Single machine models: Number of Tardy Jobs

Problem 1||∑ Uj:

- Structure of an optimal schedule:
 - set S₁ of jobs meeting their due dates
 - set S₂ of jobs being late
 - jobs of S₁ are scheduled before jobs from S₂
 - jobs from S₁ are scheduled in EDD order
 - jobs from S₂ are scheduled in an arbitrary order

- Result: a partition of the set of jobs into sets S₁ and S₂ is sufficient to describe a solution
Single machine models: Number of Tardy Jobs

Algorithm 1 $||\sum U_j$:

1. enumerate jobs such that $d_1 \leq \ldots \leq d_n$;
2. $S_1 := \emptyset; \ t := 0$;
3. FOR j:=1 TO n DO
4. $\quad S_1 := S_1 \cup \{j\}; \ t := t + p_j$;
5. \quad IF $t > d_j$ THEN
6. \quad Find job k with largest p_k value in S_1;
7. $\quad S_1 := S_1 \backslash \{k\}; \ t := t - p_k$;
8. \quad END
9. END
Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||∑U_j

- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

- complexity: \(O(n \log(n))\)

- Example: \(n = 5;\) \(p = (7, 8, 4, 6, 6);\) \(d = (9, 17, 18, 19, 21)\)
Single machine models: Number of Tardy Jobs

Remarks Algorithm 1 || $\sum U_j$

- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late
- Complexity: $O(n \log(n))$
- Example: $n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)$

![Diagram of job scheduling](attachment:job_scheduling_diagram.png)
Single machine models: Number of Tardy Jobs

Remarks Algorithm 1 || $\sum U_j$

- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

- Complexity: $O(n \log(n))$

- Example: $n = 5$; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$

\[
\begin{array}{cccccc}
0 & 1 & 3 & 4 & 5 & d_5 \\
5 & 10 & 15 & 20 & &
\end{array}
\]
Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||\(\sum U_j\)

- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

- complexity: \(O(n \log(n))\)

- Example: \(n = 5\); \(p = (7, 8, 4, 6, 6)\); \(d = (9, 17, 18, 19, 21)\)

- Algorithm 1||\(\sum U_j\); computes an optimal solution

Proof on the board
Single machine models: Weighted Number of Tardy Jobs

Problem 1|| $\sum w_j U_j$

- problem 1|| $\sum w_j U_j$ is NP-hard even if all due dates are the same; i.e. 1|d_j = d| $\sum w_j U_j$ is NP-hard
 Proof on the board (reduction from PARTITION)

- priority based heuristic (WSPT-rule):
 schedule jobs in decreasing w_j/p_j order
Single machine models: Weighted Number of Tardy Jobs

Problem 1\|\sum w_j U_j

- problem 1\|\sum w_j U_j is NP-hard even if all due dates are the same; i.e. 1|d_j = d|\sum w_j U_j is NP-hard

 Proof on the board (reduction from PARTITION)

- priority based heuristic (WSPT-rule):
 schedule jobs in decreasing \(w_j/p_j \) order

- WSPT may perform arbitrary bad for 1\|\sum w_j U_j:
Single machine models: Weighted Number of Tardy Jobs

Problem 1||Σ w_jU_j

- problem 1||Σ w_jU_j is NP-hard even if all due dates are the same; i.e. 1|d_j = d|Σ w_jU_j is NP-hard
 Proof on the board (reduction from PARTITION)

- priority based heuristic (WSPT-rule):
 schedule jobs in decreasing w_j/p_j order

- WSPT may perform arbitrary bad for 1||Σ w_jU_j:
 \[n = 3; p = (1, 1, M); w = (1+\epsilon, 1, M-\epsilon); d = (1+M, 1+M, 1+M) \]
 \[\sum w_jU_j(WSPT) / \sum w_jU_j(opt) = (M - \epsilon)/(1 + \epsilon) \]
Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for $1|| \sum w_j U_j$

- assume $d_1 \leq \ldots \leq d_n$
- as for $1|| \sum U_j$ a solution is given by a partition of the set of jobs into
 sets S_1 and S_2 and jobs in S_1 are in EDD order
- Definition:
 $$-F_j(t) := \text{minimum criterion value for scheduling the first } j \text{ jobs such that the processing time of the on-time jobs is at most } t$$
- $F_n(T)$ with $T = \sum_{j=1}^{n} p_j$ is optimal value for problem $1|| \sum w_j U_j$
- Initial conditions:
 $$F_j(t) = \begin{cases}
\infty & \text{for } t < 0; \ j = 1, \ldots, n \\
0 & \text{for } t \geq 0; \ j = 0
\end{cases} \quad (1)$$
Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for $1|| \sum w_j U_j$ (cont.)

- if $0 \leq t \leq d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$

- if $0 \leq t \leq d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t - p_j)$
Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for $1||\sum w_j U_j$ (cont.)

- if $0 \leq t \leq d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$

- if $0 \leq t \leq d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t - p_j)$

- summarizing, we get for $j = 1, \ldots, n$:

$$F_j(t) = \begin{cases}
\min\{F_{j-1}(t - p_j), F_{j-1}(t) + w_j\} & \text{for } 0 \leq t \leq d_j \\
F_j(d_j) & \text{for } d_j < t \leq T \end{cases}$$
Single machine models: Weighted Number of Tardy Jobs

DP-algorithm for $1||\sum w_j U_j$

1. initialize $F_j(t)$ according to (1)
2. FOR $j := 1$ TO n DO
3. FOR $t := 0$ TO T DO
4. update $F_j(t)$ according to (2)
5. $\sum w_j U_j(OPT) = F_n(d_n)$
Single machine models: Weighted Number of Tardy Jobs

DP-algorithm for $1||\sum w_jU_j$

1. initialize $F_j(t)$ according to (1)
2. FOR $j := 1$ TO n DO
3. FOR $t := 0$ TO T DO
4. update $F_j(t)$ according to (2)
5. $\sum w_jU_j(OPT) = F_n(d_n)$

- complexity is $O(n \sum_{j=1}^{n} p_j)$
- thus, algorithm is pseudopolynomial
Single machine models: Total Tardiness

Basic results:

• 1||\(\sum T_j\) is NP-hard

• preemption does not improve the criterion value

 → 1|\(pmtn|\sum T_j\) is NP-hard

• idle times do not improve the criterion value

• Lemma 1: If \(p_j \leq p_k\) and \(d_j \leq d_k\), then an optimal schedule exist in which job \(j\) is scheduled before job \(k\).

 Proof: exercise

• this lemma gives a dominance rule
Single machine models: Total Tardiness

Structural property for $1||\sum T_j$

- let k be a fixed job and \hat{C}_k be latest possible completion time of job k in an optimal schedule

- define

$$\hat{d}_j = \begin{cases}
 d_j & \text{for } j \neq k \\
 \max\{d_k, \hat{C}_k\} & \text{for } j = k
\end{cases}$$

- Lemma 2: Any optimal sequence w.r.t. $\hat{d}_1, \ldots, \hat{d}_n$ is also optimal w.r.t. d_1, \ldots, d_n.

Proof on the board
Single machine models: Total Tardiness

Structural property for $1||\sum T_j$ (cont.)

- let $d_1 \leq \ldots \leq d_n$
- let k be the job with $p_k = \max\{p_1, \ldots, p_n\}$
- Lemma 1 implies that an optimal schedule exists where
 \[\{1, \ldots, k - 1\} \rightarrow k \]
- **Lemma 3**: There exists an integer δ, $0 \leq \delta \leq n - k$ for which an optimal schedule exist in which
 \[\{1, \ldots, k - 1, k + 1, \ldots, k + \delta\} \rightarrow k \text{ and } k \rightarrow \{k + \delta + 1, \ldots, n\} \]

Proof on the board
Single machine models: Total Tardiness

DP-algorithm for $1||\sum T_j$

- Definition:

 $F_j(t) := \text{minimum criterion value for scheduling the first } j \text{ jobs}$

 starting their processing at time t

- by Lemma 3 we get:

 there exists some $\delta \in \{1, \ldots, j\}$ such that $F_j(t)$ is achieved by

 scheduling

 1. first jobs $1, \ldots, k - 1, k + 1, \ldots, k + \delta$ in some order
 2. followed by job k starting at $t + \sum_{l=1}^{k+\delta} p_l - p_k$
 3. followed by jobs $k + \delta + 1, \ldots, j$ in some order

 where $p_k = \max_{l=1}^{j} p_l$
Single machine models: Total Tardiness

DP-algorithm for $1|| \sum T_j$ (cont.)

- Definition:

$$J(j, l, k) := \{i | i \in \{j, j+1, \ldots, l\}; p_i \leq p_k; i \neq k\}$$
Single machine models: Total Tardiness

DP-algorithm for $1||\sum T_j$ (cont.)

- Definition:
 \[
 J(j, l, k) := \{i | i \in \{j, j+1, \ldots, l\}; p_i \leq p_k; i \neq k\}
 \]
Single machine models: Total Tardiness

DP-algorithm for $1||\sum T_j$ (cont.)

- **Definition:**
 - $J(j, l, k) := \{i | i \in \{j, j + 1, \ldots, l\}; p_i \leq p_k; i \neq k\}$
 - $V(J(j, l, k), t) :=$ minimum criterion value for scheduling the jobs from $J(j, l, k)$ starting their processing at time t
Single machine models: Total Tardiness

DP-algorithm for $1||\sum T_j$ (cont.)

- we get:
 $$V(J(j, l, k), t) = \min_\delta \left\{ V(J(j, k' + \delta, k'), t) + \max\{0, C_{k'}(\delta) - d_{k'}\} + V(J(k' + \delta + 1, l, k'), C_{k'}(\delta)) \right\}$$

 where $p_{k'} = \max\{p_{j'}|j' \in J(j, l, k)\}$ and
 $$C_{k'}(\delta) = t + p_{k'} + \sum_{j' \in V(J(j, k' + \delta, k'))} p_{j'}$$

- $V(\emptyset, t) = 0$, $V(\{j\}, t) = \max\{0, t + p_j - d_j\}$
Single machine models: Total Tardiness

DP-algorithm for $1||\sum T_j$ (cont.)

• optimal value of $1||\sum T_j$ is given by $V(\{1, \ldots, n\}, 0)$

• complexity:
 - at most $O(n^3)$ subsets $J(j, l, k)$
 - at most $\sum p_j$ values for t
 - each recursion (evaluation $V(J(j, l, k), t)$) costs $O(n)$ (at most n values for δ)

 total complexity: $O(n^4 \sum p_j)$ (pseudopolynomial)