On-Line Scheduling

General Introduction

• on-line scheduling can be seen as scheduling with incomplete information

• at certain points, decisions have to be made without knowing already the complete instance

• depending on the way how new information gets known, different on-line paradigms are possible
On-Line Scheduling

On-Line paradigms

- scheduling jobs one by one
 - in this paradigm jobs are ordered in some list (sequence)
 - jobs are presented one by one to the decision maker
 - at the moment the job is presented, its characteristics get available
 - the scheduling decision for the job has to be taken before the next job is presented
 - the scheduling decision is irreversible

Remarks:

- scheduling jobs one by one is list scheduling!
- in Lecture 5, we have shown that list scheduling is a $2 - 1/m$-approximation for $P||C_{max}$
On-Line Scheduling

On-Line paradigms (cont.)

- jobs arrive over time
 - jobs get know at their release date
 - the scheduling decision for a job may be delayed
 - at any time all currently available jobs are at the disposal of the decision maker
 - decisions in the past are irreversible

Remark:

- we consider this paradigm
On-Line Scheduling

Performance measure

- quality of an on-line algorithm is mostly measured by evaluating its worst case performance
- as reference value the best off-line value is used
- has a ‘game theoretic’ character:
 - the on-line algorithm plays against an ‘adversary’
 - the adversary makes a sequence of requests (jobs) to be served by the on-line algorithm
 - the adversary also serves the request, but only after it knows all request
 - the adversary tries to get the costs of the on-line algorithm as high as possible compared to its own cost
On-Line Scheduling

Performance measure - competitive analysis

- an on-line algorithm is ρ-competitive if its objective value is no more than ρ times the optimal off-line value for all instances
- the competitive ratio is related to the approximation factor in off-line settings
On-Line Scheduling

Performance measure - competitive analysis

- an on-line algorithm is \(\rho \)-competitive if its objective value is no more than \(\rho \) times the optimal off-line value for all instances
- the competitive ratio is related to the approximation factor in off-line settings
- if *randomization* is allowed within the on-line algorithm (i.e. random choices are allowed) the expected objective value is used for the competitive analysis
On-Line Scheduling

Performance measure - lower bounds

- how much does one lose by not having complete information or how much is it worth to know the future?
On-Line Scheduling

Performance measure - lower bounds

• how much does one lose by not having complete information or how much is it worth to know the future?

• the competitive ratio of a specific on-line algorithm is not the answer to this problem

• a lower bound on the competitive ratio of every possible on-line algorithm answers the question!

• such lower bounds can be achieved by providing a specific set of instances on which no on-line algorithm can perform well
On-Line Scheduling

Problem 1\(|r_j| \sum C_j\)

- problem is NP-hard
- if all release dates are equal, the SPT-rule solves the problem
- in the general case, SPT (each time the machine gets idle, process an available job with smallest processing time) is an on-line algorithm
- Theorem: For problem 1\(|r_j| \sum C_j\) the SPT-algorithm has not a constant competitive ratio.
 (Proof as exercise)
- Can we do better?
- How good can we do?
On-Line Scheduling

Problem 1 | \(r_j \) | \(\sum C_j \) - lower bound

- Theorem: Any deterministic on-line algorithm for problem 1 | \(r_j \) | \(\sum C_j \) has a competitive ratio of at least 2
 (proof on the board)

- Remark: Proof of the theorem shows that any on-line algorithm which has a constant competitive ratio needs a 'waiting' strategy
On-Line Scheduling

Problem 1\(|r_j|\sum C_j\) - algorithm

- Algorithm delayed SPT (DSPT):
 1. IF machine gets idle THEN
 2. calculate next time \(t\) at which a job is available;
 3. let \(j\) be unscheduled available job with smallest processing time;
 4. (if choice, select job with smallest release date);
 5. IF \(p_j \leq t\) THEN
 6. schedule job \(j\) at \(t\)
 7. ELSE
 8. wait until \(t = p_j\) or until a next job becomes available;
On-Line Scheduling

Problem 1|r_j| \sum C_j - algorithm (cont.)

- Remarks on DSPT:
 - algorithm would like to order jobs by increasing processing times, but does not know if in the future smaller jobs arrive and how long to wait
 - to cope with this, the algorithm waits so long that if it makes a 'mistake' and schedules a large job \(j \), all smaller jobs coming after \(j \) have a release date \(\geq p_j \)
 - this makes that the 'mistake' can not contribute too much to the criterion
On-Line Scheduling

Problem 1\(|r_j| \sum C_j\) - algorithm (cont.)

- Theorem: Algorithm DSPT for problem 1\(|r_j| \sum C_j\) has competitive ratio 2

- Proof (sketch):
 - Notation:
 * \(I\): instance with a minimal number of jobs for which DSPT has largest performance ratio
 * \(\sigma\): schedule created by algorithm DSPT for instance \(I\)
 - Observation: Schedule \(\sigma\) consist of a single block (i.e. all jobs are processed without idle time in between)
 - Assumption: jobs are numbered according to their position in \(\sigma\)
On-Line Scheduling

Problem 1\(|r_j| \sum C_j\) - algorithm (cont.)

- Proof (cont.):
 - partition of \(\sigma\) into subblocks \(B_1, \ldots, B_k\):
 * within \(B_i\) jobs are ordered according to increasing processing times
 * last job of \(B_i\) is larger than first job of \(B_{i+1}\)
 * \(B_i\) consist of jobs \(b(i - 1) + 1, \ldots, b(i)\)
 (i.e. \(b(i) = \min\{j > b(i - 1)|p_j > p_{j+1}\}\))
 - define \(m(i)\) such that \(p_{m(i)} = \max_{0 \leq j \leq b(i)} p_j\)
 - define pseudo schedule \(\psi\) by scheduling jobs in same order as in \(\sigma\)
 where job \(j\) from subblock \(B_{i+1}\) starts at \(S_j(\sigma) - p_{m(i)}\)
On-Line Scheduling

Problem 1\(|r_j| \sum C_j\) - algorithm (cont.)

- Proof (cont.):
 - in \(\psi\) job may overlap or start before their release date
 - Notation:
 * \(\phi\): optimal preemptive schedule for \(I\)
 - Lemma 1: For all \(j \in I\) we have: \(C_j(\sigma) - C_j(\psi) \leq C_j(\phi)\).
 (Proof on the board)
 - Lemma 2: \(\sum C_j(\psi) \leq \sum C_j(\phi)\)
 (Proof in the handouts)
On-Line Scheduling

Problem 1|r_j|\sum C_j - randomized algorithm

- algorithm is based on optimal preemptive solution of problem
 1|r_j, pmtn|\sum C_j

- SRPT (at each point in time schedule an available job with shortest
 remaining processing time) solves problem 1|r_j, pmtn|\sum C_j

- SRPT is an on-line algorithm and, thus, an on-line algorithm for
 problem 1|r_j|\sum C_j may use the result of SRPT
On-Line Scheduling

Problem 1\(|r_j| \sum C_j \) - randomized algorithm

- algorithm \(\alpha \)-scheduler:

1. \(L \): list of jobs for which in the optimal preemptive schedule an \(\alpha \) fraction has already been scheduled at the current time;
 initially: \(L = \emptyset \);
2. proceed in time whereby the preemptive schedule is updated
3. IF \(\alpha \) fraction of job \(j \) is finished in preemptive schedule THEN
4. add \(j \) at the end of \(L \);
5. IF machine gets idle THEN
6. schedule first job of \(L \) or if \(L \) is empty, proceed in time;
On-Line Scheduling

Problem 1|rj| \sum C_j - randomized algorithm

- for fixed \(\alpha \) the \(\alpha \)-scheduler is a deterministic algorithm
- for \(\alpha = 1 \), the \(\alpha \)-scheduler has a competitive ratio of 2
 (proof by Phillips, Stein and Wein [1995])
- other values of \(\alpha \) lead to larger competitive ratios
- Theorem: The randomized on-line algorithm \(\alpha \)-scheduler, where \(\alpha \) is chosen according to probability density function \(f(\alpha) = e^{\alpha}/(e - 1) \), has competitive ratio \(e/(e - 1) \approx 1.582 \)
 (proof by Chekuri, Motwani, Natarajan and Stein [1997])
- Theorem: Any randomized on-line algorithm for problem 1|rj| \(\sum C_j \) has a competitive ratio of at least \(e/(e - 1) \)
 (proof in the handouts)