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Abstract 

We propose and implement tests for the existence of a common stochastic discount factor (SDF). Our 
tests are agnostic because they do not require macroeconomic data or preference assumptions; they 
depend only on observed asset returns.  Our test statistic is immune to the form of the multivariate 
return distribution, including its factor structure.  After examining test features and power with 
simulations, we apply the tests empirically to data on U.S. equities, bonds, currencies, commodities 
and real estate.  The empirical evidence is consistent with a unique positive SDF that prices all U.S. 
assets and satisfies the Hansen/Jagannathan variance bound. 
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The Stochastic Discount Factor (SDF) has become a dominant paradigm in recent asset pricing 

research.  For example, Ferson (1995) shows how the main asset pricing results (mean/variance 

efficiency, multi-beta models) are special cases of the basic SDF relation.  Cochrane (2001a) begins 

with the SDF relation in chapter 1 and expands it into almost all other known models of assets.  

Exactly the same foundation is established in the first chapter of Singleton (2006) and exploited to 

study asset price dynamics.  Campbell (2014) ordains the SDF as “The Framework of Contemporary 

Finance,” (p. 3.) in his essay explaining the 2013 Nobel Prizes awarded to Fama, Hansen, and 

Shiller,  

The empirical success of SDF theory is less apparent.  In many previous empirical 

applications, the SDF is proxied by a construct that depends typically on aggregate consumption, but 

occasionally on some other macroeconomic quantity, combined with a risk aversion parameter.  For 

example, Cochrane (1996) employs aggregate consumption changes along with power utility (and a 

particular level risk aversion) to measure the SDF.  Despite giving this specification every empirical 

benefit of the doubt, Cochrane (2001a, p. 45) admits that it still “…does not do well.”  A similar 

imperfect fit between consumption changes, over various horizons, and both equities and bonds, is 

reported by Singleton (1990.) 

Lettau and Ludvigson (2000) add in macro variables such as labor income and find that the 

deviation in wealth from its shared trend with consumption and labor income has strong predictive 

power for excess stock returns at business cycle frequencies, thereby suggesting that risk premia vary 

countercyclically.  Chapman (1997) adds technology shocks and a battery of conditioning variables, 

transforming them with orthogonal polynomials, which serve to eliminate the small firm effect but 

still produce “statistically and economically large pricing errors”, (p. 1406.)  Da and Yun (2010) 

employ electricity generation as a proxy for aggregate consumption.2  Adrian, Crump and Moench 

(2013) employ an exponential function of a grouping of state variables, which are themselves 

principal components of Treasury bond returns. 

In research published just prior to the hegemony of the SDF paradigm, Long (1990) shows 

that a “Numeraire” portfolio has many similar properties.  Long’s Numeraire portfolio η has strictly 

positive gross returns (1+Rη) and exists only if there is no arbitrage within a list of assets from which 

                                                           
2 See also the variety of specifications discussed by Cochrane and Hansen (1992) in section III, “Other Candidate 
Discount Factors.” 
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it is composed.  In this case, the expected value of the ratio (1+Rj)/(1+Rη) is unity for all assets j on 

the list, which implies that 1/(1+Rη) is essentially the same as the modern SDF.  Long notes that the 

Numeraire portfolio is also the growth optimum portfolio.  The latter is examined by Roll (1973) 

who provides an empirical test of whether the expected ratio above is the same for all assets.  (He 

does not find evidence against it.) 

Excellent reviews are provided by Ferson (1995) and Cochrane and Culp (2003). 

Recognizing that aggregate consumption changes are too “smooth” to be well connected with asset 

prices, (Mehra and Prescott [1985)]), and that consumption is likely measured with significant error, 

(Rosenberg and Engle [2002]), recent literature avoids aggregate consumption data.  In addition to 

Rosenberg and Engle, such an approach is taken by Aït-Sahalia and Lo (1998, 2000), and Chen and 

Ludvigson (2009).  However, as pointed out by Araujo, Issler, and Fernandes (2005) and Araujo and 

Issler (2011), the above scholars still find it necessary to impose what might be considered rather ad 

hoc restrictions on preferences. 

Hansen and Jagannathan (1991) avoid the specification of preferences and are still able to 

develop their famous bound on the mean and volatility of the SDF, given that SDF theory is true.  

Campbell (1993) surmounts the annoyance with various approximations of nonlinear multiperiod 

consumption and portfolio-choices.  He develops a formula for risk premia that can be tested without 

using consumption data and suggests a new way to use imperfect data about both market returns and 

consumption.   

Araujo, Issler and Fernandes (2005, hereafter AIF), get around these difficulties by noting 

that the SDF should be the only serial correlation common feature of the data in the sense of Engle 

and Kozicki (1993).  Then, by exploiting a log transform of returns, they derive a measure of the 

SDF that does not depend on a macroeconomic variable (notably including the problematic aggregate 

consumption) and also avoids the imposition of preferences.   

Araujo and Issler (2011, hereafter AI) take a similar tack, noting via a logarithmic series expansion 

that the natural logarithm of the SDF is the only common factor in the log of all returns.  Thus, the 

log SDF can be eliminated by a simple difference in returns.  Essentially, the log SDF represents the 

(single) common APT factor in the sense of Ross (1976). 
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In both AIF and AI, the SDF measure is a function of average arithmetic and geometric asset 

returns.  AIF compute their measure empirically and report its temporal evolution along with various 

statistical properties.  They also compare it to the time series of riskless returns.  AI find that 

relatively low risk aversion parameters are consistent with their estimated SDFs.  They also are able 

to price some stocks successfully, but not stocks with low capitalization levels.   

Both AIF and AI essentially assume that the SDF theory is true, rejecting it only indirectly in the case 

of AI with low cap stocks.  Our primary goal is to develop tests that offer an opportunity to directly 

reject the SDF theory.  Our SDF estimator, which we exploit to develop such tests, does not depend 

on a factor model or a logarithmic approximation, or any other structural condition.  Also, it works 

regardless of the multivariate distribution of returns, whatever its form, provided that certain lower 

order moments exist.3 

The next section presents our SDF estimator, which is a function only of observed returns for 

a sample of assets; hence it is “agnostic” with respect to both macroeconomic quantities and 

preferences.  There is no requirement for the existence of a riskless rate. Tests can be performed with 

relatively short time series samples, but with the caveat that longer samples may be less prone to 

estimation error. 

By collecting samples of different assets observed over the same time period and estimating 

SDFs for each collection, it becomes possible to test the theory’s main prediction: a unique SDF 

prices all assets in completely integrated markets.  Like many tests, this one involves a joint 

hypothesis, integrated markets plus the SDF pricing equation.  We can also examine whether the 

SDF is positive, which implies the absence of arbitrage.  This too involves a joint hypothesis.  If both 

hypotheses are rejected, then markets are incomplete and there are arbitrage opportunities, or else 

there’s something wrong with SDF theory itself.4 

  

                                                           

3
 We explain the required moments below. 

4
 Kan and Zhou (1999) argue that the SDF theory is more subject to estimation error than other approaches and that 

it has inherently weak power in empirical tests.  Cochrane (2001b) argues that this problem can be overcome by 
adding factor moment conditions and conducting joint estimation. 
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I. An Agnostic Test for the SDF 

This section first shows (in sub-section I.A) how SDFs can be approximated by a 

transformation of returns, without any additional information about preferences, consumption or 

other macro-economic data.   The following sub-section (I.B) proves that the same SDF estimator 

arises naturally from minimizing a particular sum of average surprises.  This development allows us 

to infer some useful properties of the SDF estimator.  Sub-section I.C provides some demonstrations 

of concept; using simulations, we illustrate a perhaps surprising fact that our proposed estimator 

works well regardless of the underlying distributions of returns including their factor structure.  

Finally, sub-section (I.D) proposes a battery of tests of SDF theory using the SDF estimator derived 

in I.A and I.B. 

 

I.A. Estimating the SDF from Returns Alone 

Let pi,t denote the cash value of asset i at time t.  When markets are complete, SDF theory 

implies the existence of a unique mt, such that 

            ∀i,t .5    (1) 

Denoting a gross return between t-1 and t by Ri,t ≡ pi,t/pi,t-1, equation (1) is the same as 

               ∀i,t. 6    (2) 

Corresponding to the expectation in (2), there must be a realization at time t; i.e.,  

       (3) 

where  denotes the (complete) surprise in the mR product for asset i in period t.  For each time 

period t, the realization in (3) is determined by whatever state occurs among the many encapsulated 

in the expectation (2).  The surprise is complete if expectations are rational; i.e., if agents can freely 

change their expectation in response to new information.   

                                                           

5
 For a representative agent, m is the discounted future marginal utility of consumption divided by the current 

marginal utility of consumption.  The tilde denotes a random variable as of period t-1. 
6 Equation (2) is the only moment condition required by SDF theory.  However, the basic SDF relation applies 

similarly to multiple periods; e.g.,  for τ>1 where the gross return spans τ periods and m 

involves marginal utilities of consumption separated by τ periods.  This could provide some interesting features 
involving a term structure of SDFs but we do not explore that possibility in this paper. 

 
ε

i,t
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Since there is a state realization for each time t, over T time periods, we have, from (3) and 

(2), 

 .  (4) 

where the approximation indicates that the average surprise is not exactly zero in a finite sample, 

though it should vanish as    

The approximation error in (4) equals the time series sample mean of the surprises in the 

SDF-gross return product, a mean for asset i which we hereafter denote  

. 

Rational expectations rules out any serial dependence in the surprises,  

,  

but the surprises could be heteroscedastic.   Hence,  

  

where  denotes the mean variance of surprises for asset i over the particular sample period, 

t=1,…T.   Unless the mean variance is growing without bound, the approximation error should 

disappear as T grows larger. 

Now consider a sample of N assets with simultaneous observations over T periods, with N > 

T. The ensemble of gross returns for the N assets can be expressed as a matrix R (hereafter boldface 

denotes a matrix or vector).   There are N columns in R and the ith column is [Ri,1:…:Ri,T]’.  We also 

need a column vector m ≡ [m1:…:mT]’ to hold T realized values of the SDF and a N-element column 

unit vector 1 ≡ [1:…:1]’.  The entire SDF ensemble of realizations for all assets and periods can then 

be written compactly as  

R’m/T ≅ 1.      (5) 

Pre-multiply (5) by R, to obtain  

(RR’ )m/T ≅ R1. 

T .→ ∞

T

i i,t
t 1
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Since we have chosen N > T, the cross-sectional time-product matrix RR’  is non-singular 

unless there are two periods with linearly dependent cross-sectional vectors of returns.7  Hence, we 

can usually solve for a time-varying vector of estimated stochastic discount factors as  

m/T ≅ (RR’ )-1R1.        (6) 

N.B.: It is very important to emphasize that our solution (6) absolutely requires the number 

of assets to exceed the number of time periods; i.e., N > T.  Many comments on earlier drafts make it 

clear that this condition, which is unusual and perhaps unprecedented in finance, is hard to grasp.  

Yet it is essential.  It is not possible to uncover a unique vector of SDF realizations if T > N, which is 

the familiar condition in most other contexts, such as computing non-singular covariance matrices.  

We MUST have N > T to obtain a unique m.  We hasten to add that this is merely a sample 

requirement and hence is easy to satisfy; e.g., by reducing T until it falls below N.  The condition 

does not imply anything egregious such as the existence of an arbitrage because we are simply 

estimating T sample realizations of m, not the entire state space of m in each time period t. 

Hansen and Jagannathan (1991, p. 233) derive an expression that appears similar to (6), but 

the resemblance is superficial.  Their expression involves a covariance matrix of payoffs (or returns).  

Our RR’ is not a covariance matrix.  They note that their solution involves the first and second 

moments of the future payoffs and prices.  If RR’ above were diagonal, equation (6) would also 

involve first and second moments but in this case the (sample) moments would be the cross-sectional 

mean return in each period divided by the cross-sectional mean of the individual squared returns in 

that period.8   

Collecting individual asset sample mean surprises in a column N vector, , 

the approximation error in (6) is equal to 

                                                                                                                      (7) 

This error is not exactly zero because, for each t, there are related components in R and .   

For very large N and T, these components should become immaterial, but they add sampling error to 

                                                           

7
 That is, unless the return of every individual asset in a given period is a linear function of the return on that asset in 

another period, (not that the returns are linearly dependent relative to each other in a given period.) 
8 The Hansen/Jagannathan approach is implemented for performance measurement by Chen and Knez (1996) and is 
further refined by He, Ng, and Zhang (1999.) 
 

1 N(ε : ... :ε ) '=εεεε
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the estimated SDFs with smaller N and T.  We investigate the consequences in the next sub-section 

after presenting an alternative approach for deriving the same estimator. 

 

I.B.  The Minimum Sum of Squared Average Surprises 

The exact form of equation (5), (i.e., with no approximation), is 

        (8) 

where  is the column N vector that contains the average surprises for each asset.  A least squares 

estimator for m is available by minimizing the sum of squared average surprises with respect to m; 

i.e.,  

 . 

The first-order condition is  

  

and the extremum is achieved for the  that satisfies 

        (9) 

which shows that is the approximation (6) in section I.A.  The second order condition is strictly 

positive because RR’  is positive definite (by assumption); hence  provides the minimum sum of 

squares for the average SDF surprises. 

The least squares estimator in (9) differs from a standard regression estimator in one 

important respect; since the “dependent” variable here is the T element unit vector, (with every 

element a constant 1.0), there could be a connection between R and , which would violate the 

customary spherical regression assumptions.  Consequently, the estimator could be biased.  There is 

indeed a linear connection between the R’m  product and  but this is slightly different than the 

source of typical regression bias induced by linear dependence of the disturbances and explanatory 

variables. 

To elucidate this issue, solve (8) for 1 and substitute the result in (9), which simplifies to, 

 . 

' / TR m 1 εεεε= +
εεεε

min [( ' ) ( ' / T )'( ' / T )m R m 1 R m 1ε εε εε εε ε = − −

( ' ' / T 2 ' / T) 2 ' / T 2 / T2 2m RR m m R1 RR m R1 0
m
∂ − = − =

m̂

ˆ / T ( ') 1m RR R1−=

m̂

m̂

ˆ T( ') 1m m RR Rεεεε−− = −
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The expected value of this expression is the bias.  Expanding  term by term, we observe that 

most elements are innocuous and close to zero because they involve products such as (εj,t Ri,t-k) for 

i≠j and k≠0.   However, there are a few elements that are unlikely to disappear.  For period t, there is  

 

and there are similar terms for other periods.  We will study the extent of the resulting bias in the 

next section using simulation but note already that the bias terms are atypical because the dependence 

between the explanatory variables (the R’s) and the disturbances (the ε‘s) is not linear.   

Despite its possible bias, the estimator in (9) shares some attractive features with OLS regression 

estimates.  In particular, it can be used to define residuals, estimates of the true disturbances, as9 

    (10) 

The matrix in brackets in (10) is idempotent, so the sum of squared residuals divided by the 

degrees-of-freedom, N-T, is   

     (11) 

For a large enough N, (definitely for N>2T), the mean squared residual in (11) declines with N, 

holding T constant.10  Consequently, the quality of our SDF estimator should be better when N is 

large relative to T; i.e., when there are at least twice as many assets as time periods. The square root 

of (11) gives the standard error of the estimate, 

. 

The covariance matrix of the estimated SDFs is given by  

     (12) 

                                                           
9 Unlike the true disturbances, the residuals in (10) are orthogonal to R. 

10
 Proof: The second term on the right side of (11) can be written as   where  is 

the T element column vector whose tth element is the cross-sectional mean gross return in period t.  The positive 

quadratic form  does not depend directly on N, so , which is positive for N>2T, 

at which point both terms in (11) decline with N; QED. 
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where the (N X N) symmetric matrix  has the following element in the jth row and kth column: 

 . 

Unlike the analogous covariance matrix of disturbances in standard OLS regressions, the 

diagonal elements of  are not necessarily equal to each other and the off-diagonal elements need 

not have zero expectation.  However, we can safely assume that cross-products separated in time, 

such as  for , are zero; otherwise, the would not be surprises.  This implies that the 

element in the jth row and kth column of  reduces to . Moreover, if the are not 

correlated across assets, an arguably dubious condition, this sum has an expected value of zero for 

j≠k and then E( ) becomes diagonal and equal to  where I is the identity matrix and is 

the N element column vector whose jth element is   If the variance of the surprises were 

the same scalar for all assets and time periods, perhaps an even more dubious condition, then (12) 

simplifies further to 

     (13) 

Except for the presence of T, this is the standard regression covariance matrix of the coefficients 

given IID disturbances. 

The square roots of the T diagonal elements of (12) or (13) provide the standard errors of the 

SDFs period-by-period.  We will examine their properties using simulation in the next section.  One 

pertinent property is obvious already, however.  For a fixed number of assets, N, the standard errors 

of estimated SDFs increase with the time series sample size, T.  Thus, we anticipate that our 

estimator will perform better when N-T is large. 

 

I.C.  Demonstrations of Concept 

We have learned from many comments on earlier drafts and in presentations that the 

estimator proposed in the two preceding sub-sections is easily and intuitively assumed to be a 

projection on sample returns.  This intuition is understandable because the estimator does use returns; 

VΣεΣεΣεΣε

j,1 j,2 j,T k,1 k,2 k,T( ... )( ... )+ + + + + ++ + + + + ++ + + + + ++ + + + + +ε ε ε ε ε ε

εVΣΣΣΣ

j,t k,τε ε t ≠ τ 'sε

εVΣΣΣΣ

T

j,t k,t
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=
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hence, one could easily surmise that the estimator is similar to a sample mean/variance efficient 

portfolio, which, of course, is composed differently across various sub-samples of assets.   

But a close examination of our estimator belies such intuition.  Instead of a projection on 

asset returns, it is actually a projection on time periods.  As a consequence, it is unaffected by the 

distributions of returns or even by their identity as long as the SDF theory is true and a unique SDF 

prices all assets in the cross-section.   

To demonstrate this fact, we resort to simulations since they subsume the potential sampling 

problems discussed in the previous sub-section.  We show first that the estimator performs almost 

perfectly when the sampling noise is small.  We then show that the estimator is immune to 

differences in the distributions of returns and extracts indistinguishable estimates of the SDF even 

from sub-samples of assets with different factor structures.  In this sub-section, we briefly explain the 

simulations and report the results.  Details about all simulations in the paper are provided in the 

Appendix. 

Assuming that the SDF theory is true, we generate “true” SDF realizations with a mean equal 

to the reciprocal of the gross riskless interest rate, as the SDF theory stipulates, and with a given level 

of time series variation about the mean.  We then independently simulate gross returns so that their 

product with the true SDF averages to unity over a specified sample period; we then add noise to 

each return observation with a random perturbation.  Finally, using the resulting noisy sample 

returns, we calculate our SDF estimator and compare it with the known “true” SDF.  

Our first illustration of concept uses 120 assets and 60 time periods, (a modest degrees-of-

freedom according to section I.B), a riskless rate of .4% per period, and a true SDF standard 

deviation of 4% per period.  Initial returns have means of .8% per period (mean gross returns of 

1.008) and standard deviations of 8% per period, a material level of return volatility.  However, the 

standard deviation of the perturbations in (16) is intentionally small, .01% per period. 

The final returns, (after making sure the means of the SDF-Return product is 1.0 on average), 

still have substantial volatility.  Their average standard deviation is 8.1% over the 120 simulated 

assets with a minimum (maximum) individual asset standard deviation of 6.17% (11.2%).11 

                                                           

11
 The minimum (maximum) individual return is -25.3% (35.6%). 
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Figure I plots the resulting estimated SDFs against the true SDFs for the 60 time periods.  

Their difference is trifling.  Their correlation is 0.99946 and they are aligned with each other almost 

perfectly.  This illustrates that the theoretical bias discussed in section I.B is empirically trivial when 

the sampling perturbations are minor. 

In reality, of course, returns are correlated with one another and conceivably have 

heterogeneous factor structures across asset classes.  For example, bond returns could be driven by 

different risk factors than equity returns.  Nonetheless, if the SDF theory is true, a unique SDF prices 

all asset expected returns in the cross-section, so the basic SDF equation (1) is valid with the same 

SDF for all assets. 

To consider this situation, we provide a further demonstration of concept by simulating 

returns that are not only correlated but also have diverse factor structures.  In this simulation, we 

presume that there are two asset classes that share a common factor but that the second asset class is 

also driven by a second factor that has no influence on the first asset class.  

Figure II, Panels A and B (for two different levels of return perturbation), plots the estimated 

SDF against the true SDF in the left chart and the SDFs estimated for the two groups against each 

other in the right chart.  As the figure shows, there is sampling variation, but the recovered estimate 

of the SDF is close to the true SDF and the estimated SDFs from the two divergent (by factor 

structure) are close to one another. 

Finally, we provide another simulation in which two asset groups have completely different 

factor structures.  There are two factors driving the returns on both groups but the factors themselves 

are independent of each other across groups.  Figure III shows the results.  In this illustration, we use 

the higher level of return perturbation from Figure II.   

Again, despite the fact that the factors are entirely different in the two asset groups, there is a 

strong connection between the true and estimated SDFs and between the SDFs estimated from the 

two groups.  This illustrates our contention that the distributions of returns are inconsequential for 

our SDF estimator provided that the true SDF is unique and prices all assets regardless of groupings. 

Some might find these results quite surprising because our SDF estimator is unaffected by the return 

distribution.  This could be particularly hard to fathom because a competing construct, a sample 

mean/variance efficient portfolio, also perfectly prices returns in the cross-section, but it obviously 

depends on the distribution of returns and has a different composition for various groups of assets.  
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But examining carefully the basic SDF equation (2) reveals why our estimator is so robust.  Equation 

(2) says nothing about the distribution of returns other than the product of each return and the SDF 

has a mean of unity.  Consequently, every expected return obeys the same cross-sectional linear 

function of the covariance between the return and the SDF.  So long as the first moment of the 

SDF/return product is finite and the SDF is unique, its estimator needs not be troubled by any other 

property of the multivariate distribution of returns. 

 

I. D. Testing the SDF Theory 
 The vector on the right side of (9) is an estimate based on N assets and a sample period t = 

1,…,T.  But the SDF theory stipulates that any other set of assets within the same integrated market, 

should produce the same  from the same time series observations.  Hence, if we denote by m�  (k) a 

sample m�  computed according to (9) (where k indicates a set of K assets) and then, from the same 

calendar observations, choose a complement set j ⊄ k with J assets (and J > T), the SDF null 

hypothesis can be expressed as 

H0: E[m�  (k) -	m�  (j)] = 0.     (14) 

Notice that K and J need not be equal, but both must be larger than T.   

This test is reminiscent of DeSantis (1993) and Ferson (1995), who suggest comparing SDFs 

derived from a subset of assets to SDFs derived from all available assets.  Testing for the equivalence 

of pricing operators across two groups of assets is also explored by Chen and Knez (1994)12 and, in 

the context of the APT, by Brown and Weinstein (1983).13 

It is important to emphasize that the philosophy of the above test is standard; i.e., we will 

never be able to prove that the SDF theory is true and that tested markets are indeed complete, but we 

do have the possibility to reject these implications.  If markets are not complete and integrated, an 

infinite number of stochastic discount factors satisfy equation (1) because 

 whenever ω and p are orthogonal; Cf. Cochrane (2001a, section 4.1).  

But  looks just like the true SDF plus an estimation error.  Indeed, if markets are complete, 

                                                           
12 Chen and Knez (1995) derive a measure of market integration as the minimal amount that two pricing operators 
differ.  They use a similar framework to develop a general approach to portfolio performance measurement in Chen 
and Knez (1996). 
13 The Arbitrage Pricing Theory due to Ross (1976). 

m̂
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 is an estimation error because  is unique.  On the contrary, if markets are incomplete  can 

differ across groups of assets and hence the null hypothesis in (14) can potentially be rejected.  

Many standard tests of equality could be employed for equation (14).  For example, the 

Hotelling (1931) T2 test could check whether the means of m� (k) and m� (j) are statistically 

indistinguishable. The non-parametric Kruskal-Wallis (1952) test (hereafter KW) is designed for this 

purpose and will reject the null hypothesis if stochastically dominates  or vice versa.  

This also provides a test of the equality of medians.  

It might be sensible to conduct tests with assets that seem unlikely, a priori, to share the same 

SDF, such as equities in one group and bonds in another (over the same sample period, of course) or 

perhaps equities in two different countries.  This would represent a tougher hurdle for the SDF theory 

but any viable theory should be able to surmount the most severe test possible. 

There is no reason to restrict our attention to just two sets of assets.  Every vector computed 

according to (9), with the same time series of observations but with different assets, should be 

congruent.  The Welch (1951) test (hereafter WE) would serve nicely to check whether the means of 

all such vectors are the same and the KW test can handle multiple comparisons of entire 

distributions.   The Welch test is robust against heterogeneity in the variances of the distributions 

being compared.  On the other hand, the non-parametric Brown/Forsythe (1974) test (hereafter BF) is 

designed specifically to check for unequal volatilities using absolute deviations.   

The KW, WE and BF tests involve necessary conditions for SDF theory. They can detect 

differences in, respectively, the medians, means and volatilities two estimated SDF vectors, but they 

are not capable of detecting time-dependent patterns of differences in the individual elements of the 

two vectors.  For example, one vector might be increasing over time and the other decreasing but 

they could still have the same mean and variance. 

SDF theory stipulates not only that the location and volatility in SDFs are the same across 

groups   of assets but also that SDF estimated realizations are the same in every time period.  A 

sufficient condition for SDF theory is that the entire vectors m� (k) and m� (j) are congruent. Thus, we 

  m̂(k)   m̂( j)
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consider also a test that compares the two vectors element by element, a Hausman (1978) type Chi-

Square test (hereafter CH.) 14 

To explain the Hausman type test in our application, let  and  denote the estimated 

SDF observation from asset groups j and k at time t.  Under the null SDF hypothesis, they have the 

same expected value, µ, and a common standard deviation, σt.  Their correlation is ρt.  Note that the 

correlation is not perfect because these are estimates of m, not the true values. 

Under the null hypothesis, the variance of - is .  Consequently, the 

standardized variate, 

  

has mean zero and variance unity. 

When z is not autocorrelated, 

  

converges asymptotically to a Chi-Square distribution with T degrees of freedom.15 

The main implementation problem is, of course, that σt and ρt are unknown parameters that 

have to be estimated.  Ignoring their time variation, this can be accomplished with the usual estimates 

over the sample of size T.  However, since there are two estimated SDF vectors, even with this 

simplifying assumption there would be two different estimates of σ.  The most straightforward and 

sensible expedient is simply to average the two. 

This Chi-Square test is best suited for comparing the SDFs from two groups of assets, but it 

can be extended to multiple groups if we are willing to assume that the estimation error differences 

are independent across groups.  Given this assumption, the null hypothesis is tested by computing the 

statistic above for all pairs of groups (each group’s SDF being estimated over the same sample of 

time periods) and then using the Bonferroni correction of the type I error.   

                                                           

14
 We are indebted to Ben Gillen for suggesting this test. 

15
 If the SDF estimates are normally distributed and independent across time, the Chi-Square distribution is exact for 

any sample size. 
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For example, suppose we have five groups, which implies ten pairs.  Then  is computed 

for each pair i by the formula above and compared with the α/10 significance level, where α is the 

usual type I error (e.g., 5%).  If none of the pairs have smaller p-values, there is no significant 

evidence against the null hypothesis.  Alternatively, if just one pair has a p-value smaller than α/10, 

the null is rejected.   

The Bonferroni adjustment is known to be conservative in the sense that rejection of the null 

is less likely if there are any issues with the assumptions.  In our case, the most likely issue would be 

dependence in the error differences across group pairs.  For this reason and also to examine the 

asymptotic convergence of the Chi-Square test statistic, we subject it to a battery of simulation 

experiments. 

By implementing all four of the tests just described, we should be able to ascertain whether 

two or more estimated SDFs have equal means, volatilities, display stochastic dominance or differ 

element by element.  Violation of any one of the four tests would be evidence against the SDF 

theory. 

Test power is a more difficult issue.  As indicated in section I.B, power undoubtedly depends 

on the relative sizes of the time period, T, and the cross-sections, N.  Unless the data are extremely 

high frequency, one usually has more assets than time periods.  But in the present case, unlike with 

most asset pricing tests, this is an advantage.  On the other hand, a large T, but not nearly as large as 

N, might sometimes confer an advantage because the time series sums of expectation surprises, (the 

 in (3)) will compromise the accuracy of the SDF estimates for short time series.  We 

investigate this issue in section II using simulated data. 

Nothing above requires specification of a proxy for the SDF.  Even a riskless rate, if there is 

one, whose gross return Rf satisfies the useful property, E(mt) = 1/Rf, is not necessary. Moreover, 

tests can be conducted with relatively short time series samples, but still with the caveat that longer 

samples may be less prone to estimation error. 

 

II.  More About the Qualities of Our SDF Estimator 

II. A. Comparing the Estimated SDF and the True SDF with an Extended Set of Parameters 
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To provide further insight about the performance of our SDF estimator, this sub-section 

offers a series of simulations to compare true SDFs with estimated SDFs.  Extending the 

demonstration of concept discussed in Sub-section I.C above, we provide simulations for a wider set 

of parameters and sampling variation.  The basic setup is identical to that in Sub-section I.C. 

In all cases, we compare the true and estimated SDFs using two criteria, the simple correlation 

between m and  and the Theil (1966) U2 statistic.  The latter is closely related to the mean square 

prediction error, (MSE).  Specifically,  

  , and 

  . 

The correlation is easy to understand but it can be a bit misleading because it fails to measure 

whether m and  are congruent.  For example, if =2m, the correlation would be perfect.  An 

advantage of the MSE is that it can be decomposed into three components, one due to a difference in 

means, another to a difference in volatilities, and third due to a lack of correlation; i.e., 

   (15) 

where the superior bars indicate means, the s’s are standard deviations and ρ is the correlation 

between m and .  This decomposition is particularly relevant in our application because we would 

expect  to have more volatility than m due to sampling error and to be imperfectly correlated.  

However, when the SDF theory is true, the two means should be close to one another. 

In simulations with different levels of sampling perturbations, we examine the relative 

influences of the time series and cross-sectional sample sizes, T and N, respectively, and also the 

impact of return perturbations, σϑ, the volatility of the true SDF, σξ, and the risk-free rate RF.  With 

this many parameters, it is hard to summarize results compactly over a continuum of parameter 

values, so we resort to a hopefully more illuminating expedient.  We simply generate the simulated m 

and  with several different choices of the parameters and then present summary linear regressions 

of the correlations and Theil’s U2 on all the parameters jointly. 
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Our estimator of the SDF requires N>T, so we let T=30, 60, 90, and 120 and for each T, we 

set N=240, 360, 480, and 960.  These choices are made to roughly match sample sizes and numbers 

of assets in our later empirical work below.  For each N and T, we let the true SDF volatility take the 

values σξ=.5%, 1%, 1.5% and 2% per month.  For each N, T, and σξ, the perturbation volatility σϑ 

takes on nine values beginning with σξ/5 and increasing by this increment to terminate at 1.8σξ.  

Finally, for each choice of the previous parameters, we let the risk-free rate vary as follows: RF=.1%, 

.2%, .3%, .4% and .5% per month.  This results in 2,880 different parameter combinations.  For each 

parameter combination, we generate completely different true SDFs and returns and hence have 

independent sets of sample SDFs. 

Table I gives the results, panel A for the correlation between m and , and Panel B for 

Theil’s U2.  In Panel A, we see that the correlation falls with T, rises with N, rises with σξ, the 

volatility of the true SDF, and falls with σϑ, the perturbation volatility, all with very high levels of 

significance.  Each regression coefficient, of course, indicates the marginal influence holding 

constant other parameters.  For the two volatilities, the directions are intuitively obvious because a 

greater spread of the true values and a smaller perturbation variance should improve the fit.  For N 

and T, the fit seems related to the degrees-of-freedom, N-T, (remember, N>T).   Fewer degrees-of-

freedom result in less precise estimation. The riskless rate has no significance whatsoever; this too is 

hardly surprising because a simple translation of the mean SDF should essentially be immaterial.16 

The results for Theil’s U2 in Panel B essentially agree with the results for the correlations in 

Panel A, with opposite signs as expected (since U2 is larger when the fit is worse), except for the 

volatility of the true SDF, which has the same sign but less statistical significance.  This exception 

might be explained by the fact that U2 is scaled by a denominator that relates to the variance of the 

true SDF.   The other three significant variables in panel A are even more significant in Panel B and 

the overall explanatory power is larger. 

We find, after decomposing the MSE into its three components, (equation (15)), virtually no 

effect at all from the first component, a difference in means between the true and estimated SDFs.  

On average over the 2,880 combinations of parameters, the mean difference component’s fraction of 

the total MSE has a value of 0.0000 and the largest value is only 0.0012.  In contrast, the averages of 

                                                           
16 In unreported results, we verify that this is also true of the mean and variance of the initial returns in (16). 
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the standard deviation difference component and the correlation component are, respectively, 0.2426 

and 0.7574 as fractions of the total MSE.  (For each parameter set, the three fractional components 

sum to 1.0 by construction.)  The largest and smallest values are, respectively .8346 and 0.000 

(1.0000 and 0.1654) for the standard deviation difference component (correlation component.) 

Each of the 2,880 parameter combinations uses a different simulated set of “true” SDFs, 

which results in a corresponding and different set of estimated SDFs.  Consequently, we can compare 

the 2,880 means of true and estimated SDFs.  They are very close.  The averages over 2,880 sets are 

0.9956 and 0.9960 for, respectively, the estimated and true SDF means.  The standard deviations of 

the means across the 2,880 sets are, respectively, 0.2438 and 0.2439.  Their correlation is 0.9977.  

Hence the mean of our estimator is close to the true mean SDF regardless of the parameters. 

However, although the means are close, the period-by-period estimated and true SDFs 

display substantial divergence for some parameter combinations.  The average correlation is .189 and 

the maximum and minimum correlations over the 2,880 parameter combinations are, respectively, 

0.951 and -0.547.  This makes it very clear that ill-considered parameters degrade the performance of 

our SDF estimator when there is a large amount of sampling variation.17 

Panel C of Table I reports determinants of the time series standard deviation of the estimated 

SDFs.   The impact of degrees-of-freedom (essentially N-T) is apparent; Larger N and smaller T 

reduce sampling error and result in a better-behaved estimated SDF.   Holding N and T constant, 

more volatility in the return perturbation brings, not surprisingly, in a more volatile estimated SDF.  

The time series volatility of the true SDF, however, has no significant impact and neither does the 

riskless rate.   

The variance of our estimated SDF should increase with T due to the approximation error.  

This is because the elements in the estimated SDF vector are equal to the right side of (6) multiplied 

by T.   This multiplication converts the average approximation error to the sum of approximation 

errors, (summed over T periods.)  The standard deviation of this sum increases with .  In an 

                                                           

17
 For Theil’s U2, the mean, maximum and minimum are, respectively, 0.339, 0.787, and 0.0359.  Larger values 

indicate more disagreement between the estimated SDF and the true SDF. 
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unreported alternative regression to Panel C in Table I, using instead of T as a regressor, we find 

that virtually nothing is altered except the coefficient.18   

In Panel D, of Table I, we finally see something that is influenced by the true riskless rate; 

viz., the implied riskless rate from the reciprocal of the estimated SDF.  The t-statistic is 2.42, but the 

overall explanatory power is meager.  Also, both the perturbation volatility and the volatility of the 

true SDF are marginally significant, which may be explained by Jensen’s inequality (since the 

implied riskless rate is obtained from a reciprocal of an estimated SDF.) 

 

II. B.  Test Power 

This sub-section provides evidence about the power of our proposed tests of SDF theory by 

tabulating type II errors under a variety of different simulated conditions.  The type II error, often 

called the “power” of the test, is the probability of correctly rejecting a false null hypothesis.  To 

estimate power, we must set up a simulation so that the true SDFs for different groups of assets are 

not the same.  For two or more sets of assets, we then estimate SDFs and tabulate the rejection 

frequency of the null hypothesis that all SDF estimates are the same except for sampling error.  In a 

simulation, the rejection frequency is the fraction of replications with test p-values less than the type 

I error. 

The SDF theory could be false in two distinct ways.  First, even though the basic SDF 

equation (1) holds for different groups of assets, the stochastic discount factor itself might have 

different distributions across groups; i.e., different means, volatilities, or other features.  Second, the 

basic SDF equation might be false for one or more groups such that the expectation in (1) is not unity 

for such groups.  We will examine both types of deviations from SDF theory in the simulations next. 

To examine both types of possible violations of SDF theory, we use four tests, both now in 

simulations and later in the empirical examinations of actual data.  The tests are the Kruskal/Wallis 

(1952) (KW) non-parametric one-way analysis of variance based on ranks, which rejects a false null 

hypothesis if one or more sample SDFs is stochastically dominant or has an abnormal median, the 

Welch (1951) (WE) test for equal means, which allows for unequal variances, the Brown/Forsythe 

                                                           

18 The t-statistic for is 53.8 as opposed to the 53.9 reported for T in Table 1.  Everything else is similarly close; 
e.g., the adjusted R-square is 0.730 as opposed to 0.731. 
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(1974) (BF) test for unequal variances, and the Chi-Square tests that estimated SDF vectors are the 

same element by element.   

The relevant test depends on the nature of the difference among SDFs.  For example, if the 

medians differ but the means and variances are about the same, the KW test should reject the null but 

the WE and BF test might not.  Similarly, if the SDF distributions have similar location on the real 

line but have disparate volatilities, the BF test should reject but the other tests would not.  If the SDF 

estimates have the same location and volatility but different time patterns, the Chi-Square test should 

work well. 

If one or more asset groups is characterized by departure of the basic SDF expectation (1) 

from unity, all four tests could conceivably detect it.  This suggests that simulations should examine 

various type of SDF heterogeneity; i.e., different locations or volatilities or both and perhaps 

differences in higher moments and also failure of the basic SDF equation (1).  Obviously, we cannot 

hope to examine every possible type and size of differences across SDFs, so this section is 

unavoidably limited.  However, we will gladly supply the simulation Fortran code to anyone 

interested in examining power for other parameter choices. 

To be most relevant for the empirical tests to follow, we perform power calculations for 

several choices of the most important parameters, which are the number of sample periods, T, the 

number of assets in each group, N, the means and variances of the true SDFs (which can differ across 

groups), the number of asset groups, and the volatility of return perturbations.  For each choice of 

parameters, the simulations are replicated 1,000 times and the power is tabulated as the null 

hypothesis rejection frequency.   

 

II. B. 1.  Test Power when the SDF equation is true but the SDF differs across asset groups 

In this subsection, we assume that the basic SDF equation (1) is valid for all assets but that 

the SDF itself differs across asset groups.  Our first set of simulations has just two asset groups.  

Parameter combinations include N=240, 480, 720 and 960.  For each N, T=30, 60, 90, and 120.  To 

illustrate differences in the tests, we conduct a simulation with SDFs that differ only in location; i.e., 

two values for the riskless rate, .1% and 5% per period, but with the same SDF volatility, a standard 

deviation of 25% per period.  A second simulation reduces the volatility to 5% per period.  A third 

simulation has two SDFs with the same mean, RF=.1%, but different standard deviations, 10% and 
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25%.  In these simulations (and in all that follow), SDFs are generated according to the true SDF 

model in Section II.A, equation (15), and returns are generated by (17).   Note that the underlying 

SDFs are the same across groups but with differing means and/or volatilities. 

Results for the first simulations, with differing SDF means but equal volatilities, test power is 

reported in columns 3-6 of Table II.  Panel A (B) has a perturbation volatility of 1% (2%); see 

equation (17).19  If a particular test has minimal power, it is not reported.  Hence, only the Chi-

Square test is reported in column 3 where the SDF volatility is 25%.  KW, BF and WE have no 

power in this case.  However, when SDF volatility is reduced to 5%, (columns 4-6) both KW and 

WE have very good power for all choices of N and T in Panel A and for N > 240 in Panel B.  For 

these simulations with equal volatility, the BF test should not have any power, and it does not.   

The CH test exhibits a complex pattern of power.  In Panel A, we see that it has perfect 

power for N=720 and N=960 but for lower N its power declines dramatically with larger T.  

Evidently, its power is degraded when the degrees of freedom, i.e., N-T, is not sufficient.  A similar 

pattern is observed in Panel B except that the power is uniformly lower and completely absent for 

lower N and higher T.  For lower SDF volatility, columns 4-6, the CH test displays a very similar 

power pattern as for the higher volatility, column 3.   From a power perspective, CH is dominated by 

KW and WE for lower SDF volatility.  

Clearly, return perturbation volatility has a large deleterious impact on power, but it appears 

that this can be overcome with a large enough collection of assets and a judicious choice of the time 

series sample size.  It also seems clear that all three of these tests, (KW, WE, and CH), provide 

valuable information about the validity of SDF theory.   WE and KW are similar, and in columns 4-6 

of Table II, WE has slightly higher power, but WE has the disadvantage of being a parametric test; 

hence KW might be preferred when one is not sure about the distributions of returns or of the 

underlying SDFs.  CH is also a parametric test but it appears best when SDF volatility is high 

(column 3). 

In the next simulations, the SDFs have the same means, based on riskless rates of 0.1%, but 

have different volatilities, 10% and 25%.  The results are in columns 7-8 of Table II.  KW and WE 

                                                           

19
 The perturbation interacts with other stochastic component to produce estimation error in the SDF, which is 

considerably more volatile than the perturbation itself.  Insights about estimation error volatility are presented in 
section IV.D. 
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have virtually no power because the locations are the same.  The BF test, in contrast, has almost 

perfect power for N ≥ 480 and even for lower N in Panel A.  The CH test has somewhat weaker 

power, particularly for the higher return perturbation volatility of Panel B.  However, it too has good 

power for larger N  ≥ 780 and its power is perfect for N ≥ 480 in Panel A. 

The next simulations allow both the mean and volatility of the true SDFs to differ and also 

introduce stochastic dominance by allowing the SDF with the larger mean to have a smaller 

volatility.  Thus, the riskless rate is set to .1% (5%) for the first (second) SDF and the volatility is set 

to 10% (25%).  Results are in Table II, columns 9-13.  Again, BF has excellent power except for 

N=240 in Panel B (higher perturbation volatility.)  KW has decent power in Panel A for large N (720 

and 960) and for large T (120) but its power deteriorates in Panel B.  WE has weak power 

throughout.  CH has excellent power for N ≥ 480 in Panel A, for N ≥ 720 in Panel B and even for a 

few cases with T = 30.   

Finally, we document power with a larger number of asset groups.  We choose five groups to 

match some of our later empirical tests.  To make the tests face a tough challenge, we set up the 

experiment so that just one of the groups has a stochastically dominant SDF, the other four having 

SDFs with the same mean and variance.   Asset group #1 has a stochastically dominant SDF with a 

riskless return of 0.1% and a standard deviation of 10%.  Groups #2 through #5 each have SDFs with 

a riskless return of 5% and a standard deviation of 25%.   

Table II, columns 13-16, report the results.  The power is somewhat lower in most cases than 

in the two group tests reported in columns 9-12.  KW’s power seems to have fallen the most but WE 

is not very powerful in either case, particularly with the higher perturbation volatility in Panel B.  

However, BF still has good power except for lower N in Panel B while CH has excellent power in 

Panel A when N ≥ 480 and for T = 30.  Its power is also quite good for N = 960 even in Panel B. 

 

II. B. 2.  Test Power when the SDF equation is false for at least one asset group 

This subsection considers the test power consequences of one asset group being aberrant in 

the sense that the basic SDF expectation (1) is not equal to unity.   Since the previous subsection 

considers cross-group differences in the SDF itself, this section assumes that the SDF has the same 

distribution across all assets but the SDF/gross return product is not the same.  Such a situation 
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implies both incomplete markets and an arbitrage opportunity, which can be seen most intuitively by 

noting that the riskless rates must differ among asset groups.   

In the interest of space, we will only consider a single simulation of this type with two asset 

groups.  Power is tabulated as before with various combinations of the number of assets per group 

and the number of time series observations and two choices of return perturbation volatility. 

To parameterize the error in SDF theory, we set the basic equation to  for 

each asset i in the aberrant group, with  δ takes on the values 0.05 and 0.1.  In the other 

(normal) group,  The riskless rate is 0.1% percent per period and SDF volatility is 15% per 

period.  The riskless rate and volatility are the same in the SDFs for each group. 

Table III presents the results.  For the KW and WE tests, power now improve with T, even 

when it is close to N while the opposite of true for CH (left side of table, perturbation volatility of 

1%.)  The BF test has virtually no power for all values of N and T, (not reported), essentially 

reflecting the fact that the variances of the underlying SDFs are the same in both asset groups.  In 

contrast, the WE tests exhibit power in excess of 90% when N is close to 1,000, T = 120.  When δ = 

0.1, power is very good for all three tests except for CH and N = 240.  Power is also excellent for CH 

when N ≥ 480.   However, for larger return perturbation volatility, (right panels of Table III), power 

is quite poor for the lower value of δ. 

 

II.B.3.  Conclusions about test power 

In summary, from all the above simulations, we learn that very large cross-sectional sample, 

N close to 1,000, provides robust power under a variety of conditions including the time series 

length, T, and the return perturbation volatility.  When SDFs have disparate means and variances 

across asset groups, the tests provide decent power when return perturbation volatility is low, except 

when T approaches N/2 and the degrees-of-freedom start to become problematic.  The power is 

generally very poor when the return perturbation variance is large and T is a large fraction of N. 

When the SDF equation is false by 10% (relative to the predicted value of 1.0) in one asset 

group, while the SDFs have the same distribution across groups, the KW, WE and CH tests have 

good power for large N. 

 

 δ ≠ 0;

 δ = 0.
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III. Data 

We collect monthly return observations on U.S. bonds, stocks, currencies (per US$), 

commodities and real estate (REITs, or real estate investment trusts), for July 2002 through 

December 2013, 138 months in all.   The data begin in July 2002 because the Trace data base starts 

reporting bond returns in that month.  Stocks are sampled randomly from those on the CRSP 

database.  We purposely select equities with low leverage to make them as different as possible from 

bonds, although we also select an equal-size random sample of other equities for later comparison.20  

Currencies and commodities are drawn from the Datastream and Real Estate Investment Trusts 

(REITs) from the CRSP database.  In the cross-sectional sample, there are 956 low-leverage stocks, 

123 bonds, 37 spot exchange rates per US$, 47 commodities, and 89 REITs that have simultaneous 

observations for every month.  

 

IV. SDF estimates and empirical tests of the SDF theory 

IV.A.  Tests among asset classes 

The SDF theory should apply to any partition of the available assets, but we decide to begin 

with what could be a tough challenge.  We estimate SDFs from each asset class independently and 

then test whether they are the same across asset classes.   Our SDF estimator requires more assets 

than time periods, so we are limited to time series samples shorter than the number of individual 

assets in the smallest class, which is currencies with 37. Hence, the 138 available months are 

separated into roughly equal subsamples, 34 observations in the first two subsamples and 35 

observations in the next two.  We realize these tests probably lack power because N-T, the degrees-

of-freedom, is quite small for some asset classes.  Nonetheless, we believe they are worth reporting 

while recognizing their likely limitations.  The results are in Table IV.  

The Kruskal/Wallis (1952) (hereafter KW) test indicates whether one set of SDF estimates 

stochastically dominates any other and it also provides a test of the difference in medians.   There are 

five sets of sample SDFs, one for each asset class, which implies that the KW Chi-Square variate 

under the null hypothesis (H0: no SDF dominates another) has four degrees-of-freedom.   According 

to KW test results reported in Table IV, there is no stochastic dominance in any of the four sub-

                                                           
20 The average leverage (book debt/total assets) ratio is 10.21% for the 956 low-leverage equities. 
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periods.  The sample medians are not significantly different from one another.  Hence this test does 

not reject the SDF theory for these assets and time periods. 

Table IV also reports tests for the equality of means and variances across the five sets of SDF 

estimates, the Welch (1951) (WE) test for means and the Brown/Forsythe (1974) (BF) test for 

variances.  In agreement with the non-parametric KW test, the WE test finds no evidence of a 

difference in means for the SDFs estimated independently from the five asset classes.   None of the 

p-values indicates significance.   

The WE test allows for unequal volatilities across asset classes.  This is fortunate because the 

BF test for differences in variances rejects the null in every sub-period.   The Chi-Square element by 

element test essentially agrees with the BF test except that its p-value is marginally significant in the 

first sub-period.  Evidently, although the sample SDFs appear to be located with their means and 

medians close to one another,21 at least one asset class has sample SDFs with significantly larger or 

smaller variance than the others.  This is apparently sufficient to induce significant differences in the 

elements of some estimated SDF vectors.  In order to ascertain which asset class (or classes) is 

responsible, Table V reports the time series standard deviations of the sample SDFs.22    

It appears that currencies and commodities have larger volatilities than equities, bonds, and 

real estate.  One possible explanation is that the sampling error in estimated SDFs is larger for asset 

classes with fewer constituent members.  There seems to be a strong negative connection between the 

number of available assets and the volatility.   Currencies have the smallest number of individual 

assets (only 37) and commodities are next (with 47.)   This explanation is buttressed by the 

simulation results in Section II.A, which reveal a material improvement in the quality of our 

estimator with the number of assets, holding constant the time series sample size. 

 

IV.B.  Tests with larger samples of assets and time periods 

To investigate the possible confounding impact of sampling error, we conduct two further 

experiments. First, we compare stocks and bonds alone, without reference to the other three asset 

classes.   Stocks and bonds dominate the sample with 956 and 123 individual assets, respectively.  
                                                           

21
 The Welch test for equal means is valid even when variances are unequal.   

22
 The simulations in section II.B suggest that test power might not be very good for small collections of assets such 

as 37 for currencies and 47 for commodities.  However, since the BF test rejects strongly, power per se does not 
appear to be a problem.  
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Recall that the number of assets N in a group must exceed the number of time series observations T.  

Since there are only 123 bonds available, we cannot use all 138 time series observations at once, so 

we simply divide them in half, 69 months in the first sub-sample (July 2002 – March 2008) and 69 in 

the second (April 2008 – December 2013.)   Table VI provides the results.  

As the Table VI Brown/Forsyth tests indicate, the increased sample sizes, both in number of 

asset and in time periods, does not overturn the previous result that the SDFs have divergent 

volatilities. However, unlike the results in Table IV, the Chi-Square test no longer detects significant 

differences in the SDF vector elements.   

Table VII reports the volatilities, which are considerably larger for bonds than for stocks in 

both sub-periods.   Evidently, the number of bonds remains too small compared to the number of 

equities, which probably implies more sampling error and hence higher estimated SDF volatility for 

bonds. 

In the second experiment, we abandon a strict asset class categorization in order to estimate 

sample SDFs using all available monthly observations at once and roughly equal-sized groups of 

assets.  This increases the time series sample size from T=34 or T=35 (as in Table IV) or T=69 (in 

Table VI) to T=138.  Since the number of assets N in a group must exceed the number of time series 

observations T, it becomes necessary to mix stocks, which are the most numerous, in with the four 

other asset types in separate groups.   There are 1252 individual assets of all types available for the 

138 sample months, so five roughly equal-sized groups would contain, respectively, 250, 250, 250, 

251, and 251 individual assets.   

We compose the groups in the following manner: To group #1, we assign 250 equities, 

selected randomly; in group #2 we mingle 127 randomly-selected equities with all available (123) 

bonds; similarly, group #3 has 213 equities and 37 currencies; group #4 has 204 equities and 47 

commodities; and group #5 has 162 equities and 89 REITs.   The results are reported in Table VIII. 

The Welch (1947) test for means and the Brown/Forsythe (1974) test for variances are in agreement 

with the non-parametric KW test.  The Chi-Square test agrees with a p-value close to 0.5.  

Consequently, in these tests there is no evidence of a significant difference in the SDFs estimated 

from the different asset groupings.  After taking account of sampling error disparities across test 

groups, there is no evidence of SDF differences even though the groups are heterogeneous in the 

sense of including five distinct asset classes. 
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However, there is one caveat.  Our simulations in section II.B reveal that test power might 

not be very large when there are only 240 assets in each group unless sampling error is rather small.  

Thus far, we have not attempted to disentangle sampling return perturbation volatility from volatility 

in the true SDF.  The variance of the estimated SDF is the sum of the two variances. 

 

IV.C.  Tests with greater power 

In the hope of achieving more test power, we conduct two further empirical experiments.  In 

the first, we divide the sample of low-leverage equities into two equal-sized groups of 478 stocks 

each and work with all available 138 time series observations.  Section II.B suggests that this choice 

of N and T should have good power.  In the second test, we expand N even further by collecting a 

second group of 956 equities, randomly sampled from remaining CRSP stocks that do have 

significant levels of leverage.23   Conceptually, this second test should be an exacting hurdle for SDF 

theory because the two groups of equities differ markedly in their leverage ratios.24 

The results for both tests are reported in Table IX.  Panel A reports that none of the four tests, 

KW, WE, BF, and CH, rejects the null hypothesis that the SDFs are the same in the two groups of 

478 low-leverage equities at a high level of significance, though the BF test is on the margin with a 

p-value of 0.084.  Panel B reports a stronger inference; even with very different leverage (and, as 

consequence, likely different levels of riskiness), there is no evidence of a difference in SDFs.  In all 

cases, the p-values are far from indicating significant rejection of the null hypothesis. 

In conclusion, for a battery of tests with differing asset classes, differing group sizes, and 

diverse time series sample sizes, the SDF theory holds up well.  It cannot be proved true, of course, 

but it is not rejected by our tests after properly accounting for sampling variation.  Our tests are 

conducted with US data spanning a recent decade, so more comprehensive tests with longer samples 

and international collections of assets are clearly in order.   

 

IV.D.  Properties of estimated SDFs; disentangling sampling error and true SDF volatility and 

the Hansen/Jagannathan variance bound 
                                                           
23 The average leverage ratio (book debt/total assets) for this second group of stocks is 32.51%; the low leverage 
group has an average ratio of 10.21%. 
24

 There are, of course, many other ways to construct heterogeneous groups of equities (size, beta, etc.) for similar 
cross-group tests, which we leave for future research. 
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In the previous sub-section, we find with demonstrably powerful tests that SDF estimates 

from low- and higher-leveraged stocks are not significantly different.  This does not prove that SDF 

theory is true, but the theory cannot be rejected by those tests.  In this section, we temporarily assume 

that the theory is true, which enables us to shed light on the properties of SDF estimates.  It also 

permits the disentanglement of volatility in the true SDF from sampling error volatility in the 

estimated SDF and it allows us to check whether our estimates satisfy the Hansen/Jagannathan 

bounds 

In agreement with previous notation, we now let  denote the vector of estimated SDFs 

from the low-leverage stocks and  denote the estimated SDFs from the higher-leverage stocks.  

Given SDF theory, an element of these vectors at time t can be expressed as 

 , j=L,H     (16) 

where  is the unexpected component of the true SDF at time t and  is the estimation error in 

the sample SDF for group j (j=L,H).  No element on the right side of (16) is correlated with any 

other, so the time series variance of the estimated SDF is 

 , j=L,H.   (17) 

Assuming that the estimation errors for L and H are independent of each other,  

  .    (18) 

The right side of (18) is the total volatility induced by the true SDF, including the intertemporal 

evolution of its expectation and its period-by-period unexpected component.  Subtracting this result 

from (20) provides estimation error variances for j=L and j=H. 

SDF theory requires that for the riskless rate RF at time t-1.  During the 

time period of our sample, 2002-2013, the riskless rate had historically low variation over time, so 

Var[E(m)] should be relatively small compared to  which should dominate (18). 

Estimated over July 2002 through December 2013, the standard deviations of and 

are, respectively, 0.580 and 0.696 per month and correlation of  and  is 0.3002.  This implies 

a standard deviation of SDF components, the square root of (21), equal to 0.3481.  The standard 
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deviations for the estimation errors for L and H are then, respectively, 0.4636 and 0.6031. Not 

surprisingly, higher leverage equities are associated with larger estimation errors. 

The Hansen/Jagannathan (1991) variance-related bound requires that be larger 

than the largest possible Sharpe ratio.25   Recent opinions, Welch (2000), seem to be that the excess 

return on the best possible portfolio is no more than about 7% per annum (or even lower lately) and 

the portfolio’s standard deviation may be around 16% per annum, so the largest Sharpe ratio is no 

more than 0.44.  The sample means of and are, respectively, 0.9945 and 0.9961, both 

approximately unity.  Our annualized SDF standard deviation is 0.3481 , which comfortably 

satisfies the HS bounds.  This inference contrasts strongly with previous research that has specified 

SDF proxies that depend on macroeconomic data.  Evidently, SDFs that depends on returns, such as 

ours and Long’s Numeraire portfolio, are sufficiently volatile.  This is a puzzle that clearly deserves 

further investigation. 

The means and standard deviations of the estimated SDFs can be used to conduct a simple 

test that the true SDFs are positive (and consequently there are no arbitrage opportunities.)  The t-

statistics for low- and higher-leveraged equities are, respectively, 20.2 and 16.8, thereby 

overwhelmingly indicating that the SDFs are not negative.26 

To get a visual image of the evolution of our SDF, it is appropriate to first expunge 

estimation error.  This is not possible for each individual time series observation, but one can adjust 

the overall series to have the true SDF volatility as estimated by (18).  We simply need to find an 

attenuation coefficient,  such that , which assumes that the riskless rate’s 

variance is sufficiently small that it can be ignored; hence, .  The 

adjustment entails the transformation 

                                                            ,                                                         (19) 

where the double “chapeau” denotes the transformed SDF and  is the sample mean.  For the low 

and high leverage equity groups, the attenuation coefficients are .6005 and .4999, respectively.   

                                                           
25 Hansen and Jagannathan also derived bounds involving other than the second moment.  See Snow (1991) for 
empirical estimation with a variety of bounds. 
26

 There is a slight degree of autocorrelation in the estimated SDFs but it is too small to overcome this inference. 
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Figure IV plots the two adjusted SDF series using a 12-month moving average to smooth out 

short-term fluctuations.   There is clearly a connection between the two series, which is not a surprise 

because our test above could not reject the hypothesis that they are the same.  There is, however, 

something of a puzzle here in that the SDF is larger than 1.0 in the middle of the 2000 decade for 

both series.  Of course, this is the ex post SDF, including the unexpected component.  The expected 

SDF would presumably be much smoother.27 

 

IV.E.  Estimated SDFs and Returns on a Market Index 

In one further validation experiment, we estimate the relation over time between SDF 

estimates from low- and higher-leveraged stocks and observed returns on the S&P 500 index.  This is 

motivated because SDF theory stipulates that in each period there should be a relation between the 

aggregate market portfolio’s return, RW,t, and the SDF mt, of the following form: 

 , 

where the coefficients are time varying and strictly positive; Cf. Cochrane (2001a, pp. 139-140.) 

Unfortunately, we have only estimates of the two variables in the relation above, our estimate 

 for m and the S&P 500 return for RW.  Moreover, we know nothing about the time variation in the 

coefficients, a and b, and are obliged to adopt the perhaps forlorn hope they are relatively constant.   

Operationally, we run two proximate regressions, 

  

with j=L (H) for Lower- (Higher-) leveraged equities, using 138 monthly observations, July 2002 

through December 2013.  Perhaps surprising, given the possible problems with this specification, we 

find –bL=-3.48 (t-statistic=-3.17) and –bH=-2.68 (t-statistic=-1.98.)  Both slope coefficients have the 

right sign and are significant, though bH’s significance could be regarded as marginal.  Clearly, there 

is more estimation error in  for the higher-leveraged equities.  As one would expect, the intercept 

terms are both very close to 1.0 and are highly significant, t-statistics of 21.0 and 17.1, respectively.  

However, the explanatory power is rather low, adjusted R-squares of 6.20% and 2.10%, respectively.   

 

                                                           

27
 Neither series has a unit root according to the usual tests. 
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V. Robustness Checks 

In this section, we investigate the qualities of our SDF estimator with alternative assumptions 

about returns.  Sub-section V.A. examines the consequences of thick tails, a phenomenon that is 

seemingly ubiquitous for financial asset returns.  Sub-section V.B. looks at the impact of returns that 

are cross-sectionally correlated and have different means and variances.  Sub-section V.C. examines 

our estimator when returns in different groups have diverse factor structures. 

 

V.A. Thick-tailed returns 

In the simulations of section I and II, returns are log-normally distributed, so a natural 

question is whether our SDF estimator behaves as well when returns are characterized by very large 

or very small returns, well beyond those typically observed under a Gaussian regime.  Our estimator 

does involve a cross-product matrix that contains squared returns, so it might be sensitive to extreme 

observations.    

To examine this issue, we repeat the simulations of II.A holding everything the same except 

for the return perturbations, which are now assumed to follow a truncated Cauchy distribution.  The 

details are in section A.2 of the Appendix.  Table X, which corresponds to Table I, presents the 

results with truncated Cauchy return perturbations.  Comparing Panels A and B of the two tables, one 

observes that the results are virtually unchanged qualitatively and are even more significant with 

thick-tailed return perturbations.  All the variables have the same signs and all the significant 

variables (which is everything except the riskless rate) are still significant. 

There is one change in Panel C, which shows the influence of various parameters on the 

volatility of the estimated SDFs.  In Table X, the true SDF’s volatility has become significant.  In 

Panel D, which explains the inferred riskless rate, the SDF volatility and the Cauchy return 

perturbation scale parameter are not significant while the true riskless rate is more significant.  

Earlier, we speculated that the volatilities might be showing up in Panel D of Table I because of 

Jensen’s inequality in the riskless rate’s reciprocal estimation, but instead, that result appears to be 

related to multiplicative return perturbations. 

We again find no effect from the difference in means fractional component of the MSE.  The 

averages of the standard deviation difference fractional component and the correlation fractional 

component are similar, 0.191 and 0.808, respectively.   
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As for the 2,880 means of true and estimated SDFs, they are still very close, with even a 

slightly higher correlation, 0.9998, and almost identical averages and standard deviations.  The 

average correlation has risen to 0.439 and the maximum and minimum correlations over the 2,880 

parameter combinations are now, respectively, 0.995 and -0.409.   

In summary, thick-tailed returns do not seem to compromise the qualities of our estimator.  

Its seeming improvement with thick tails, however, may be partly attributable to the return 

perturbation being additive rather than multiplicative and to a set of Cauchy scale parameters that 

rendered the return perturbations less severe.  Regardless of such caveats, however, there seems to be 

little cause for concern when returns exhibit thick tails. 

 

V.B. Correlated Returns with Unequal Means and Volatilities 

The simulated returns in section II are independent of one another and have the same 

expected values and volatilities.  Section I-C presented some illustrations with correlated returns that 

have disparate means and divergent standard deviations.  We now extend these illustrations for a 

wider set of parameters. 

Perhaps the simplest way, (and the way we choose), to simulate returns with such 

characteristics is to employ the venerable market model.  Accordingly, we assume that each initial 

gross return is obtained from the following model: 

   (20) 

where RF is the net risk-free rate (not 1+R), RM,t is a normally distributed “market” common return in 

period t, βi is the slope coefficient or “beta” for asset i and is a normally distributed IID 

“idiosyncratic” return for asset i in period t.  The last term on the right of (20), in parentheses, is a 

volatility correction for exponentiation.   

For each set of parameters, we generate a new set of market returns, idiosyncratic returns, 

and betas.  Then, the simulation proceeds as before, making sure that the average initial gross return 

from (20), multiplied by the SDF, is equal to 1.0 and then adding sampling return perturbation as in 

equation (A-3) of Appendix, Section A-1. 
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The betas are assumed to be cross-sectionally normally distributed with a mean of unity and a 

standard deviation of 0.1, which implies that most betas fall between 0.8 and 1.2.  Since the beta is 

different for each asset, the expected returns vary cross-sectionally as well. 

The market returns are assumed to have a mean equal to the risk free rate plus a premium 

equal to 0.6% per month and a standard deviation of 4% per month, approximately 13.9% per 

annum.  The idiosyncratic returns are assumed to have a standard deviation of 8% per month, so the 

market model R-square is 20%, which is in the usual range for equities. 

Results are reported in Table XI.  They are virtually identical in Panels A and B with the 

earlier results in Table I of Section II.A.  Thus, inducing correlation and different mean returns and 

volatilities has no impact whatever on the correlations between true and estimated SDFs and on 

Theil’s U2 statistic.  There are some minor differences in Panels C and D, however.  The standard 

deviation of estimated SDFs (Panel C) now shows significance for the true SDF volatility.  The 

inferred riskless rate (Panel D) shows more significance for the true riskless rate and the number of 

assets and less significance for the return perturbation volatility.  However, these differences are 

relatively small in magnitude. 

The other indicators are also very similar, as one would expect given the similar results in 

Tables I and VIII.  For example, the correlations between true and estimated SDFs range from a 

maximum of 0.961 to a minimum of -.567.  The mean difference fractional component of the MSE is 

very close to zero in all cases (it’s maximum is only 0.0015), which implies that there is no material 

bias in the estimated SDFs.   

In summary, returns that are correlated and differ in their means and volatilities present no 

difficulties for our SDF estimator. 

 

V.C.  Returns with Factor Structures 

There seems to be widely-held intuitive notion about a connection between SDF theory and 

the factor structure of different asset classes.  For instance, if bonds are driven by fewer underlying 

risk factors than equities, SDFs must, allegedly, be different for bonds and stocks.  But this intuition 

is not necessarily valid.  Of course, if the bond and stock market are not integrated and there are 

cross-market arbitrage opportunities, SDF theory would not be valid.  But this is not directly 

attributable to their disparate factor structures.   
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To examine the issue for a wider set of parameters than the illustrations in section I.C, this 

subsection provides additional simulations wherein the returns are generated by a two-factor 

structure.  The results could be compared with the simulations in section V.B where returns are 

generated by a single-factor structure. 

Now the return generating function is 

  (21)  

where , the first factor, has the same distribution as the market excess return in 

equation (20), (the single-factor model), and  has the same cross-sectional distribution.  The 

second factor in (21) is assumed to have the same volatility and mean return as the first factor but 

 has a cross-sectional mean of zero and a standard deviation of 0.1, (which is the same cross-

sectional volatility as .)  Clearly, the returns generated by a two-factor model will have higher 

volatilities.  All other parameters are the same as in section V.C, including the distribution of the 

regression disturbances.  The results are reported in Table XII. 

Comparing Table XII for returns with a two-factor structure against Table XI where returns 

have a single-factor structure, we observe that the coefficients and t-statistics of the various 

parameters are virtually the same in Panels A, B, and C.  The correlation between true SDFs and our 

sample estimates depend in an almost identical fashion to T, N, the true SDF volatility, and the 

perturbations volatility.  The same is true of Theil’s U2 (Panel B) and for the standard deviation of 

the estimated SDF (Panel C.)   

The only material difference seems to be for the inferred riskless rate.  As shown in Panel D, 

N and T have switched places in terms of significance as have the two volatilities.  The true riskless 

rate is still significant though the significance level has fallen along with the adjusted R-square, 

which, however, is very modest.  It seems likely that the differences displayed in Panel D of Tables 

XI and XII is partly attributable to sampling error.28 

                                                           
28 Remember that the additional factor adds as much noise as the first factor in the Table 12 results. 
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The bottom line is that the factor structure of returns has little, if any, bearing on our SDF 

measure.  This is not all that surprising since the SDF theory, when true, should handle any 

conceivable return generating process.  It is reassuring, however, to see that it actually does 

 

VI. Conclusions 

The stochastic discount factor (SDF) theory predicts that the same SDF should price all assets 

in a given period when markets are complete.  We develop tests of this theory by first deriving an 

SDF estimator that depends only on observed returns and is agnostic with respect to macroeconomic 

state variables and preferences, on which does not depend at all.   Also, our SDF estimator does not 

depend on the form of the multivariate distribution of returns including their factor structure. 

Our SDF estimator is theoretically biased in finite samples and has a standard error that 

depends on both the number of asset, N, and the number of time periods, T, used in its construction.  

Hence, to examine the estimator’s qualities, we resort to simulations.  We find that the estimator is 

accurate when N-T is relatively large with N>2T and N near 1,000.   

Equipped with an agnostic SDF estimator, we suggest four different tests of SDF theory that 

can potentially reject the theory when sample SDFs differ significantly across groups of assets.  

Simulations are presented to assess the power of these tests.  For large N relative to T, the suggested 

tests have excellent power that approaches 100% depending on various parameters such as the 

volatility of the true SDFs and the sampling variation in returns.  We also present evidence that our 

SDF estimator works well when return have thick tails and differ significantly in their means, 

volatilities and correlations with each other and also, as mentioned above, when there is a multi-

factor structure of returns. 

We apply our estimator and tests to data on U.S. equities, bonds, commodities, currencies, 

and real estate (REITs) over a common time period, 138 months from July 2002 through December 

2013.  As theory and the simulations predict, asset classes with few individual assets (a low N), such 

as commodities and currencies, produce sample SDFs with larger volatilities.  However, even in this 

case, there is no evidence that SDF means are different across asset classes.  This result suggests that 

excessive SDF volatility in smaller asset classes might be attributable to sampling variation. 

This explanation is corroborated by reorganizing the individual assets into larger grouping; 

sampling error is thereby reduced and there are no longer any rejections of the SDF theory.  The 
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same result, no rejection, is obtained in a further test with larger numbers of individual assets (close 

to 1,000).  Owing to data availability, such a test can be done only with equities.  We find that two 

large groups of equities, one group with minimal leverage and the other with average leverage, are 

priced with SDFs that are not statistically distinguishable.  We also find that these SDFs comfortably 

satisfy the Hansen/Jagannathan variance bound and are very significantly non-negative. 

Overall, the SDF theory’s main prediction, that the same SDF prices all assets during the 

same time period, cannot be rejected with our tests using U.S. data in various asset classes during the 

2002-2013 time period.  In addition, SDFs are positive with a high degree of statistical reliability.  

These results are consistent with markets that are integrated sufficiently to prevent the detection of 

incompleteness and they also suggest that arbitrage opportunities are difficult to uncover.  Future 

research will determine whether the same inferences are obtained with international data and with 

samples from other time periods.   
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Table I 
Simulated Performance Information for the SDF Estimator 

 
To assess our SDF estimator, we simulate true SDFs with mean=1/(1 + riskless interest rate) and 
various time series volatilities.   Gross asset returns are simulated so that their mean values multiplied 
by the SDFs are equal to 1.0 but errors perturb their sample values.  The performance of the SDF 
estimator is measured by the correlation between true and sample SDFs and by Theil’s (1966) U2 
statistic, which is closely related to the mean square prediction error.   Linear regressions are reported 
in Panel A where the dependent variable is the correlation and in Panel B where the dependent 
variable is U2.  In Panel C, the dependent variable is the sample time series standard deviation of the 
estimated SDFs.  Panel D reports the implied riskless rate from the reciprocals of the estimated 
SDFs.  There are 2,880 parameter combinations, each with an independently- simulated set of true 
SDFs and returns. 
 

Variable Coefficient T-Statistic 
A: Correlation between true and estimated SDFs 

T, Time Periods -1.104E-03 -11.034 
N, Assets 1.505E-04 12.036 

True SDF Volatility 1.295 18.581 
Perturbation Volatility -1.744 -49.302 

Riskless Rate 5.799E-01 0.244 

Adjusted R2 0.488 
B: U2 from comparing true and estimated SDFs 

T, Time Periods 2.068E-03 54.927 
N, Assets -2.964E-04 -62.989 

True SDF Volatility 1.344E-01 5.126 
Perturbation Volatility 6.237E-01 46.860 

Riskless Rate 2.423E-01 0.271 

Adjusted R2 0.782 
C: Standard Deviation of Estimated SDFs 

T, Time Periods 2.917E-03 53.945 
N, Assets -4.270E-04 -63.166 

True SDF Volatility 5.180E-02 1.376 
Perturbation Volatility 4.899E-01 25.622 

Riskless Rate 2.360E-01 0.184 
Adjusted R2 0.731 

D: Riskless Rate Inferred from Estimated SDFs 
T, Time Periods -3.106E-06 -0.229 

N, Assets 2.401E-06 1.415 
True SDF Volatility 1.950E-02 2.063 

Perturbation Volatility 1.164E-02 2.427 
Riskless Rate 7.797E-01 2.422 
Adjusted R2 0.008 
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Table II 
Test Power for a False Stochastic Discount Factor Theory; Differing Means and/or Volatilities 

 
Asset groups, each with N individual assets, have T simultaneous time series observations.  The true stochastic discount factors (SDFs) differ 
across groups, so the SDF theory is false.  SDF estimators are computed from the sample return observations in each group and then compared 
with the Kruskal/Wallis (KW), Brown/Forsythe (BF), Welch (WE), and Chi-Square (CH) tests.   Power is the percentage of correct rejections of 
the null hypothesis (H0: no difference in the SDFs) in 1,000 replications with a type I error of five percent.  Perturbation volatility is 1% (2%) in 
Panels A (B).  In the two-group tests (columns 1-12), SDFs means are determined by the reciprocals of unity plus riskless rates of .1% and 5% per 
period and SDF volatilities are 10% and 25% (standard deviation per period.)  Any non-reported test not for a comparison has minimal power.  
The first comparisons are for equal volatilities and differing means, column 3 (4-6) for 25% (5%) volatilities.   The BF test should not and does not 
have power in this case.  Column 7-8 report tests for equal SDF means but different volatilities.  In columns 9-12, one SDF stochastically 
dominates the other, with higher mean and lower volatility.  In the five-group test, columns 13-16, one group’s SDF stochastically dominates the 
other four.   
 

 Two-Group Tests Five-Group Test 
Riskless 

Rate 
0.10% 0.10% 0.10% 0.10% one group @ .1% 

5% 5% 0.10% 5% four groups @ 5% 
SDF 

Volatility 
25% 5% 10% 10% one group @ 10% 
25% 5% 25% 25% four groups @ 25% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
T N CH KW WE CH BF CH KW BF WE CH KW BF WE CH 

Panel A: Perturbation Volatility: 1% 
30 240 79.7 98.2 99.8 77.4 99.9 99.9 21.9 99.4 9.0 100.0 6.7 75.0 7.7 100.0 
60 240 16.8 100.0 100.0 9.5 99.9 98.9 43.2 99.9 15.8 99.8 17.1 99.7 14.4 96.2 
90 240 1.3 100.0 100.0 0.2 100.0 82.1 59.4 100.0 21.4 92.2 26.6 99.8 19.2 58.4 

120 240 0.0 99.7 100.0 0.0 100.0 29.4 67.8 100.0 28.8 43.1 31.8 99.9 20.9 9.4 
30 480 100.0 100.0 100.0 100.0 100.0 100.0 22.1 100.0 7.5 100.0 7.0 84.3 9.4 100.0 
60 480 99.5 100.0 100.0 99.7 100.0 100.0 50.9 100.0 19.0 100.0 24.7 99.9 18.9 100.0 
90 480 94.6 100.0 100.0 95.0 100.0 100.0 73.1 100.0 28.6 100.0 46.9 100.0 34.2 100.0 

120 480 63.4 100.0 100.0 61.7 100.0 100.0 85.9 100.0 44.0 100.0 62.5 100.0 42.1 100.0 
30 720 100.0 100.0 100.0 100.0 100.0 100.0 21.4 100.0 8.7 100.0 9.0 84.4 9.5 100.0 
60 720 100.0 100.0 100.0 100.0 100.0 100.0 53.7 100.0 19.5 100.0 29.4 100.0 22.3 100.0 
90 720 100.0 100.0 100.0 100.0 100.0 100.0 75.5 100.0 30.4 100.0 51.5 100.0 34.8 100.0 

120 720 100.0 100.0 100.0 100.0 100.0 100.0 88.7 100.0 45.8 100.0 69.9 100.0 50.8 100.0 
30 960 100.0 100.0 100.0 100.0 99.9 100.0 22.7 99.9 8.6 100.0 8.7 86.6 9.7 100.0 
60 960 100.0 100.0 100.0 100.0 100.0 100.0 54.0 100.0 17.2 100.0 27.2 100.0 20.8 100.0 
90 960 100.0 100.0 100.0 100.0 100.0 100.0 76.9 100.0 33.3 100.0 48.0 100.0 35.5 100.0 

120 960 100.0 100.0 100.0 100.0 100.0 100.0 89.2 100.0 45.7 100.0 73.1 100.0 51.5 100.0 
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Table II (Continued) 
 Two-Group Tests Five-Group Test 

Riskless 
Rate 

0.10% 0.10% 0.10% 0.10% one group @ .1% 
5% 5% 0.10% 5% four groups @ 5% 

SDF 
Volatility 

25% 5% 10% 10% one group @ 10% 
25% 5% 25% 25% four groups @ 25% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
T N CH KW WE CH BF CH KW BF WE CH KW BF WE CH 

Panel B: Perturbation Volatility: 2% 
30 240 1.0 19.0 18.8 0.0 88.0 40.2 12.8 83.4 4.8 48.1 2.4 45.1 4.5 25.0 
60 240 0.0 17.8 12.6 0.0 91.4 2.1 20.2 85.8 7.0 3.5 1.7 72.3 2.7 0.1 
90 240 0.0 6.5 0.6 0.0 85.1 0.1 17.0 75.4 5.2 0.1 1.8 63.9 1.1 0.0 

120 240 0.0 2.2 0.0 0.0 76.0 0.0 9.6 58.4 3.3 0.0 0.5 55.1 0.3 0.0 
30 480 15.6 83.8 95.8 9.8 98.5 92.2 19.5 95.1 7.2 96.1 5.0 65.5 8.0 88.5 
60 480 0.6 97.3 100.0 0.0 99.9 62.1 37.8 99.5 13.5 73.2 13.4 96.8 11.9 41.7 
90 480 0.0 98.4 100.0 0.0 100.0 19.2 49.3 99.8 18.8 30.7 18.9 97.8 12.9 4.7 

120 480 0.0 98.4 100.0 0.0 99.9 2.6 59.6 99.5 24.2 5.8 27.7 99.0 18.4 0.1 
30 720 54.6 97.3 99.9 47.0 99.0 99.4 22.4 98.5 10.9 99.9 6.5 71.0 8.8 98.0 
60 720 8.8 99.9 100.0 1.5 99.9 95.7 47.7 99.7 18.2 98.6 17.4 99.0 16.4 93.1 
90 720 0.8 100.0 100.0 0.0 100.0 79.9 60.8 99.9 25.5 92.6 34.7 100.0 24.5 63.8 

120 720 0.3 100.0 100.0 0.0 100.0 62.8 77.2 100.0 37.8 81.6 46.5 100.0 31.8 41.9 
30 960 89.4 99.5 100.0 87.8 99.3 99.9 23.7 99.2 9.3 99.9 5.6 76.7 8.7 99.9 
60 960 38.9 100.0 100.0 32.1 100.0 99.9 47.4 100.0 18.5 100.0 24.2 99.8 19.0 99.7 
90 960 7.0 100.0 100.0 2.3 100.0 99.1 69.9 100.0 30.1 99.8 41.3 100.0 31.0 97.2 

120 960 2.0 100.0 100.0 0.1 100.0 97.9 81.0 100.0 42.6 99.8 59.7 100.0 43.9 92.7 
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Table III 
Test Power for a False Stochastic Discount Factor Theory; for One Group 

 
Two asset groups, each with N individual assets, have T simultaneous time series observations.  The 
groups share a common SDF whose mean is determined by the reciprocal of unity plus a riskless rate 
of .1% per period and SDF volatility is 15% (standard deviation per period.)  But the basic SDF 
equation is false for one of the two groups; i.e., for that group,  with .  SDF 
estimators are computed from the sample return observations in each group and then compared with 
the Kruskal/Wallis (KW), Welch (WE), and Chi-Square (CH) tests.  The BF test is not reported since 
it has no power in this case.  Power is the percentage of correct rejections of the null hypothesis (H0: 
no difference in the SDFs) in 1,000 replications with a type I error of five percent.  Perturbation 
volatility is 1% (2%) in the left (right) section; δ = .05 (.10) in Panel A (B). 
 

Perturbation Volatility 1% 2% 
  Panel A: δ = .05 

T N KW WE CH KW WE CH 
30 240 0.3 0.1 84.3 0.3 0.0 0.5 
60 240 5.1 2.0 19.5 0.2 0.0 0.0 
90 240 23.8 18.4 0.4 0.2 0.0 0.0 
120 240 36.8 46.8 0.0 0.4 0.0 0.0 
30 480 0.8 0.3 100.0 0.4 0.0 16.3 
60 480 13.1 9.2 99.9 3.4 0.3 0.1 
90 480 56.5 72.8 98.3 12.4 5.3 0.0 
120 480 91.7 99.7 78.7 29.4 29.5 0.0 
30 720 0.8 0.2 100.0 0.5 0.2 58.6 
60 720 13.9 12.3 100.0 8.4 3.7 5.6 
90 720 72.8 84.4 100.0 33.4 40.0 0.2 
120 720 98.3 100.0 100.0 66.4 93.0 0.1 
30 960 0.7 0.2 100.0 0.6 0.2 91.8 
60 960 18.0 15.4 100.0 10.9 9.1 48.2 
90 960 77.6 86.5 100.0 50.7 65.0 5.7 
120 960 99.3 100.0 100.0 84.9 98.9 1.3 

  Panel B: δ = .10 
30 240 91.2 94.4 100.0 69.5 83.7 82.9 
60 240 100.0 100.0 100.0 97.8 100.0 13.6 
90 240 100.0 100.0 100.0 99.3 100.0 0.1 
120 240 100.0 100.0 97.8 98.6 100.0 0.0 
30 480 95.5 95.7 100.0 90.0 95.4 100.0 
60 480 100.0 100.0 100.0 100.0 100.0 99.9 
90 480 100.0 100.0 100.0 100.0 100.0 97.7 
120 480 100.0 100.0 100.0 100.0 100.0 74.6 
30 720 94.0 95.9 100.0 92.6 98.1 100.0 
60 720 100.0 100.0 100.0 100.0 100.0 100.0 
90 720 100.0 100.0 100.0 100.0 100.0 100.0 
120 720 100.0 100.0 100.0 100.0 100.0 100.0 
30 960 95.7 97.3 100.0 94.7 96.9 100.0 
60 960 100.0 100.0 100.0 100.0 100.0 100.0 
90 960 100.0 100.0 100.0 100.0 100.0 100.0 
120 960 100.0 100.0 100.0 100.0 100.0 100.0 

 
 

 δ ≠ 0
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Table IV 
Tests of the SDF Theory With Five Asset Classes 

 
Stochastic discount factors (SDFs) are estimated for five different asset classes, equities, bonds, 
currencies, commodities, and real estate (REITs), using simultaneous monthly observations for 
individual assets, July 2002 through December 2013, (138 months.)   The total sample is divided into 
four similarly-sized subsamples with 34 monthly observations in the first two subsamples and 35 
observations in last two.   Differences across asset classes in the estimated SDFs are tested for 
stochastic dominance with the non-parametric Kruskal/Wallis (1952) statistic.  Means and variances 
are compared with, respectively, the Welch (1951) and Brown/Forsythe (1974) tests.  A Hausman 
(1978) type Chi-Square tests whether estimated SDF vectors are equal element by element.   This 
Chi-Square test compares each asset pair and is considered significant if the minimum p-value is 
below the type I error divided by a Bonferroni correction; i.e., p-value less than .05/10 = .005 (with 
ten pairs being compared.)  The minimum across ten pairs is reported.  P-values are for the null 
hypothesis that the asset classes are all priced with the same SDFs.   A low p-value rejects the null. 
 

Sub-Period 
Stochastic Dominance 

(Kruskal/Wallis) 
Equal Means 

(Welch) 
Equal Variances 

(Brown/Forsythe) 
Equal Elements 
(Chi-Square) 

P-value for identical SDFs in all five asset classes 
Jul‘02-Apr‘05 0.976 1.000 0.000 0.008 

May‘05-Feb‘08 0.956 1.000 0.000 <0.001 
Mar‘08-Jan‘11 0.756 1.000 0.000 <0.001 
Feb‘11-Dec‘13 0.817 1.000 0.000 <0.001 
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Table V 
Volatility of Sample SDFs by Asset Class and Sub-Period 

 
The time series standard deviation is reported for sample SDFs estimated simultaneously with five 
different asset classes in four sequential sub-periods.  The number of available assets, N, is reported 
in the second line.   
 

 Equities Bonds Currencies Commodities Real Estate 
 956 123 37 47 89 

Sub-Period Time Series Standard Deviation of Estimated SDF 
Jul ‘02-Apr ‘05 0.429 0.785 2.504 3.391 1.117 

May ‘05-Feb ‘08 0.406 0.692 5.464 4.286 1.039 
Mar ‘08-Jan ‘11 0.335 0.402 7.630 2.432 1.068 
Feb ‘11-Dec ‘13 0.430 0.620 11.767 2.123 0.931 
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Table VI 
Tests of the SDF Theory With Stocks and Bonds 

 
Stochastic discount factors (SDFs) are estimated for equities and bonds using simultaneous monthly 
observations for individual assets, July 2002 through December 2013, (138 months.)   The total 
sample is divided into roughly two equal sub-samples with 69 monthly observations each.  
Differences between stocks and bonds in the estimated SDFs are tested for stochastic dominance 
with the non-parametric Kruskal/Wallis (1952) statistic.  Means and variances are compared with, 
respectively, the Welch (1951) and Brown/Forsythe (1974) tests.  A Hausman (1978) type Chi-
Square tests whether estimated SDF vectors are equal element by element.  P-values are for the null 
hypothesis that bonds and stocks are priced with the same SDFs.   A low p-value rejects the null. 
 
 

Sub-Period 

Stochastic 
Dominance 

(Kruskal/Wallis) 

Equal Means 
(Welch) 

Equal Variances 
(Brown/Forsythe) 

Equal Elements 
(Chi-Square) 

P-value for identical SDFs in bonds and stocks 
Jul‘02-Mar‘08 0.578 0.944 0.0000 0.111 
Apr‘08-Dec‘13 0.927 0.968 0.0002 0.328 
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Table VII 
Volatilities of Estimated SDFs for Stocks and Bonds 

 
The time series standard deviation is reported for SDFs estimated simultaneously with stocks and 
bonds in two sequential sub-periods.  The number of available assets, N, is reported in the second 
line.   
 
 

 Equities Bonds 
 956 123 

Sub-Period SDF Volatility 
Jul ‘02-Mar ‘08 0.480 1.019 

April ‘08-Dec ‘13 0.420 0.720 
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Table VIII 
Tests of the SDF Theory With Mingled Groups of Assets in Different Classes 

 
Stochastic discount factors (SDFs) are estimated for five groupings of asset from different classes 
using simultaneous monthly gross return observations, July 2002 through December 2013, (138 
months.)  There are 1252 assets of all types available; they are assigned to five roughly equal sized 
groups of 250, 250, 250, 251, and 251 so that the number of assets in each group exceeds the time 
series sample size, which permits the calculation of estimated SDFs for each group separately.  The 
composition of each group is reported in the second part of the table. The 956 available equities are 
assigned randomly to groups and mingled with all available assets of another type in groups 2-5.  
Differences in estimated SDFs across asset groups are tested for stochastic dominance with the non-
parametric Kruskal/Wallis (1952) statistic.  A Hausman (1978) type Chi-Square tests whether 
estimated SDF vectors are equal element by element.   This Chi-Square test compares each asset pair 
and is considered significant if the minimum p-value is below the type I error divided by a 
Bonferroni correction; i.e., p-value less than .05/10 = .005 (with ten pairs being compared.)  The 
minimum across ten pairs is reported. Means and variances are compared with, respectively, the 
Welch (1951) and Brown/Forsythe (1974) tests.  P-values are for the null hypothesis that the asset 
classes are all priced with the same SDFs.   A low p-value rejects the null. 
 

Stochastic 
Dominance 

(Kruskal/Wallis) 

Equal Means 
(Welch) 

Equal Variances 
(Brown/Forsythe) 

Equal Elements 
(Chi-Square) 

P-value for identical SDFs in all five asset groups 
0.996 1.000 0.370 0.489 

 

Group Composition 
1 250 Equities 
2 127 Equities and 123 Bonds 
3 213 Equities and 37 Currencies 
4 204 Equities and 47 Commodities 
5 162 Equities and 89 REITs 
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Table IX 
Tests of the SDF Theory With Larger Samples of Equities 

 
Stochastic discount factors (SDFs) are estimated for two groupings of equities using simultaneous 
monthly gross return observations, July 2002 through December 2013, (138 months.)  In Panel A, 
956 low-leverage equities are randomly assigned to two groups of 478 each.  In Panel B, 956 low-
leverage equities are compared with 956 randomly-selected equities with typical leverage in their 
capital structures.  Differences in estimated SDFs across asset groups are tested for stochastic 
dominance with the non-parametric Kruskal/Wallis (1952) statistic.  Means and variances are 
compared with, respectively, the Welch (1951) and Brown/Forsythe (1974) tests.  A Hausman (1978) 
type Chi-Square tests whether estimated SDF vectors are equal element by element.  Low p-values in 
the table would reject the null hypothesis that all groups are priced with the same SDFs. 
 
    

Sample 
Period 

Stochastic 
Dominance 

(Kruskal/Wallis) 

Equal Means 
(Welch) 

Equal Variances 
(Brown/Forsythe) 

Equal Elements 
(Chi-Square) 

A: Two groups of 478 low-leverage equities 

Jul ‘02-Dec ‘13 
0.547 0.999 0.084 0.481 

B: Low- vs. high-leverage groups of 956 equities each 
0.679 0.995 0.808 0.457 
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Table X 
Simulated Performance Information for the SDF Estimator with Thick-Tailed Returns 

 
We simulate true SDFs with mean=1/(1+riskless interest rate) and various time series volatilities.  
Gross asset returns are simulated so that their mean values multiplied by the SDFs are equal to 1.0, 
but errors perturb their sample values.  The errors are generated from a Cauchy distribution with 
various scale parameters and truncation that retains only the middle 95%.  The performance of the 
SDF estimator is measured by the correlation between true and sample SDFs and by Theil’s (1966) 
U2 statistic, which is closely related to the mean square prediction perturbation.   Linear regressions 
are reported in Panel A where the dependent variable is the correlation and in Panel B where the 
dependent variable is U2.  In Panel C, the dependent variable is the sample time series standard 
deviation of the estimated SDFs.  Panel D reports the implied riskless rate from the reciprocals of the 
estimated SDFs.  There are 2,880 parameter combinations, each with an independently-simulated set 
of true SDFs and returns. 
 

Variable Coefficient T-Statistic 
A: Correlation between true and estimated SDFs 

T, Time Periods -2.129E-03 -30.089 
N, Assets 2.767E-04 31.286 

True SDF Volatility 1.474 34.709 
Perturbation Scale -0.1788 -97.287 

Riskless Rate -0.5534 -0.330 
Adjusted R2 0.813 

B: U2 from comparing true and estimated SDFs 
T, Time Periods 1.772E-03 59.132 

N, Assets -2.483E-04 -66.289 
True SDF Volatility 0.1337 7.434 
Perturbation Scale 6.895 88.548 

Riskless Rate -0.4715 -0.663 
Adjusted R2 0.846 

C: Standard Deviation of Estimated SDFs 
T, Time Periods 2.049E-03 47.071 

N, Assets -2.946E-04 -54.145 
True SDF Volatility 0.3602 13.793 
Perturbation Scale 4.646 41.088 

Riskless Rate -1.518 -1.471 
Adjusted R2 0.709 

D: Riskless Rate Inferred from Estimated SDFs 
T, Time Periods -1.783E-05 -1.277 

N, Assets 1.906E-06 1.092 
True SDF Volatility 6.402E-03 0.764 
Perturbation Scale -2.588E-02 -0.713 

Riskless Rate 1.395 4.212 
Adjusted R2 0.00600 
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Table XI 
Simulated Performance Information for the SDF Estimator 

When Returns Are Correlated and Have Unequal Means and Variances 
 

We simulate true SDFs with mean=1/(1 + riskless interest rate) and various time series volatilities.  
Gross asset returns are simulated so that their mean values multiplied by the SDFs are equal to 1.0, 
but errors perturb their sample values.  The initial returns are lognormal and generated by an 
underlying one-factor market model with a dispersion in betas, a market index whose mean exceeds 
the risk-free rate by 0.6% per month and has a volatility of 4% per month.  The market model R-
square is 0.2.  The performance of the SDF estimator is measured by the correlation between true and 
sample SDFs and by Theil’s (1966) U2 statistic, which is closely related to the mean square 
prediction error.   Linear regressions are reported in Panel A where the dependent variable is the 
correlation and in Panel B where the dependent variable is U2.  In Panel C, the dependent variable is 
the sample time series standard deviation of the estimated SDFs.  Panel D reports the implied riskless 
rate from the reciprocals of the estimated SDFs.  There are 2,880 parameter combinations, each with 
an independently-simulated set of true SDFs and returns, including betas, market returns and 
idiosyncratic returns. 
 

Variable Coefficient T-Statistic 
A: Correlation between true and estimated SDFs 

T, Time Periods -1.160E-03 -11.621 
N, Assets 1.459E-04 11.692 

True SDF Volatility 1.263 18.161 
Perturbation Volatility -1.702 -48.219 

Riskless Rate -1.532 -0.647 
Adjusted R2 0.479 

B: U2 from comparing true and estimated SDFs 
T, Time Periods 2.093E-03 55.377 

N, Assets -2.912E-04 -61.646 
True SDF Volatility 0.162 6.171 

Perturbation Volatility 0.620 46.421 
Riskless Rate 0.308 0.344 
Adjusted R2 0.780 

C: Standard Deviation of Estimated SDFs 
T, Time Periods 2.948E-03 54.193 

N, Assets -4.210E-04 -61.925 
True SDF Volatility 8.702E-02 2.297 

Perturbation Volatility 0.496 25.778 
Riskless Rate -0.605 -0.469 
Adjusted R2 0.729 

D: Riskless Rate Inferred from Estimated SDFs 
T, Time Periods -1.796E-05 -1.330 

N, Assets 3.682E-06 2.181 
True SDF Volatility 1.946E-02 2.069 

Perturbation Volatility 5.584E-03 1.169 
Riskless Rate 1.419 4.430 
Adjusted R2 0.011 
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Table XII 

Simulated Performance Information for the SDF Estimator When Returns Are Correlated,  
with Unequal Means and Variances, and have a Two-Factor Structure 

 

We simulate true SDFs with mean=1/(1 + riskless interest rate) and various time series volatilities.  
Gross asset returns are simulated so that their mean values multiplied by the SDFs are equal to 1.0, 
but errors perturb their sample values.  The initial returns are lognormal and generated by an 
underlying two-factor model with the same cross-sectional dispersion in both factor betas.  The first 
factor is a market index whose mean exceeds the risk-free rate by 0.6% per month and has a volatility 
of 4% per month.  The second factor has zero mean but also a volatility of 4% per month.  The 
idiosyncratic volatility is the same as in Table XI.  The performance of the SDF estimator is 
measured by the correlation between true and sample SDFs and by Theil’s (1966) U2 statistic, which 
is closely related to the mean square prediction error.   Linear regressions are reported in Panel A 
where the dependent variable is the correlation and in Panel B where the dependent variable is U2.  In 
Panel C, the dependent variable is the sample time series standard deviation of the estimated SDFs.  
Panel D reports the implied riskless rate from the reciprocals of the estimated SDFs.  There are 2,880 
parameter combinations, each with an independently-simulated set of true SDFs and returns, 
including betas, market returns and idiosyncratic returns. 
 

Variable Coefficient T-Statistic 
A: Correlation between true and estimated SDFs 

T, Time Periods -1.182E-03 -12.010 
N, Assets 1.535E-04 12.482 

True SDF Volatility 1.237 18.048 
Perturbation Volatility -1.667 -47.928 

Riskless Rate 2.262 0.097 
Adjusted R2 0.479 

B: U2 from comparing true and estimated SDFs 
T, Time Periods 2.084E-03 54.679 

N, Assets -2.943E-04 -61.778 
True SDF Volatility 0.143 5.380 

Perturbation Volatility 0.611 45.307 
Riskless Rate -0.224 -0.248 
Adjusted R2 0.775 

C: Standard Deviation of Estimated SDFs 
T, Time Periods 2.938E-03 53.354 

N, Assets -4.230E-04 -61.447 
True SDF Volatility 5.665E-02 1.477 

Perturbation Volatility 0.487 25.017 
Riskless Rate -0.933 -0.715 
Adjusted R2 0.723 

D: Riskless Rate Inferred from Estimated SDFs 
T, Time Periods -4.632E-05 -3.418 

N, Assets -6.477E-07 -0.382 
True SDF Volatility 5.391E-03 0.571 

Perturbation Volatility 1.048E-02 2.187 
Riskless Rate 0.780 2.426 
Adjusted R2 0.00735 
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Appendix 

Details of Simulations 

 

Simulations discussed at various points in the paper are described in detail in this appendix.   

 

A.1.   Simulations when the Stochastic Discount Factor (SDF) is unique. 

 

Step 1 is to generate a time series sample of “true” SDF realizations of length T.  

Specifically, we select a gross riskless rate, RF, (1+the riskless return), and generate the SDF at time t 

as 

  , (t=1,…,T) (A-1) 

where ξ is a IID random variable with mean zero and standard deviation σξ.  The exponential in (A-

1) has a mean of 1.0 if ξ is normally distributed, which we assume to be the case initially29 and, in 

accordance with SDF theory and the absence of arbitrage, (A-1) provides a strictly positive mt.     

In Step 2, initial gross unscaled returns are generated to be strictly positive (thus assuming limited 

liability) with a pre-specified mean and volatility (which are assumed to be the same for all 

individual assets); i.e., for asset i, 

  , (t=1,…T; i=1,…N) (A-2) 

where µ is the expected gross return (1 + the net return) and σζ is the standard deviation of the 

unscaled gross return .  We find in simulations (in the robustness section) that imposition of equal 

means and variances at this stage has an immaterial effect because the final scaled returns used in all 

subsequent calculations are computed as   

      (A-3) 

where  is an IID return perturbation with mean zero and standard deviation .  As required by 

SDF theory, (A-3) implies that 

                                                           

29
 In the robustness section, we consider non-normally distributed variation whose simulations are detailed later in 

this Appendix. 
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  . 

However, because of the perturbations added as shown in (A-3), the sample average 

return/SDF product, (the expression within brackets above) is not exactly unity and differs from unity 

by an amount that varies across individual assets. 

Final gross returns on N assets are generated independently for T time periods according to 

(A-3).  Consequently, except for their common dependence on the average SDF, the returns in this 

simulation are uncorrelated with each other.  We consider the consequences of this assumption  

below where we present analogous simulations with correlated returns that are generated by assets 

that conform to a factor structure.    

The final simulation step uses the estimator (equation 9 in the text) with the final returns from 

(A-3) to obtain  (t=1,…,T), for comparison with the true values from (A-1), mt (t=1,…,T). 

The second set of simulations reported in section I.D of the text first presumes that there are 

two asset classes that share a common factor but that the second asset class is also driven by a second 

factor that has no influence on the first asset class.  In other words, instead of the uncorrelated returns 

as in (A-2), we have 

   (A-4)
 

where the exponentiation correction factor is 

 

 

The mean return for each individual asset is dictated by the riskless rate, RF, plus the mean of 

the first factor, which we assume is equal to a constant risk premium of .6% per period plus the 

riskless rate of .4% per period.  The mean of the second factor is zero along with the mean of the 

idiosyncratic return, .  The time series standard deviation is four percent per period for the factors 

and for the idiosyncratic return. 

, For assets in the first group,  but only their mean is zero for assets in the second 

group.  Otherwise, the cross-sectional standard deviation of both β is 0.1.  The mean of the first 

factor βi,1 is 1.0 for both asset groups.   

The third set of simulations in I.D assumes a two-factor structure for both groups of assets, 

but the factors are independent of each other across groups.  In this case, both  in (A-4) are non-
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zero for most assets.  The cross-sectional means of  and are 1.0 and zero, respectively.  Their 

cross-sectional standard deviations are both 0.1. 

A.2.  Simulations when Returns have Thick Tails. 

We generate “true” SDFs as in section A.1 with a lognormal distribution as in equation (A.1) 

and the same panoply of parameters.  Initial gross returns are also generated in the same way, as in 

equation (A-2). 

But equation (A-3) is replaced by  

     (A-5) 

in which the zero mean IID return perturbation ϑ is now additive and is distributed according to a 

truncated Cauchy distribution with a scale parameter that varies from .005 to .045 in .005 increments 

(i.e., nine different values.)   The scale parameter is a measure of the Cauchy distribution’s spread; it 

replaces the standard deviation used for the same purpose with the Gaussian.  However, it is not 

associated with a second moment because the Cauchy has an infinite mean and all higher moments 

are also infinite.   

A truncated Cauchy possesses finite moments but still has very thick tails relative to a 

Gaussian.  In the simulations here, we truncate the extremes, retaining only the middle 95% of 

simulated Cauchy values.30  With a 95% truncation and the scale parameters listed above, gross 

returns are guaranteed to remain strictly positive. 

The return perturbation in (A-5) is additive, in contrast to the previously multiplicative 

lognormal return perturbation as in (A-3).  This choice is necessitated by the extremely large positive 

values, even with truncation, that would result from taking the exponential of a Cauchy variate.  We 

are not aware of a satisfactory method of correcting for the induced bias.  In the Gaussian case, one 

simply subtracts half of the variance (see equations (A-1) through (A-3)), but there is no 

corresponding correction using the Cauchy scale for the same purpose.  An additive return 

perturbation finesses this difficulty because it is symmetric and not exposed to the amplification of 

exponentiation.31 

                                                           
30 The simulations first select a cumulative distribution function p-value, a number between zero and 1.0, and then 
calculate the inverse Cauchy corresponding to that p.  If the p is less than .025 or greater than .975, it is discarded 
and another p is randomly chosen. 
31 Since the Cauchy mean does not exist, one often uses the median, but a Cauchy with median of zero always has 
an exponentiated median of 1.0.  However, the exponentiated truncated Cauchy can have an extremely large mean. 
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Figure I 

The Estimated and True SDFs with Small Return Perturbations 

To demonstrate the SDF estimator, the perturbation in equation (17) of the text is set to a very small 
value, .01% per period.  The true SDF has a mean dictated by a riskless rate of .4% per period and its 
standard deviation is 4% per period.  Returns have a mean and standard deviation per period of .8% 
and 8%, respectively.   The number of assets, N, is 120 and the number of time periods, T, is 60, so 
there are sixty estimated and true SDFs plotted. 
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Figure II 
 

The Estimated and True SDFs with for Asset Groups  
with Diverse Factor Structures and Levels of Return Perturbation Volatility 

 
There is a unique SDF that prices all assets.  It has a mean dictated by a riskless rate of .4% per period and a standard deviation is 4% per 
period.  One group of assets has returns driven by a two-factor structure while the other group of assets has a single-factor structure.  The 
number of assets, N, is 120 and the number of time periods, T, is 60, so there are sixty estimated and true SDFs plotted.  In the first panel 
below, the return perturbations are very small, a standard deviation of 0.01% per period.  The second panel has return perturbations with ten 
times as much volatility, a standard deviation of 0.1% per period.  All other parameter values for the simulations are specified in the 
Appendix.  The first plot below shows each group’s estimated SDF plotted against the true SDF.  The second plot shows the estimated SDFs 
for the two asset groups plotted against each other. 
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Panel B, Larger Perturbations 
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Figure III 
 

The Estimated and True SDFs with for Two Asset Groups  
Both with Two-Factor Structures but Whose Factors are Unrelated 

 
There is a unique SDF that prices all assets.  It has a mean dictated by a riskless rate of .4% per period and a standard deviation is 4% per 
period.  Both groups of assets have returns driven by a two-factor structure but the factors are unrelated across groups.  The number of 
assets, N, is 120 and the number of time periods, T, is 60, so there are sixty estimated and true SDFs plotted.  The return perturbations are 
relatively large, a standard deviation of 0.1% per period, the same as in Panel B of Figure II above. All other parameter values for the 
simulations are specified in the Appendix.  The first plot below shows each group’s estimated SDF plotted against the true SDF.  The 
second plot shows the estimated SDFs for the two asset groups plotted against each other. 
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Figure IV 

 
Time Series Plots of Estimated SDFs from Low- and Higher-Leveraged Equities 

 
Two groups of equities, each with 956 individual firms, are used to estimate Stochastic Discount Factors (SDFs) with data from July 2002 
through December 2013.  One group js selected to have the lowest leverage ratios among all available firms with full information over the 
138 sample months.  The other group is randomly selected from other firms and hence has higher leverage.  The average leverage ratio for 
the first (second) group is 10.2% (32.5%) book debt divided by total assets.   The estimated SDFs from each group are adjusted so that their 
time series standard deviations are equal to the implied standard deviation of the true SDF, which according to SDF theory and consistent 
with the tests in section IV.C, is the same for the two groups.  The plot depicts 12-month moving averages centered on the first day of the 
labeled month. 
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