Risk Everywhere: Modeling and Managing Volatility

Presenter: Benjamin Hood

Coauthors: Tim Bollerslev, John Huss, Lasse Heje Pedersen

NYU Stern $8^{\rm th}$ Annual Volatility Institute Conference April 29th, 2016

The views and opinions expressed herein are those of the authors and do not necessarily reflect the views of AQR Capital Management, its affiliates or employees.

Disclosures

The information set forth herein has been obtained or derived from sources believed by AQR Capital Management, LLC ("AQR") to be reliable. However, AQR does not make any representation or warranty, express or implied, as to the information's accuracy or completeness, nor does AQR recommend that the attached information serve as the basis of any investment decision. This document has been provided to you solely for information purposes and does not constitute an offer or solicitation of an offer, or any advice or recommendation, to purchase any securities or other financial instruments, and may not be construed as such. This document is not to be reproduced or redistributed to any other person. Past performance is not a guarantee of future performance.

This presentation is not research and should not be treated as research. This presentation does not represent valuation judgments with respect to any financial instrument, issuer, security or sector that may be described or referenced herein and does not represent a formal or official view of AQR.

The information contained herein is only as current as of the date indicated, and may be superseded by subsequent market events or for other reasons. Charts and graphs provided herein are for illustrative purposes only. The information in this presentation has been developed internally and/or obtained from sources believed to be reliable; however, neither AQR nor the speaker guarantees the accuracy, adequacy or completeness of such information. Nothing contained herein constitutes investment, legal, tax or other advice nor is it to be relied on in making an investment or other decision.

There can be no assurance that an investment strategy will be successful. Historic market trends are not reliable indicators of actual future market behavior or future performance of any particular investment which may differ materially, and should not be relied upon as such. This presentation should not be viewed as a current or past recommendation or a solicitation of an offer to buy or sell any securities or to adopt any investment strategy.

The information in this presentation, including statements concerning financial market trends, is based on current market conditions, which will fluctuate and may be superseded by subsequent market events or for other reasons. Performance of all cited indices is calculated on a total return basis with dividends reinvested.

The investment strategy and themes discussed herein may be unsuitable for investors depending on their specific investment objectives and financial situation. Please note that changes in the rate of exchange of a currency may affect the value, price or income of an investment adversely.

Neither AQR nor the speaker assumes any duty to, nor undertakes to update forward looking statements. No representation or warranty, express or implied, is made or given by or on behalf of AQR, the speaker or any other person as to the accuracy and completeness or fairness of the information contained in this presentation, and no responsibility or liability is accepted for any such information. By accepting this presentation in its entirety, the recipient acknowledges its understanding and acceptance of the foregoing statement.

Introduction

Realized Volatility across global asset classes

We study Realized Volatility (RV) for a wide set of global assets

- Literature has focused on a few cash equities and currencies.
- We expand to global equities, fixed income, commodities, and currencies
- We provide a standardized way to implement across assets

What do you do with RV? Run lagged regressions

- We like the simplicity of HAR. Make it better
 - "Smooth" decay in lag structure, impose regularity, and avoid discontinuities
 - "Anchor" to long term estimate
- Pool assets together

Accrue tangible benefits from volatility targeting

- Framework for volatility model evaluation
- Optimal risk-based allocation
- Investor willing to pay 55bps/year for dynamic, constant volatility strategy

RV With Global Asset Classes A brief overview

Implementing Realized Volatility Everywhere

A DIY guide to calculating RV

RV "works" for 58 global assets

- 21 developed and emerging equity futures
- 20 commodity futures
- 8 developed fixed income futures
- 9 developed spot currencies

Practical implementation - the RV cookbook

- Which contracts?
 - Build a roll plan
- How often to sample?
 - Signature plots (ABDL 2000)
- When are markets open?
 - "Liquidity" plots and published market hours

Unconditional distribution very similar across assets

· Adjusted for level of volatility

Source: "Risk Everywhere: Modeling and Managing Volatility", Bollerslev, Hood, Huss, and Pedersen (2016). Please see the Appendix for more information on the global assets used throughout the presentation.

Regression Modeling

This Paper Is Not Necessarily About The Models

But we still need to define them

Baseline Model: HAR-RV (Corsi 2009)

• Flat day, week, and month factors, plus intercept

Adding Fixed Effects: HAR-FE

• Only matters for pooled regressions

More Flexibility: HAR-Free

- Individual factors for the first 6 days, plus monthly, annual, and long run (expanding) factors
- Adds long-run "anchoring", removing intercept and forcing coefficients to sum to one

Eliminate Discontinuities: HAR-Slope

- Sloped (declining) day, week, month, and annual factors, plus long run (expanding)
- Also "anchored" to the long run factor

Use EWMAs: HExp model ("Heterogeneous Exponential")

- EWMA factors with 1, 5, 25, and 125 day centers of mass, plus long run (expanding)
- Anchored to the long run factor

Example: HExp Model

Heterogeneous Exponential: A simple combination of EWMAs

What if we use a spanning set of exponentially-weighted moving averages of RV?

- Heterogeneous Exponential RV (HExp-RV)
- RV lag space well-spanned using 1, 5, 25, and 125 day centers of mass plus long-term anchor
- Note: a combination of EWMAs is not itself an EWMA

Some benefits

- Smooth
- Very easy to implement
- Uses all historical data

Model Estimation: Pooling Assets Together

We run regressions for single assets, asset classes, and across all assets

We constrain model betas in three ways:

"Individual Assets" regression

• Each asset has its own set of model betas

"Panel" regression

• Common set of betas within asset class, different across asset classes

"Mega" panel regression

• Common betas for all assets

Pooling imposes more regularity, at the expense of flexibility

- Flexibility good in sample by definition
- What about out of sample?

Smoother Models Outperform

HExp gives highest R^2 both in- and out-of-sample

In-sample regressions show best fit for HExp model

• Improvement in R^2 of new models over HAR is <u>very</u> small

		Monthly Predictive <i>R</i> ² s for All Assets								
		HAR	HAR-FE	HAR-Free	Slope	HExp				
	Individual Asset	44.5%	44.5%	44.8%	44.7%	44.9%				
In Sample	Panel									
	Mega									
Out of	Individual Asset									
Sample	Panel									
	Mega									

Smoother Models Outperform

HExp gives highest R^2 both in- and out-of-sample

In-sample regressions show best fit for HExp model

• Improvement in R² of new models over HAR is very small

Out-of-sample improvement is bigger (still modest). We see:

- Improvement due to smoothness: HAR-Free > HAR
- Improvement due to increased regularity: Slope and HExp > any other model

If regularity of model improves R^2 , what happens when we run pooled regressions?

		Monthly Predictive <i>R</i> ² s for All Assets								
		HAR	HAR-FE	HAR-Free	Slope	HExp				
	Individual Asset	44.5%	44.5%	44.8%	44.7%	44.9%				
In Sample	Panel									
	Mega									
Out of	Individual Asset	42.2%	42.2%	44.0%	45.3%	45.4%				
Sampla	Panel					\rightarrow				
Sample	Mega		Small Be	Small Benefit to Increasing Regularity						

Pooled Regressions Are Better Too

Restricting coefficients to be same across all assets helps out of sample

Though pooling hurts in sample (by construction), it actually helps out of sample!

- This result holds for all models (one exception is HAR "Mega")
- Improvement in R^2 of HExp/Mega over HAR/Individual is ~5%

Intuition:

- RV lag structures more similar than not, even across asset classes
- The model for Asset A can "learn" how responsive to be from Asset B before experiencing its own shock
- Small fit penalty for being too responsive before shock, large benefit if/when it comes!

	Monthly Predictive <i>R</i> ² s for All Assets							
		HAR	HAR-FE	HAR-Free	Slope	HExp		
	Individual Asset	44.5%	44.5%	44.8%	44.7%	44.9%	1	In Sample:
In Sample	Panel	40.7%	42.8%	42.9%	43.0%	43.1%		More Fitting
	Mega	39.0%	42.6%	42.8%	42.8%	42.9%		is Better
Out of	Individual Asset	42.2%	42.2%	44.0%	45.3%	45.4%		Out of Sample:
Sampla	Panel	44.5%	44.5%	46.6%	46.8%	46.8%		More Consistency is
Sample	Mega	43.6%	44.9%	46.9%	47.2%	47.3%	1	Better!

Small Benefit to Increasing Regularity

The Utility of a Risk Model

Mean-Variance Utility for Investor

Assume independent Sharpe to remove isolate the volatility model

Standard mean-variance utility:

$$U(x_t) = W_t \left(x_t E_t(r_{t+1}^e) - \frac{\gamma}{2} x_t^2 E_t(RV_{t+1}) \right)$$

Realized utility depends on realized returns

• Assume constant/independent Sharpe, isolate effect of realized volatility

$$SR \equiv E_t(r_{t+1}^e) / \sqrt{E_t(RV_{t+1})}$$

Constant Sharpe mean-variance utility

$$U(x_t) = W_t \left(x_t SR \sqrt{E_t(RV_{t+1})} - \frac{\gamma}{2} x_t^2 E_t(RV_{t+1}) \right)$$

Optimal Solution

$$x_t^* = \frac{SR/\gamma}{\sqrt{E_t(RV_{t+1})}} \qquad \qquad U(x_t^*) = \frac{SR^2}{2\gamma} W_t$$

Intuition

Investor targets constant volatility

Investor targets a constant volatility of $^{SR}/_{\gamma}$

• If predicted vol is above (below) SR/γ , then x_t^* is less (greater) than 1.

Suppose SR = 0.3 and $\gamma = 3$. Then

$$x_t^* = \frac{10\%}{\sqrt{E_t(RV_{t+1})}}$$
 and $U(x_t^*) = 1.5\% W_t$

Intuition

- Investor expects to receive excess return of 3%
- Half of return is "lost" to dis-utility of risk
- Vol of vol further reduces utility

Investor willing to pay 1.5% of wealth for access to perfectly vol-targeted risky asset

Dynamic Volatility Targeting Is Beneficial

Having a dynamic risk model matters

Compare utility of simple models to RV-based models

- Volatility targeting with HExp gains 0.55% over fixed-leverage strategy
- Simpler rolling windows almost as beneficial as HExp

Based on costless trading

More dynamic strategy → more costly trading

	D	AILY RETURN	IS	R	V	FUTURE RV	
	In Sample	Expanding	21 Day			Future 20	Future 1
	Mean	Mean	Window	21 Day RV	HExp	Day RV	Day RV
COMMODITIES	0.89%	0.71%	1.26%	1.30%	1.30%	1.35%	1.50%
EQUITIES	0.57%	0.63%	1.26%	1.28%	1.29%	1.34%	1.50%
FIXED INCOME	0.90%	0.95%	1.25%	1.29%	1.30%	1.34%	1.50%
FX	0.74%	0.59%	1.24%	1.29%	1.30%	1.34%	1.50%
ALL ASSETS	0.75%	0.70%	1.26%	1.29%	1.30%	1.34%	1.50%

RV Matters Given High Transactions Costs

Improvement for better models survives transactions costs

Transactions cost assumption: Median bid-ask spread in 2014

- Utility given full spreads, as well as half spreads and 5x half spreads
- Choose your own cost level

RV matters a lot more given transactions costs

		D	AILY RETURN	IS	RV		FUTU	RERV
	Transactions	In Sample	Expanding	21 Day			Future 20	Future 1
	Cost	Mean	Mean	Window	21 Day RV	HExp	Day RV	Day RV
ALL ASSETS	Half-Spread	0.75%	0.69%	1.16%	1.24%	1.25%	1.29%	0.61%
	2x Half-Spread	0.75%	0.68%	1.07%	1.20%	1.20%	1.25%	-0.28%
	5x Half-Spread	0.75%	0.66%	0.78%	1.06%	1.04%	1.10%	-2.94%

Even if you could perfectly predict RV, you wouldn't want to!

Increase Your Gains With Slower Trading

Constrained trading captures more of improved model benefits

Percentage Trade To Desired

		D	DAILY RETURNS		R	RV		RERV
		In Sample	Expanding	21 Day			Future 20	Future 1
		Mean	Mean	Window	21 Day RV	HExp	Day RV	Day RV
5x Half Spread	100% to Target	0.75%	0.66%	0.78%	1.06%	1.04%	1.10%	-2.94%
	50% to Target	0.75%	0.67%	0.95%	1.12%	1.15%	1.18%	-0.38%
	25% to Target	0.75%	0.65%	1.02%	1.14%	1.19%	1.22%	0.49%
	12.5% to Target	0.75%	0.62%	1.07%	1.15%	1.21%	1.26%	0.85%

Another Way To Constrain Trading

Longer horizon regressions

Why not just make the model slower?

- Use 20 day prediction horizon + trade rule
- Would it be better to use longer horizon regression?

We find utility is indifferent to model horizon

- We get roughly the same utility regardless of horizon
- Very long horizon can be slightly worse

Conclusion

Risk Everywhere

RV "works" for many global assets in different asset classes

• Simple guide to implementing globally

Use simple autoregressive models

• More regularity is slightly better

Pool assets when possible

• Single set of coefficients for all assets

Having a risk model matters

• But it doesn't matter which one (within reason)

References

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2000. Great realizations. Risk, 105-108.

Bollerslev, T., Hood, B., Huss, J., Pedersen, L. H., 2016. Risk everywhere: modeling and managing volatility. http://ssrn.com/abstract=2722591.

Corsi, F., 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7 (2), 174-196.

Garleanu, N., Pedersen, L. H., 2013. Dynamic trading with predictable returns and transaction costs. Journal of Finance 68 (6), 2309-2340.

Appendix

Signature Plots - A Diagnostic Tool

RV Estimation Parameters: How frequently can we sample?

"Volatility Signature Plots" show the average annualized RV value as a function of sampling frequency

- Andersen, Bollerslev, Diebold, and Labys (2000)
- Looking for clear bias due to market microstructure at higher sampling frequencies

Choose sampling frequency coarse enough to mitigate bias relative to longer horizon estimates

Signature Plots: SP500, US 10Yr Bonds, Crude Oil, and USD/Euro

Liquidity Plots - Another Diagnostic Tool

RV Estimation Parameters: When is market open, and how liquid is it?

"Liquidity Plots" show average number of days with at least one trade in each minute

- High number → high liquidity time of day
- Low number \rightarrow low liquidity time of day

These change a lot over time!

• Anecdote: Brazil shifts market hours twice a year to match NYC daylight savings

Diagnostic tool used to select appropriate market session

- Still recommend using official market hours
- Proper session may change over time

Liquidity Plots: SP500, US 10Yr Bonds, Crude Oil, and USD/Euro

Summary Statistics and Average RV Pairwise Correlations

RV levels differ, but are correlated across assets and through time

Daily	Realized Vola	atility Sumn	nary Statistics	
	Commodities	Equities	Fixed Income	FX
Average	25.4%	20.6%	3.1%	10.3%
Standard Deviation	12.6%	13.7%	1.5%	5.7%
Skewness	2.6	3.4	2.3	3.1
Excess Kurtosis	16.9	22.9	11.6	18.5
Maximum	185.6%	186.6%	19.4%	74.1%
95th Percentile	47.8%	44.8%	5.8%	20.4%
50th Percentile	22.7%	17.0%	2.8%	9.0%
5th Percentile	11.6%	8.2%	1.5%	4.6%
Minimum	4.9%	3.0%	0.6%	1.2%
1 Day Autocorrelation	0.52	0.71	0.48	0.52
20 Day Autocorrelation	0.36	0.48	0.35	0.41
100 Day Autocorrelation	0.19	0.23	0.20	0.22
250 Day Autocorrelation	0.12	0.11	0.07	0.10

Average Correlations of Daily Realized Volatilities

E 2 **1**

			Fixed	
	Commodities	Equities	Income	FX
Commodities	0.28	0.30	0.22	0.36
Equities		0.67	0.41	0.55
Fixed Income	•		0.47	0.43
FX				0.71

Unconditional Daily Volatility Distributions

Standardizing by mean makes distributions similar

Daily realized volatility distributions vary greatly across asset classes

But after adjusting for only level, distributions are very similar

- We do not adjust for standard deviation
- Only removes one degree of freedom

Model Definitions

HAR and its relatives

Baseline model: Heterogeneous Autoregressive (HAR) with multi-period forecasting

- Corsi (2009)
- *h* is forecasting horizon
- Coefficients depend on choice of h
- Results in "flat" factors

Pooling with common intercept is too restrictive

- Solution: HAR with fixed effects (HAR-FE)
- Better solution: Long term "anchor"

Free up first 6 days and "anchor" to long run average (HAR-Free)

$$\begin{split} RV_{t+h}^{h} - RV_{t}^{LR} &= \beta_{1}(RV_{t} - RV_{t}^{LR}) + \beta_{2}(RV_{t-1} - RV_{t}^{LR}) + \beta_{3}(RV_{t-2} - RV_{t}^{LR}) \\ &+ \beta_{4}(RV_{t-3} - RV_{t}^{LR}) + \beta_{5}(RV_{t-4} - RV_{t}^{LR}) + \beta_{6}(RV_{t-5} - RV_{t}^{LR}) \\ &+ \beta_{M}(RV_{t}^{M} - RV_{t}^{LR}) + \beta_{A}(RV_{t}^{A} - RV_{t}^{LR}) + \epsilon_{t}. \end{split}$$

 $RV_{t+h}^{h} = \beta_0^{h} + \beta_D^{h} RV_t + \beta_W^{h} RV_t^{W} + \beta_M^{h} RV_t^{M} + \epsilon_t^{h}$

More Model Definitions

Better approximating ACF with sloped factors

Can we get a "smoother" lag weighting structure?

- The HAR's flat factors impose unnatural drops in weights at deterministic lags
- Logical fix: tilt the flat factors!

$$SlopeRV_{t}^{k} \equiv \sum_{i=1}^{k} \left(\frac{k-i+1}{k+(k-1)+...+1} \right) RV_{t+1-i}$$

We call this the Slope-RV model

- Based on Daily, Weekly, Monthly, and Annual slope factors
- Also anchors to the long-run average RV factor

Yet More Model Definitions

Heterogeneous Exponential: A simple combination of EWMAs

What if we use a spanning set of exponentially-weighted moving averages of RV?

- Heterogeneous Exponential RV (HExp-RV)
- RV lag space well-spanned using 1, 5, 25, and 125 day centers of mass plus long-term anchor
- Note: a combination of EWMAs is not itself an EWMA

Some benefits

$$RV_{t+h}^{h} - RV_{t}^{LR} = \beta_{1}(ExpRV_{t}^{1} - RV_{t}^{LR}) + \beta_{5}(ExpRV_{t}^{5} - RV_{t}^{LR}) + \beta_{25}(ExpRV_{t}^{25} - RV_{t}^{LR}) + \beta_{125}(ExpRV_{t}^{125} - RV_{t}^{LR}) + \epsilon_{t}$$

- Smooth
- Very easy to implement
- Uses all historical data

Model Evaluation Basics

We compute pooled R^2 s, both in- and out-of-sample

We evaluate goodness-of-fit using adjusted R^2 , with all assets pooled together

• This is always true, regardless of pooling for model estimation

Residual Sum of Squares: panel of $\hat{Y}_{i,t}$ versus $Y_{i,t}$ for each asset *i* and date *t*

- Imagine a panel with time as the index and assets on the columns
- Sum squared differences in both dimensions

Total Sum of Squares

- In sample: panel of $Y_{i,t}$ versus \overline{Y}_i , the full period average future RV for asset i
- Out of sample: panel of $Y_{i,t}$ versus $\overline{Y_{i,s} < t}$, the expanding window average future RV up to date t
- Interpretation: Out of sample R^2 is relative to a naïve forecast

Out of sample regression methodology

- Estimate betas at end of each month, use to get fitted values for subsequent month
- Hold out assets for 12 months before including in the sample

Asset Class Regressions

Benefits to more restrictive models not just in equities

		Monthly Predictive R ² s Across Asset Classes						
			HAR	HAR-FE	HAR-Free	Slope	HExp	
		Individual Asset	45.3%	45.3%	45.8%	45.4%	45.9%	
	In Sample	Panel	40.1%	43.3%	43.7%	43.7%	43.8%	
COMMODI		Mega	39.3%	43.2%	43.6%	43.5%	43.7%	
TIES	Out of	Individual Asset	44.4%	44.3%	44.8%	45.8%	46.2%	
	Semple	Panel	42.9%	44.9%	46.1%	46.3%	46.5%	
	Sample	Mega	42.9%	45.2%	46.5%	46.9%	47.1%	
		Individual Asset	43.6%	43.6%	43.7%	43.7%	43.8%	
	In Sample	Panel	41.2%	42.1%	42.0%	42.2%	42.2%	
FOUITIES		Mega	40.2%	41.8%	41.8%	42.0%	42.1%	
LQUIILU	Out of Sample	Individual Asset	40.2%	40.2%	43.2%	44.6%	44.3%	
		Panel	46.5%	44.0%	47.2%	47.4%	47.0%	
	Sample	Mega	47.4%	44.4%	47.2%	47.5%	47.4%	
		Individual Asset	43.2%	43.1%	45.0%	46.7%	46.8%	
	In Sample	Panel	40.1%	42.5%	44.2%	45.8%	46.0%	
FIXED		Mega	<0	41.6%	42.9%	43.9%	44.1%	
INCOME	Out of	Individual Asset	43.5%	43.3%	46.2%	48.4%	48.2%	
	Sample	Panel	43.0%	43.9%	46.3%	48.3%	48.3%	
	Sample	Mega	<0	43.6%	46.9%	47.6%	47.7%	
		Individual Asset	53.7%	53.6%	53.7%	54.0%	54.4%	
	In Sample	Panel	52.4%	52.9%	52.9%	53.3%	53.5%	
FX		Mega	7.9%	52.3%	51.9%	52.4%	52.7%	
	Out of	Individual Asset	11.1%	10.9%	45.8%	47.6%	49.4%	
	Sample	Panel	43.3%	43.4%	48.6%	47.5%	47.4%	
	Sample	Mega	<0	50.8%	51.1%	51.8%	51.8%	

Regressions at Different Horizons

Model choice matters more at long horizons, pooling matters less

			HAR	HAR-FE	HAR-Free	Slope	HExp
		individual Asset	29.1%	29.1%	29.8%	29.4%	29.3%
	In Sample	Panel	28.2%	28.4%	28.7%	28.7%	28.7%
I Day		Mega	27.5%	27.8%	28.1%	28.2%	28.2%
Horizon	Out of	individual Asset	30.6%	30.6%	30.6%	31.3%	31.8%
	Out of	Panel	31.3%	31.2%	31.4%	31.8%	32.0%
	Sample	Mega	31.2%	31.2%	31.7%	31.9%	31.8%
		individual Asset	45.0%	45.0%	45.6%	45.6%	45.7%
5 Dev	In Sample	Panel	43.4%	44.0%	44.4%	44.6%	44.7%
5 Day		Mega	42.5%	43.5%	43.9%	44.2%	44.3%
Herizon	Out of	individual Asset	45.7%	45.7%	46.1%	46.9%	47.5%
Horizon		Panel	46.7%	46.6%	47.4%	47.8%	47.9%
	Sample	Mega	46.5%	46.6%	47.5%	48.0%	48.0%
		individual Asset	33.5%	33.5%	33.2%	32.8%	32.9%
60 Day	In Sample	Panel	23.7%	30.4%	29.5%	29.7%	29.7%
Dradiation		Mega	18.8%	30.3%	29.4%	29.6%	29.6%
Herizon	Out of	individual Asset	28.6%	28.6%	34.4%	35.1%	35.4%
norizon	Semple	Panel	28.9%	30.7%	34.7%	35.2%	35.0%
	Sample	Mega	25.3%	31.2%	35.2%	35.6%	35.6%

Predictive *R*²s for All Assets at Different Prediction Horizons

RV Predicts Both RV and Daily Better

Large benefit from reduction in noise for left-hand side variable

		HAR	HAR-FE	HAR-Free	Slope	HExp
	Daily pred Daily	26.6%	31.5%	31.6%	31.8%	32.0%
In Sample	Daily pred RV	33.7%	39.1%	39.5%	39.9%	40.2%
	RV pred Daily	31.9%	35.3%	34.8%	34.8%	34.9%
	RV pred RV	39.0%	42.6%	42.8%	42.8%	42.9%
	Daily pred Daily	30.4%	32.7%	34.9%	35.3%	35.5%
Out of	Daily pred RV	40.5%	43.3%	43.2%	43.7%	44.0%
Sample	RV pred Daily	35.9%	36.8%	38.5%	38.7%	38.7%
	RV pred RV	43.6%	44.9%	46.9%	47.2%	47.3%

Daily Return versus RV-based Monthly Predictive R²s

Intraday Versus Overnight Regressions

Practically no improvement from fitting intraday/overnight separately

			HAR	HAR-FE	HAR-Free	Slope	HExp
		Individual Asset	53.7%	53.6%	54.1%	54.0%	54.1%
	In Sample	Panel	50.9%	52.5%	52.6%	52.6%	52.8%
Intraday		Mega	49.1%	52.2%	52.3%	52.4%	52.6%
Only	Out of	Individual Asset	51.7%	51.7%	54.0%	54.5%	54.6%
	Sample	Panel	53.8%	54.0%	55.3%	55.4%	55.3%
	Sample	Mega	52.8%	54.3%	55.4%	55.6%	55.7%
		Individual Asset	29.1%	29.1%	29.1%	29.4%	29.7%
	In Sample	Panel	24.4%	26.9%	27.0%	27.1%	27.1%
Overnight		Mega	23.1%	26.8%	26.9%	27.0%	27.0%
Only	Out of	Individual Asset	23.7%	23.6%	26.1%	29.1%	30.4%
		Panel	28.6%	28.0%	31.2%	31.5%	31.3%
	Sample	Mega	28.1%	28.4%	31.5%	31.9%	31.8%
		Individual Asset	45.8%	45.8%	45.8%	45.8%	46.0%
Introday	In Sample	Panel	42.4%	44.1%	44.1%	44.1%	44.1%
Dhue		Mega	40.9%	43.8%	43.8%	43.8%	43.9%
Overnight	Out of	Individual Asset	42.8%	42.8%	45.1%	46.3%	46.8%
Overnight	Semple	Panel	45.9%	44.9%	47.2%	47.4%	47.3%
	Sample	Mega	45.1%	45.2%	47.3%	47.6%	47.6%

Intraday versus Overnight Monthly Predictive R²s

Variance Space or Volatility Space?

Regression fit is similar in either case

		HAR	HAR-FE	HAR-Free	Slope	HExp
	individual Asset	45.4%	45.4%	46.4%	45.1%	45.1%
In Sample	Panel	42.3%	44.1%	45.3%	44.0%	43.7%
	Mega	39.9%	43.9%	45.3%	43.9%	43.7%
Out of	individual Asset	47.4%	47.4%	48.8%	48.0%	48.0%
Sample	Panel	47.2%	48.7%	49.8%	49.2%	49.0%
	Mega	45.9%	48.8%	49.8%	49.3%	49.2%

Monthly Predictive *R*²s Based on Volatility Space Regressions

Effect of Assumptions on Utility

Higher Sharpe/risk aversion imply higher benefits to volatility targeting

			R	isk Target		
		5%	10%	15%	20%	25%
	0.1	0.09%	0.18%	0.27%	0.36%	0.45%
	0.2	0.18%	0.36%	0.55%	0.73%	0.91%
Accumed	0.3	0.27%	0.55%	0.82%	1.09%	1.36%
Assumed	0.4	0.36%	0.73%	1.09%	1.46%	1.82%
Datio	0.5	0.45%	0.91%	1.36%	1.82%	2.27%
Ratio	0.6	0.55%	1.09%	1.64%	2.18%	2.73%
	0.7	0.64%	1.27%	1.91%	2.55%	3.18%
	0.8	0.73%	1.46%	2.18%	2.91%	3.64%

Utility By Asset Class

Assuming non-zero transactions costs

		D	AILY RETURN	١S	R	V	FUTURE RV		
	Transactions	In Sample	Expanding	21 Day			Future 20	Future 1	
	Cost	Mean	Mean	Window	21 Day RV	HExp	Day RV	Day RV	
COMMODITIES	Half-Spread	0.89%	0.70%	1.19%	1.26%	1.27%	1.31%	0.83%	
	2x Half-Spread	0.89%	0.70%	1.11%	1.23%	1.23%	1.27%	0.16%	
	5x Half-Spread	0.89%	0.68%	0.88%	1.12%	1.12%	1.16%	-1.85%	
EQUITIES	Half-Spread	0.57%	0.63%	1.22%	1.25%	1.27%	1.31%	1.08%	
	2x Half-Spread	0.57%	0.63%	1.17%	1.23%	1.24%	1.28%	0.65%	
	5x Half-Spread	0.57%	0.62%	1.02%	1.15%	1.16%	1.21%	-0.61%	
FIXED INCOME	Half-Spread	0.90%	0.94%	1.06%	1.19%	1.24%	1.24%	-0.46%	
	2x Half-Spread	0.90%	0.93%	0.86%	1.10%	1.17%	1.14%	-2.41%	
	5x Half-Spread	0.90%	0.90%	0.28%	0.81%	0.98%	0.84%	-8.28%	
FX	Half-Spread	0.74%	0.58%	1.09%	1.21%	1.21%	1.26%	-0.01%	
	2x Half-Spread	0.74%	0.56%	0.93%	1.14%	1.12%	1.18%	-1.53%	
	5x Half-Spread	0.74%	0.51%	0.47%	0.92%	0.85%	0.96%	-6.06%	
ALL ASSETS	Half-Spread	0.75%	0.69%	1.16%	1.24%	1.25%	1.29%	0.61%	
	2x Half-Spread	0.75%	0.68%	1.07%	1.20%	1.20%	1.25%	-0.28%	
	5x Half-Spread	0.75%	0.66%	0.78%	1.06%	1.04%	1.10%	-2.94%	

Utility By Trading Rule

Trading rule matters more given higher transactions costs

		D	DAILY RETURNS			V	FUTURE RV	
		In Sample	Expanding	21 Day			Future 20	Future 1
		Mean	Mean	Window	21 Day RV	HExp	Day RV	Day RV
	100% to Target	0.75%	0.69%	1.16%	1.24%	1.25%	1.29%	0.61%
Half Spraad	50% to Target	0.75%	0.68%	1.19%	1.25%	1.26%	1.31%	1.07%
rian Spreau	25% to Target	0.75%	0.67%	1.19%	1.24%	1.27%	1.33%	1.17%
	12.5% to Target	0.75%	0.64%	1.19%	1.23%	1.26%	1.34%	1.19%
	100% to Target	0.75%	0.68%	1.07%	1.20%	1.20%	1.25%	-0.28%
2x Half Spraad	50% to Target	0.75%	0.68%	1.13%	1.21%	1.24%	1.28%	0.71%
ZX Hall Spreau	25% to Target	0.75%	0.66%	1.15%	1.22%	1.25%	1.30%	1.00%
	12.5% to Target	0.75%	0.63%	1.16%	1.21%	1.25%	1.32%	1.11%
	100% to Target	0.75%	0.66%	0.78%	1.06%	1.04%	1.10%	-2.94%
5x Half Spread	50% to Target	0.75%	0.67%	0.95%	1.12%	1.15%	1.18%	-0.38%
	25% to Target	0.75%	0.65%	1.02%	1.14%	1.19%	1.22%	0.49%
	12.5% to Target	0.75%	0.62%	1.07%	1.15%	1.21%	1.26%	0.85%

Equity Assets

				Primary		Secondary		Assumed
		Number of	Total Days	Data		Data		T-Costs
Asset Class	Asset	Assets	in Analysis	Source	Used From	Source	Used From	(in bps)
EQUITIES		21	80042	TRTH		NONE		
	Australia (SPI 200)	1	3472	TRTH	12/18/2000	NA	NA	1.9
	Germany (DAX 30)	1	4732	TRTH	1/3/1996	NA	NA	1.0
	Brazil (BOVESPA)	1	4577	TRTH	2/27/1996	NA	NA	2.8
	China (Hang Seng CEI)	1	2667	TRTH	12/9/2003	NA	NA	2.0
	Canada (S&P/TSX 60)	1	3773	TRTH	9/14/1999	NA	NA	1.3
	Spain (IBEX 35)	1	4698	TRTH	1/4/1996	NA	NA	2.0
	Eurostoxx	1	4130	TRTH	6/23/1998	NA	NA	3.2
	France (CAC 40)	1	4007	TRTH	1/7/1999	NA	NA	1.1
	Hong Kong (Hang Seng)	1	4591	TRTH	1/3/1996	NA	NA	1.2
	India (SGX NIFTY)	1	2213	TRTH	10/11/2005	NA	NA	1.7
	Italy (FTSE MIB)	1	2617	TRTH	6/15/2004	NA	NA	2.4
	Japan (TOPIX)	1	4570	TRTH	1/5/1996	NA	NA	4.1
	South Korea (KOSPI 200)	1	4466	TRTH	5/6/1996	NA	NA	1.9
	Netherlands (AEX)	1	4499	TRTH	1/9/1997	NA	NA	1.3
	South Africa (ALSI)	1	2308	TRTH	7/7/2005	NA	NA	1.7
	Switzerland (SMI)	1	4027	TRTH	9/15/1998	NA	NA	1.2
	Taiwan (SGX-MSCI Taiwan)	1	4295	TRTH	2/24/1997	NA	NA	3.1
	UK (FTSE 100)	1	4706	TRTH	1/3/1996	NA	NA	0.8
	US (S&P 500 E-Mini)	1	4274	TRTH	9/10/1997	NA	NA	1.3
	US (Russell 2000 E-Mini)	1	2234	TRTH	12/13/2005	NA	NA	0.9
	US (S&P 400 Mid Cap E-Mini)	1	3186	TRTH	1/29/2002	NA	NA	1.5

Commodities Assets

		Number of	Total Davs	Primary Data		Secondary Data		Assumed T-Costs
Asset Class	Asset	Assets	in Analysis	Source	Used From	Source	Used From	(in bps)
COMMODIT	IES	20	108149	TRTH		TDC		
	Brent Oil	1	4754	TRTH	1/3/1996	TDC	1/3/1996	1.0
	Cattle	1	5483	TRTH	12/20/2004	TDC	11/30/1992	3.2
	Сосоа	1	5471	TRTH	4/1/2008	TDC	11/11/1992	3.4
	Coffee	1	5469	TRTH	4/1/2008	TDC	11/17/1992	8.0
	Corn	1	5502	TRTH	8/1/2006	TDC	11/19/1992	5.7
	Cotton	1	5453	TRTH	4/1/2008	TDC	11/12/1992	4.6
	Crude (WTI) Oil	1	5480	TRTH	9/5/2006	TDC	11/10/1992	1.0
	Feeder Cattle	1	5513	TRTH	8/1/2007	TDC	10/29/1992	4.5
	Gas Oil	1	4754	TRTH	1/3/1996	TDC	1/3/1996	2.8
	Gold	1	5471	TRTH	12/4/2006	TDC	12/2/1992	0.8
	Heating Oil	1	5480	TRTH	9/5/2006	TDC	11/16/1992	1.7
	Lean Hogs	1	5486	TRTH	2/15/2005	TDC	11/30/1992	4.5
	Natural Gass	1	5442	TRTH	8/23/2006	TDC	1/5/1993	4.0
	Silver	1	5412	TRTH	12/4/2006	TDC	1/5/1993	2.6
	Soybeans	1	5522	TRTH	8/1/2006	TDC	10/22/1992	2.1
	Soymeal	1	5502	TRTH	8/1/2006	TDC	11/19/1992	4.1
	Soyoil	1	5501	TRTH	8/1/2006	TDC	11/19/1992	3.0
	Sugar	1	5481	TRTH	4/1/2008	TDC	11/3/1992	5.9
	Unleaded (RBOB)	1	5475	TRTH	8/22/2006	TDC	11/16/1992	2.0
	Wheat	1	5498	TRTH	8/1/2006	TDC	11/19/1992	4.4

Fixed Income and Foreign Exchange Assets

		Number of	Total Days	Primary Data		Secondary Data		Assumed T-Costs
Asset Class	Asset	Assets	in Analysis	Source	Used From	Source	Used From	(in bps)
FIXED INCO	DME	8	32333	TRTH		TDC		
	Australia 10y	1	4734	TRTH	1/3/1996	TDC	1/3/1996	3.9
	Germany 10y	1	4499	TRTH	1/5/1999	TDC	1/3/1997	0.7
	Germany 5y	1	4493	TRTH	2/1/1999	TDC	1/3/1997	0.8
	Canada 10y	1	2771	TRTH	9/26/2000	TDC	9/2/2003	0.8
	Japan 10y	1	3605	TRTH	1/5/1996	TDC	1/4/2000	0.7
	UK 10y	1	4711	TRTH	1/3/1996	TDC	1/3/1996	0.9
	US 10y	1	3993	TRTH	1/1/2001	TDC	10/20/1998	1.3
	US 5y	1	3527	TRTH	7/1/2001	TDC	9/5/2000	0.7
FOREIGNE	XCHANGE	9	30161	Olsen Data		NONE		
	Australia (AUD-USD)	1	2802	OlsenData	1/1/2004	NA	NA	2.2
	Eurozone (EUR-USD)	1	4103	OlsenData	1/1/1999	NA	NA	0.7
	Canada (USD-CAD)	1	3061	OlsenData	1/1/2003	NA	NA	2.5
	Japan (USD-JPY)	1	3841	OlsenData	1/1/2000	NA	NA	1.0
	Norway (USD-NOK)	1	2801	OlsenData	1/1/2004	NA	NA	8.1
	New Zealand (NZD-USD)	1	2803	OlsenData	1/1/2004	NA	NA	4.7
	Sweden (USD-SEK)	1	3062	OlsenData	1/1/2003	NA	NA	7.7
	Switzerland (USD-CHF)	1	3844	OlsenData	1/1/2000	NA	NA	1.7
	UK (GBP-USD)	1	3844	OlsenData	1/1/2000	NA	NA	1.5