j = 1, \ldots, L; \ i \in T_0 \cap T_j$$

$$z_{ij} \leq z_{ij}^{\max} \quad j = 1, \ldots, L; \ i \in T_0 \cap T_j$$

$$z_{ij} - y_{ij} \geq \tau_{ij}^{\min} \quad j = 1, \ldots, L; \ i \in T_0 \cap T_j$$

$$y_{i,j+1} - z_{ij} \geq \delta ij^{\min} \quad j = 1, \ldots, L - 1; \ i \in T_0 \cap T_j$$
Train Timetabling

ILP Formulation of Insert(k, T_0) (cont.)

- adapt $y_{i,j+1} - y_{h,j+1} + (1 - x_{hij})M \geq H^d_{hij}$ for trains from T_0

$$y_{ji+1,j} - y_{ji,j} \geq H^d_{ji,ji+1,j-1} \quad \text{for } j = 1, \ldots, L, i = 0, \ldots, n_j$$

- adapt $z_{ij} - z_{hj} + (1 - x_{hij})M \geq H^a_{hij}$ for trains from T_0

$$z_{ji+1,j} - z_{ji,j} \geq H^a_{ji,ji+1,j} \quad \text{for } j = 1, \ldots, L, i = 0, \ldots, n_j$$
Train Timetabling

ILP Formulation of \(\text{Insert}(k, T_0) \) (cont.)

- insert \(k \) on link \(j \) via variables
 \[
 x_{ij} = \begin{cases}
 1 & \text{if train } k \text{ immediately precedes train } j_i \text{ on link } j \\
 0 & \text{else}
 \end{cases}
 \]

- new constraints for \(j = 1, \ldots, L, i = 0, \ldots, n_j \):

 \[
 \begin{align*}
 - y_{k,j} - y_{j_i,j} + (1 - x_{ij})M & \geq H_{jikj}^d \\
 - y_{j_{i+1},j} - y_{k,j} + (1 - x_{ij})M & \geq H_{kj_{i+1}j}^d \\
 - z_{k,j} - z_{j_i,j} + (1 - x_{ij})M & \geq H_{jikj}^a \\
 - z_{j_{i+1},j} - z_{k,j} + (1 - x_{ij})M & \geq H_{kj_{i+1}j}^a
 \end{align*}
 \]

- 0-1 constraints and sum constraint on \(x_{ij} \) values
Train Timetabling

Remarks on ILP Formulation of $Insert(k, T_0)$

- the ILP Formulation of $Insert(k, T_0)$ has the same order of continuous constraints (y_{ij}, z_{ij}) but far fewer 0-1 variables than the original MIP.

- a preprocessing may help to fix x_{ij} variables since on base of the lower and upper bound on the departure and arrival times of train k many options may be impossible.

- solving $Insert(k, T_0)$ may be done by branch and bound.
Train Timetabling

Solving the overall problem

- an heuristic for the overall problem may follow the ideas of the shifting bottleneck heuristic
 - select a new train \(k \) (machine) which is most ’urgent’
 - solve for this new train \(k \) the problem \(\text{Insert}(k, T_0) \)
 - reoptimize the resulting schedule by rescheduling the trains from \(T_0 \)

- rescheduling of a train \(l \in T_0 \) can be done by solving the problem \(\text{Insert}(l, T_0 \cup \{k\} \setminus \{l\}) \) using the schedule which results from deleting train \(l \) from the schedule achieved by \(\text{Insert}(k, T_0) \)