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Flow Shop 

 
In a flow shop problem, there are m machines that should process n jobs. All jobs have the same 
processing order through the machines. The order of the jobs on each machine can be different.  

In Sections 1-3 we consider the problem of minimising the makespan.  

- If there are m=2 machines, then the problem can be solved in O(n logn) time by Johnson’s 
algorithm.  

- If there are m=3 machines or more, then the problem is NP-hard. We discuss the properties of 
an optimal schedule for the general case with m machines and describe two approximation 
algorithms.  

The problem of minimising the sum of completion times is discussed briefly in Section 4.  
 

1. Example of a flow shop problem 
 
Consider the following instance of problem F3||Cmax.  
 

j p1,j p2,j p3,j 

1 4 2 1 
2 3 6 2 
3 7 2 3 
4 1 5 8 

 
If every machine processes the jobs in the order (1,2,3,4), then the completion times of three 
operations of job 1 can be calculated as follows:  
 

j C1,j C2,j C3,j 

1 4 4+2=6 6+1=7 
2    
3    
4    

 
We can continue calculations for jobs 2, 3 and 4: 
 

j C1,j C2,j C3,j 

1 4 6 7 
2 4+3=7 max{7,6}+6=13  
3    
4    

 
The makespan of the schedule corresponds to the completion time of the last operation and it is 
equal to 29.  

The Gantt chart of the corresponding schedule is given on the next page.  
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2. Flow shop problem with m=2 machines 
 
We first demonstrate that  

 
Suppose there exists an optimal schedule S in which the processing order on the two machines is 
different.  
 
Let the first k jobs be processed in the same order on both machines. Besides, let job j be 
processed on machine M2 in position k+1 and on machine M1 in position k+1+q. Then we may 
have a situation as shown in the following figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
If on machine M1 we insert job j in-between jobs k and k+1, we get another feasible schedule 
without postponing any job on machine M2.  
 
Applying repeatedly this transformation we can finally obtain a schedule with the same sequence 
of jobs on both machines and with the same or smaller value of the makespan.  

For problem F2||Cmax  with m=2 machines there exists an optimal schedule with the 
same job sequence on both machines.  
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The optimal schedule for the problem F2||Cmax can be found in O(n logn) by the famous algorithm 
due to Johnson. It was first presented in 1954 and is usually considered as the first result of 
scheduling theory.  

 

Johnson’s algorithm for F2||Cmax  

1. Partition the jobs into two sets with set N1 containing the jobs with p1j < p2j and set N2 
containing the jobs with p1j ≥ p2j.  

2. The jobs from set N1 go first, and they go in increasing order of p1j (SPT on M1).  

3. The jobs from set N2 follow in decreasing order of p2j (LPT on M2).  

 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M1 

M1 

J1 4 8

J2 3 3

J3 3 4

J4 1 4

J5 8 7

J4, J3, J1, J5, J2 SPT(M1) LPT(M2): 

M2 

M2 

5 

4 3 1 5 2 

3 1 2 4 
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3. Permutation schedules vs. non-permutation schedules 
 
In the permutation flow shop each machine processes the jobs in the same order. As we have 
shown in Section 1, for problem F2||Cmax there exists an optimal permutation schedule. In 
general, the permutation schedule can be non-optimal.  
 
Example:  

For the following problem with m=4 machines and n=2 jobs, construct  

a) two permutation schedules S1 and S2; 

b) a non-permutation schedule S3. 

Verify that Cmax(S3) is less than Cmax(S1) and Cmax(S2). 
 
 M1 M2 M3 M4 
J1 4 1 1 4 
J2 1 4 4 1 
 
 
  

 
 
Two permutation  schedules:  Cmax(S1) = 

     Cmax(S2)= 

Non-permutation schedule:  Cmax(S3)= 

M1 

M2 

M3 

M4 

M1 

M2 

M3 

M4 

S1: 

S2: 

M1 

M2 

M3 

M4 

S2: 
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3.  Approximation algorithms for F||Cmax 
 

While the flow shop problem F2||Cmax with m=2 machines is solvable in polynomial time by 
Johnson’s algorithm, the problem F||Cmax with m≥3 machines is NP-hard.    

The two approximation algorithms presented below for solving the flow shop problem with m 
machines are based on Johnson’s algorithm for the two-machine problem F2||Cmax. Each of them 
has performance guarantee ρ = m/2.  
 
Decomposition Algorithm FSDecomp 

1. If m is odd, add new machine m+1 and set pm+1,j =0, j=1,…n. 

2. Divide the set of the machines into m/2 pairs. For each pair of machines 2k-1, 2k, 
k=1,…,m/2, find the optimal schedule Sk using Johnson’s algorithm.  

3. Using the schedules Sk, k=1, …,m/2, construct a schedule S for the original problem.  
 
 
Aggregation Algorithm FSAggr 
 

1. If m is odd, add new machine m+1 and set pm+1,j =0, j=1,…n. 

2. Consider the problem with two artificial machines A and B and the processing times equal to 
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ijj pbpa Find the optimal two-machine schedule sAB using Johnson’s 

algorithm.  

4. Using the schedule sAB, construct a permutation schedule s for the original problem.  
 
 
Exercise 1:  
Consider flow shop problem with n=5 jobs and m=4 machines.  
Determine the job sequence according to algorithm FSDecomp 
 
 M1 M2 M3 M4 
J1 5 4 4 3 
J2 5 4 4 6 
J3 3 2 3 3 
J4 6 4 4 2 
J5 3 4 1 5 
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Exercise 2: 
Now we solve the same problem by algorithm FSAggr.  
 
 M1 M2 M3 M4 
J1 5 4 4 3 
J2 5 4 4 6 
J3 3 2 3 3 
J4 6 4 4 2 
J5 3 4 1 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4. Approximation algorithm for F||ΣΣΣΣCj 
 
Problem F2||ΣCj is NP-hard even for the case of m=2 machines.  

The following algorithm to minimise ΣCj is due to Gonzalez & Sahni.  
It has a ratio guarantee ρ=m.   
 
 
Algorithm by Gonzalez & Sahni (1978) (SPT-rule) 

1. Number the jobs such that p1≤p2≤ ... ≤pn, where ∑
=

=
m

i
ijj pp

1

.  

��� Construct a permutation schedule such that all machines process the jobs according to the 
permutation (1,2,… ,n). 

 

 �


