
 Flow Shop

 1

Flow Shop

In a flow shop problem, there are m machines that should process n jobs. All jobs have the same
processing order through the machines. The order of the jobs on each machine can be different.

In Sections 1-3 we consider the problem of minimising the makespan.

- If there are m=2 machines, then the problem can be solved in O(n logn) time by Johnson’s
algorithm.

- If there are m=3 machines or more, then the problem is NP-hard. We discuss the properties of
an optimal schedule for the general case with m machines and describe two approximation
algorithms.

The problem of minimising the sum of completion times is discussed briefly in Section 4.

1. Example of a flow shop problem

Consider the following instance of problem F3||Cmax.

j p1,j p2,j p3,j

1 4 2 1
2 3 6 2
3 7 2 3
4 1 5 8

If every machine processes the jobs in the order (1,2,3,4), then the completion times of three
operations of job 1 can be calculated as follows:

j C1,j C2,j C3,j

1 4 4+2=6 6+1=7
2
3
4

We can continue calculations for jobs 2, 3 and 4:

j C1,j C2,j C3,j

1 4 6 7
2 4+3=7 max{7,6}+6=13
3
4

The makespan of the schedule corresponds to the completion time of the last operation and it is
equal to 29.

The Gantt chart of the corresponding schedule is given on the next page.

 Flow Shop

 2

2. Flow shop problem with m=2 machines

We first demonstrate that

Suppose there exists an optimal schedule S in which the processing order on the two machines is
different.

Let the first k jobs be processed in the same order on both machines. Besides, let job j be
processed on machine M2 in position k+1 and on machine M1 in position k+1+q. Then we may
have a situation as shown in the following figure.

If on machine M1 we insert job j in-between jobs k and k+1, we get another feasible schedule
without postponing any job on machine M2.

Applying repeatedly this transformation we can finally obtain a schedule with the same sequence
of jobs on both machines and with the same or smaller value of the makespan.

For problem F2||Cmax with m=2 machines there exists an optimal schedule with the
same job sequence on both machines.

M1 k =3 1

1

2

2 k=3

5 j=6 7

j=6 5 7 4

8

8

4

M2

t 0

 Flow Shop

 3

The optimal schedule for the problem F2||Cmax can be found in O(n logn) by the famous algorithm
due to Johnson. It was first presented in 1954 and is usually considered as the first result of
scheduling theory.

Johnson’s algorithm for F2||Cmax

1. Partition the jobs into two sets with set N1 containing the jobs with p1j < p2j and set N2
containing the jobs with p1j ≥ p2j.

2. The jobs from set N1 go first, and they go in increasing order of p1j (SPT on M1).

3. The jobs from set N2 follow in decreasing order of p2j (LPT on M2).

Example:

M1

M1

J1 4 8

J2 3 3

J3 3 4

J4 1 4

J5 8 7

J4, J3, J1, J5, J2 SPT(M1) LPT(M2):

M2

M2

5

4 3 1 5 2

3 1 2 4

 Flow Shop

 4

3. Permutation schedules vs. non-permutation schedules

In the permutation flow shop each machine processes the jobs in the same order. As we have
shown in Section 1, for problem F2||Cmax there exists an optimal permutation schedule. In
general, the permutation schedule can be non-optimal.

Example:

For the following problem with m=4 machines and n=2 jobs, construct

a) two permutation schedules S1 and S2;

b) a non-permutation schedule S3.

Verify that Cmax(S3) is less than Cmax(S1) and Cmax(S2).

 M1 M2 M3 M4
J1 4 1 1 4
J2 1 4 4 1

Two permutation schedules: Cmax(S1) =

 Cmax(S2)=

Non-permutation schedule: Cmax(S3)=

M1

M2

M3

M4

M1

M2

M3

M4

S1:

S2:

M1

M2

M3

M4

S2:

Flow Shop

 5

3. Approximation algorithms for F||Cmax

While the flow shop problem F2||Cmax with m=2 machines is solvable in polynomial time by
Johnson’s algorithm, the problem F||Cmax with m≥3 machines is NP-hard.

The two approximation algorithms presented below for solving the flow shop problem with m
machines are based on Johnson’s algorithm for the two-machine problem F2||Cmax. Each of them
has performance guarantee ρ = m/2.

Decomposition Algorithm FSDecomp

1. If m is odd, add new machine m+1 and set pm+1,j =0, j=1,…n.

2. Divide the set of the machines into m/2 pairs. For each pair of machines 2k-1, 2k,
k=1,…,m/2, find the optimal schedule Sk using Johnson’s algorithm.

3. Using the schedules Sk, k=1, …,m/2, construct a schedule S for the original problem.

Aggregation Algorithm FSAggr

1. If m is odd, add new machine m+1 and set pm+1,j =0, j=1,…n.

2. Consider the problem with two artificial machines A and B and the processing times equal to

. ,
12/

2/

1
∑∑

+==

==
m

mi
ijj

m

i
ijj pbpa Find the optimal two-machine schedule sAB using Johnson’s

algorithm.

4. Using the schedule sAB, construct a permutation schedule s for the original problem.

Exercise 1:
Consider flow shop problem with n=5 jobs and m=4 machines.
Determine the job sequence according to algorithm FSDecomp

 M1 M2 M3 M4
J1 5 4 4 3
J2 5 4 4 6
J3 3 2 3 3
J4 6 4 4 2
J5 3 4 1 5

Flow Shop

 6

Exercise 2:
Now we solve the same problem by algorithm FSAggr.

 M1 M2 M3 M4
J1 5 4 4 3
J2 5 4 4 6
J3 3 2 3 3
J4 6 4 4 2
J5 3 4 1 5

4. Approximation algorithm for F||ΣΣΣΣCj

Problem F2||ΣCj is NP-hard even for the case of m=2 machines.

The following algorithm to minimise ΣCj is due to Gonzalez & Sahni.
It has a ratio guarantee ρ=m.

Algorithm by Gonzalez & Sahni (1978) (SPT-rule)

1. Number the jobs such that p1≤p2≤ ... ≤pn, where ∑
=

=
m

i
ijj pp

1

.

��� Construct a permutation schedule such that all machines process the jobs according to the
permutation (1,2,… ,n).

 �

