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Abstract

We propose and implement tests for the existeneecoimmon stochastic discount factor (SDF). Our
tests are agnostic because they do not requireoe@mmomic data or preference assumptions; they
depend only on observed asset returns. Our @ss$tet is immune to the form of the multivariate
return distribution, including its factor structureAfter examining test features and power with
simulations, we apply the tests empirically to dataU.S. equities, bonds, currencies, commodities
and real estate. The empirical evidence is candistith a unique positive SDF that prices all U.S.
assets and satisfies the Hansen/Jagannathan wabauond.
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The Stochastic Discount Factor (SDF) has becomenirént paradigm in recent asset pricing

research. For example, Ferson (1995) shows howrnthie asset pricing results (mean/variance
efficiency, multi-beta models) are special casethefbasic SDF relation. Cochrane (2001a) begins
with the SDF relation in chapter 1 and expandsitib ialmost all other known models of assets.
Exactly the same foundation is established in st €hapter of Singleton (2006) and exploited to

study asset price dynamics. Campbell (2014) osdthie SDF as “The Framework of Contemporary
Finance,” (p. 3.) in his essay explaining the 20d&bel Prizes awarded to Fama, Hansen, and
Shiller,

The empirical success of SDF theory is less appareim many previous empirical
applications, the SDF is proxied by a construct tieggpends typically on aggregate consumption, but
occasionally on some other macroeconomic quartitgybined with a risk aversion parameter. For
example, Cochrane (1996) employs aggregate congumgtanges along with power utility (and a
particular level risk aversion) to measure the SIMespite giving this specification every empirical
benefit of the doubt, Cochrane (2001a, p. 45) ainhiat it still “...does not do well.” A similar
imperfect fit between consumption changes, overouarhorizons, and both equities and bonds, is
reported by Singleton (1990.)

Lettau and Ludvigson (2000) add in macro variaBlesh as labor income and find that the
deviation in wealth from its shared trend with aamption and labor income has strong predictive
power for excess stock returns at business cyetpiéncies, thereby suggesting that risk premia vary
countercyclically. Chapman (1997) adds technokslgycks and a battery of conditioning variables,
transforming them with orthogonal polynomials, whigerve to eliminate the small firm effect but
still produce “statistically and economically largecing errors”, (p. 1406.) Da and Yun (2010)
employ electricity generation as a proxy for aggtegconsumptiof. Adrian, Crump and Moench
(2013) employ an exponential function of a groupwigstate variables, which are themselves
principal components of Treasury bond returns.

In research published just prior to the hegemonthefSDF paradigm, Long (1990) shows
that a “Numeraire” portfolio has many similar projges. Long’s Numeraire portfolig has strictly

positive gross returns (14Rand exists only if there is no arbitrage withilisa of assets from which

2 See also the variety of specifications discusse@€dchrane and Hansen (1992) in section lll, “Ot@andidate
Discount Factors.”



it is composed. In this case, the expected valukeoratio (1+R)/(1+R,) is unity for all assets j on
the list, which implies that 1/(1+Ris essentially the same as the modern SDF. botes that the
Numeraire portfolio is also the growth optimum palid. The latter is examined by Roll (1973)
who provides an empirical test of whether the etgmbcatio above is the same for all assets. (He
does not find evidence against it.)

Excellent reviews are provided by Ferson (1995) d&dochrane and Culp (2003).
Recognizing that aggregate consumption change®artsmooth” to be well connected with asset
prices, (Mehra and Prescott [1985)]), and that eontion is likely measured with significant error,
(Rosenberg and Engle [2002]), recent literaturedsvaggregate consumption data. In addition to
Rosenberg and Engle, such an approach is takeritdyahalia and Lo (1998, 2000), and Chen and
Ludvigson (2009). However, as pointed out by Aoalgsler, and Fernandes (2005) and Araujo and
Issler (2011), the above scholars still find it @&sary to impose what might be considered rather ad
hoc restrictions on preferences.

Hansen and Jagannathan (1991) avoid the speaificafi preferences and are still able to
develop their famous bound on the mean and vdiatli the SDF, given that SDF theory is true.
Campbell (1993) surmounts the annoyance with variapproximations of nonlinear multiperiod
consumption and portfolio-choices. He developgrentila for risk premia that can be tested without
using consumption data and suggests a new wayetangerfect data about both market returns and
consumption.

Araujo, Issler and Fernandes (2005, hereafter AdE},around these difficulties by noting
that the SDF should be the only serial correladommon feature of the data in the sense of Engle
and Kozicki (1993). Then, by exploiting a log tséorm of returns, they derive a measure of the
SDF that does not depend on a macroeconomic varfabtably including the problematic aggregate
consumption) and also avoids the imposition ofgnexiices.

Araujo and Issler (2011, hereafter Al) take a samthck, noting via a logarithmic series expansion
that the natural logarithm of the SDF is the ondynenon factor in the log of all returns. Thus, the

log SDF can be eliminated by a simple differenceeinrns. Essentially, the log SDF represents the
(single) common APT factor in the sense of Ros36)9



In both AIF and Al, the SDF measure is a functibmawerage arithmetic and geometric asset
returns. AIF compute their measure empirically agybrt its temporal evolution along with various
statistical properties. They also compare it te time series of riskless returns. Al find that
relatively low risk aversion parameters are coesiswith their estimated SDFs. They also are able
to price some stocks successfully, but not stodkts aw capitalization levels.

Both AIF and Al essentially assume that the SDEthés true, rejecting it only indirectly in the sma

of Al with low cap stocks. Our primary goal isdevelop tests that offer an opportunity to directly
reject the SDF theory. Our SDF estimator, whichexploit to develop such tests, does not depend
on a factor model or a logarithmic approximationaay other structural condition. Also, it works
regardless of the multivariate distribution of re whatever its form, provided that certain lower
order moments exist.

The next section presents our SDF estimator, wisiehfunction only of observed returns for
a sample of assets; hence it is “agnostic” withpees to both macroeconomic quantities and
preferences. There is no requirement for the exé® of a riskless rate. Tests can be performdd wit
relatively short time series samples, but with ¢thseat that longer samples may be less prone to
estimation error.

By collecting samples of different assets obseiwest the same time period and estimating
SDFs for each collection, it becomes possible #b tiee theory’s main prediction: a unique SDF
prices all assets in completely integrated marketske many tests, this one involves a joint
hypothesis, integrated markets plus the SDF prieiggation. We can also examine whether the
SDF is positive, which implies the absence of aalge. This too involves a joint hypothesis. Iffbo
hypotheses are rejected, then markets are incoenpled thereare arbitrage opportunities, or else
there’s something wrong with SDF theory itsklf.

3 We explain the required moments below.

4 Kan and Zhou (1999) argue that the SDF theory iszrsabject to estimation error than other approseimel that
it has inherently weak power in empirical testsoclrane (2001b) argues that this problem can becosree by
adding factor moment conditions and conductingtjestimation.



I. An Agnostic Test for the SDF

This section first shows (in sub-section I.LA) hovDF$ can be approximated by a
transformation of returns, without any additionaformation about preferences, consumption or
other macro-economic data. The following subisac(l.B) proves that the same SDF estimator
arises naturally from minimizing a particular sufmrawerage surprises. This development allows us
to infer some useful properties of the SDF estimagub-section I.C provides some demonstrations
of concept; using simulations, we illustrate a p@sh surprising fact that our proposed estimator
works well regardless of the underlying distribngoof returns including their factor structure.
Finally, sub-section (I.D) proposes a battery stseof SDF theory using the SDF estimator derived
in LA and I.B.

I.A. Estimating the SDF from Returns Alone
Let pt denote the cash value of asset i at time t. Wharkets are complete, SDF theory

implies the existence of a unique, such that

Et—l(ﬁltf)i,t) = pi,t—l Di’t '5 (1)
Denoting a gross return between t-1 and t Q=R /pit-1, equation (1) is the same as

~ ~ _ . 6

E_(mR, )=1 0i,t. (2)
Corresponding to the expectation in (2), there rbaest realization at time t; i.e.,

mtRi,t = Et—l(rhtRi,t)+€i,t (3)
where €, denotes the (complete) surprise in the nodymt for asset i in period t. For each time

period t, the realization in (3) is determined blyatever state occurs among the many encapsulated
in the expectation (2). The surprise is complé&xpectations are rational; i.e., if agents caeliy

change their expectation in response to new infooma

> For a representative agent, m is the discountedardutarginal utility of consumption divided by tleerrent
marginal utility of consumption. The tilde denotegandom variable as of period t-1.
6 Equation (2) is the only moment condition requited SDF theory. However, the basic SDF relatiopliap

similarly to multiple periods; e.g.Et(ﬁltHf{im):l for>1 where the gross return spangeriods and m

involves marginal utilities of consumption sepadat®y t periods. This could provide some interesting (s
involving a term structure of SDFs but we do ngtlere that possibility in this paper.



Since there is a state realization for each tinewveéy T time periods, we have, from (3) and

2),
DXLV LNLERIES IS W @

where the approximation indicates that the avesgprise is not exactly zero in a finite sample,

though it should vanish ak — .

The approximation error in (4) equals the time esegsample mean of the surprises in the
SDF-gross return product, a mean for asset i wielhereafter denote

__ 1
= ?; si,t |
Rational expectations rules out any serial deperelenthe surprises,
CovE, ,&,)=0 j£0

but the surprises could be heteroscedastic. Hence

Var(g) = 72 ZVar (,) —%

where C_ﬂz denotes the mean variance of surprisesseetd over the particular sample period,
t=1,...T. Unless the mean variance is growing withbound, the approximation error should
disappear as T grows larger.

Now consider a sample of N assets with simultanetsgrvations over T periods, with N >
T. The ensemble of gross returns for the N assetde expressed as a matiXhereafter boldface
denotes a matrix or vector). There are N columri® and the'f column is [R1:...:Ri7]. We also
need a column vecton = [mq.....my]’ to hold T realized values of the SDF and a Nagd&t column
unit vectorl = [1:...:1]. The entire SDF ensemble of realizatidosall assets and periods can then
be written compactly as

R'm/T 01 (5)
Pre-multiply (5) byR, to obtain
(RR")m/T ORL.



Since we have chosen N > T, the cross-sectiona-giroduct matrixRR’ is non-singular
unless there are two periods with linearly depehdemss-sectional vectors of returhddence, we
can usually solve for a time-varying vector of estied stochastic discount factors as

m/T O(RR’)'R1. (6)

N.B.: It is very important to emphasize that our solution (6) absolutely requires the number

of assets to exceed the number of time periods; i.e., N> T. Many comments on earlier drafts make it
clear that this condition, which is unusual and perhaps unprecedented in finance, is hard to grasp.
Yet it isessential. It isnot possible to uncover a unique vector of SDF realizationsif T > N, which is
the familiar condition in most other contexts, such as computing non-singular covariance matrices.
We MUST have N > T to obtain a unigue m. We hasten to add that this is merely a sample
requirement and hence is easy to satisfy; e.g., by reducing T until it falls below N. The condition
does not imply anything egregious such as the existence of an arbitrage because we are simply
estimating T sample realizations of m, not the entire state space of min each time period t.

Hansen and Jagannathan (1991, p. 233) derive apssipn that appears similar to (6), but
the resemblance is superficial. Their expressionlves a covariance matrix of payoffs (or returns)
Our RR’ is not a covariance matrix. They note that theatution involves the first and second
moments of the future payoffs and prices.RR’ above were diagonal, equation (6) would also
involve first and second moments but in this cage(sample) moments would be the cross-sectional
mean return in each period divided by the crossiesgad mean of the individual squared returns in

that period®
Collecting individual asset sample mean surprisea tolumn N vector€ = (& :...1g)" |
the approximation error in (6) is equal to
(RR)™'RE. 7)
This error is not exactly zero because, for eathetie are related componentsRrand € .

For very large N and T, these components shouldrbeammaterial, but they add sampling error to

" That is, unless the return of every individual agse given period is a linear function of theuraton that asset in
another period, (not that the returns are linedelgendent relative to each other in a given périod.

8 The Hansen/Jagannathan approach is implementgubffarmance measurement by Chen and Knez (19@bjsan
further refined by He, Ng, and Zhang (1999.)



the estimated SDFs with smaller N and T. We ingagt the consequences in the next sub-section

after presenting an alternative approach for degithe same estimator.

[.B. The Minimum Sum of Squared Average Surprises
The exact form of equation (5), (i.e., with no appmation), is
R'm/T=1+¢ (8)
where € is the column N vector that contains theaye surprises for each asset. A least squares
estimator form is available by minimizing the sum of squared agersurprises with respectng
ie.,
min [(E'€)=(R'm/T-1)'(R'm/T-1) .

The first-order condition is
%(m'RR'm/TZ—Zm'RllT): 2RR'm/T?-2R1/T=0

and the extremum is achieved for tfie ~ that sasisfie

m/T=(RR)'R1 9)
which shows thath is the approximation (6) in setti®. The second order condition is strictly
positive becaus®R’ is positive definite (by assumption); hende pdeg the minimum sum of
squares for the average SDF surprises.

The least squares estimator in (9) differs fromtandard regression estimator in one
important respect; since the “dependent” varialdeehis the T element unit vector, (with every
element a constant 1.0), there could be a conmeti@weenR and €, which would violate the
customary spherical regression assumptions. Caesdy, the estimator could be biased. There is
indeed a linear connection between fien product ande but this is slightly different than the
source of typical regression bias induced by lirdgendence of the disturbances and explanatory
variables.

To elucidate this issue, solve (8) tband substitute the result in (9), which simplifies

Mm-m=-T(RR)'RE .



The expected value of this expression is the biagandingRE term by term, we observe that
most elements are innocuous and close to zero $edhay involve products such & Riwx) for

i# and kt0. However, there are a few elements that an&einlto disappear. For period t, there is
N
Rl,tal,t + F\)Z,l£ 2,’[+ ot RN,F: N,t: mt (Iil,t-l- ﬁZ,t-l- -t ﬁN,t )-z R,t
=1

and there are similar terms for other periods. Wilestudy the extent of the resulting bias in the
next section using simulation but note already thatbias terms are atypical because the dependence
between the explanatory variables (the R’s) andltbieirbances (th&s) is not linear.
Despite its possible bias, the estimator in (9yehaome attractive features with OLS regression
estimates. In particular, it can be used to defisiduals, estimates of the true disturbancés, as
e=R'M/T-1= R'(RR")'R1-1=-[I-R'(RR")'R]1 (10)
The matrix in brackets in (10) is idempotent, se #um of squared residuals divided by the
degrees-of-freedom, N-T, is
€'t _II-R(RR)'R]l _ N 1[R'(RR)"R]I
N-T N-T N-T N-T
For a large enough N, (definitely for N>2T), theanesquared residual in (11) declines with N,

(11)

holding T constar® Consequently, the quality of our SDF estimatayusth be better when N is
large relative to T; i.e., when there are at Iéagte as many assets as time periods. The square ro
of (11) gives the standard error of the estimate,

S=EE/(N-T).

The covariance matrix of the estimated SDFs isrglwe

E[(f-m)(h-m)'|R, T]=(RR)"RE(V,, R 'RR )’ (12)

9 Unlike the true disturbances, the residuals ir) €@ orthogonal t&.
N? — — N2
R'(RR ')_1R =
N-T N-T
the T element column vector whosedlement is the cross-sectional mean gross retupeiiod t. The positive

Y wher& is

10 Proof: The second term on the right side of (11) lsa written as

2

0| N
guadratic formW¥ does not depend directly on NT\IS% NT

w}mw

2
T
1(—] whigch is positive for N>2T,
N-T

at which point both terms in (11) decline with NER.



where the (N X N) symmetric matriX;,  has the follogielement in thé"jrow and K' column:
(€ +E, . tE)ELTELY .. FES).

Unlike the analogous covariance matrix of distudesnin standard OLS regressions, the

diagonal elements d¥;,  are not necessarily equaath other and the off-diagonal elements need
not have zero expectation. However, we can safedume that cross-products separated in time,

such ase; g, . fot#T , are zero; otherwise, #i6  would mosirprises. This implies that the

.
element in the"] row and K column of V,, reduces '[Esj,tsk,t . Moreover, if tt8s  are not
t=1

correlated across assets, an arguably dubioustemmdiis sum has an expected value of zero for

j#k and then EY,, ) becomes diagonal and equdiof whisréhe identity matrix andsz, is

N
the N element column vector who&eglement isVar(ZSj,t). If the variance of the surprises were
t=1

the same scalas® for all assets and time periodsaps an even more dubious condition, then (12)
simplifies further to
E[(M-m)(Mm-m)'|R,T]=To’(RR)™ (13)

Except for the presence of T, this is the standaegdession covariance matrix of the coefficients
given IID disturbances.

The square roots of the T diagonal elements of (t2113) provide the standard errors of the
SDFs period-by-period. We will examine their prdj@s using simulation in the next section. One
pertinent property is obvious already, howeverr &dixed number of assets, N, the standard errors
of estimated SDFs increase with the time seriespkamize, T. Thus, we anticipate that our

estimator will perform better when N-T is large.

I.C. Demonstrations of Concept
We have learned from many comments on earlier draftd in presentations that the
estimator proposed in the two preceding sub-sextisneasily and intuitively assumed to be a

projection on sample returns. This intuition islarstandable because the estimator does use returns

10



hence, one could easily surmise that the estimatsimilar to a sample mean/variance efficient
portfolio, which, of course, is composed differgratross various sub-samples of assets.

But a close examination of our estimator belieshsimuition. Instead of a projection on
asset returns, it is actually a projection on tipeeiods. As a consequence, it is unaffected by the
distributions of returns or even by their identity long as the SDF theory is true and a unique SDF
prices all assets in the cross-section.

To demonstrate this fact, we resort to simulatisinse they subsume the potential sampling
problems discussed in the previous sub-section. skidsv first that the estimator performs almost
perfectly when the sampling noise is small. Wentlshow that the estimator is immune to
differences in the distributions of returns andra&stis indistinguishable estimates of the SDF even
from sub-samples of assets with different factarcttires. In this sub-section, we briefly expltia
simulations and report the results. Details atmusimulations in the paper are provided in the
Appendix.

Assuming that the SDF theory is true, we generatee” SDF realizations with a mean equal
to the reciprocal of the gross riskless interets, ras the SDF theory stipulates, and with a gigeel
of time series variation about the mean. We tinelependently simulate gross returns so that their
product with the true SDF averages to unity ovespacified sample period; we then add noise to
each return observation with a random perturbatidfinally, using the resulting noisy sample
returns, we calculate our SDF estimator and comiparigh the known “true” SDF.

Our first illustration of concept uses 120 asseid @0 time periods, (a modest degrees-of-
freedom according to section 1.B), a riskless rate4% per period, and a true SDF standard
deviation of 4% per period. Initial returns haveans of .8% per period (mean gross returns of
1.008) and standard deviations of 8% per periadagerial level of return volatility. However, the
standard deviation of the perturbations in (16htisntionally small, .01% per period.

The final returns, (after making sure the meanhefSDF-Return product is 1.0 on average),
still have substantial volatility. Their averagarslard deviation is 8.1% over the 120 simulated

assets with a minimum (maximum) individual assahdard deviation of 6.17% (11.29%).

1 The minimum (maximum) individual return is -25.386(6%).
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Figure | plots the resulting estimated SDFs againsttrue SDFs for the 60 time periods.
Their difference is trifling. Their correlation 399946 and they are aligned with each other @mos
perfectly. This illustrates that the theoreticesbdiscussed in section 1.B is empirically trivghen
the sampling perturbations are minor.

In reality, of course, returns are correlated widhe another and conceivably have
heterogeneous factor structures across asset labse example, bond returns could be driven by
different risk factors than equity returns. Nore#iss, if the SDF theory is true, a unique SDFgsric
all asset expected returns in the cross-sectiothestasic SDF equation (1) is valid with the same
SDF for all assets.

To consider this situation, we provide a furthemdastration of concept by simulating
returns that are not only correlated but also hdiverse factor structures. In this simulation, we
presume that there are two asset classes thataltaamon factor but that the second asset class is
also driven by a second factor that has no inflaesrcthe first asset class.

Figure 1l, Panels A and B (for two different levelsreturn perturbation), plots the estimated
SDF against the true SDF in the left chart andSBés estimated for the two groups against each
other in the right chart. As the figure showsréhis sampling variation, but the recovered esémat
of the SDF is close to the true SDF and the estich&DFs from the two divergent (by factor
structure) are close to one another.

Finally, we provide another simulation in which tweset groups have completely different
factor structures. There are two factors drivimg teturns on both groups but the factors themselve
are independent of each other across groups. é&lgwshows the results. In this illustration, wee
the higher level of return perturbation from Figlire

Again, despite the fact that the factors are dytoldferent in the two asset groups, there is a
strong connection between the true and estimatdes 3Dd between the SDFs estimated from the
two groups. This illustrates our contention tha distributions of returns are inconsequential for
our SDF estimator provided that the true SDF igjuaiand prices all assets regardless of groupings.
Some might find these results quite surprising bseaur SDF estimator is unaffected by the return
distribution. This could be particularly hard tatfom because a competing construct, a sample
mean/variance efficient portfolio, also perfectlycps returns in the cross-section, but it obvipusl

depends on the distribution of returns and hadfarent composition for various groups of assets.

12



But examining carefully the basic SDF equationréjeals why our estimator is so robust. Equation
(2) says nothing about the distribution of retuotiser than the product of each return and the SDF
has a mean of unity. Consequently, every expemadn obeys the same cross-sectional linear
function of the covariance between the return dre SDF. So long as the first moment of the

SDF/return product is finite and the SDF is unigte gstimator needs not be troubled by any other

property of the multivariate distribution of retsrn

I. D. Testing the SDF Theory

The vector on the right side of (9) is an estinfzased on N assets and a sample period t =
1,...,T. Butthe SDF theory stipulates that atlyer set of assets within the same integrated market,
should produce the sanfé from the same time series observations. Heneeg ilenote byn (k) a

samplem computed according to (9) (where k indicates ao$ét assets) and then, from the same

calendar observations, choose a complement &etkjwith J assets (and J > T), the SDF null

hypothesis can be expressed as
Ho: E[M (k) -m (j)] = 0. (14)
Notice that K and J need not be equal, but both tmigarger than T.

This test is reminiscent of DeSantis (1993) and&®e(1995), who suggest comparing SDFs
derived from a subset of assets to SDFs derived &lbavailable assets. Testing for the equivadenc
of pricing operators across two groups of assesdsis explored by Chen and Knez (1984ind, in
the context of the APT, by Brown and Weinstein @J8

It is important to emphasize that the philosophythe#f above test is standard; i.e., we will
never be able to prove that the SDF theory isangthat tested markets are indeed complete, but we
do have the possibility to reject these implicasionf markets are not complete and integrated, an

infinite  number of stochastic discount factors &fgti equation (1) because

E_[(m +®,)p ]=E_(mp,) whenevew and p are orthogonal; Cf. Cochrane (2001a, sedtibn

But m +®, looks just like the true SDF plus an estimatiror. Indeed, if markets are complete,

12 Chen and Knez (1995) derive a measure of markegiation as the minimal amount that two pricingi@pors
differ. They use a similar framework to develogemeral approach to portfolio performance measuneimeChen
and Knez (1996).

1 The Arbitrage Pricing Theory due to Ross (1976).
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®, is an estimation error because is unique. On theraxy, if markets are incomplet®,  can

differ across groups of assets and hence the yodithesis in (14) can potentially be rejected.

Many standard tests of equality could be employadeuation (14). For example, the
Hotelling (1931) T? test could check whether the means k) and m(j) are statistically
indistinguishable. The non-parametric Kruskal-W&a(lL952) test (hereafter KW) is designed for this

purpose and will reject the null hypothesisrif(k)  $tastically dominatesnh(j) or vice versa.

This also provides a test of the equality of meslian

It might be sensible to conduct tests with assetsdeem unlikelya priori, to share the same
SDF, such as equities in one group and bonds ithan¢over the same sample period, of course) or
perhaps equities in two different countries. Taild represent a tougher hurdle for the SDF theory
but any viable theory should be able to surmouaintiost severe test possible.

There is no reason to restrict our attention to fwe sets of assets. Every vector computed
according to (9), with the same time series of pl®ns but with different assets, should be
congruent. The Welch (1951) test (hereafter WE)ld/serve nicely to check whether the means of
all such vectors are the same and the KW test camdlé@ multiple comparisons of entire
distributions. The Welch test is robust agairsielogeneity in the variances of the distributions
being compared. On the other hand, the non-pareniBgbwn/Forsythe (1974) test (hereafter BF) is
designed specifically to check for unequal voliii using absolute deviations.

The KW, WE and BF tests involve necessary condititox SDF theory. They can detect
differences in, respectively, the medians, meandsvaitatilities two estimated SDF vectors, but they
are not capable of detecting time-dependent patteiraifferences in the individual elements of the
two vectors. For example, one vector might bedasing over time and the other decreasing but
they could still have the same mean and variance.

SDF theory stipulates not only that the locatiod &olatility in SDFs are the same across
groups of assets but also that SDF estimatetzatiahs are the same in every time period. A

sufficient condition for SDF theory is that the iemtvectorsm(k) andm(j) are congruent. Thus, we

14



consider also a test that compares the two veetersent by element, a Hausman (1978) type Chi-

Square test (hereafter CH?)

To explain the Hausman type test in our applicatiehr?ljt and rAnkt denote the estimated

SDF observation from asset groups j and k at tim&rder the null SDF hypothesis, they have the
same expected valug, and a common standard deviation, Their correlation ig:. Note that the

correlation is not perfect because these are estined m, not the true values.
Under the null hypothesis, the variance f  m,, 257(1-p,)  .on€kquently, the

standardized variate,

— (mj,t - mk,t)

“ ot,/2(1— P,)

has mean zero and variance unity.

When z is not autocorrelated,
.
Xi=2.7
t=1
converges asymptotically to a Chi-Square distrdoutvith T degrees of freedotn.

The main implementation problem is, of course, thandp: are unknown parameters that
have to be estimated. Ignoring their time variatihis can be accomplished with the usual estisnate
over the sample of size T. However, since theeetano estimated SDF vectors, even with this
simplifying assumption there would be two differestimates 06. The most straightforward and
sensible expedient is simply to average the two.

This Chi-Square test is best suited for compariregSDFs from two groups of assets, but it
can be extended to multiple groups if we are wgllio assume that the estimation error differences
are independent across groups. Given this assomyptie null hypothesis is tested by computing the

statistic above for all pairs of groups (each gre\DF being estimated over the same sample of

time periods) and then using the Bonferroni coroecof the type | error.

14 We are indebted to Ben Gillen for suggesting thst. t
151f the SDF estimates are normally distributed amependent across time, the Chi-Square distribugiexact for
any sample size.
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For example, suppose we have five groups, whicHi@spen pairs. Thel)(izT is computed

for each pair i by the formula above and comparéd e a/10 significance level, where is the
usual type | error (e.g., 5%). If none of the pdiwave smaller p-values, there is no significant
evidence against the null hypothesis. Alternayivéljust one pair has a p-value smaller tlehO,

the null is rejected.

The Bonferroni adjustment is known to be consevesith the sense that rejection of the null
is less likely if there are any issues with theuagstions. In our case, the most likely issue wddd
dependence in the error differences across group. pdor this reason and also to examine the
asymptotic convergence of the Chi-Square testssitgtive subject it to a battery of simulation
experiments.

By implementing all four of the tests just descdpee should be able to ascertain whether
two or more estimated SDFs have equal means, Miati display stochastic dominance or differ
element by element. Violation of any one of therfeests would be evidence against the SDF
theory.

Test power is a more difficult issue. As indicatedection I.B, power undoubtedly depends
on the relative sizes of the time period, T, arel¢loss-sections, N. Unless the data are extremely
high frequency, one usually has more assets tham pieriods. But in the present case, unlike with
most asset pricing tests, this is an advantageth®nother hand, a large T, but not nearly as lasge

N, might sometimes confer an advantage becausenleeseries sums of expectation surprises, (the

€.'S in (3)) will compromise the accuracy of the SDHRireates for short time series. We

investigate this issue in section Il using simuladata.

Nothing above requires specification of a proxytfoe SDF. Even a riskless rate, if there is
one, whose gross return Ratisfies the useful property, BEjn+ 1/R, is not necessary. Moreover,
tests can be conducted with relatively short tiriées samples, but still with the caveat that lenge

samples may be less prone to estimation error.

II. More About the Qualities of Our SDF Estimator
II. A. Comparing the Estimated SDF and the True SDFwith an Extended Set of Parameters
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To provide further insight about the performanceoaf SDF estimator, this sub-section
offers a series of simulations to compare true SDHH estimated SDFs. Extending the
demonstration of concept discussed in Sub-sectombove, we provide simulations for a wider set
of parameters and sampling variation. The bagigss identical to that in Sub-section I.C.

In all cases, we compare the true and estimatedsSIBig two criteria, the simple correlation
between m andh  and the Theil (1966)dthtistic. The latter is closely related to theam square
prediction error, (MSE). Specifically,

MSE:i(m[— mY /T,and

t=1

U, = MSE/@: Tt /Tj .

The correlation is easy to understand but it caa b misleading because it fails to measure
whether m andM are congruent. For examplenif  =tm,correlation would be perfect. An

advantage of the MSE is that it can be decompogedhree components, one due to a difference in

means, another to a difference in volatilities, #mnl due to a lack of correlation; i.e.,

MSE= (M- f + (5,- % J+ 2@p )5 5 (15)
where the superior bars indicate means, the s'sstamedard deviations arul is the correlation
between m andn . This decomposition is particuleglgvant in our application because we would
expect M to have more volatility than m due to samgpkrror and to be imperfectly correlated.
However, when the SDF theory is true, the two meiosild be close to one another.

In simulations with different levels of sampling rpgbations, we examine the relative
influences of the time series and cross-sectioaalpte sizes, T and N, respectively, and also the
impact of return perturbationsy, the volatility of the true SDFg:, and the risk-free rateeR With
this many parameters, it is hard to summarize testdmpactly over a continuum of parameter
values, so we resort to a hopefully more illumingtexpedient. We simply generate the simulated m
and m with several different choices of the paramset@d then present summary linear regressions

of the correlations and Theil's;n all the parameters jointly.
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Our estimator of the SDF requires N>T, so we 1e80,=60, 90, and 120 and for each T, we
set N=240, 360, 480, and 960. These choices ade msaroughly match sample sizes and numbers
of assets in our later empirical work below. FacleN and T, we let the true SDF volatility take th
valueso:=.5%, 1%, 1.5% and 2% per month. For each N, @,anthe perturbation volatilitys
takes on nine values beginning wit/5 and increasing by this increment to terminatd.8b:.
Finally, for each choice of the previous parameteslet the risk-free rate vary as follows=RL%,
2%, .3%, .4% and .5% per month. This results &Q@ different parameter combinations. For each
parameter combination, we generate completely reiffietrue SDFs and returns and hence have

independent sets of sample SDFs.

Table | gives the results, panel A for the corietatbetween m andh , and Panel B for
Theil's U.. In Panel A, we see that the correlation fallshwi, rises with N, rises witlos, the
volatility of the true SDF, and falls witbs, the perturbation volatility, all with very higlevels of
significance. Each regression coefficient, of seurindicates the marginal influence holding
constant other parameters. For the two volaslittae directions are intuitively obvious because a
greater spread of the true values and a smalléurpation variance should improve the fit. For N
and T, the fit seems related to the degrees-otivee N-T, (remember, N>T). Fewer degrees-of-
freedom result in less precise estimation. Thdegskrate has no significance whatsoever; thisstoo
hardly surprising because a simple translatiomefrhean SDF should essentially be immatéfial.

The results for Theil's blin Panel B essentially agree with the resultstier correlations in
Panel A, with opposite signs as expected (singésUarger when the fit is worse), except for the
volatility of the true SDF, which has the same dgn less statistical significance. This exception
might be explained by the fact that I3 scaled by a denominator that relates to thexwee of the
true SDF. The other three significant variablepanel A are even more significant in Panel B and
the overall explanatory power is larger.

We find, after decomposing the MSE into its threenponents, (equation (15)), virtually no
effect at all from the first component, a differeniac means between the true and estimated SDFs.
On average over the 2,880 combinations of paras)atee mean difference component’s fraction of
the total MSE has a value of 0.0000 and the langgse is only 0.0012. In contrast, the averades o

% In unreported results, we verify that this is ais® of the mean and variance of the initial nesun (16).
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the standard deviation difference component anddnelation component are, respectively, 0.2426
and 0.7574 as fractions of the total MSE. (Fohegaarameter set, the three fractional components
sum to 1.0 by construction.)The largest and smallest values are, respectidd¢6. and 0.000
(1.0000 and 0.1654) for the standard deviatioretgiice component (correlation component.)

Each of the 2,880 parameter combinations usesferefit simulated set of “true” SDFs,
which results in a corresponding and differentdegtstimated SDFs. Consequently, we can compare
the 2,880 means of true and estimated SDFs. Tieeyeay close. The averages over 2,880 sets are
0.9956 and 0.9960 for, respectively, the estimatedi true SDF means. The standard deviations of
the means across the 2,880 sets are, respect2438 and 0.2439. Their correlation is 0.9977.
Hence the mean of our estimator is close to theertraan SDF regardless of the parameters.

However, although the means are close, the perguoebiod estimated and true SDFs
display substantial divergence for some parametebinations. The average correlation is .189 and
the maximum and minimum correlations over the 2,8fameter combinations are, respectively,
0.951 and -0.547. This makes it very clear thatahsidered parameters degrade the performance of
our SDF estimator when there is a large amounamipding variationt.’

Panel C of Table | reports determinants of the ta@es standard deviation of the estimated
SDFs. The impact of degrees-of-freedom (ess@ntédT) is apparent; Larger N and smaller T
reduce sampling error and result in a better-bathastimated SDF. Holding N and T constant,
more volatility in the return perturbation bringst surprisingly, in a more volatile estimated SDF.
The time series volatility of the true SDF, howeuaais no significant impact and neither does the
riskless rate.

The variance of our estimated SDF should increasie 'wvdue to the approximation error.
This is because the elements in the estimated Si0tovare equal to the right side of (6) multiplied

by T. This multiplication converts the averagermapximation error to the sum of approximation

errors, (summed over T periods.) The standardatiew of this sum increases withT . In an

17 For Theil's W, the mean, maximum and minimum are, respectiv@l$39, 0.787, and 0.0359. Larger values
indicate more disagreement between the estimatéda®D the true SDF.
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unreported alternative regression to Panel C ineTahusingﬁ instead of T as a regressor, we find

that virtually nothing is altered except the coéit!®

In Panel D, of Table I, we finally see somethingttis influenced by the true riskless rate;
viz., the implied riskless rate from the reciprocathe estimated SDF. The t-statistic is 2.42,thea
overall explanatory power is meager. Also, botn perturbation volatility and the volatility of the
true SDF are marginally significant, which may belained by Jensen’s inequality (since the

implied riskless rate is obtained from a reciprawfedn estimated SDF.)

Il. B. Test Power

This sub-section provides evidence about the p@iveur proposed tests of SDF theory by
tabulating type Il errors under a variety of difat simulated conditions. The type Il error, often
called the “power” of the test, is the probabildf correctly rejecting a false null hypothesis. To
estimate power, we must set up a simulation sotheatrue SDFs for different groups of assets are
not the same. For two or more sets of assetshese éstimate SDFs and tabulate the rejection
frequency of the null hypothesis that all SDF eaties are the same except for sampling error. In a
simulation, the rejection frequency is the fractareplications with test p-values less than et
| error.

The SDF theory could be false in two distinct wayBirst, even though the basic SDF
equation (1) holds for different groups of assé#tg, stochastic discount factor itself might have
different distributions across groups; i.e., diffier means, volatilities, or other features. Sectmel
basic SDF equation might be false for one or mooems such that the expectation in (1) is not unity
for such groups. We will examine both types ofidgons from SDF theory in the simulations next.

To examine both types of possible violations of SB&ory, we use four tests, both now in
simulations and later in the empirical examinatiohsictual data. The tests are the Kruskal/Wallis
(1952) (KW) non-parametric one-way analysis of aace based on ranks, which rejects a false null
hypothesis if one or more sample SDFs is stoctaltidominant or has an abnormal median, the
Welch (1951) (WE) test for equal means, which afider unequal variances, the Brown/Forsythe

18 The t-statistic forﬁ is 53.8 as opposed to the 58rted for T in Table 1. Everything else isitanty close;
e.g., the adjusted R-square is 0.730 as opposed 4.
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(1974) (BF) test for unequal variances, and the Stjuare tests that estimated SDF vectors are the
same element by element.

The relevant test depends on the nature of therdifite among SDFs. For example, if the
medians differ but the means and variances aret dhesame, the KW test should reject the null but
the WE and BF test might not. Similarly, if the BDistributions have similar location on the real
line but have disparate volatilities, the BF tdsiidd reject but the other tests would not. If 8i2F
estimates have the same location and volatilitydiiferent time patterns, the Chi-Square test sthoul
work well.

If one or more asset groups is characterized byrdege of the basic SDF expectation (1)
from unity, all four tests could conceivably detéct This suggests that simulations should examine
various type of SDF heterogeneity; i.e., differéotations or volatilities or both and perhaps
differences in higher moments and also failureneflhasic SDF equation (1). Obviously, we cannot
hope to examine every possible type and size derdifices across SDFs, so this section is
unavoidably limited. However, we will gladly sugpthe simulation Fortran code to anyone
interested in examining power for other parameteiaes.

To be most relevant for the empirical tests toolwll we perform power calculations for
several choices of the most important parametehng;hware the number of sample periods, T, the
number of assets in each group, N, the means araheas of the true SDFs (which can differ across
groups), the number of asset groups, and the Wlaif return perturbations. For each choice of
parameters, the simulations are replicated 1,00@giand the power is tabulated as the null

hypothesis rejection frequency.

II. B. 1. Test Power when the SDF equation is trubut the SDF differs across asset groups

In this subsection, we assume that the basic SDEten (1) is valid for all assets but that
the SDF itself differs across asset groups. Qut 8et of simulations has just two asset groups.
Parameter combinations include N=240, 480, 7209%td For each N, T=30, 60, 90, and 120. To
illustrate differences in the tests, we condudnaukation with SDFs that differ only in locationgi,
two values for the riskless rate, .1% and 5% peingebut with the same SDF volatility, a standard
deviation of 25% per period. A second simulatieduces the volatility to 5% per period. A third

simulation has two SDFs with the same meass. 6, but different standard deviations, 10% and
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25%. In these simulations (and in all that follp@DFs are generated according to the true SDF
model in Section II.A, equation (15), and returns generated by (17). Note that the underlying
SDFs are the same across groups but with differiagns and/or volatilities.

Results for the first simulations, with differindp6 means but equal volatilities, test power is
reported in columns 3-6 of Table Il. Panel A (B)sha perturbation volatility of 1% (2%); see
equation (17¥° If a particular test has minimal power, it is meported. Hence, only the Chi-
Square test is reported in column 3 where the Sa@l&tility is 25%. KW, BF and WE have no
power in this case. However, when SDF volatilgyréduced to 5%, (columns 4-6) both KW and
WE have very good power for all choices of N anthPanel A and for N > 240 in Panel B. For
these simulations with equal volatility, the BFttsisould not have any power, and it does not.

The CH test exhibits a complex pattern of powen. Panel A, we see that it has perfect
power for N=720 and N=960 but for lower N its powaeclines dramatically with larger T.
Evidently, its power is degraded when the degrédseedom, i.e., N-T, is not sufficient. A similar
pattern is observed in Panel B except that the pasvaniformly lower and completely absent for
lower N and higher T. For lower SDF volatility,lamns 4-6, the CH test displays a very similar
power pattern as for the higher volatility, coludn From a power perspective, CH is dominated by
KW and WE for lower SDF volatility.

Clearly, return perturbation volatility has a lam@geterious impact on power, but it appears
that this can be overcome with a large enough cotie of assets and a judicious choice of the time
series sample size. It also seems clear thahadetof these tests, (KW, WE, and CH), provide
valuable information about the validity of SDF theo WE and KW are similar, and in columns 4-6
of Table Il, WE has slightly higher power, but Washthe disadvantage of being a parametric test;
hence KW might be preferred when one is not su@utathe distributions of returns or of the
underlying SDFs. CH is also a parametric test ibatppears best when SDF volatility is high
(column 3).

In the next simulations, the SDFs have the samens)dmsed on riskless rates of 0.1%, but
have different volatilities, 10% and 25%. The tesare in columns 7-8 of Table Il. KW and WE

19 The perturbation interacts with other stochastimgonent to produce estimation error in the SDF,ctvtis
considerably more volatile than the perturbatieelit Insights about estimation error volatilitye goresented in
section 1V.D.
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have virtually no power because the locations heesame. The BF test, in contrast, has almost
perfect power for N> 480 and even for lower N in Panel A. The CH test somewhat weaker
power, particularly for the higher return perturbatvolatility of Panel B. However, it too has gbo
power for larger N> 780 and its power is perfect for2N480 in Panel A.

The next simulations allow both the mean and dlaf the true SDFs to differ and also
introduce stochastic dominance by allowing the SBiEh the larger mean to have a smaller
volatility. Thus, the riskless rate is set to .18%0) for the first (second) SDF and the volatilgyset
to 10% (25%). Results are in Table I, columns39-JAgain, BF has excellent power except for
N=240 in Panel B (higher perturbation volatilityW has decent power in Panel A for large N (720
and 960) and for large T (120) but its power detates in Panel B. WE has weak power
throughout. CH has excellent power fo=Nl80 in Panel A, for Nt 720 in Panel B and even for a
few cases with T = 30.

Finally, we document power with a larger numbeasdet groups. We choose five groups to
match some of our later empirical tests. To mdietests face a tough challenge, we set up the
experiment so that just one of the groups has ehastically dominant SDF, the other four having
SDFs with the same mean and variance. Asset @gthupas a stochastically dominant SDF with a
riskless return of 0.1% and a standard deviatioh08b. Groups #2 through #5 each have SDFs with
a riskless return of 5% and a standard deviatidzbes.

Table II, columns 13-16, report the results. The/gr is somewhat lower in most cases than
in the two group tests reported in columns 9-12V'&power seems to have fallen the most but WE
is not very powerful in either case, particularljttwthe higher perturbation volatility in Panel B.
However, BF still has good power except for lowemNPanel B while CH has excellent power in

Panel A when Nt 480 and for T = 30. Its power is also quite gémd\ = 960 even in Panel B.

Il. B. 2. Test Power when the SDF equation is fasfor at least one asset group

This subsection considers the test power consegsesfcone asset group being aberrant in
the sense that the basic SDF expectation (1) iqgoal to unity. Since the previous subsection
considers cross-group differences in the SDF |t¢lki$ section assumes that the SDF has the same

distribution across all assets but the SDF/grossrmeproduct is not the same. Such a situation
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implies both incomplete markets and an arbitrageodpnity, which can be seen most intuitively by
noting that the riskless rates must differ amorsgagroups.

In the interest of space, we will only consideliragke simulation of this type with two asset
groups. Power is tabulated as before with varmrabinations of the number of assets per group

and the number of time series observations anctcheaes of return perturbation volatility.

To parameterize the error in SDF theory, we seb#®c equation t@t—l(ﬁltﬁit)= 1+6 for

each asset i in the aberrant group, witk O; & takes on the values 0.05 and 0.1. In the other

(normal) group,d =0. The riskless rate is 0.1% pergantperiod and SDF volatility is 15% per
period. The riskless rate and volatility are tame in the SDFs for each group.

Table Il presents the results. For the KW and W&s, power now improve with T, even
when it is close to N while the opposite of true €H (left side of table, perturbation volatility o
1%.) The BF test has virtually no power for allues of N and T, (not reported), essentially
reflecting the fact that the variances of the ulyiley SDFs are the same in both asset groups. In
contrast, the WE tests exhibit power in excess08 9vhen N is close to 1,000, T = 120. WRen
0.1, power is very good for all three tests exéepCH and N = 240. Power is also excellent for CH
when N> 480. However, for larger return perturbationatiity, (right panels of Table Ill), power

is quite poor for the lower value of

11.B.3. Conclusions about test power

In summary, from all the above simulations, weneiduat very large cross-sectional sample,
N close to 1,000, provides robust power under aetyaiof conditions including the time series
length, T, and the return perturbation volatilitWwhen SDFs have disparate means and variances
across asset groups, the tests provide decent pavesT return perturbation volatility is low, except
when T approaches N/2 and the degrees-of-freedam tst become problematic. The power is
generally very poor when the return perturbationarece is large and T is a large fraction of N.

When the SDF equation is false by 10% (relativéhto predicted value of 1.0) in one asset
group, while the SDFs have the same distributiomsecgroups, the KW, WE and CH tests have

good power for large N.
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lll. Data

We collect monthly return observations on U.S. kmnstocks, currencies (per USS$),
commodities and real estate (REITs, or real estatestment trusts), for July 2002 through
December 2013, 138 months in all. The data begiuly 2002 because the Trace data base starts
reporting bond returns in that month. Stocks am@Eed randomly from those on the CRSP
database. We purposely select equities with leerkge to make them as different as possible from
bonds, although we also select an equal-size rars@onple of other equities for later compari§bn.
Currencies and commodities are drawn from the Dat@s$ and Real Estate Investment Trusts
(REITs) from the CRSP database. In the crossesedtsample, there are 956 low-leverage stocks,
123 bonds, 37 spot exchange rates per US$, 47 cditiesp and 89 REITs that have simultaneous

observations for every month.

IV. SDF estimates and empirical tests of the SDF &ory
IV.A. Tests among asset classes

The SDF theory should apply to any partition of #ivailable assets, but we decide to begin
with what could be a tough challenge. We esting&ids from each asset class independently and
then test whether they are the same across asssesl Our SDF estimator requires more assets
than time periods, so we are limited to time ses@asiples shorter than the number of individual
assets in the smallest class, which is currencigis 87. Hence, the 138 available months are
separated into roughly equal subsamples, 34 olsmmgain the first two subsamples and 35
observations in the next two. We realize thests f@obably lack power because N-T, the degrees-
of-freedom, is quite small for some asset clas$¢snetheless, we believe they are worth reporting
while recognizing their likely limitations. Thegelts are in Table IV.

The Kruskal/Wallis (1952) (hereafter KW) test inabies whether one set of SDF estimates
stochastically dominates any other and it alsoipies/a test of the difference in medians. Theze a
five sets of sample SDFs, one for each asset chsgsh implies that the KW Chi-Square variate
under the null hypothesis {Hno SDF dominates another) has four degrees-etitnn. According

to KW test results reported in Table 1V, there ¢ stochastic dominance in any of the four sub-

20 The average leverage (book debt/total assets)igati0.21% for the 956 low-leverage equities.
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periods. The sample medians are not significatffgrent from one another. Hence this test does
not reject the SDF theory for these assets andpemnieds.

Table IV also reports tests for the equality of meand variances across the five sets of SDF
estimates, the Welch (1951) (WE) test for means thed Brown/Forsythe (1974) (BF) test for
variances. In agreement with the non-parametric t€at, the WE test finds no evidence of a
difference in means for the SDFs estimated indepethydfrom the five asset classes. None of the
p-values indicates significance.

The WE test allows for unequal volatilities acrasset classes. This is fortunate because the
BF test for differences in variances rejects thikintevery sub-period. The Chi-Square element by
element test essentially agrees with the BF testmixhat its p-value is marginally significantthe
first sub-period. Evidently, although the samp@FS appear to be located with their means and
medians close to one anotlkégt least one asset class has sample SDFs witificagtly larger or
smaller variance than the others. This is applrentficient to induce significant differencestime
elements of some estimated SDF vectors. In omlastertain which asset class (or classes) is
responsible, Table V reports the time series stahdieviations of the sample SD#s.

It appears that currencies and commodities hageiarolatilities than equities, bonds, and
real estate. One possible explanation is thas#nepling error in estimated SDFs is larger for asse
classes with fewer constituent members. There séefne a strong negative connection between the
number of available assets and the volatility. rréucies have the smallest number of individual
assets (only 37) and commodities are next (with 47This explanation is buttressed by the
simulation results in Section Il.A, which revealnaaterial improvement in the quality of our

estimator with the number of assets, holding cangtee time series sample size.

IV.B. Tests with larger samples of assets and timgeriods
To investigate the possible confounding impact ahgling error, we conduct two further
experiments. First, we compare stocks and bondsealithout reference to the other three asset

classes. Stocks and bonds dominate the sampte9®8 and 123 individual assets, respectively.

21 The Welch test for equal means is valid even wraeances are unequal.

22 The simulations in section II.B suggest that testigr might not be very good for small collectiorisassets such
as 37 for currencies and 47 for commodities. Hmwesince the BF test rejects strongly, power ped@es not
appear to be a problem.
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Recall that the number of assets N in a group rxisted the number of time series observations T.
Since there are only 123 bonds available, we cans®tall 138 time series observations at once, so
we simply divide them in half, 69 months in thesfisub-sample (July 2002 — March 2008) and 69 in
the second (April 2008 — December 2013.) Tablenrdvides the results.

As the Table VI Brown/Forsyth tests indicate, thereased sample sizes, both in number of
asset and in time periods, does not overturn tlwigus result that the SDFs have divergent
volatilities. However, unlike the results in Talllg the Chi-Square test no longer detects significa
differences in the SDF vector elements.

Table VII reports the volatilities, which are cosesiably larger for bonds than for stocks in
both sub-periods. Evidently, the number of boreteains too small compared to the number of
equities, which probably implies more sampling eand hence higher estimated SDF volatility for
bonds.

In the second experiment, we abandon a strict atsss categorization in order to estimate
sample SDFs using all available monthly observatiahonce and roughly equal-sized groups of
assets. This increases the time series sampldrgineT=34 or T=35 (as in Table IV) or T=69 (in
Table VI) to T=138. Since the number of assets id group must exceed the number of time series
observations T, it becomes necessary to mix staeksh are the most numerous, in with the four
other asset types in separate groups. There2& ifhdividual assets of all types available fag th
138 sample months, so five roughly equal-sized ggomould contain, respectively, 250, 250, 250,
251, and 251 individual assets.

We compose the groups in the following manner: Toug #1, we assign 250 equities,
selected randomly; in group #2 we mingle 127 rarigesalected equities with all available (123)
bonds; similarly, group #3 has 213 equities andc@ifencies; group #4 has 204 equities and 47
commodities; and group #5 has 162 equities andBI® The results are reported in Table VIII.
The Welch (1947) test for means and the Brown/Rbesy1974) test for variances are in agreement
with the non-parametric KW test. The Chi-Squarst tagrees with a p-value close to 0.5.
Consequently, in these tests there is no evideheesognificant difference in the SDFs estimated
from the different asset groupings. After takimgp@unt of sampling error disparities across test
groups, there is no evidence of SDF differences éheugh the groups are heterogeneous in the

sense of including five distinct asset classes.
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However, there is one caveat. Our simulationsertisn II.B reveal that test power might
not be very large when there are only 240 assetach group unless sampling error is rather small.
Thus far, we have not attempted to disentangle Baghgeturn perturbation volatility from volatility

in the true SDF. The variance of the estimated 8DFe sum of the two variances.

IV.C. Tests with greater power

In the hope of achieving more test power, we conhte further empirical experiments. In
the first, we divide the sample of low-leverage iggs into two equal-sized groups of 478 stocks
each and work with all available 138 time seriesepbations. Section I.B suggests that this choice
of N and T should have good power. In the secestl tve expand N even further by collecting a
second group of 956 equities, randomly sampled fremaining CRSP stocks thab have
significant levels of leveragé. Conceptually, this second test should be antiaburdle for SDF
theory because the two groups of equities differkedly in their leverage raticé.

The results for both tests are reported in Table Panel A reports that none of the four tests,
KW, WE, BF, and CH, rejects the null hypothesist tiee SDFs are the same in the two groups of
478 low-leverage equities at a high level of sigaifice, though the BF test is on the margin with a
p-value of 0.084. Panel B reports a stronger érfee; even with very different leverage (and, as
consequence, likely different levels of riskinessgre is no evidence of a difference in SDFsalln
cases, the p-values are far from indicating sigaift rejection of the null hypothesis.

In conclusion, for a battery of tests with diffegimsset classes, differing group sizes, and
diverse time series sample sizes, the SDF theddshgp well. It cannot be proved true, of course,
but it is not rejected by our tests after propextcounting for sampling variation. Our tests are
conducted with US data spanning a recent decadepse comprehensive tests with longer samples

and international collections of assets are claartyrder.

IV.D. Properties of estimated SDFs; disentanglingampling error and true SDF volatility and

the Hansen/Jagannathan variance bound

2 The average leverage ratio (book debt/total dséetshis second group of stocks is 32.51%; the leverage
group has an average ratio of 10.21%.

24 There are, of course, many other ways to conshretgrogeneous groups of equities (size, beta, fetcsimilar
cross-group tests, which we leave for future redear
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In the previous sub-section, we find with demorsirgpowerful tests that SDF estimates
from low- and higher-leveraged stocks are not §icamtly different. This does not prove that SDF
theory is true, but the theory cannot be rejeciethbse tests. In this section, we temporarilyass
that the theorys true, which enables us to shed light on the pteseof SDF estimates. It also
permits the disentanglement of volatility in theigrSDF from sampling error volatility in the
estimated SDF and it allows us to check whether egiimates satisfy the Hansen/Jagannathan

bounds

In agreement with previous notation, we nowrfefL) nate the vector of estimated SDFs
from the low-leverage stocks ani(H) denote the egith&DFs from the higher-leverage stocks.
Given SDF theory, an element of these vectorsrad tican be expressed as

m,=E_(m)+v_.+u, ,j=LH (16)

wherev  is the unexpected component of the true &Difne t andujt is the estimation error in

t
the sample SDF for group j (j=L,H). No elementtbe right side of (16) is correlated with any
other, so the time series variance of the estimam is

Var(rhj) = Var[E(m)]+ Var(v, )+ Var(v) , j=LH. a7)
Assuming that the estimation errors for L and Hiadependent of each other,
Cov(m_,m,) = Var[E(m)]+Var(u, ) . (18)
The right side of (18) is the total volatility inded by the true SDF, including the intertemporal

evolution of its expectation and its period-by-pdrunexpected component. Subtracting this result

from (20) provides estimation error variances fdr and j=H.

SDF theory requires theEt_l(mt):l/(1+RF’t) for the riskless rateaRtime t-1. During the
time period of our sample, 2002-2013, the riskieds had historically low variation over time, so
Var[E(m)] should be relatively small compared/@'(U_ ),  iethshould dominate (18).

Estimated over July 2002 through December 2013sthedard deviations of,  and,,

are, respectively, 0.580 and 0.696 per month aneletion ofr?]L andr°nH is 0.3002. This implies

a standard deviation of SDF components, the squeneof (21), equal to 0.3481. The standard
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deviations for the estimation errors for L and H &hen, respectively, 0.4636 and 0.6031. Not
surprisingly, higher leverage equities are assediatith larger estimation errors.

The Hansen/Jagannathan (1991) variance-relateddbaquires thato(m)/E(m) be larger
than the largest possible Sharpe r&tioRecent opinions, Welch (2000), seem to be tiaekcess

return on the best possible portfolio is no mownthbout 7% per annum (or even lower lately) and

the portfolio’s standard deviation may be aroun@olier annum, so the largest Sharpe ratio is no

more than 0.44. The sample meansfdf  ang are, atdsglg, 0.9945 and 0.9961, both

approximately unity. Our annualized SDF standasgliation is 0.3481/5 , Which comfortably
satisfies the HS bounds. This inference contrststggly with previous research that has specified
SDF proxies that depend on macroeconomic datadeftly, SDFs that depends on returns, such as
ours and Long’s Numeraire portfolio, are sufficlgntolatile. This is a puzzle that clearly desexve
further investigation.

The means and standard deviations of the estin®&iides can be used to conduct a simple
test that the true SDFs are positive (and consélyuéhrere are no arbitrage opportunities.) The t-
statistics for low- and higher-leveraged equitie®, arespectively, 20.2 and 16.8, thereby
overwhelmingly indicating that the SDFs are notatg 2°

To get a visual image of the evolution of our SOiFjs appropriate to first expunge
estimation error. This is not possible for eadtivildual time series observation, but one can adjus

the overall series to have the true SDF volatéisyestimated by (18). We simply need to find an

attenuation coefficienty such thér(ym)OVar(, ) , which assurtes the riskless rate’s

variance is sufficiently small that it can be igedr hence,y:[Var(um)/Var(rﬁ)Tj2 . The
adjustment entails the transformation
m=m+y(h-m) (19)

where the double “chapeau” denotes the transfoi®fifelandm is the sample mean. For the low

and high leverage equity groups, the attenuatiefficeents are .6005 and .4999, respectively.

25 Hansen and Jagannathan also derived bounds ingobther than the second moment. See Snow (19981) f
empirical estimation with a variety of bounds.
% There is a slight degree of autocorrelation ingbgmated SDFs but it is too small to overcomeitifisrence.
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Figure IV plots the two adjusted SDF series usii@-anonth moving average to smooth out
short-term fluctuations. There is clearly a cartiom between the two series, which is not a ssepri
because our test above could not reject the hypistiibat they are the same. There is, however,
something of a puzzle here in that the SDF is latigen 1.0 in the middle of the 2000 decade for
both series. Of course, this is tBepost SDF, including the unexpected component. The &rpe

SDF would presumably be much smootfer.

IV.E. Estimated SDFs and Returns on a Market Index

In one further validation experiment, we estimdte relation over time between SDF
estimates from low- and higher-leveraged stocksasgrved returns on the S&P 500 index. This is
motivated because SDF theory stipulates that ih @aciod there should be a relation between the
aggregate market portfolio’s returnwR and the SDF mof the following form:

m,=a_ -b_R, .
where the coefficients are time varying and striptsitive; Cf. Cochrane (2001a, pp. 139-140.)
Unfortunately, we have only estimates of the twoaldes in the relation above, our estimate
m for m and the S&P 500 return fonR Moreover, we know nothing about the time vaoiatin the
coefficients, a and b, and are obliged to adopp#rbaps forlorn hope they are relatively constant.

Operationally, we run two proximate regressions,
mj,t =a,- bjRS&P,t
with j=L (H) for Lower- (Higher-) leveraged equiigusing 138 monthly observations, July 2002
through December 2013. Perhaps surprising, giverpossible problems with this specification, we
find - =-3.48 (t-statistic=-3.17) and =b-2.68 (t-statistic=-1.98.) Both slope coefficiettave the
right sign and are significant, though'$significance could be regarded as marginal.al@jethere
is more estimation error im  for the higher-levedgquities. As one would expect, the intercept
terms are both very close to 1.0 and are highlgisagnt, t-statistics of 21.0 and 17.1, respedyive

However, the explanatory power is rather low, agdifR-squares of 6.20% and 2.10%, respectively.

27 Neither series has a unit root according to thelissts.
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V. Robustness Checks

In this section, we investigate the qualities of SDF estimator with alternative assumptions
about returns. Sub-section V.A. examines the apreces of thick tails, a phenomenon that is
seemingly ubiquitous for financial asset retur@sib-section V.B. looks at the impact of returng tha
are cross-sectionally correlated and have diffenegéns and variances. Sub-section V.C. examines

our estimator when returns in different groups hdiverse factor structures.

V.A. Thick-tailed returns

In the simulations of section | and I, returns dwg-normally distributed, so a natural
guestion is whether our SDF estimator behaves #smen returns are characterized by very large
or very small returns, well beyond those typicalbserved under a Gaussian regime. Our estimator
does involve a cross-product matrix that contagqueased returns, so it might be sensitive to extreme
observations.

To examine this issue, we repeat the simulationt Afholding everything the same except
for the return perturbations, which are now assutoedllow a truncated Cauchy distribution. The
details are in section A.2 of the Appendix. TaKlewhich corresponds to Table I, presents the
results with truncated Cauchy return perturbatioBemparing Panels A and B of the two tables, one
observes that the results are virtually unchangealitqtively and are even more significant with
thick-tailed return perturbations. All the variabl have the same signs and all the significant
variables (which is everything except the riskiegs) are still significant.

There is one change in Panel C, which shows tHaeinfe of various parameters on the
volatility of the estimated SDFs. In Table X, ttnee SDF'’s volatility has become significant. In
Panel D, which explains the inferred riskless ratee SDF volatility and the Cauchy return
perturbation scale parameter are not significanlenvthe true riskless rate is more significant.
Earlier, we speculated that the volatilities mitlet showing up in Panel D of Table | because of
Jensen’s inequality in the riskless rate’s recipl@stimation, but instead, that result appeatseto
related to multiplicative return perturbations.

We again find no effect from the difference in me&mactional component of the MSE. The
averages of the standard deviation difference ibmaat component and the correlation fractional

component are similar, 0.191 and 0.808, respegtivel
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As for the 2,880 means of true and estimated SDiey; are still very close, with even a
slightly higher correlation, 0.9998, and almostniileal averages and standard deviations. The
average correlation has risen to 0.439 and the maxi and minimum correlations over the 2,880
parameter combinations are now, respectively, 0z82b-0.409.

In summary, thick-tailed returns do not seem to gamise the qualities of our estimator.

Its seeming improvement with thick tails, howevemnay be partly attributable to the return
perturbation being additive rather than multiplieatand to a set of Cauchy scale parameters that
rendered the return perturbations less severearBlegs of such caveats, however, there seems to be

little cause for concern when returns exhibit thiziks.

V.B. Correlated Returns with Unequal Means and Volélities

The simulated returns in section Il are independ#nbne another and have the same
expected values and volatilities. Section I-C pnésd some illustrations with correlated returrad th
have disparate means and divergent standard dmsgatiWe now extend these illustrations for a
wider set of parameters.

Perhaps the simplest way, (and the way we chodse)simulate returns with such
characteristics is to employ the venerable markadeh Accordingly, we assume that each initial

gross return is obtained from the following model:
1+R,, =exp[R. +B,(R,, —R.) +¢,, — (B/o%, +0°)/ 2] (20)
where R is the net risk-free rate (not 1+R)y Rs a normally distributed “market” common retum i

period t,Bi is the slope coefficient or “beta” for asset i agdis a normally distributed IID

“idiosyncratic” return for asset i in period t. &Mast term on the right of (20), in parentheses i
volatility correction for exponentiation.

For each set of parameters, we generate a new sear&et returns, idiosyncratic returns,
and betas. Then, the simulation proceeds as hefaking sure that the average initial gross return
from (20), multiplied by the SDF, is equal to 1idahen adding sampling return perturbation as in
equation (A-3) of Appendix, Section A-1.
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The betas are assumed to be cross-sectionally Hpmingributed with a mean of unity and a
standard deviation of 0.1, which implies that mostas fall between 0.8 and 1.2. Since the beta is
different for each asset, the expected returns eags-sectionally as well.

The market returns are assumed to have a mean tqtted risk free rate plus a premium
equal to 0.6% per month and a standard deviatioA%fper month, approximately 13.9% per
annum. The idiosyncratic returns are assumed\e hastandard deviation of 8% per month, so the
market model R-square is 20%, which is in the usaradie for equities.

Results are reported in Table XI. They are vitjualentical in Panels A and B with the
earlier results in Table | of Section IlLA. Thuisgducing correlation and different mean returns and
volatilities has no impact whatever on the corieted between true and estimated SDFs and on
Theil's Uz statistic. There are some minor differences ineaC and D, however. The standard
deviation of estimated SDFs (Panel C) now showasifstggnce for the true SDF volatility. The
inferred riskless rate (Panel D) shows more sigaifce for the true riskless rate and the number of
assets and less significance for the return peatian volatility. However, these differences are
relatively small in magnitude.

The other indicators are also very similar, as woeld expect given the similar results in
Tables | and VIII. For example, the correlatioretviren true and estimated SDFs range from a
maximum of 0.961 to a minimum of -.567. The medference fractional component of the MSE is
very close to zero in all cases (it's maximum i$ydh0015), which implies that there is no material
bias in the estimated SDFs.

In summary, returns that are correlated and diffetheir means and volatilities present no

difficulties for our SDF estimator.

V.C. Returns with Factor Structures

There seems to be widely-held intuitive notion d@hb@meonnection between SDF theory and
the factor structure of different asset classest ifistance, if bonds are driven by fewer undedyin
risk factors than equities, SDFs must, allegeddydifferent for bonds and stocks. But this intuiti
is not necessarily valid. Of course, if the bomdl &tock market are not integrated and there are
cross-market arbitrage opportunities, SDF theoryld/ianot be valid. But this is not directly

attributable to their disparate factor structures.
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To examine the issue for a wider set of paramehens the illustrations in section I.C, this
subsection provides additional simulations wher#ia returns are generated by a two-factor
structure. The results could be compared with dineulations in section V.B where returns are
generated by a single-factor structure.

Now the return generating function is

1+ Ri,t = eXp[RF + Bi,lfl,t + Bi,2f2,t T (BZ a; + BZ a; + Of) /2] (21)

i1 271,
where f1t = RMt— RF , the first factor, has the same distributtenthe market excess return in

equation (20), (the single-factor model), afid trees same cross-sectional distribution. The

second factor in (21) is assumed to have the saiaility and mean return as the first factor but

B,, has a cross-sectional mean of zero and a staw@asdtion of 0.1, (which is the same cross-

sectional volatility as3,, .) Clearly, the returnsngeated by a two-factor model will have higher

volatilities. All other parameters are the samanasection V.C, including the distribution of the
regression disturbances. The results are reportédble XII.

Comparing Table XllI for returns with a two-factdrusture against Table XI where returns
have a single-factor structure, we observe that dbefficients and t-statistics of the various
parameters are virtually the same in Panels AnB,@ The correlation between true SDFs and our
sample estimates depend in an almost identicaidasio T, N, the true SDF volatility, and the
perturbations volatility. The same is true of TseU, (Panel B) and for the standard deviation of
the estimated SDF (Panel C.)

The only material difference seems to be for ttierred riskless rate. As shown in Panel D,
N and T have switched places in terms of signifteaas have the two volatilities. The true riskless
rate is still significant though the significanaevél has fallen along with the adjusted R-square,
which, however, is very modest. It seems likelgtithe differences displayed in Panel D of Tables

Xl and Xll is partly attributable to sampling errér

28 Remember that the additional factor adds as madderas the first factor in the Table 12 results.
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The bottom line is that the factor structure olures has little, if any, bearing on our SDF
measure. This is not all that surprising since 8i2F theory, when true, should handle any

conceivable return generating process. It is teags however, to see that it actually does

VI. Conclusions

The stochastic discount factor (SDF) theory predicat the same SDF should price all assets
in a given period when markets are complete. Welde tests of this theory by first deriving an
SDF estimator that depends only on observed reamdds agnostic with respect to macroeconomic
state variables and preferences, on which doedep#nd at all. Also, our SDF estimator does not
depend on the form of the multivariate distribut@ireturns including their factor structure.

Our SDF estimator is theoretically biased in fin@mples and has a standard error that
depends on both the number of asset, N, and théewai time periods, T, used in its construction.
Hence, to examine the estimator’s qualities, werte® simulations. We find that the estimator is
accurate when N-T is relatively large with N>2T ahdear 1,000.

Equipped with an agnostic SDF estimator, we suggestdifferent tests of SDF theory that
can potentially reject the theory when sample SDier significantly across groups of assets.
Simulations are presented to assess the poweesé tiests. For large N relative to T, the sugdeste
tests have excellent power that approaches 100%ndep on various parameters such as the
volatility of the true SDFs and the sampling vadatin returns. We also present evidence that our
SDF estimator works well when return have thickstaind differ significantly in their means,
volatilities and correlations with each other afgsbaas mentioned above, when there is a multi-
factor structure of returns.

We apply our estimator and tests to data on U.8itieg, bonds, commodities, currencies,
and real estate (REITs) over a common time pefiB8, months from July 2002 through December
2013. As theory and the simulations predict, aslsstses with few individual assets (a low N), such
as commodities and currencies, produce sample 8kdarger volatilities. However, even in this
case, there is no evidence that SDF means areatiffacross asset classes. This result suggests th
excessive SDF volatility in smaller asset classightibe attributable to sampling variation.

This explanation is corroborated by reorganizing ithdividual assets into larger grouping;

sampling error is thereby reduced and there aromger any rejections of the SDF theory. The
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same result, no rejection, is obtained in a furtest with larger numbers of individual assets<elo

to 1,000). Owing to data availability, such a temh be done only with equities. We find that two
large groups of equities, one group with minimaklage and the other with average leverage, are
priced with SDFs that are not statistically distirglpable. We also find that these SDFs comfortably
satisfy the Hansen/Jagannathan variance boundranetgy significantly non-negative.

Overall, the SDF theory’s main prediction, that dame SDF prices all assets during the
same time period, cannot be rejected with our tesitsg U.S. data in various asset classes durig th
2002-2013 time period. In addition, SDFs are pasitvith a high degree of statistical reliability.
These results are consistent with markets thainéegrated sufficiently to prevent the detection of
incompleteness and they also suggest that arbitvpgertunities are difficult to uncover. Future
research will determine whether the same infereacesobtained with international data and with

samples from other time periods.
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Table |
Simulated Performance Information for the SDF Eaton

To assess our SDF estimator, we simulate true Sifesmean=1/(1 + riskless interest rate) and
various time series volatilities. Gross assetrret are simulated so that their mean values nhieltip
by the SDFs are equal to 1.0 but errors perturly g#aemple values. The performance of the SDF
estimator is measured by the correlation betwees and sample SDFs and by Theil’s (1966) U
statistic, which is closely related to the mearesqurediction error. Linear regressions are ntego

in Panel A where the dependent variable is theetation and in Panel B where the dependent
variable is U. In Panel C, the dependent variable is the satpke series standard deviation of the
estimated SDFs. Panel D reports the implied rsskleate from the reciprocals of the estimated
SDFs. There are 2,880 parameter combinations, wahhan independently- simulated set of true
SDFs and returns.

Variable | Coefficient | T-Statistic
A: Correlation between true and estimated SDFs
T, Time Periods -1.104E-03 -11.034
N, Assets 1.505E-04 12.036
True SDF Volatility 1.295 18.581
Perturbation Volatility -1.744 -49.302
Riskless Rate 5.799E-01 0.244
Adjusted R 0.488
B: U, from comparing true and estimated SDFs
T, Time Periods 2.068E-03 54.927
N, Assets -2.964E-04 -62.989
True SDF Volatility 1.344E-01 5.126
Perturbation Volatility 6.237E-01 46.860
Riskless Rate 2.423E-01 0.271
Adjusted R 0.782
C: Standard Deviation of Estimated SDFs
T, Time Periods 2.917E-03 53.945
N, Assets -4.270E-04 -63.166
True SDF Volatility 5.180E-02 1.376
Perturbation Volatility 4.899E-01 25.622
Riskless Rate 2.360E-01 0.184
Adjusted R 0.731
D: Riskless Rate Inferred from Estimated SDFs
T, Time Periods -3.106E-06 -0.229
N, Assets 2.401E-06 1.415
True SDF Volatility 1.950E-02 2.063
Perturbation Volatility 1.164E-02 2.427
Riskless Rate 7.797E-01 2.422
Adjusted R 0.008
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Table Il
Test Power for a False Stochastic Discount Fadteoily; Differing Means and/or Volatilities

Asset groups, each with N individual assets, haw@niultaneous time series observations. The traghastic discount factors (SDFs) differ
across groups, so the SDF theory is false. SDmaistrs are computed from the sample return obdensin each group and then compared
with the Kruskal/Wallis (KW), Brown/Forsythe (BR)yelch (WE), and Chi-Square (CH) tests. Powehésgercentage of correct rejections of
the null hypothesis (8 no difference in the SDFs) in 1,000 replicatiovigh a type | error of five percent. Perturbatioiatility is 1% (2%) in
Panels A (B). In the two-group tests (columns L-8DFs means are determined by the reciprocalgitf plus riskless rates of .1% and 5% per
period and SDF volatilities are 10% and 25% (steshdkeviation per period.) Any non-reported test foo a comparison has minimal power.
The first comparisons are for equal volatilitiesl @iffering means, column 3 (4-6) for 25% (5%) vikees. The BF test should not and does not
have power in this case. Column 7-8 report testsefijual SDF means but different volatilities. dolumns 9-12, one SDF stochastically

dominates the other, with higher mean and loweatiiy. In the five-group test, columns 13-16,eogroup’s SDF stochastically dominates the
other four.

Two-Group Tests Five-Group Test
Riskless| 0.10% 0.10% 0.10% 0.10% one group @ .1%
Rate 5% 5% 0.10% 5% four groups @ 5%
SDF| 25% 5% 10% 10% one group @ 10%
Volatility 25% 5% 25% 25% four groups @ 25%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T N CH KW WE CH BF CH KW BF WE CH KW BF WE CH
Panel A: Perturbation Volatility: 1%
30 240 79.7 98.2 99.8 7714 99.9 99.9 21.9 99.4 91M0.0 6.7 75.0 7.7 1000
60 240 16.8 100.0 100.0 95 99.9 98.9 43.2 99.9 81[5.99.8 17.1 99.7 14.4 96,2
90 240 1.3] 100.0 100.0 02 10Q.0 82.1 59.4 100.0 .4P192.2 26.6 99.9 19.p 584
120 240 0.0 99.7 100.0 0/0 10Q.0 29.4 67.8 100.0 .8 P8 43.1 31.8 99.9 20.9 94
30 480 100.0 100.0 10040 100.0 100.0 1Q0.0 22.1 .0400 7.5| 100.0 7.0 84.8 94 1000
60 480 99.5 100.0 1000 99,7 100.0 100.0 50.9 100.09.0| 100.0 24.1 99.9 18/9 10Q.0
90 480 94.6/ 100.0 1000 950 100.0 100.0 13.1 100.28.6| 100.0 46.9 100.0 34{2 10Q.0
120 480 63.4 100.0 100/0 61.7 100.0 100.0 85.9 0100.44.0/ 100.0 62.5 1000 42(1  100.0
30 720/ 100.0 100.0 1000 100.0 100.0 1Q0.0 21.4 .0400 8.7| 100.0 9.0 84.4 95 1000
60 720/ 100.0 100.0 1000 100.0 100.0 1Q0.0 53.7 .0100 19.5| 100.0 29.4 1000 22\13  100.0
90 720/ 100.0 100.0 1000 100.0 100.0 1Q0.0 75.5 .01)00 30.4] 100.9 51.5 1000 34,8 100.0
120 720 100.0 100.0 100/0 10Q0.0 100.0 1Q0.0 38.70.010 45.8] 100.G 69.9 1000 50.8 100.0
30 960/ 100.0 100.0 100J0 100.0 99.9 100.0 22.7 09.98.6| 100.0 8.7 86.6 9.7 100(0
60 960/ 100.0 100.0 1000 100.0 100.0 10Q0.0 54.0 .0100 17.2| 100.0 27.2 1000 20,8 100.0
90 960/ 100.0 100.0 1000 100.0 100.0 10Q0.0 76.9 .01)00 33.3] 100.9 48.0 1000 355 100.0
120 960 100. 100.p 100/0 100.0 100.0 1Q0.0 39.20.010 45.7| 100. 73.1 1000 5115 100.0
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Table Il (Continued)

Two-Group Tests Five-Group Test
Riskless| 0.10% 0.10% 0.10% 0.10% one group @ .1%
Rate 5% 5% 0.10% 5% four groups @ 5%
SDF| 25% 5% 10% 10% one group @ 10%
Volatility 25% 5% 25% 25% four groups @ 25%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T N CH KW WE CH BF CH KW BF WE CH KW BF WE CH
Panel B: Perturbation Volatility: 2%
30 240 1.0 19.4 18.8 00 8810 40.2 12.8 83.4 48 148 24 45.1 4.5 25.0
60 240 0.0 17.9 12.6 00 91l4 2.1 20.2 85.8 7.0 3517 72.3 2.7 0.1
90 240 0.0 6.5 0.6 0.p 85]1 0.1 17.0 75.4 5.2 0.1 .8|163.9 1.1 0.0
120 240 0.0 2.2 0.0 0.0 76{0 g.0 9.6 58.4 3.3 0.0 5|055.1 0.3 0.0
30 480 15.6 83.§ 95.8 9,8 98.5 92.2 18.5 95.1 7.26.19 5.0 65.5 8.4 88.5
60 480 0.6 97.3 100.0 0/0 99.9 62.1 3r.8 99.5 13.93.2 134 96.9 11.9 417
90 480 0.0 98.4 100.0 00 100.0 19.2 4D.3 99.8 18.80.7 18.9 97.9 12.9 47
120 480 0.0 98.4 100.0 0/0 99.9 2.6 5D.6 99.5 24.25.8 27.7 99.0 18.4 0.1
30 720 54.6 97.3 99.9 4710 99.0 99.4 2p.4 98.5 10.99.9 6.5 71.0 8.8 98.p
60 720 8.8 99.9 100.0 15 99.9 95.7 ar.7 99.7 18.28.6 17.4 99.0 16.4 931
90 720 0.8) 100.0 100.0 0/0 10Q.0 79.9 60.8 99.9 5 P5.92.6 34.7) 100.¢ 24.6 63|8
120 720 0.3 100.0 100.0 00 100.0 62.8 7.2 100.07.8[3 81.6 46.5 100.0 318 4119
30 960 89.4 99.5 100.0 87(8 99.3 99.9 2B8.7 99.2 9.39.9 5.6 76.7 8.7 99.9
60 960 38.9 100.0 1000 3211  100.0 90.9 47.4 100.08.5| 100.0 24.2 99.8 190 99.7
90 960 7.00 100.0 100.0 2|3 10Q0.0 99.1 69.9 100.0 .1 30 99.8 41.3 100.0 310 97{2
120 960 2.0 100.0 1000 0{1 100.0 9r.9 81.0 100.02.64 99.8 59.7 100.0 439 92\7
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Table Il
Test Power for a False Stochastic Discount Fadteofly; E(miR ) # 1 for One Group

Two asset groups, each with N individual asseteg fasimultaneous time series observations. The
groups share a common SDF whose mean is deteriynée reciprocal of unity plus a riskless rate
of .1% per period and SDF volatility is 15% (startldeviation per period.) But the basic SDF
equation is false for one of the two groups; ifer, that groupE(rhf{): 1+6 withd#0 . SDF
estimators are computed from the sample returnreéiens in each group and then compared with
the Kruskal/Wallis (KW), Welch (WE), and Chi-Squdf@H) tests. The BF test is not reported since
it has no power in this case. Power is the peagenbf correct rejections of the null hypothesis (H
no difference in the SDFs) in 1,000 replicationshwa type | error of five percent. Perturbation
volatility is 1% (2%) in the left (right) sectiol;= .05 (.10) in Panel A (B).

| Perturbation Volatility 1% | 2%
Panel A:d = .05

T N KW WE CH KW WE CH

30 240 0.3 0.1 84.3 0.3 0.0 0.5
60 240 5.1 2.0 19.5 0.2 0.0 0.0
90 240 23.8 18.4 0.4 0.2 0.0 0.0
120 240 36.8 46.8 0.0 0.4 0.0 0.0
30 480 0.8 0.3 100.0 0.4 0.0 16.3
60 480 13.1 9.2 99.9 3.4 0.3 0.1
90 480 56.5 72.8 98.3 12.4 5.3 0.0
120 480 91.7 99.7 78.7 29.4 29.5 0.0
30 720 0.8 0.2 100.0 0.5 0.2 58.6
60 720 13.9 12.3 100.0 8.4 3.7 5.6
90 720 72.8 84.4 100.0 334 40.0 0.2
120 720 98.3 100.0 100.0 66.4 93.0 0.1
30 960 0.7 0.2 100.0 0.6 0.2 91.8
60 960 18.0 154 100.0 10.9 9.1 48.2
90 960 77.6 86.5 100.0 50.7 65.0 5.7
120 960 99.3 100.0 100.0 84.9 98.9 1.3

Panel B3 = .10

30 240 91.2 94.4 100.0 69.5 83.7 82.9
60 240 100.0 100.0 100.0 97.8 100.0 13.6
90 240 100.0 100.0 100.0 99.3 100.0 0.1
120 240 100.0 100.0 97.8 98.6 100.0 0.0
30 480 95.5 95.7 100.0 90.0 95.4 100.0
60 480 100.0 100.0 100.0 100.0 100.0 99.9
90 480 100.0 100.0 100.0 100.0 100.0 97.7
120 480 100.0 100.0 100.0 100.0 100.0 74.6
30 720 94.0 95.9 100.0 92.6 98.1 100.0
60 720 100.0 100.0 100.0 100.0 100.0 100.0
90 720 100.0 100.0 100.0 100.0 100.0 100.0
120 720 100.0 100.0 100.0 100.0 100.0 100.0G
30 960 95.7 97.3 100.0 94.7 96.9 100.0
60 960 100.0 100.0 100.0 100.0 100.0 100.0
90 960 100.0 100.0 100.0 100.0 100.0 100.0
120 960 100.0 100.0 100.0 100.0 100.0 100.0G
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Table IV
Tests of the SDF Theory With Five Asset Classes

Stochastic discount factors (SDFs) are estimatediye different asset classes, equities, bonds,
currencies, commodities, and real estate (REITskhgusimultaneous monthly observations for
individual assets, July 2002 through December 2Q1I38 months.) The total sample is divided into
four similarly-sized subsamples with 34 monthly etvations in the first two subsamples and 35
observations in last two. Differences across tasksses in the estimated SDFs are tested for
stochastic dominance with the non-parametric Kriigkallis (1952) statistic. Means and variances
are compared with, respectively, the Welch (1951J Brown/Forsythe (1974) tests. A Hausman
(1978) type Chi-Square tests whether estimated &fafors are equal element by element. This
Chi-Square test compares each asset pair and ssdeoed significant if the minimum p-value is
below the type | error divided by a Bonferroni @mtion; i.e., p-value less than .05/10 = .005 (with
ten pairs being compared.) The minimum acrosspters is reported. P-values are for the null
hypothesis that the asset classes are all pricictingd same SDFs. A low p-value rejects the null.

Stochastic DominanceEqual Meang Equal Variances| Equal Elements
Sub-Period (Kruskal/Wallis) (Welch) (Brown/Forsythe) (Chi-Square)
P-value for identical SDFs in all five asset classe
Jul'02-Apr05 0.976 1.000 0.000 0.008
May'05-Feb'08 0.956 1.000 0.000 <0.001
Mar‘08-Jan‘1l 0.756 1.000 0.000 <0.001
Feb'11-Dec'13 0.817 1.000 0.000 <0.001

42



Table V
Volatility of Sample SDFs by Asset Class and Sube®e

The time series standard deviation is reportecs&nple SDFs estimated simultaneously with five
different asset classes in four sequential sullgsri The number of available assets, N, is regorte
in the second line.

Equities Bonds Currencies Commodities  Real Estate
956 123 37 47 89
Sub-Period Time Series Standard Deviation of E48th&DF
Jul ‘02-Apr ‘05 0.429 0.785 2.504 3.391 1.117
May ‘05-Feb ‘08 0.406 0.692 5.464 4.286 1.039
Mar ‘08-Jan ‘11 0.335 0.402 7.630 2.432 1.068
Feb ‘11-Dec ‘13 0.430 0.620 11.767 2.123 0.931
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Table VI
Tests of the SDF Theory With Stocks and Bonds

Stochastic discount factors (SDFs) are estimateédaities and bonds using simultaneous monthly
observations for individual assets, July 2002 tglolecember 2013, (138 months.) The total
sample is divided into roughly two equal sub-sampleith 69 monthly observations each.
Differences between stocks and bonds in the estn8DFs are tested for stochastic dominance
with the non-parametric Kruskal/Wallis (1952) stdti. Means and variances are compared with,
respectively, the Welch (1951) and Brown/Forsyth@74) tests. A Hausman (1978) type Chi-
Square tests whether estimated SDF vectors aré¢ elgnaent by element. P-values are for the null
hypothesis that bonds and stocks are priced witlséime SDFs. A low p-value rejects the null.

DS(J;(r)r::izzit; Equal Means Equal Variances Equal Elements
Sub-Period (Kruskal/Wallis) (Welch) (Brown/Forsythe) (Chi-Square)
P-value for identical SDFs in bonds and stocks
Jul'02-Mar‘08 0.578 0.944 0.0000 0.111
Apr'08-Dec'13 0.927 0.968 0.0002 0.328
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Table VII
Volatilities of Estimated SDFs for Stocks and Bonds

The time series standard deviation is reportedSIDFs estimated simultaneously with stocks and
bonds in two sequential sub-periods. The numbeavaflable assets, N, is reported in the second
line.

Equities Bonds

956 123

Sub-Period SDF Volatility
Jul ‘02-Mar ‘08 0.480 1.019
April ‘08-Dec ‘13 0.420 0.720
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Table VI
Tests of the SDF Theory With Mingled Groups of Asse Different Classes

Stochastic discount factors (SDFs) are estimatedife groupings of asset from different classes
using simultaneous monthly gross return observatidaly 2002 through December 2013, (138
months.) There are 1252 assets of all types dlajlthey are assigned to five roughly equal sized
groups of 250, 250, 250, 251, and 251 so that tireber of assets in each group exceeds the time
series sample size, which permits the calculatioestmated SDFs for each group separately. The
composition of each group is reported in the seqmart of the table. The 956 available equities are
assigned randomly to groups and mingled with adlilable assets of another type in groups 2-5.
Differences in estimated SDFs across asset gragptested for stochastic dominance with the non-
parametric Kruskal/Wallis (1952) statistic. A Henen (1978) type Chi-Square tests whether
estimated SDF vectors are equal element by elem&hts Chi-Square test compares each asset pair
and is considered significant if the minimum p-valis below the type | error divided by a
Bonferroni correction; i.e., p-value less than 106 .005 (with ten pairs being compared.) The
minimum across ten pairs is reported. Means antmnegs are compared with, respectively, the
Welch (1951) and Brown/Forsythe (1974) tests. Regare for the null hypothesis that the asset
classes are all priced with the same SDFs. Adewalue rejects the null.

Stochastic
Dominance
(Kruskal/Wallis)

P-value for identical SDFs in all five asset groups
0.996 | 1.000 | 0.370 | 0.489

Equal Means Equal Variances| Equal Elements
(Welch) (Brown/Forsythe)|  (Chi-Square)

Group Composition
250 Equities
127 Equities and 123 Bonds
213 Equities and 37 Currencie|
204 Equities and 47 Commoditi
162 Equities and 89 REITs

[72)

D
(%]

QR WIN|F
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Table IX
Tests of the SDF Theory With Larger Samples of &egli

Stochastic discount factors (SDFs) are estimatedwo groupings of equities using simultaneous
monthly gross return observations, July 2002 thinoDgcember 2013, (138 months.) In Panel A,
956 low-leverage equities are randomly assignevtogroups of 478 each. In Panel B, 956 low-
leverage equities are compared with 956 randoniBessd equities with typical leverage in their
capital structures. Differences in estimated SBEsSS asset groups are tested for stochastic
dominance with the non-parametric Kruskal/Walli©942) statistic. Means and variances are
compared with, respectively, the Welch (1951) ano\®/Forsythe (1974) tests. A Hausman (1978)
type Chi-Square tests whether estimated SDF veatersqual element by element. Low p-values in
the table would reject the null hypothesis thagadlups are priced with the same SDFs.

Sample Sg:;ﬂiité% Equal Means Equal Variances Equql Elements
Period (Kruskal/Wallis) (Welch) (Brown/Forsythe)|  (Chi-Square)
A: Two groups of 478 low-leverage equities
0.547 | 0.999 | 0.084 | 0.481
Jul ‘02-Dec ‘13 B: Low- vs. high-leverage groups of 956 equitieshea
0.679 | 0.995 | 0.808 | 0.457
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Table X
Simulated Performance Information for the SDF Eatonwith Thick-Tailed Returns

We simulate true SDFs with mean=1/(1+riskless egerate) and various time series volatilities.
Gross asset returns are simulated so that thein wedaes multiplied by the SDFs are equal to 1.0,
but errors perturb their sample values. The eramesgenerated from a Cauchy distribution with
various scale parameters and truncation that setamty the middle 95%. The performance of the
SDF estimator is measured by the correlation batvee and sample SDFs and by Theil's (1966)
U, statistic, which is closely related to the meanasq prediction perturbation. Linear regressions
are reported in Panel A where the dependent varisbthe correlation and in Panel B where the
dependent variable is,U In Panel C, the dependent variable is the sarmple series standard

deviation of the estimated SDFs. Panel D repbesmplied riskless rate from the reciprocals &f th

estimated SDFs. There are 2,880 parameter comdnsatach with an independently-simulated set
of true SDFs and returns.

Variable | Coefficient | T-Statistic
A: Correlation between true and estimated SDFs
T, Time Periods -2.129E-03 -30.089
N, Assets 2.767E-04 31.286
True SDF Volatility 1.474 34.709
Perturbation Scale -0.1788 -97.287
Riskless Rate -0.5534 -0.330
Adjusted R 0.813
B: U, from comparing true and estimated SDFs
T, Time Periods 1.772E-03 59.132
N, Assets -2.483E-04 -66.289
True SDF Volatility 0.1337 7.434
Perturbation Scale 6.895 88.548
Riskless Rate -0.4715 -0.663
Adjusted R 0.846
C: Standard Deviation of Estimated SDFs
T, Time Periods 2.049E-03 47.071
N, Assets -2.946E-04 -54.145
True SDF Volatility 0.3602 13.793
Perturbation Scale 4.646 41.088
Riskless Rate -1.518 -1.471
Adjusted R 0.709
D: Riskless Rate Inferred from Estimated SDFs
T, Time Periods -1.783E-05 -1.277
N, Assets 1.906E-06 1.092
True SDF Volatility 6.402E-03 0.764
Perturbation Scale -2.588E-02 -0.713
Riskless Rate 1.395 4,212
Adjusted R 0.00600
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Table XI
Simulated Performance Information for the SDF Eaton
When Returns Are Correlated and Have Unequal Maadsv/ariances

We simulate true SDFs with mean=1/(1 + risklesergdt rate) and various time series volatilities.
Gross asset returns are simulated so that thein wedaes multiplied by the SDFs are equal to 1.0,
but errors perturb their sample values. The ihitedurns are lognormal and generated by an
underlying one-factor market model with a dispersio betas, a market index whose mean exceeds
the risk-free rate by 0.6% per month and has atilitfeof 4% per month. The market model R-
square is 0.2. The performance of the SDF estinmtoeasured by the correlation between true and
sample SDFs and by Theil's (1966) Wtatistic, which is closely related to the meamasq
prediction error. Linear regressions are repome&anel A where the dependent variable is the
correlation and in Panel B where the dependenabbriis U. In Panel C, the dependent variable is
the sample time series standard deviation of thimated SDFs. Panel D reports the implied riskless
rate from the reciprocals of the estimated SDHserd@ are 2,880 parameter combinations, each with
an independently-simulated set of true SDFs andrnet including betas, market returns and
idiosyncratic returns.

Variable | Coefficient | T-Statistic
A: Correlation between true and estimated SDFs
T, Time Periods -1.160E-03 -11.621
N, Assets 1.459E-04 11.692
True SDF Volatility 1.263 18.161
Perturbation Volatility -1.702 -48.219
Riskless Rate -1.532 -0.647
Adjusted R 0.479
B: U, from comparing true and estimated SDFs
T, Time Periods 2.093E-03 55.377
N, Assets -2.912E-04 -61.646
True SDF Volatility 0.162 6.171
Perturbation Volatility 0.620 46.421
Riskless Rate 0.308 0.344
Adjusted R 0.780
C: Standard Deviation of Estimated SDFs
T, Time Periods 2.948E-03 54,193
N, Assets -4.210E-04 -61.925
True SDF Volatility 8.702E-02 2.297
Perturbation Volatility 0.496 25.778
Riskless Rate -0.605 -0.469
Adjusted R 0.729
D: Riskless Rate Inferred from Estimated SDFs
T, Time Periods -1.796E-05 -1.330
N, Assets 3.682E-06 2.181
True SDF Volatility 1.946E-02 2.069
Perturbation Volatility 5.584E-03 1.169
Riskless Rate 1.419 4,430
Adjusted R 0.011
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Table XII

Simulated Performance Information for the SDF Eaton When Returns Are Correlated,
with Unequal Means and Variances, and have a TveteF&tructure

We simulate true SDFs with mean=1/(1 + risklesergdt rate) and various time series volatilities.
Gross asset returns are simulated so that thein wedaes multiplied by the SDFs are equal to 1.0,
but errors perturb their sample values. The ihitedurns are lognormal and generated by an
underlying two-factor model with the same crosgiseal dispersion in both factor betas. The first
factor is a market index whose mean exceeds tkdrae rate by 0.6% per month and has a volatility
of 4% per month. The second factor has zero me&ralso a volatility of 4% per month. The
idiosyncratic volatility is the same as in Table. XIThe performance of the SDF estimator is
measured by the correlation between true and sa8ipkes and by Theil’s (1966).$tatistic, which

is closely related to the mean square predictioorer Linear regressions are reported in Panel A
where the dependent variable is the correlationiadnel B where the dependent variableas d
Panel C, the dependent variable is the sample garies standard deviation of the estimated SDFs.
Panel D reports the implied riskless rate fromrdeprocals of the estimated SDFs. There are 2,880
parameter combinations, each with an independeitiyated set of true SDFs and returns,
including betas, market returns and idiosyncragtanns.

Variable

Coefficient

T-Statistic

A: Correlation between true and estimated SDFs

T, Time Periods -1.182E-03 -12.010
N, Assets 1.535E-04 12.482
True SDF Volatility 1.237 18.048
Perturbation Volatility -1.667 -47.928
Riskless Rate 2.262 0.097

Adjusted R

0.479

B: U, from comparing true and estimated SDFs

T, Time Periods 2.084E-03 54.679
N, Assets -2.943E-04 -61.778
True SDF Volatility 0.143 5.380
Perturbation Volatility 0.611 45.307
Riskless Rate -0.224 -0.248
Adjusted R 0.775
C: Standard Deviation of Estimated SDFs
T, Time Periods 2.938E-03 53.354
N, Assets -4.230E-04 -61.447
True SDF Volatility 5.665E-02 1.477
Perturbation Volatility 0.487 25.017
Riskless Rate -0.933 -0.715

Adjusted R 0.723
D: Riskless Rate Inferred from Estimated SDFs
T, Time Periods -4.632E-05 -3.418
N, Assets -6.477E-07 -0.382
True SDF Volatility 5.391E-03 0.571
Perturbation Volatility 1.048E-02 2.187
Riskless Rate 0.780 2.426

Adjusted R

0.00735
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Appendix
Details of Simulations

Simulations discussed at various points in the papedescribed in detail in this appendix.
A.1l. Simulations when the Stochastic Discount Faur (SDF) is unique.

Step 1 is to generate a time series sample of ™tSIBF realizations of length T.
Specifically, we select a gross riskless rate,(R+the riskless return), and generate the SDifnatt
as

m, :Riexpﬁt -0; 12), (t=1,...,T) (A-1)
F

where¢ is a 1ID random variable with mean zero and stashd@viationo:. The exponential in (A-
1) has a mean of 1.0 &is normally distributed, which we assume to bedhse initially® and, in
accordance with SDF theory and the absence ofagkit (A-1) provides a strictly positiva.m
In Step 2, initial gross unscaled returns are gerdrto be strictly positive (thus assuming limited
liability) with a pre-specified mean and volatilifwhich are assumed to be the same for all

individual assets); i.e., for asset i,
R, =Hexp{, -02 /2), (t=1,...T; i=1,...N) (A-2)
whereu is the expected gross return (1 + the net retang)oz is the standard deviation of the

unscaled gross retuR . We find in simulationstifim robustness section) that imposition of equal
means and variances at this stage has an immatéaat because the final scaled returns used in al

subsequent calculations are computed as

A

Rit 2
R ,=————exp@, -0,/2) (A-3)
dYmR /T
t=1
where & is an IID return perturbation with mean zanal standard deviatiog, . As required by

SDF theory, (A-3) implies that

2 |n the robustness section, we consider non-nornddglyibuted variation whose simulations are dethlhter in
this Appendix.
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.
EHZmﬂt} =1.
t=1

However, because of the perturbations added as rshiow(A-3), the sample average
return/SDF product, (the expression within braclkétsve) is not exactly unity and differs from unity
by an amount that varies across individual assets.

Final gross returns on N assets are generatedandeptly for T time periods according to
(A-3). Consequently, except for their common dejegce on the average SDF, the returns in this
simulation are uncorrelated with each other. Was@er the consequences of this assumption
below where we present analogous simulations wotietated returns that are generated by assets
that conform to a factor structure.

The final simulation step uses the estimator (equé in the text) with the final returns from
(A-3) to obtainm, (t=1,...,T), for comparison with tireie values from (A-1), nft=1,...,T).

The second set of simulations reported in sectidrof the text first presumes that there are
two asset classes that share a common factor dtuthiln second asset class is also driven by a decon
factor that has no influence on the first assedscldn other words, instead of the uncorrelatagms

as in (A-2), we have
R, = exp[R; + Bi,lfl,t + Bi,2f2,t + Zi,t - ¢l (A-4)
where the exponentiation correction factor is

Q= Var(Biylfl,t + Bi,zfz,t + Zi,t) /2.

The mean return for each individual asset is déckdnly the riskless rate sRplus the mean of
the first factor, which we assume is equal to astamt risk premium of .6% per period plus the

riskless rate of .4% per period. The mean of #eosd factor is zero along with the mean of the
idiosyncratic return{. . The time series standadation is four percent per period for the factors
and for the idiosyncratic return.

For assets in the first grou@,, =0,..L0i,  but only their misazero for assets in the second

group. Otherwise, the cross-sectional standardatiem of bothp is 0.1. The mean of the first
factorfi1 is 1.0 for both asset groups.
The third set of simulations in I.D assumes a tactdr structure for both groups of assets,

but the factors are independent of each other sgn@sips. In this case, bofHs  in (A-4) are non-
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zero for most assets. The cross-sectional meafs aind 3., are 1.0 and zero, respectively. Their

cross-sectional standard deviations are both 0.1.
A.2. Simulations when Returns have Thick Tails.

We generate “true” SDFs as in section A.1 withgntwrmal distribution as in equation (A.1)
and the same panoply of parameters. Initial gresgns are also generated in the same way, as in
equation (A-2).

But equation (A-3) is replaced by

R
R, = L +9 (A-5)

it T N it
d>mR /T
t=1 ’

in which the zero mean IID return perturbati®ns now additive and is distributed according to a
truncated Cauchy distribution with a scale paramtbtat varies from .005 to .045 in .005 increments
(i.e., nine different values.) The scale paramista measure of the Cauchy distribution’s spréad;
replaces the standard deviation used for the sammope with the Gaussian. However, it is not
associated with a second moment because the Caiashgn infinite mean and all higher moments
are also infinite.

A truncated Cauchy possesses finite moments bilithsts very thick tails relative to a
Gaussian. In the simulations here, we truncateettteemes, retaining only the middle 95% of
simulated Cauchy valué$. With a 95% truncation and the scale parametstsdiabove, gross
returns are guaranteed to remain strictly positive.

The return perturbation in (A-5) is additive, innt@ast to the previously multiplicative
lognormal return perturbation as in (A-3). Thi®e is necessitated by the extremely large p@sitiv
values, even with truncation, that would resultfrtaking the exponential of a Cauchy variate. We
are not aware of a satisfactory method of corrgciim the induced bias. In the Gaussian case, one
simply subtracts half of the variance (see equati¢A-1) through (A-3)), but there is no
corresponding correction using the Cauchy scale tfier same purpose. An additive return
perturbation finesses this difficulty because isysnmetric and not exposed to the amplification of

exponentiatiori’

30 The simulations first select a cumulative disttibm function p-value, a number between zero afd dnd then
calculate the inverse Cauchy corresponding toghalf the p is less than .025 or greater than ,. %75 discarded
and another p is randomly chosen.

31 Since the Cauchy mean does not exist, one oftes the median, but a Cauchy with median of zeraydvhas
an exponentiated median of 1.0. However, the espiiated truncated Cauchy can have an extremajg laean.
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Figure |
The Estimated and True SDFs with Small Return Feations

To demonstrate the SDF estimator, the perturbati@guation (17) of the text is set to a very small

value, .01% per period. The true SDF has a meaatdd by a riskless rate of .4% per period and its
standard deviation is 4% per period. Returns fzameean and standard deviation per period of .8%
and 8%, respectively. The number of assets, M2@sand the number of time periods, T, is 60, so
there are sixty estimated and true SDFs plotted.
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There is a unique SDF that prices all assetsadtahmean dictated by a riskless rate of .4% p@vcgpand a standard deviation is 4% per
period. One group of assets has returns drivea two-factor structure while the other group ofesasdias a single-factor structure. The
number of assets, N, is 120 and the number of piem®ds, T, is 60, so there are sixty estimatedtarel SDFs plotted. In the first panel
below, the return perturbations are very smaltaadard deviation of 0.01% per period. The seqmareel| has return perturbations with ten
times as much volatility, a standard deviation df% per period. All other parameter values for siaulations are specified in the
Appendix. The first plot below shows each growgsimated SDF plotted against the true SDF. Thergkplot shows the estimated SDFs

Figure Il

The Estimated and True SDFs with for Asset Groups
with Diverse Factor Structures and Levels of ReRernturbation Volatility

for the two asset groups plotted against each other
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Panel B, Larger Perturbations
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Figure Il

The Estimated and True SDFs with for Two Asset @sou
Both with Two-Factor Structures but Whose Factoeslnrelated

There is a unique SDF that prices all assetsadtahmean dictated by a riskless rate of .4% p@vcgpand a standard deviation is 4% per
period. Both groups of assets have returns drien two-factor structure but the factors are waiesl across groups. The number of
assets, N, is 120 and the number of time periods 80, so there are sixty estimated and true Siddited. The return perturbations are
relatively large, a standard deviation of 0.1% period, the same as in Panel B of Figure Il ab@leother parameter values for the

simulations are specified in the Appendix. Thetfiplot below shows each group’s estimated SDRquoagainst the true SDF. The

second plot shows the estimated SDFs for the teet@soups plotted against each other.
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Figure IV
Time Series Plots of Estimated SDFs from Low- aighkr-Leveraged Equities
Two groups of equities, each with 956 individuahf$, are used to estimate Stochastic Discount FRaE®DFs) with data from July 2002
through December 2013. One group js selectedve tie lowest leverage ratios among all availaiotes with full information over the
138 sample months. The other group is randombcsed from other firms and hence has higher leeeraithe average leverage ratio for
the first (second) group is 10.2% (32.5%) book datled by total assets. The estimated SDFs fraoh group are adjusted so that their
time series standard deviations are equal to tipiiech standard deviation of the true SDF, whichoadmg to SDF theory and consistent

with the tests in section IV.C, is the same for tihe groups. The plot depicts 12-month moving averages centerethe first day of the
labeled month.
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