Basic Scheduling Algorithms for Single Machine Problems:

Processing Jobs With Preemption

Consider a problem of scheduling jobs with preemption. In this problem, processing of any job can be interrupted and resumed later, the total processing time of all parts of job \(j \) being equal to \(p_j \).

The following exercise demonstrates that if all jobs are released at the same time \((r_j=0)\), there is no advantage to process the jobs with preemption. In other words, for problem \(1|\text{pmtn}||\sum C_j \) there exists an optimal schedule without preemption.

An instance of problem \(1|\text{pmtn}||\sum C_j \) with \(n=5 \) jobs is given by job processing times \(p_1 = 3; \ p_2 = 13; \ p_3 = 4; \ p_4 =2; \ p_5 =5. \)

Schedule \(S \) is represented by the Gantt chart below.

Construct schedule \(S' \) without preemption and without increasing completion times of all jobs.

Consider the general problem \(1|\text{pmtn}||\sum C_j \) with \(n \) jobs and arbitrary processing times. To show that there exists an optimal nonpreemptive schedule describe a transformation that modifies an arbitrary preemptive schedule \(S \) into a nonpreemptive schedule \(S' \) without increasing the completion times of all jobs.
Minimising total completion time with nonzero release dates and preemption allowed: $1|r_j, pmtn|\sum C_j$

Consider $1|r_j, pmtn|\sum C_j$.

Shortest Remaining Processing Time (SRPT) rule: each time that a job is completed, or at the next release date, the job to be processed next has the smallest remaining processing time among the available jobs.

Example:

<table>
<thead>
<tr>
<th>Job</th>
<th>r_j</th>
<th>p_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>

For problem $1|r_j, pmtn|\sum C_j$, the SRPT rule is optimal.

Proof (pairwise interchange argument)

Consider a schedule in which available job i with the shortest remaining processing time is not being processed at time t, and instead available job k is being processed. Let p_i' and p_k' denote the remaining processing times for jobs i and k after time t, so $p_i' < p_k'$.

In total $p_i' + p_k'$ is spent on jobs i and k after time t. We assume that $C_i < C_k$.

Single machine problems: preemption
Interchange:

1) Take the first p'_i units of time that were devoted to either of jobs i and k after time t, and use them instead to process job i to completion.

2) Take the remaining p'_k units of time that were spent processing i and k after time t, and use them to schedule job k.

We have obtained a ‘better’ schedule S':

$$C'_i < C_i$$

$$C'_k = C_k$$

Since in the new schedule all jobs other than i and k have the same the completion times as before, we obtain:

$$\sum_{j=1}^{n} C'_j - \sum_{j=1}^{n} C_j = (C'_i + C'_k) - (C_i + C_k) < 0.$$

This contradicts the optimality of schedule S.

\blacksquare