Shop models: General Introduction

Remark: Consider non preemptive problems with regular objectives

Notation Shop Problems:

- m machines, n jobs 1, \ldots, n
- operations $O = \{(i, j)|j = 1, \ldots, n; \ i \in M^j \subset M := \{1, \ldots, m\}\}$ with processing times p_{ij}
- M^j is the set of machines where job j has to be processed on
- $PREC$ specifies the precedence constraints on the operations
Shop models: General Introduction

Notation Shop Problems:

- m machines, n jobs 1, \ldots, n
- operations $O = \{(i, j) | j = 1, \ldots, n; \ i \in M^j \subset M := \{1, \ldots, m\}\}$ with processing times p_{ij}
- M^j is the set of machines where job j has to be processed on
- $PREC$ specifies the precedence constraints on the operations
- Flow shop: $M^j = M$ and $PREC = \{(i, j) \rightarrow (i + 1, j) | i = 1, \ldots, m - 1; j = 1, \ldots, n\}$
Shop models: General Introduction

Notation Shop Problems:

- m machines, n jobs $1, \ldots, n$
- operations $O = \{(i, j) | j = 1, \ldots, n; \; i \in M^j \subset M := \{1, \ldots, m\}\}$ with processing times p_{ij}
- M^j is the set of machines where job j has to be processed on
- $PREC$ specifies the precedence constraints on the operations
- Flow shop: $M^j = M$ and $PREC = \{(i, j) \rightarrow (i + 1, j) | i = 1, \ldots, m - 1; j = 1, \ldots, n\}$
- Open shop: $M^j = M$ and $PREC = \emptyset$
- Job shop: $PREC$ contain a chain $(i_1, j) \rightarrow \ldots, \rightarrow (i_{|M^j|}, j)$ for each j
Shop models: General Introduction

Disjunctive Formulation of the constraints

- C_{ij} denotes completion time of operation (i, j)
- $PREC$ have to be respected:
Shop models: General Introduction

Disjunctive Formulation of the constraints

- C_{ij} denotes completion time of operation (i, j)
- $PREC$ have to be respected:

\[C_{ij} - p_{ij} \geq C_{kl} \quad \text{for all } (k, l) \rightarrow (i, j) \in PREC \]

- no two operations of the same job are processed at the same time:
Shop models: General Introduction

Disjunctive Formulation of the constraints

- C_{ij} denotes completion time of operation (i, j)
- $PREC$ have to be respected:
 \[
 C_{ij} - p_{ij} \geq C_{kl} \quad \text{for all } (k, l) \rightarrow (i, j) \in PREC
 \]
- no two operations of the same job are processed at the same time:
 \[
 C_{ij} - p_{ij} \geq C_{kj} \text{ or } C_{kj} - p_{kj} \geq C_{ij} \quad \text{for all } i, k \in M^j; i \neq k
 \]
- no two operations are processed jointly on the same machine:
Shop models: General Introduction

Disjunctive Formulation of the constraints

- **PREC** have to be respected:

 \[C_{ij} - p_{ij} \geq C_{kl} \quad \text{for all } (k, l) \to (i, j) \in \text{PREC} \]

- No two operations of the same job are processed at the same time:

 \[C_{ij} - p_{ij} \geq C_{kj} \text{ or } C_{kj} - p_{kj} \geq C_{ij} \quad \text{for all } i, k \in M^j; i \neq k \]

- No two operations are processed jointly on the same machine:

 \[C_{ij} - p_{ij} \geq C_{il} \text{ or } C_{il} - p_{il} \geq C_{ij} \quad \text{for all } (i, j), (i, l) \in O; j \neq l \]

- \[C_{ij} - p_{ij} \geq 0 \]

- The 'or' constraints are called disjunctive constraints

- Some of the disjunctive constraints are 'overruled' by the **PREC** constraints
Shop models: General Introduction

Disjunctive Formulation - makes pan objective

\[
\begin{align*}
\min C_{max} \\
s.t. \\
C_{max} &\geq C_{ij} & (i, j) \in O \\
C_{ij} - p_{ij} &\geq C_{kl} & (k, l) \rightarrow (i, j) \in PREC \\
C_{ij} - p_{ij} &\geq C_{kj} \text{ or } C_{kj} - p_{kj} \geq C_{ij} & i, k \in M^j; i \neq k \\
C_{ij} - p_{ij} &\geq C_{il} \text{ or } C_{il} - p_{il} \geq C_{ij} & (i, j), (i, l) \in O; j \neq l \\
C_{ij} - p_{ij} &\geq 0 & (i, j) \in O
\end{align*}
\]
Shop models: General Introduction

Disjunctive Formulation - sum objective

\[
\begin{align*}
\min & \quad \sum w_j L_j \\
\text{s.t.} & \quad L_j \geq C_{ij} - d_j & (i, j) \in O \\
& \quad C_{ij} - p_{ij} \geq C_{kl} & (k, l) \rightarrow (i, j) \in PREC \\
& \quad C_{ij} - p_{ij} \geq C_{kj} \text{ or } C_{kj} - p_{kj} \geq C_{ij} & i, k \in M^j; i \neq k \\
& \quad C_{ij} - p_{ij} \geq C_{il} \text{ or } C_{il} - p_{il} \geq C_{ij} & (i, j), (i, l) \in O; j \neq l \\
& \quad C_{ij} - p_{ij} \geq 0 & (i, j) \in O \\
\end{align*}
\]

Remark:

- also other constraints, like e.g. release dates, can be incorporated
- the disjunctive constraints make the problem hard (lead to an ILP formulation)
Shop models: General Introduction

Disjunctive Graph Formulation

- graph representation used to represent instances and solutions of shop problems
- can be applied for regular objectives only
Shop models: General Introduction

Disjunctive Graph $G = (V, C, D)$

- V set of vertices representing the operations O
- a vertex is labeled by the corresponding processing time;
- Additionally, a source node 0 and a sink node $*$ belong to V; their weights are 0
- C set of conjunctive arcs reflecting the precedence constraints: for each $(k, l) \rightarrow (i, j) \in PREC$ a directed arc belongs to C
- additionally $0 \rightarrow O$ and $O \rightarrow *$ are added to C
- D set of disjunctive arcs representing ’conflicting’ operations: between each pair of operations belonging to the same job or to be processed on the same machine, for which no order follows from $PREC$, an undirected arc belongs to D
Shop models: General Introduction

Disjunctive Graph - Example Job Shop

- Data: 3 jobs, 3 machines;

Jobs: 1 \[(3, 1) \rightarrow (2, 1) \rightarrow (1, 1) \] \[p_{31} = 4, p_{21} = 2, p_{11} = 1 \]

2 \[(1, 2) \rightarrow (3, 2) \] \[p_{12} = 3, p_{32} = 3 \]

3 \[(2, 3) \rightarrow (1, 3) \rightarrow (3, 3) \] \[p_{23} = 2, p_{13} = 4, p_{33} = 1 \]
Shop models: General Introduction

Disjunctive Graph - Example Job Shop

Jobs: 1. Red: \((3, 1) \rightarrow (2, 1) \rightarrow (1, 1)\) \(p_{31} = 4, p_{21} = 2, p_{11} = 1\)

2. Green: \((1, 2) \rightarrow (3, 2)\) \(p_{12} = 3, p_{32} = 3\)

3. Blue: \((2, 3) \rightarrow (1, 3) \rightarrow (3, 3)\) \(p_{23} = 2, p_{13} = 4, p_{33} = 1\)

- Graph:

```
0 1,2 3,2 2,3 1,3 3,3
```

- Conjunctive arcs
- Disjunctive arcs
Shop models: General Introduction

Disjunctive Graph - Example Open Shop

- Data: 3 jobs, 3 machines;

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Jobs Details</th>
<th>Process Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 1), (2, 1), (3, 1)</td>
<td>(p_{11} = 4, p_{21} = 2, p_{31} = 1)</td>
</tr>
<tr>
<td>2</td>
<td>(1, 2), (2, 2), (3, 2)</td>
<td>(p_{12} = 3, p_{22} = 1, p_{32} = 3)</td>
</tr>
<tr>
<td>3</td>
<td>(1, 3), (2, 3), (3, 3)</td>
<td>(p_{13} = 2, p_{23} = 4, p_{33} = 1)</td>
</tr>
</tbody>
</table>
Shop models: General Introduction

Disjunctive Graph - Example Open Shop

Jobs: 1 (1, 1), (2, 1), (3, 1) \(p_{11} = 4, p_{21} = 2, p_{31} = 1 \)

2 (1, 2), (2, 2), (3, 2) \(p_{12} = 3, p_{22} = 1, p_{32} = 3 \)

3 (1, 3), (2, 3), (3, 3) \(p_{13} = 2, p_{23} = 4, p_{33} = 1 \)

- Graph:
Shop models: General Introduction

Disjunctive Graph - Selection

- basic scheduling decision for shop problems (see disj. formulation): define an ordering for operations connected by a disjunctive arc
- turn the undirected disjunctive arc into a directed arc
- selection S': a set of directed disjunctive arcs (i.e. $S \subseteq D$ together with a chosen direction for each $a \in S$)
- disjunctive arcs which have been directed are called 'fixed'
- a selection is a complete selection if
 - each disjunctive arc has been fixed
 - the graph $G(S) = (V, C \cup S)$ is acyclic
Shop models: General Introduction

Selection - Remarks

- a feasible schedule induces a complete selection
- a complete selection leads to sequences in which operations have to be processed on machines
- a complete selection leads to sequences in which operations of a job have to be processed
- Does each complete selection leads to a feasible schedule?
Shop models: General Introduction

Calculate a Schedule for a Complete Selection \(S \)

- calculated longest paths from 0 to all other vertices in \(G(S) \)
- Technical description:
 - length of a path \(i_1, i_2, \ldots, i_r \) = sum of the weights of the vertices \(i_1, i_2, \ldots, i_r \)
 - calculate length \(l_{ij} \) of the longest path from 0 to \((i, j)\) (using e.g. Dijkstra)
 - start operation \((i, j)\) at time \(l_{ij} - p_{ij} \) (i.e. \(C_{ij} = l_{ij} \))
 - the length of a longest path from 0 to * (such paths are called **critical paths**) is equal to the makespan of the schedule
- resulting schedule is the semiactive schedule which respects all precedence given by \(C \) and \(S \)
Shop models: General Introduction

Reformulation Shop Problem

find a complete selection for which the corresponding schedule minimizes
the given (regular) objective function
Flow Shop models:

Makespan Minimization

- **Lemma**: For problem $F||C_{max}$ an optimal schedule exists with
 - the job sequence on the first two machines is the same
 - the job sequence on the last two machines is the same
 (Proof as Exercise)

- **Consequence**: For $F2||C_{max}$ and $F3||C_{max}$ an optimal solution exists which is a permutation solution

- For $Fm||C_{max}$, $m \geq 4$, instances exist where no optimal solution exists which is a permutation solution
 (Exercise)
Flow Shop models:

Problem $F_2 || C_{max}$

- solution can be described by a sequence π
- problem was solved by Johnson in 1954

Johnson’s Algorithm:

1. $L =$ set of jobs with $p_{1j} < p_{2j}$;
2. $R =$ set of remaining jobs;
3. sort L by SPT w.r.t. the processing times on first machine (p_{1j})
4. sort R by LPT w.r.t. the processing times on second machine (p_{2j})
5. sequence L before R (i.e. $\pi = (L, R)$ where L and R are sorted)
Flow Shop models:

Example solution problem $F^2 || C_{max}$

- $n = 5; p = \begin{pmatrix} 4 & 3 & 3 & 1 & 8 \\ 8 & 3 & 4 & 4 & 7 \end{pmatrix}$
Flow Shop models:

Example solution problem $F^2||C_{max}$

- $n = 5$; $p = \begin{pmatrix} 4 & 3 & 3 & 1 & 8 \\ 8 & 3 & 4 & 4 & 7 \end{pmatrix}$
- $L = \{1, 3, 4\}; \quad R = \{2, 5\}$
- sorting leads to $L = \{4, 3, 1\}; \quad R = \{5, 2\}$
Flow Shop models:

Example solution problem $F^2||C_{max}$

- $n = 5$; $p = \begin{pmatrix} 4 & 3 & 3 & 1 & 8 \\ 8 & 3 & 4 & 4 & 7 \end{pmatrix}$
- $L = \{1, 3, 4\}$; $R = \{2, 5\}$
- sorting leads to $L = \{4, 3, 1\}$; $R = \{5, 2\}$
- $\pi = (4, 3, 1, 5, 2)$

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th></th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$L_f = (4; 3; 1; 5; 2)$
Flow Shop models:

Problem $F_2||C_{max}$

- **Lemma 1**: If
 \[
 \min\{p_{1i}, p_{2j}\} < \min\{p_{2i}, p_{1j}\}
 \]
 then job i is sequenced before job j by Johnson’s algorithm.

- **Lemma 2**: If job j is scheduled immediately after job i and
 \[
 \min\{p_{1j}, p_{2i}\} < \min\{p_{2j}, p_{1i}\}
 \]
 then swapping job i and j does not increase C_{max}.

- **Theorem**: Johnson’s algorithm solves problem $F_2||C_{max}$ optimal in $O(n \log(n))$ time.

(Proofs on the board)
Flow Shop models:

Problem $F3||C_{max}$

- $F3||C_{max}$ is NP-hard in the strong sense
- Reduction using 3-PARTITION
- Proof on the board