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1 INTRODUCTION

1.1 Markowitz Optimization Enigma

The groundbreaking mean-variance portfolio theory proposed by Markowitz (1952) contin-

ues to play significant roles in research and practice. The optimal mean-variance portfolio has

a simple explicit expression1 that only depends on two population characteristics, the mean

and the covariance matrix of asset returns. Under the ideal situation when the underlying

mean and covariance matrix are known, mean-variance investors can easily compute the

optimal portfolio weights based on their preferred level of risk. In the real world, however,

the true parameters are unknown. Sample mean and sample covariance matrix are used as

proxies, and the resulting “plug-in” portfolio has been widely adopted. Such an approach

is justified by the classical statistics theory because the plug-in portfolio is an MLE of the

optimal portfolio. However, as is documented in Michaud (1989) and others, the out-of-sample

performance of the plug-in portfolio is poor. Moreover, the situation worsens as the number

of assets increases. (For additional details, see Best and Grauer (1991), Chopra and Ziemba

(1993), Britten-Jones (1999), Kan and Zhou (2007), and Basak et al. (2009) among others.)

Termed the “Markowitz Optimization Enigma” by Michaud (1989), the issues of constructing

the mean-variance optimal portfolio based on sample estimates limit the use of Markowitz’s

mean-variance framework.

1.2 Challenges for Large Portfolios

Modern portfolios often include a large number of assets. This makes the optimization

problem high-dimensional in nature, and induces numerous challenges. Take the plug-in

portfolio for example, as we will see below, the risk of the plug-in portfolio can be substantially

higher than the pre-specified risk level even when the portfolio weights are computed based

on simulated i.i.d. returns. On the other hand, such high risk is not well compensated by high

returns, resulting in significantly suboptimal Sharpe ratios. The key message is, even in the

ideal situation when all assumptions of Markowitz optimization are satisfied (i.e.,

no time-varying parameters, regime switching, etc.), there are intrinsic challenges towards

the estimation of the mean-variance efficient portfolio.

1See details in Section 2.1.
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Figure 1. Simulation comparisons of risks and Sharpe ratios of the plug-in portfolio versus the true optimal

portfolio. The portfolios are constructed based on data generated from i.i.d. multivariate normal distribution

with parameters specified in Section 3.2. The left panel plots the portfolio risks, and the right panel plots the

Sharpe ratios. The pool of assets includes 100 stocks and 3 factors, and the number of observations is 240.

The comparison is replicated 100 times.

Figure 1 shows the comparisons between the plug-in portfolio (black dashed lines) and the

theoretical optimal portfolio (black solid lines). The asset pool consists of 100 stocks and 3

(tradable) factors. The underlying mean and covariance matrix are calibrated from real data

(see Section 3.2 for details). We generate 20 years of monthly returns from i.i.d. multivariate

normal distribution, based on which we construct the plug-in portfolio and compare its risk

and Sharpe ratio with the theoretical optimal values. Such simulated returns satisfy all the

assumptions of Markowitz’s mean-variance framework. However, as we observe from Figure 1,

in all 100 replications, the plug-in portfolio carries a risk that is almost twice the specified

level. Meanwhile, as shown in the right panel of Figure 1, the Sharpe ratio of the plug-in

portfolio is only about 50% of the theoretical maximum Sharpe ratio.

The above phenomenon has been noted in Kan and Zhou (2007), and further investigated

in Bai et al. (2009) and El Karoui (2010). These papers document that the deviation of

the plug-in portfolio from the optimal portfolio is systematic, and the bias is due to the

dimension (number of assets) being not negligible compared with the sample size. For global

minimum variance portfolio (GMV), Basak et al. (2009) derive a result in a similar spirit,

which says that the plug-in GMV carries, on average, a risk that is a bigger than 1 multiple
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of the true minimum risk, and the multiplier explicitly depends on the number of assets and

sample size.

1.3 Existing Alternative Methods

The plug-in portfolio is obtained by replacing the population mean and covariance matrix

in the formula for the optimal portfolio with their sample estimates. Alternatively, people

seek to improve portfolio performance by plugging in better estimates of the underlying

mean and covariance matrix. For estimation of covariance matrix, a widely used alternative

estimator is the linear shrinkage estimator proposed in Ledoit and Wolf (2003, 2004), which

estimates the covariance matrix by a suitable linear combination of the sample covariance

matrix and a target matrix (e.g., identity or single-index matrix). More recently, Ledoit

and Wolf (2017) propose a nonlinear shrinkage estimator of the covariance matrix and its

factor-model-adjusted version that are suitable for portfolio optimization. For estimation of

mean, among other works, Black and Litterman (1991) propose a quasi-Bayesian approach by

combining investors’ views with returns implied by CAPM. This quasi-Bayesian approach is

extended to a fully Bayesian approach by Lai et al. (2011), who consider the mean-variance

problem from a different angle and aim to maximize a certain utility function. Garlappi et al.

(2007) propose to adjust estimates of expected returns by a multi-prior approach, also with

an aim of maximizing a utility function. The aforementioned paper Bai et al. (2009), which

analyze the systematic bias in the plug-in portfolio, propose a “bootstrap-corrected” method

to estimate the optimal portfolio. However, as pointed out in a more recent working paper

(Bai et al. 2013), the bootstrap-corrected method fails to satisfy the risk constraint.

Another direction to improve portfolio performance is to modify the original framework

by imposing various constraints on portfolio weights. Most research in this direction focuses

on the GMV portfolio. Imposing constraints on the weights has been empirically shown to

be helpful; see, for example, Jagannathan and Ma (2003), DeMiguel et al. (2009), Brodie

et al. (2009) and Fastrich et al. (2012). Fan et al. (2012b) give theoretical justifications to

the empirical results in Jagannathan and Ma (2003), and also investigate the GMV portfolio

with gross-exposure constraints where some short positions are allowed. Fan et al. (2012a)

consider GMV portfolio with high-frequency data under gross-exposure constraints.

In addition to the approaches mentioned above, combinations of different portfolios have

been studied; see, for example, Kan and Zhou (2007) and Tu and Zhou (2011).
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The aforementioned methods lead to improved portfolio performance. However, they are

still suboptimal. Take the latest development, the nonlinear shrinkage method in Ledoit and

Wolf (2017) as an example, we see in Figure 2 that although its risk is substantially lower

than that of the plug-in portfolio, it still violates the risk constraint, and is also significantly

suboptimal in terms of Sharpe ratio.
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Figure 2. Simulation comparisons of the plug-in and nonlinear shrinkage portfolios. The portfolios are

constructed based on the same data used for Figure 1. The left and right panels plot the portfolio risks and

Sharpe ratios, respectively. There are 100 stocks and 3 factors in the asset pool, and the sample size is 240.

The comparison is replicated 100 times.

More comprehensive comparisons including several other benchmark strategies are made

in Sections 3 and 4, based on both simulated and empirical data. The comparisons reveal

similar conclusions.

1.4 Our Contributions

In this paper, a new methodology for estimating the mean-variance efficient portfolio

is proposed, which we call the MAXimum-Sharpe-ratio Estimated & sparse Regression

(MAXSER) method. MAXSER is a general approach which can be applied to various

situations when the number of assets in portfolios is not negligible compared with sample

size. We show that, under mild assumptions, the MAXSER portfolio can asymptotically

(1) achieve mean-variance efficiency and (2) satisfy the risk constraint. To the best of our
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knowledge, this is the first time that both objectives can be simultaneously achieved for large

portfolio optimization.

Our first main contribution is establishing an equivalent unconstrained regression repre-

sentation of the Markowitz optimization problem. This special regression representation is a

novel finding made in this paper. There is existing literature on using regression to estimate

the optimal portfolio. Two most closely related approaches are Britten-Jones (1999), who use

1 as the response; and Brodie et al. (2009), who use the maximum expected return as the

response. The issues with the two approaches are that, the regression in Britten-Jones (1999)

results in a biased solution; while Brodie et al. (2009) deal with a constrained regression,

which is challenging and involves error and biases induced by sample estimates. Our regres-

sion representation, in contrast, is on the one hand, equivalent to the original optimization

problem, and on the other hand, unconstrained, so that it can be conveniently combined with

high-dimensional regression techniques. See more details in Section 2.1.

Our method further involves the following important aspects:

(1) Consistent estimation of the response in our regression representation, which depends on

consistent estimation of the maximum Sharpe ratio achieved by the tangency portfolio.

(2) Proper sparse regression and rigorous analysis under the framework of our regression

which possesses some unique features.

(3) The estimation in (1) and the sparse regression in (2) consists of the core of MAXSER.

Depending on whether factor structure is present in the asset pool or not, MAXSER

can be used directly on all assets or on idiosyncratic components.

• When there is no factor structure in returns, the combination of estimation of the

response and the sparse regression is directly applied to the assets. See Section 2.2.

• When factor structure does present, we develop a framework that decomposes the

portfolio estimation into the estimation of the optimal portfolio on factors and

that on idiosyncratic components. See Section 2.3.

Under both settings, we theoretically prove the convergences of the expected return

and risk of our estimated portfolio towards the theoretical maximum expected return

and risk constraint, respectively. These properties guarantee that our estimator can

asymptotically achieve mean-variance efficiency as both the number of assets and sample

size get large.
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The theoretical properties of the MAXSER portfolio are supported by simulation and

empirical studies. We compare our method with a number of benchmark methods including

the plug-in portfolio, the equally weighted portfolio, the linear/nonlinear shrinkage portfolio of

Ledoit and Wolf (2004) and Ledoit and Wolf (2017), and several other variations of MV/GMV

portfolios with constraints on portfolio weights. The complete simulation results are given

in Section 3. Figure 3 below shows the comparison among the plug-in, nonlinear shrinkage

and MAXSER portfolios. The added blue dashed lines plot the results of our portfolio. We

see that our portfolio effectively controls the risk to satisfy the risk constraint. More

importantly, the comparisons of Sharpe ratios show that our MAXSER portfolio nearly

achieves the mean-variance efficiency and significantly outperforms others.
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Figure 3. Comparison of our MAXSER portfolio with the plug-in and nonlinear shrinkage portfolios, based

on the same simulated data as for Figures 1 and 2. The added blue dashed lines represent the MAXSER

portfolio. The comparison is replicated 100 times.

Comprehensive empirical studies are presented in Section 4, in which we demonstrate the

favorable performance of our proposed strategy.
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2 The MAXSER Methodology

2.1 An Unconstrained Regression Representation

Suppose that we have a pool of N risky assets. Denote their (random excess) returns

by r = (r1, r2, · · · , rN)′, where for any vector v, v′ stands for the transpose of v. Let µ

and Σ be the mean vector and covariance matrix of r, respectively, and let w be a vector of

portfolio weights on the risky assets. For a given level of risk constraint σ, the Markowitz

optimization problem is

arg max
w

E(w′r) = w′µ subject to Var(w′r) = w′Σw ≤ σ2. (2.1)

If we denote by θ = µ′Σ−1µ the square of the maximum Sharpe ratio of the optimal portfolio,

then the optimization problem (2.1) can be represented in its dual form with a return

constraint r∗ = σ
√
θ:

arg min
w

w′Σw subject to w′µ = r∗. (2.2)

The optimal portfolio, w∗, admits the following explicit expression:

w∗ =
σ√
θ
Σ−1µ. (2.3)

The optimal portfolio w∗ satisfies the following linear relationship:

r∗ = w′r + ε, ε ∼ (0, σ2), (2.4)

where ε = r∗ −w′r is a random variable with mean 0 and variance σ2. Based on such an

equation, a natural way to solve for w∗ is the ordinary least squares (OLS):

w0 := arg min
w

E(r∗ −w′r)2. (2.5)

However, w0 is not the optimal portfolio. In fact, we have

w0 =
θ

1 + θ
w∗. (2.6)

In particular, we see that the OLS solution yields a smaller expected return and carries a

lower risk.

The result above shows that the OLS (2.5) leads to biased solution. The bias is due to

a unique feature of the OLS (2.5): Unlike in the conventional regression where the noise is

independent of (or at least uncorrelated with) the predictor, in (2.5) the noise ε and the
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predictor are correlated. To correct for the bias, if still r∗ is used as the response, then a

constraint must be added to least squares:

arg min
w

E(r∗ −w′r)2 subject to E(w′r) = r∗ or Var(w′r) = σ2.

The difficulty with such an approach is that the constraint has to be replaced with a sample

version as what is done in Brodie et al. (2009). In such a way, estimation error and even bias

are introduced. Our proposal, in contrast, is the following novel unconstrained regression.

Proposition 1. The unconstrained regression

arg min
w

E(rc −w′r)2, where rc :=
1 + θ

θ
r∗ ≡ 1 + θ√

θ
σ. (2.7)

is equivalent to the Markowitz optimization (2.1) or (2.2).

The corrected response in our regression representation (2.7), rc, adjusts the bias of the

OLS solution w0 by rescaling the maximum expected return r∗. In such a way, the Markowtiz

optimization problem is translated into an equivalent unconstrained regression.

Remark 1. In Britten-Jones (1999), the author connects the estimation of the tangency

portfolio with the regression coefficients in an OLS regression. There, the response is simply 1,

which results in a multiple of the plug-in tangency portfolio, hence is biased. To obtain the

tangency portfolio, one scales the weights so that the weights add up to one. After such

an adjustment, one gets the plug-in tangency portfolio, which, unfortunately, will not be

mean-variance efficient.

We emphasize that our regression representation (2.7) is intrinsically different from

existing regression representations in the literature for mean-variance portfolio estimation.

Our representation is unconstrained and equivalent to the Markowitz problem. The elimination

of constraint is particularly helpful for the estimation of the optimal portfolio of a large pool

of assets, for which important techniques like sparse regression becomes directly applicable.

2.2 When There Is No Factor Structure

Let us first consider the situation when asset returns do not possess a factor structure,

for example, when the asset pool consists of factor portfolios.

9



2.2.1 Estimating the Maximum Sharpe Ratio and the Regression Response

In our regression representation, the response rc is unknown2 and needs to be estimated.

The estimation of the response rc is closely related to the estimation of the maximum Sharpe

ratio, which has been considered in Kan and Zhou (2007). It is shown there that the square

of the plug-in Sharpe ratio follows a non-centralized F -distribution; see equation (49) in their

paper. Utilizing such a fact, we establish the following

Proposition 2. Define the following estimator of θ:

θ̂ :=
(T −N − 2)θ̂s −N

T
, (2.8)

where θ̂s := µ̂′Σ̂−1µ̂ is the sample estimate of θ. Under normality assumption on returns,

and assuming that N/T → ρ ∈ (0, 1), we have

|θ̂ − θ| P→ 0. (2.9)

Consequently,

r̂c :=
1 + θ̂√

θ̂
(2.10)

satisfies that

|r̂c − rc|
P→ 0. (2.11)

We emphasize that our estimation of θ = µ′Σ−1µ is not via consistently estimating µ

and Σ, which would be impossible without imposing strong structural assumptions on

them. Instead, we estimate θ directly, and in such a way we overcome the challenge due to

high-dimensionality.

2.2.2 A LASSO-type Estimator

On the basis of our unconstrained regression representation (2.7), we aim to estimate the

optimal portfolio w∗ for a given risk constraint σ.

Suppose that Rt = (Rt1, · · · , RtN )′, t = 1, · · · , T , are T i.i.d. copies of the (excess) return.

Let R = (R1, ...,Rn)′ be the T × N observation matrix. We focus on the case where

N and T are both large and the optimal portfolio has a bounded `1-norm. In terms of

2In the case when return constraint r∗ is given, the response is still unknown because the bias-correction

scalar depends on θ, the square of the underlying maximum Sharpe ratio.
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the regression (2.7), this amounts to a high-dimensional regression problem with bounded

`1-norm regression coefficients. Such a connection leads us to the widely used approach in

high-dimensional regression, LASSO (Tibshirani (1996)). More specifically, take a λ > 0 and

define a LASSO-type estimator ŵ∗ =
(
ŵ∗1, ..., ŵ

∗
N

)′
as follows:

ŵ∗ = arg min
w

||r̂c −Rw||22 subject to ||w||1 ≤ λ, (2.12)

where r̂c = (r̂c, ..., r̂c)
′ ∈ RT is the estimated response. Before we give the theoretical property

of ŵ∗, we first list the assumptions that will be needed.

Assumption:

A1 The (excess) return r ∼ N(µ,Σ);

A2 There exists an L <∞ such that for all dimension N , Σ = (σjk)N×N satisfies that

max
1≤j,k≤N

|σjk| ≤ L;

A3 The eigenvalues of Σ are bounded from both above and below;

A4 There exists M <∞ such that for all dimension N , ||µ||2 ≤M ;

A5 ||w∗||1 ≤ λ for some constant λ;

A6 The number of assets N and the sample size T satisfy that ρT := N/T → ρ ∈ (0, 1).

Remark 2. About Assumption A1, in this paper we focus on the most fundamental form of

the mean-variance problem, so we assume normal distribution of returns. Numerically, we

find that our proposed method works well even when heavy-tailedness is present. Extensions

incorporating heteroscedasticity and heavy-tailedness will be studied in subsequent papers.

Remark 3. Under Assumption A3, Assumption A4 is equivalent to the common belief that

the theoretically optimal Sharpe ratio is bounded. Note that Assumption A4 also implies that

max
1≤j≤p

|µj| ≤M .

Remark 4. Assumption A5 is our sparsity requirement on the optimal portfolio when there

is no factor structure. Assumptions A3 and A4 imply that ||w∗||2 is bounded, so the only

difference is between the `2 norm and the `1 norm. Note that Assumption A5 does not require

most weights to be zero. For example, it does not rule out value-weighted portfolios. We will

see in Section 2.3 that when there is factor structure, the requirement will be only imposed

upon the weights on idiosyncratic components.

More generally, if indeed ||w∗||1 is unbounded, then one can truncate w∗ at the level

of ε/
√
N for some ε > 0 to reduce nonzero but small elements and possibly largely reduce the
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`1 norm. Note that the difference between w∗ and its truncated version has a difference of `2

norm at most ε. Using Assumptions A3 and A4, one can show that the differences between

the variances and expected returns of the two portfolios are both O(ε). In other words, one

sacrifices little in terms of both return and risk and yet can possibly largely reduce the number

of nonzero but small positions.

Remark 5. Assumption A6 says that we are in a high-dimensional setting where the number

of assets N and the sample size T proportionally grow up to infinity. We require the sample

size T to be larger than the dimension N due to that we need to take inverse of the sample

covariance matrix in estimating the maximum Sharpe ratio; see Proposition 2.

2.2.3 Main Result I: MAXSER Without Factor Structure

We now state our first main result, which establishes the near-optimality of our MAXSER

portfolio when returns do not admit factor structures.

Theorem 1. Under Assumptions A1∼A6, the MAXSER portfolio ŵ∗ defined in (2.12) with

r̂c given by (2.10) satisfies that, as N →∞,

||w∗ − ŵ∗||2
P→ 0, (2.13)

|r∗ − µ′ŵ∗| P→ 0, (2.14)

and ∣∣∣∣√ŵ∗′Σŵ∗ − σ
∣∣∣∣ P→ 0. (2.15)

Theorem 1 guarantees that our MAXSER portfolio ŵ∗ asymptotically (1) achieves the

maximum expected return and (2) satisfies the risk constraint. An immediate implication is

that ŵ∗ also approaches the mean-variance efficiency.

2.3 When Factor Structure Presents

2.3.1 The Optimal Portfolio: A Factor-Idiosyncratic Components Separation

Motivated by the large literature on factor models for stock returns, we next propose an

alternative version of MAXSER under the following approximate factor model:

ri = αi +
K∑
j=1

βijfj + ei :=
K∑
j=1

βijfj + ui, i = 1, · · · , N, (2.16)
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where the βij ’s represent individual stock sensitivities to the factors, and ei’s are idiosyncratic

disturbances independent of the factor returns (fj). The factors can be any well-recognized

factors like Fama-French three factors or other factors identified in the large literature of asset

pricing (see, e.g., Jegadeesh and Titman (2001) and Korajczyk and Sadka (2008)). They

can also be statistical factors identified via principal component analysis (see, e.g., Connor

et al. (2010)). As to the idiosyncratic disturbances (ei)’s, we emphasize that they can still be

cross-sectionally dependent. The terms ui = αi + ei will be referred to as the idiosyncratic

returns. Model (2.16) can be written in a compact form as

r = βf + u, (2.17)

where β = (βij)N×K , f = (f1, · · · , fK)′, and u = (u1, · · · , uN)′. Let µf be the mean of the

factor returns, and α = (α1, · · · , αN)′ which is the mean of idiosyncratic return u. Let Σf

and Σu be the covariance matrix of factor and idiosyncratic returns, respectively. Then the

return vector r has the following mean µ and covariance matrix Σ:

µ = βµf +α, Σ = βΣfβ
′ + Σu. (2.18)

Denote the mean and covariance matrix of the returns on the full pool of factors and assets

by µall and Σall, respectively.

Such a model has been widely adopted in the literature. In particular, in light of Section 5

of Chamberlain and Rothschild (1983), we make the following

Assumption:

B1 The eigenvalues of Σu := Cov(u) is bounded from both above and below, and

σij := Σu(i, j) satisfies that max
1≤i,j≤N

|σi,j| ≤ L <∞.

B2 ||α||2 :=
√∑N

j=1 α
2
j is bounded. In particular, there exists M < ∞ such that

max
1≤j≤N

|αj| ≤M .

B3 The number of factors K is bounded.

Given the factor structure, when we build portfolios, we shall invest in not only the N

assets but also the K factors. Such a strategy is straightforward when the factors are

taken to be investable factors like the Fama-French factors and many others (see, e.g., the

supplementary file of Feng et al. (2017)), and is also feasible when the factors are statistical

factors thanks to that both the number of factors K and the factors can be consistently

estimated (see, for example, Bai and Ng (2002)).

13



We aim to find an optimal weight (wf1 , . . . , w
f
K ;w1, . . . , wN ) := (wf ,w), where wf and w

represent the weight vectors put on the K factors and N assets, respectively. The following

result shows that finding such an optimal weight can be decomposed into three steps:

(i) Find the optimal portfolio on the factors with 1 unit of risk (denoted by w∗f ),

(ii) Find the optimal portfolio on the idiosyncratic components with 1 unit of risk (denoted

by w∗u), and

(iii) Suitably combine these two portfolios.

Proposition 3. For any given risk constraint level σ, the optimal portfolio wall := (wf ,w)

is given by (
σ

√
θf
θall
w∗f − σ

√
θu
θall
β′w∗u, σ

√
θu
θall
w∗u

)
,

where θf = µ′fΣ
−1
f µf , θu = α′Σ−1u α, and θall = µ′allΣ

−1
allµall are the squared maximum Sharpe

ratios of portfolios on the factors, the idiosyncratic components, and the full set of factors and

individual assets, respectively. Moreover, w∗f and w∗u admit the following explicit expressions:

w∗f =
1√
θf

Σ−1f µf , w∗u =
1√
θu

Σ−1u α. (2.19)

Remark 6. In the case when αi ≡ 0, we have θu = 0 and hence the optimal weight is given by(
σw∗f ,0

)
. In other words, the optimal portfolio will be fully invested in factors. However, this

is only the case when all the underlying factors are identified and included, which is unlikely

in practice especially when one wants to only include a small number of strong factors.

According to Proposition 3, in order to estimate the optimal portfolio (wf ,w), we need to

estimate θf , θu, w∗f and w∗u. We will deal with them one by one, starting with the estimation

of the maximum Sharpe ratios.

2.3.2 Estimating the Maximum Sharpe ratios

Estimation of the maximum Sharpe ratio is still essential under the current setting with

factor structure. There are three Sharpe ratios that are of interest in this setting: θf , θu

and θall, the squared maximum Sharpe ratios on factors, idiosyncratic components and all

assets, respectively. For estimating θf and θall, parallel to Proposition 2 we have the following
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Proposition 4. Define the following estimators of θf and θall:

θ̂f :=
(T −K − 2)θ̂sf −K

T
, (2.20)

θ̂all :=
(T −N −K − 2)θ̂sa −N −K

T
, (2.21)

where θ̂sf := µ̂′fΣ̂
−1
f µ̂f and θ̂sa := µ̂′allΣ̂

−1
all µ̂all are the sample estimates of θf and θall,

respectively. Under normality assumption on factor and idiosyncratic returns, assuming that

N/T → ρ ∈ (0, 1), we have

|θ̂f − θf |
P→ 0, and |θ̂all − θall|

P→ 0.

There is one more Sharpe ratio to be estimated,
√
θu, the maximum Sharpe ratio on

the idiosyncratic components. This quantity is a bit trickier to deal with, because the

idiosyncratic return U is not observable. A natural idea is to work with Û , the estimated

idiosyncratic return. However, it can be shown that an estimator similar to (2.20) and (2.21)

applied to Û will be biased.

The solution to the aforementioned difficulty lies in the relationship among θf , θu and θall.

Based on the model (2.17), one can show that

θall = θf + θu.

By Proposition 4, both θf and θu can be consistently estimated, so we get the following

Proposition 5. Define

θ̂u := θ̂all − θ̂f .

Under the assumptions of Proposition 4, we have

|θ̂u − θu|
P→ 0.

Therefore for rc := (1 + θu)/
√
θu, if we define

r̂c =
1 + θ̂u√

θ̂u

, (2.22)

then

|r̂c − rc|
P→ 0.
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2.3.3 Estimating the Optimal Portfolio on Idiosyncratic Components

The optimal portfolio on the idiosyncratic components, w∗u, solves the following Markowitz

optimization problem:

arg max
w

α′w subject to w′Σuw ≤ 1. (2.23)

By (2.19), the optimal portfolio yields an expected return of

r∗u =
√
θu, (2.24)

which is the maximum Sharpe ratio of portfolios on (ui). Following our regression representa-

tion in Section 2.1, we will estimate w∗u based on the following:

arg min
w

E (rc − u′w)
2
, where rc :=

1 + θu
θu

r∗u =
1 + θu√
θu

. (2.25)

One major difference here is that the idiosyncratic returns are not observable.

Suppose that Rt = (Rt1, · · · , RtN)′ and Ft = (Ft1, · · · , FtK)′, t = 1, · · · , T , are T

i.i.d. copies of the (excess) return r and the factor (excess) return f , respectively. Let

R = (R1, ...,RT )′ and F = (F1, · · · ,FT )′. We estimate the coefficient β in (2.17) by

regressing R on F . Denote by β̂ the estimated beta matrix. Correspondingly, let Û =

(û1, · · · , ûN)′ = R − F β̂ be the estimator of U = R − Fβ. Our estimation of w∗u will be

based on the T ×N matrix Û .

Similarly to Section 2.2.2, our estimator of w∗u is the following LASSO-type estimator:

ŵ∗u = arg min
w

||r̂c − Ûw||22 subject to
N∑
i=1

|wi| ≤ λ, (2.26)

where r̂c = (r̂c, · · · , r̂c)′ is the estimator of the response defined in (2.22), and λ is a positive

constant. To give the theoretical properties of ŵ∗u, the following assumptions will be needed.

Assumption:

C1 f ∼ N(µf ,Σf ), u ∼ N(α,Σu);

C2 ||w∗u||1 ≤ λ for some constant λ;

C3 The number of assets N and the sample size T satisfy that ρT := N/T → ρ ∈ (0, 1).

Remark 7. Assumption C2 is our sparsity requirement under factor models. We emphasize

that the sparsity assumption is put on the weights on the idiosyncratic components. As
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discussed in Remark 6, w∗u ≡ 0 if αi ≡ 0, and the assumption is certainly satisfied. More

generally, ||α||2 is bounded by Assumption B2. If there are only finitely many none zero of

αi, then Assumption C2 would be satisfied when maxi
∑

j=1,...,N |Ωu(i, j)| is bounded, where

Ωu := Σ−1u . Recall that under the Gaussian assumption C1, Ωu(i, j) = 0 if and only if ui

and uj are conditionally independent given {uk : k 6= i, j}, and more generally, Ωu(i, j) is

related to the partial correlation between ui and uj. Because (ui) are idiosyncratic returns, it

is possibly reasonable to expect that for each i, ui is only correlated with finitely many other

(uj)’s, in which case the assumption naturally holds.

We are now ready to give the asymptotic properties of the portfolio ŵ∗u. Note that

because Û contains estimation errors, Theorem 1 does not readily apply to this case.

Proposition 6. Under Assumptions B1 ∼ B3 and C1 ∼ C3, we have as N →∞,

||w∗u − ŵ∗u||2
P→ 0, (2.27)

|α′w∗u −α′ŵ∗u|
P→ 0, (2.28)

and ∣∣∣∣√ŵ∗u′Σuŵ∗u − 1

∣∣∣∣ P→ 0. (2.29)

Proposition 6 states that the portfolio ŵ∗u asymptotically attains the maximum expected

return and carries a risk that is close to the given risk constraint, in this case, 1.

2.3.4 Main Result II: MAXSER Under Factor Models

By far we have achieved consistency in estimating w∗u, θu and θf . There is one more

item to be estimated, w∗f , the optimal weight on factors (with risk equal to 1). This is easy

because the number of factors is fixed, and the simple “plug-in” estimator works. Combining

these results with Proposition 3, we obtain the following main result for our estimator of the

optimal full portfolio ŵall.

Theorem 2. Let ŵ∗f := 1√
θ̂f

Σ̂−1f µ̂f be the estimator of w∗f . Our estimator of the optimal

full portfolio wall is

ŵall := (ŵf , ŵ) =

σ
√

θ̂f

θ̂all
ŵ∗f − σ

√
θ̂u

θ̂all
β̂′ŵ∗u, σ

√
θ̂u

θ̂all
ŵ∗u

 . (2.30)

Under Assumptions B1 ∼ B3 and C1 ∼ C3, as N →∞, we have

|ŵall
′
µall − r∗|

P→ 0, and |ŵall
′Σallŵall − σ2| P→ 0. (2.31)
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Theorem 2 guarantees that our MAXSER portfolio under the factor model setting can

again asymptotically achieve the maximum expected return and meanwhile satisfy the risk

constraint, and consequently, achieve mean-variance efficiency.

2.4 Practical Implementation of MAXSER

2.4.1 Choosing λ in (2.12) and (2.26)

In practice, it is important to choose λ in (2.12) and (2.26). Because one of our goals is

to meet the risk constraint, we naturally want to choose a λ such that the estimated portfolio

possesses a risk that is close to the given risk constraint. In practice, we do not know the

underlying covariance matrix Σ/Σall. To circumvent this difficulty, we use a cross-validation

method to choose the λ. Specifically, for a 10-fold cross-validation procedure, we randomly

split the sample into 10 groups to form 10 validation sets. For each validation set, the training

set is taken to be the rest of the observations. Next, for each such training set i, we let λ

vary from 0 to the maximum value (the `1-norm of the least squares solution) to obtain the

whole solution path
(
ŵ∗(λ)

)
λ

((ŵall(λ))λ under factor model setting), and find the value

of λ such that the estimated portfolio minimizes the difference between the “out-of-sample”

risk computed using the validation set and the given risk constraint. Denote such a value by

λ(i). The ultimate λ̂ is then taken to be the average of (λ(i), i = 1, · · · , 10).

To our knowledge, the above cross-validation method for determining the constraint

parameter in norm-constrained mean-variance portfolio optimization is new and constitutes

another contribution of ours to the literature. By choosing the parameter selection criterion

to be the risk, our cross-validation method effectively helps control out-of-sample risk. The

procedure can be easily applied to other portfolio optimizations where norm-constraints

are imposed. In our numerical studies, we apply such a cross-validation method to other

norm-constrained portfolios and compare their performance with ours.

2.4.2 Adjustment of θ̂, θ̂f , θ̂u and θ̂all

Kan and Zhou (2007) notice that the unbiased estimator of the square of maximum

Sharpe ratio θ̂ often takes negative values, and they propose the adjusted estimator that

improves over the unbiased one:

θ̂a =
(T −N − 2)θ̂s −N

T
+

2(θ̂s)
N/2(1 + θ̂s)

−(T−2)/2

TBθ̂s/(1+θ̂s)
(N/2, (T −N)/2)

, (2.32)
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where, recall that, θ̂s is the plug-in estimators of θ, and

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy.

Under the factor model setting, we adopt the following adjustments of θ̂f and θ̂all:

θ̂fa =
(T −K − 2)θ̂sf −K

T
+

2(θ̂sf )
K/2(1 + θ̂sf )

−(T−2)/2

TBθ̂sf/(1+θ̂sf )
(K/2, (T −K)/2)

, (2.33)

θ̂all,a =
(T −N −K − 2)θ̂sa −N −K

T
+

2(θ̂sa)
(N+K)/2(1 + θ̂sa)

−(T−2)/2

TBθ̂sa/(1+θ̂sa)
((N +K)/2, (T −N −K)/2)

, (2.34)

where, recall that, θ̂sf and θ̂sa are the plug-in estimators of θf and θall. The adjusted θ̂u is

θ̂ua := θ̂all,a − θ̂fa.

2.4.3 Implementation Steps

When there is no factor structure

To sum up, our method consists of the following steps:

Step 1 Compute the estimates of the square of the maximum Sharpe ratios θ̂ by (2.32),

and compute the response r̂c;

Step 2 Choose λ by cross-validation according to the procedure described in Section 2.4.1.

Denote the chosen value by λ̂;

Step 3 Set λ in (2.12) to be λ̂ and solve for ŵ∗, the MAXimum-Sharpe-ratio Estimated

sparse Regression (MAXSER) portfolio.

When factor structure presents

Under the factor model setting, MAXSER is implemented as follows:

Step 1 Perform OLS regressions of observed asset returns X on observed factor returns F

to obtain β̂ and Û ;

Step 2 Compute the estimates of the square of the maximum Sharpe ratios θ̂f , θ̂all and θ̂u,

and compute the response r̂c;

Step 3 Choose λ by cross-validation according to the procedure described in Section 2.4.1

(based on risk ŵall
′Σallŵall). Denote the chosen value by λ̂;
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Step 4 Set λ in (2.26) to be λ̂ and solve for ŵ∗u;

Step 5 Compute ŵ∗f and combine the estimates from the previous steps to obtain the

MAXSER portfolio weight ŵall.

3 SIMULATION STUDIES

3.1 Methods to be Compared with

In addition to the plug-in and nonlinear shrinkage portfolios that we discussed in the

Introduction, we include several other strategies in our simulation comparisons. The complete

list is given in Table 1.

Table 1

List of portfolios under comparison and their abbreviations. “MV” stands for mean-variance portfolio, and

“GMV” stands for global minimum variance portfolio.

Portfolio Abbreviation

Plug-in MV on factors Factor

Three-fund portfolio by Kan and Zhou (2007) KZ

MV/GMV with estimated covariance matrix inputs

MV with sample cov MV-P

MV with linear shrinkage cov MV-LS

MV with nonlinear shrinkage cov MV-NLS

Nonlinear shrinkage adjusted for factor models by Ledoit and Wolf (2017) NLSF

GMV with linear shrinkage cov GMV-LS

GMV with nonlinear shrinkage cov GMV-NLS

MV with no-short-sale constraint

MV with sample cov & no-short-sale constraint MV-P-NSS

MV with linear shrinkage cov & no-short-sale constraint MV-LS-NSS

MV with nonlinear shrinkage cov & no-short-sale constraint MV-NLS-NSS

MV with short-sale constraint & cross-validation

MV with sample cov & short-sale-CV MV-P-SSCV

MV with linear shrinkage cov & short-sale-CV MV-LS-SSCV

MV with nonlinear shrinkage cov & short-sale-CV MV-NLS-SSCV
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Among the portfolios under comparison, a special one is the portfolio Factor, which is

the Markowitz portfolio on factors. Specifically, suppose µ̂f and Σ̂f are the sample mean

and sample covariance matrix computed from the observed factor returns, then the Factor

portfolio has the following explicit form:

ŵFac :=
σ√

µ̂f
′Σ̂f

−1
µ̂f

Σ̂f

−1
µ̂f . (3.1)

This portfolio is special in the sense that it only involves a small number of assets (3 in

our case). Consequently, the plug-in formula (3.1) indeed gives a nearly optimal portfolio.

Including such a portfolio in the comparison would reveal whether there is benefit to invest

in idiosyncratic components.

On the other hand, the MV/GMV portfolios are constructed by replacing covariance

matrix with the sample/linear shrinkage/nonlinear shrinkage (adjusted for factor model)

estimators in the formulas of MV/GMV portfolio weights. Details about portfolios “KZ”3

and “NLSF” can be found in Kan and Zhou (2007) and Ledoit and Wolf (2017), respectively.

In addition, we construct portfolios with either no-short-sale or short-sale constraints

on portfolio weights. The “MV-P-NSS”, “MV-LS-NSS” and “MV-NLS-NSS” portfolios are

with no-short-sale constraints, and are using the sample/linear shrinkage/nonlinear shrinkage

covariance matrix, respectively. More generally, the MV portfolios with short-sale constraints4,

“MV-P-SSCV”, “MV-LS-SSCV” and “MV-NLS-SSCV”, are having short position thresholds

determined by the cross-validation method that we proposed in Section 2.4.1. In such a way,

these portfolios enjoy the same benefit as our MAXSER portfolio in terms of risk control.

We include these portfolios to demonstrate the effectiveness of our cross-validation procedure,

and that the advantage of MAXSER is not only due to the `1-norm constraints, but rather,

more fundamentally, due to its methodology.

3Following Kan and Zhou (2007), the risk aversion is set to be 3.
4Specifically, suppose that µ̂all is the sample mean of returns on stocks and factors, and Σ̂all is an estimate

of the covariance matrix, which can be the sample/linear shrinkage/nonlinear shrinkage covariance matrix.

Then the MV portfolio with short-sale constraint is solved by

wSSCV = arg max
w

w′µ̂all, subject to w′Σ̂allw ≤ σ2 and wi > −λSS for all i.

Here λSS > 0 is the short position threshold determined via a 10-fold cross-validation as follow: split the

sample into 10 groups of validation sets, with the rest of the observations being the corresponding training

set. For each training set, we solve the optimization for a sequence of λSS to get a solution path, and find the

value of λSS such that the difference between the risk on validation sets and the given constraint is minimized.
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3.2 Parameter Setting

We simulate data from a three-factor model with the parameters calibrated from real

data. Specifically, out of the stocks that stayed in S&P 500 index during the period of 2007

– 2016, we randomly pick 100 of them. We then regress the monthly excess returns on the

100 stocks over the Fama-French three factor (FF3) returns, and set the resulting slopes to

be the βi’s; the αi’s in (2.16) are obtained by hard thresholding the estimated intercepts

with a threshold of 2 standard errors. The covariance matrix of idiosyncratic returns, Σu,

is obtained by applying the soft-thresholding method proposed in Rothman (2012)5 to the

sample covariance matrix of the residuals in the regression above. For the parameters of

factors, the mean and covariance matrix are taken to be the sample mean and the sample

covariance matrix of the Fama-French three factor returns, respectively.

3.3 Simulation Comparisons

3.3.1 When returns are normally distributed

We first show simulation results for data generated under multivariate normal distribution.

Returns of 100 stocks and 3 factors are generated using the parameters described in Section 3.2.

The level of risk constraint is fixed to be σ = 0.04.

We run 1,000 replications to evaluate the performance of the portfolios in terms of the

risk and (annualized) Sharpe ratio. The comparison results for sample sizes T = 120 and 240

are summarized in Tables 2 and 3.

5The soft-thresholding method can be implemented in R by the package “PDSCE”. In this case the penalty

parameter “lam” is set to be 0.5.

22



Table 2

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications

where returns are generated from multivariate normal distribution. “True” stands for the theoretical optimal

portfolio. The risk constraint is set to be 0.04. Both average value and standard deviation (in brackets) of

each performance measure are reported.

Normal Distribution σ = 0.04 T = 120

Portfolio Risk Sharpe Ratio

True 0.040 1.882

Factor 0.041 (0.003) 0.401 (0.169)

KZ 0.052 (0.040) 0.329 (0.184)

MAXSER 0.041 (0.005) 1.183 (0.276)

MV/GMV with estimated covariance matrix inputs

MV-P 0.296 (0.072) 0.367 (0.168)

MV-LS 0.082 (0.006) 0.697 (0.160)

MV-NLS 0.054 (0.017) 0.945 (0.183)

NLSF 0.044 (0.002) 0.837 (0.139)

GMV-LS 0.013 (0.001) 0.438 (0.132)

GMV-NLS 0.015 (0.003) 0.553 (0.148)

MV with no-short-sale constraint

MV-P-NSS 0.044 (0.003) 0.399 (0.040)

MV-LS-NSS 0.044 (0.003) 0.409 (0.036)

MV-NLS-NSS 0.043 (0.003) 0.416 (0.035)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.044 (0.003) 0.399 (0.040)

MV-LS-SSCV 0.044 (0.003) 0.409 (0.036)

MV-NLS-SSCV 0.044 (0.004) 0.501 (0.169)
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Table 3

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications

where returns are generated from multivariate normal distribution. “True” stands for the theoretical optimal

portfolio. The risk constraint is set to be 0.04. Both average value and standard deviation (in brackets) of

each performance measure are reported.

Normal Distribution σ = 0.04 T = 240

Portfolio Risk Sharpe Ratio

True 0.040 1.882

Factor 0.041 (0.002) 0.467 (0.108)

KZ 0.091 (0.031) 0.909 (0.130)

MAXSER 0.040 (0.003) 1.508 (0.154)

MV/GMV with estimated covariance matrix inputs

MV-P 0.070 (0.005) 0.911 (0.123)

MV-LS 0.061 (0.004) 0.943 (0.117)

MV-NLS 0.049 (0.004) 1.199 (0.117)

NLSF 0.042 (0.001) 1.068 (0.104)

GMV-LS 0.009 (0.000) 0.450 (0.102)

GMV-NLS 0.009 (0.001) 0.539 (0.167)

MV with no-short-sale constraint

MV-P-NSS 0.042 (0.002) 0.415 (0.032)

MV-LS-NSS 0.042 (0.002) 0.420 (0.031)

MV-NLS-NSS 0.041 (0.002) 0.427 (0.030)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 (0.002) 0.415 (0.032)

MV-LS-SSCV 0.042 (0.002) 0.420 (0.031)

MV-NLS-SSCV 0.042 (0.003) 0.468 (0.137)

From Tables 2 and 3, we observe that

• In terms of risk control,

– The risk of our MAXSER portfolio is close to the given constraint, whereas

MV portfolios with covariance matrix estimated by sample, linear shrinkage and

nonlinear shrinkage estimators violate the risk constraint by about 640%, 105%
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and 35% when T = 120, respectively.

– The risks of Factor, NLSF, and MV portfolios with (no-)short-sale constraints are

similar to the risk of MAXSER.

• In terms of Sharpe ratio,

– MAXSER achieves the highest Sharpe ratio among all portfolios under comparison.

In the T = 240 case, MAXSER achieves about 80% of the theoretical maximum

Sharpe ratio on average, whereas the Sharpe ratio of the MV-NLS portfolio, the

second highest among all portfolios, is about 64% of the theoretical maximum

value on average.

– For the T = 240 case, the 95% confidence interval of the mean Sharpe ratio of

MAXSER is [1.498, 1.518]. In terms of comparison, the 95% confidence interval

for the difference between the mean Sharpe ratios of MAXSER and MV-NLS is

[0.301, 0.317]. In particular, we conclude that the higher Sharpe ratio of MAXSER

is statistically significant.

– Compared with MV-P-SSCV, MV-LS-SSCV and MV-NLS-SSCV portfolios, the

Sharpe ratio of MAXSER is substantially higher, indicating that the outstanding

performance of MAXSER is fundamental and does not rely on cross-validation

only.

• In summary,

– Our MAXSER portfolio effectively controls risk, and is significantly more mean-

variance efficient than the other portfolios.

– The comparison with Factor portfolio suggests that investing in idiosyncratic

components, or equivalently, individual stocks, helps improve the mean-variance

efficiency.

3.3.2 When returns are heavy-tailed

Given the empirical evidence that financial returns tend to be heavy-tailed, in the following

we conduct a simulation study for data with heavy-tails. More specifically, we shall let the

factor and idiosyncratic returns be all Student-t distributed with 6 degrees of freedom. The

mean and covariance matrix parameters are taken to be the same as in Section 3.2.
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Table 4

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications

where returns are generated from t-distribution with 6 degrees of freedom. The underlying mean and covariance

matrix are the same as in Section 3.3.1. “True” stands for the theoretical optimal portfolio. The risk constraint

is set to be 0.04. Both average value and standard deviation (in brackets) of each performance measure are

reported.

t(6) Distribution σ = 0.04 T = 120

Portfolio Risk Sharpe Ratio

True 0.040 1.882

Factor 0.034 (0.003) 0.350 (0.202)

KZ 0.039 (0.031) 0.288 (0.191)

MAXSER 0.033 (0.005) 1.035 (0.281)

MV/GMV with estimated covariance matrix inputs

MV-P 0.246 (0.060) 0.321 (0.174)

MV-LS 0.062 (0.005) 0.635 (0.169)

MV-NLS 0.042 (0.009) 0.845 (0.179)

NLSF 0.036 (0.002) 0.716 (0.150)

GMV-LS 0.013 (0.001) 0.459 (0.130)

GMV-NLS 0.014 (0.003) 0.572 (0.125)

MV with no-short-sale constraint

MV-P-NSS 0.036 (0.003) 0.394 (0.039)

MV-LS-NSS 0.036 (0.003) 0.406 (0.035)

MV-NLS-NSS 0.035 (0.003) 0.411 (0.036)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.036 (0.003) 0.394 (0.039)

MV-LS-SSCV 0.036 (0.003) 0.406 (0.035)

MV-NLS-SSCV 0.037 (0.004) 0.531 (0.196)
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Table 5

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications

where returns are generated from t-distribution with 6 degrees of freedom. The underlying mean and covariance

matrix are the same as in Section 3.3.1. “True” stands for the theoretical optimal portfolio. The risk constraint

is set to be 0.04. Both average value and standard deviation (in brackets) of each performance measure are

reported.

t(6) Distribution σ = 0.04 T = 240

Portfolio Risk Sharpe Ratio

True 0.040 1.882

Factor 0.033 (0.002) 0.427 (0.141)

KZ 0.059 (0.023) 0.802 (0.154)

MAXSER 0.033 (0.003) 1.374 (0.203)

MV/GMV with estimated covariance matrix inputs

MV-P 0.058 (0.004) 0.807 (0.140)

MV-LS 0.048 (0.003) 0.847 (0.133)

MV-NLS 0.040 (0.004) 1.071 (0.138)

NLSF 0.034 (0.001) 0.931 (0.117)

GMV-LS 0.010 (0.000) 0.469 (0.107)

GMV-NLS 0.010 (0.001) 0.538 (0.182)

MV with no-short-sale constraint

MV-P-NSS 0.034 (0.002) 0.406 (0.035)

MV-LS-NSS 0.034 (0.002) 0.412 (0.033)

MV-NLS-NSS 0.034 (0.002) 0.418 (0.032)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.034 (0.002) 0.406 (0.035)

MV-LS-SSCV 0.034 (0.002) 0.414 (0.046)

MV-NLS-SSCV 0.035 (0.003) 0.529 (0.221)

Tables 4 and 5 show that MAXSER portfolio continues to clearly outperform other

portfolios. Another observation is that, if we compare Tables 4 and 5 with Tables 2 and 3 for

the normal case, we see that heavy-tailedness does to some extent hurt all the strategies in

terms of Sharpe ratios.
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4 EMPIRICAL STUDIES

We investigate the performance of our strategy through two types of empirical studies:

• Practical evaluation:

The asset pool containing the constituents of the DJIA 30 index is considered. Under

a rolling-window scheme to be specified below, at each rebalancing time point, only

the constituents at that time are considered to invest in. Portfolio performances are

compared on the basis of both raw returns and returns net of transaction costs; see

Section 4.2 for the details.

• General statistical evaluation:

We compare the performance of the compared strategies using 100 random datasets, in

which the stocks are randomly picked historical constituents of the S&P 500 index. See

Section 4.3 for the details.

4.1 Portfolios Under Comparison in Empirical Study

In addition to the strategies we compared in simulation studies, we further investigate the

performance of five more portfolios in our empirical study, including the index, the equally

weighted portfolio (“1/N” rule), and three `1-norm constrained mean-variance portfolios.

Based on different covariance matrices estimated by the sample estimator, the linear shrinkage

estimator (Ledoit and Wolf (2004)), and the nonlinear shrinkage estimator (Ledoit and Wolf

(2017)), we construct the portfolios “MV-P-l1CV”, “MV-LS-l1CV” and “MV-NLS-l1CV” by

imposing the `1-norm constraint6 for which the tuning parameter λ is determined by the

cross-validation method we proposed in Section 2.4.1. We include these `1-norm constrained

portfolios to examine the effect of imposing `1-norm constraint, and, more importantly,

to demonstrate that the advantage of MAXSER is not only due to the constraint and

cross-validation, but rather more due to its methodology.

6Due to the time cost of solving `1-norm constrained mean-variance optimizations, the latter three `1-norm

constrained methods are only applied to the DJIA data with around 30 stocks.
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4.2 Practical Evaluation

4.2.1 Data & Investment Rolling–Window Scheme

We first evaluate our proposed portfolio, MAXSER, based on the stock universe of DJIA

30 index constituents. We obtain the lists of DJIA 30 index constituents from COMPUSTAT

and CRSP. Fama-French three factors are also included in our asset pools. We evaluate the

portfolios based on a practical rolling-window scheme. More specifically, at the beginning

of each month, one asset pool is formed by including the current constituents of DJIA 30

index and the Fama-French three factors. The portfolios are constructed using the monthly

excess returns during the past T months, where T is the sample size to be specified. If a

stock has missing data in the T -month training period, it is excluded from the asset pool. As

a consequence, the number of stocks would vary over time and can be slightly smaller than

the total number of constituents. The risk constraint is fixed to be the standard deviation of

the DJIA 30 index returns during the first training period. The portfolios are held for one

month, and the corresponding returns are recorded. We then evaluate the performance of

the portfolios under comparison based on the out-of-sample monthly portfolio returns.

4.2.2 Performance Summary

We evaluate the performance of MAXSER and other competing portfolios in terms of

risk, annualized Sharpe ratio7 and statistical test of Sharpe ratio. We also investigate the

effect of transaction costs, and demonstrate the comparisons based on portfolio returns net

of transaction costs.

Without transaction costs

For the DJIA data set with around 30 stocks in each investment pool, we use a sample

size T = 60, which means that each training set contains 5 years returns. The testing period

is February 1967 – December 2016, which results in, for each strategy, 599 out-of-sample

monthly returns. In addition to comparing out-of-sample risks and Sharpe ratios, to show

the significance of the advantage of our portfolio MAXSER, we conduct hypothesis tests

about the Sharpe ratio. More specifically, we test

H0 : SRMAXSER 6 SR0 vs Ha : SRMAXSER > SR0, (4.1)

where SRMAXSER denotes the Sharpe ratio of MAXSER portfolio, and SR0 denotes the Sharpe

7For computing Sharpe ratios, we obtain the risk-free rate rf from Fama/French Data Library.
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ratio of the portfolio under comparison. To conduct such a test, we adopt Memmel (2003)’s

corrected version of Jobson and Korkie (1981)’s test. The summary without considering

transaction costs is reported in Table 6, which shows the risk, Sharpe ratio, and the p-value

of test (4.1) for each competing portfolio.
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Table 6

Summary of risk, Sharpe ratio and p-value of Sharpe ratio test of the portfolios under comparison on DJIA 30

index constituents and Fama-French three factors. The testing period is February 1967 – December 2016. The

risk constraint σ = 0.0366 is the standard deviation of the excess returns on DJIA 30 index during February

1962 – January 1967.

DJIA 30 & FF3 σ=0.0366 T = 60

Portfolio Risk Sharpe Ratio p-value

Index 0.044 0.102 0.000

Equally weighted 0.043 0.064 0.000

Factor 0.040 0.425 0.000

KZ 0.124 0.535 0.000

MAXSER 0.044 0.701 –

MV/GMV with estimated covariance matrix inputs

MV-P 0.089 0.595 0.008

MV-LS 0.053 0.303 0.000

MV-NLS 0.053 0.457 0.000

NLSF 0.051 0.524 0.000

GMV-LS 0.017 0.397 0.000

GMV-NLS 0.017 0.337 0.000

MV with no-short-sale constraint

MV-P-NSS 0.040 0.463 0.000

MV-LS-NSS 0.035 0.431 0.000

MV-NLS-NSS 0.035 0.399 0.000

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 0.543 0.000

MV-LS-SSCV 0.047 0.371 0.000

MV-NLS-SSCV 0.041 0.294 0.000

MV with `1-norm constraint & cross-validation

MV-P-l1CV 0.038 0.357 0.000

MV-LS-l1CV 0.045 0.440 0.000

MV-NLS-l1CV 0.046 0.386 0.000

From Table 6, one can observe the following:
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• In terms of risk control,

– The risk of MAXSER is close to those of the index, the equally weighted, the

Factor, the short-sale constrained and `1-norm constrained portfolios.

– The risk of the plug-in (“MV-P”) portfolio is more than twice of that of our

MAXSER portfolio, which is far beyond the risk constraint level and hardly

bearable for investors.

• In terms of Sharpe ratio,

– Our MAXSER portfolio yields the highest Sharpe ratio.

– Compared with portfolios with similar risks to ours, the Sharpe ratio of MAXSER

is 29% higher than that of MV-P-SSCV portfolio, which performs better than

other portfolios under comparison at the same risk level.

– The NLSF portfolio, which also takes factor structure into account, yields a 16%

higher risk and a 25% lower Sharpe ratio compared with our MAXSER portfolio.

– The three `1-norm constrained MV portfolios (MV-P-l1CV, MV-LS-l1CV and MV-

NLS-l1CV) also possess the sparsity property that only a small portion of stocks

are invested in. However, they yield much lower Sharpe ratio than MAXSER.

Such a comparison shows that the outstanding performance of MAXSER is largely

due to its methodology rather than solely imposing `1-norm constraint.

– The small p-values of Sharpe ratio tests against all the other portfolios demonstrate

the statistical significance of the advantage of MAXSER.

– The comparison between the Sharpe ratios of MAXSER (0.7) and Factor (0.4)

portfolios indicates that investing on individual stocks in addition to factors using

our strategy MAXSER can substantially improve the performance.

In summary, our MAXSER strategy effectively controls out-of-sample portfolio risk, and

dominates the competing portfolios in terms of mean-variance efficiency.

With transaction costs

Next, we take the transaction cost into account and compute the returns of each portfolio

net of transaction costs. Here we adopt a simple and widely-used formula of transaction
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costs, which is closely related to the portfolio turnover. The turnover is defined as

Turnover(t) :=
N∑
j=1

|wj(t+ 1)− wj(t+)|, (4.2)

where wj(t+ 1) is the weight on asset j at the beginning of period t+ 1, and wj(t+) is the

weight of the same asset at the end of period t. The transaction cost of the portfolio at time t

is proportional to Turnover(t) and a cost level c0, which measures transaction cost per dollar

traded. It can be derived that the portfolio return net of transaction cost in period t, rnet(t),

has the following relation with the total portfolio return r(t):

rnet(t) = (1− c0Turnover(t)) (1 + r(t))− 1. (4.3)

In Engle et al. (2012), it is found that the average cost level for NYSE stocks is around

0.088%. In the following analysis we adopt c0 = 0.1%. Table 7 shows the risk and Sharpe

ratio net of transaction costs.
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Table 7

The summary of risk, Sharpe ratio and p-value of Sharpe ratio test based on returns net of transaction costs

of the portfolios on DJIA 30 constituents and Fama-French three factors. The out-of-sample testing period is

February 1967 – December 2016.

DJIA & FF3 c0 = 0.1% σ=0.0366

Portfolio Risk Sharpe Ratio p-value

Equally weighted 0.043 0.059 0.000

Factor 0.040 0.403 0.000

KZ 0.123 0.440 0.000

MAXSER 0.044 0.630 –

MV/GMV with estimated covariance matrix inputs

MV-P 0.089 0.516 0.004

MV-LS 0.053 0.251 0.000

MV-NLS 0.053 0.379 0.000

NLSF 0.051 0.466 0.000

GMV-LS 0.017 0.368 0.000

GMV-NLS 0.017 0.266 0.000

MV with no-short-sale constraint

MV-P-NSS 0.040 0.437 0.000

MV-LS-NSS 0.035 0.409 0.000

MV-NLS-NSS 0.035 0.373 0.000

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 0.449 0.000

MV-LS-SSCV 0.047 0.282 0.000

MV-NLS-SSCV 0.041 0.150 0.000

MV with `1-norm constraint & cross-validation

MV-P-l1CV 0.038 0.269 0.000

MV-LS-l1CV 0.045 0.339 0.000

MV-NLS-l1CV 0.045 0.273 0.000

Table 7 again shows the clear advantage of our MAXSER portfolio. With transaction

costs deducted, all methods have a lower Sharpe ratio, and MAXSER still yields a Sharpe
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ratio that is significantly higher than the other strategies.

4.3 General Statistical Evaluation

The comparisons in Section 4.2.2 are from a practical viewpoint, where for each period the

stock pools are updated to include all index constituents. In this section, we further evaluate

the portfolio performances from a more statistical point of view, and base our investigation on

100 random stock pools formed by historical constituents of S&P 500 index. Specifically, each

stock pool consists of 100 stocks randomly chosen form the stock universe, which contains

369 stocks that have been included into S&P 500 index from 1964 to 2016, and also have

complete price data during the period of January 1992 – December 2016, the whole study

period. The stock pool is then kept fixed throughout the study period. In such a way, we

reduce the effect of inclusion/exclusion of stocks. We will make overall evaluations based on

the 100 randomizations.

4.3.1 An Overall Comparison

The following results are again based on the same rolling-window scheme as described

in Section 4.2.1. The sample size is T = 120, and we still include the Fama-French factors

into our investment pools. The means and standard deviations of portfolio risks and Sharpe

ratios are shown in Table 8.
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Table 8

Summary of risks and Sharpe ratios of the portfolios under comparison for 100 random datasets, each

containing 100 stocks randomly selected from S&P 500 index historical constituents. The testing period is

January 2002 – December 2016. The risk constraint is taken to be the standard deviation of the index excess

returns during January 1992 – December 2001, and is fixed over time and for all asset pools. Both average

value and standard deviation (in brackets) of each performance measure are reported.

S&P 500 & FF3 σ = 0.041 T = 120

Portfolio Risk Sharpe Ratio

Index 0.042 0.223

Factor 0.041 0.320

Equally weighted 0.050 (0.002) 0.261 (0.041)

KZ 0.072 (0.019) 0.311 (0.234)

MAXSER 0.043 (0.003) 0.532 (0.185)

MV/GMV with estimated covariance matrix inputs

MV-P 0.334 (0.031) 0.325 (0.230)

MV-LS 0.065 (0.004) 0.194 (0.180)

MV-NLS 0.061 (0.004) 0.188 (0.179)

NLSF 0.057 (0.003) 0.353 (0.161)

GMV-LS 0.025 (0.001) 0.420 (0.127)

GMV-NLS 0.025 (0.001) 0.414 (0.123)

MV with no-short-sale constraint

MV-P-NSS 0.047 (0.002) 0.345 (0.120)

MV-LS-NSS 0.043 (0.002) 0.288 (0.138)

MV-NLS-NSS 0.042 (0.002) 0.285 (0.146)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.047 (0.002) 0.345 (0.120)

MV-LS-SSCV 0.043 (0.002) 0.286 (0.139)

MV-NLS-SSCV 0.043 (0.002) 0.286 (0.153)

Table 8 shows that

• The plug-in portfolio in general carries a risk much higher than other portfolios. The

KZ portfolio, on average carries a risk 67% higher than the average risk of our MAXSER

portfolio, which is close to the risk constraint.
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• Among the portfolios with reasonable risk levels, MAXSER achieves the highest Sharpe

ratio on average, which is 27% higher than the average Sharpe ratio of GMV-LS

portfolio, the second highest among the portfolios under comparison.

Next, we again take transaction costs into account. The returns net of transaction costs

are computed by formula (4.3). The transaction cost level is again taken to be 0.1%. The

comparisons are summarized in Table 9.

Table 9

Comparison of risks and Sharpe ratios based on portfolio returns net of transaction costs, for 100 random

asset pools of size 103 formed by S&P 500 constituents and Fama-French three factors. Both average value

and standard deviation (in brackets) of each performance measure net of transaction costs are reported. The

length of training period is T = 120.

S&P 500 & FF3 c0 = 0.1% σ = 0.0247

Portfolio Net Risk Net Sharpe Ratio

Factor 0.041 0.303

Equally weighted 0.050 (0.002) 0.256 (0.041)

Kan 0.072 (0.018) 0.140 (0.234)

MAXSER 0.043 (0.003) 0.467 (0.185)

MV/GMV with estimated covariance matrix inputs

MV-P 0.328 (0.029) 0.101 (0.231)

MV-LS 0.065 (0.004) 0.139 (0.182)

MV-NLS 0.061 (0.004) 0.123 (0.181)

NLSF 0.057 (0.003) 0.300 (0.159)

GMV-LS 0.025 (0.001) 0.388 (0.126)

GMV-NLS 0.025 (0.001) 0.365 (0.122)

MV with no-short-sale constraint

MV-P-NSS 0.047 (0.002) 0.326 (0.121)

MV-LS-NSS 0.043 (0.002) 0.272 (0.139)

MV-NLS-NSS 0.042 (0.002) 0.269 (0.147)

MV with short-sale constraint & cross-validation

MV-P-SSCV 0.047 (0.002) 0.326 (0.121)

MV-LS-SSCV 0.043 (0.002) 0.269 (0.140)

MV-NLS-SSCV 0.043 (0.002) 0.265 (0.154)
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Table 9 and its comparison with Table 8 reveal the following:

• Transaction costs cause more harm to the portfolios with relatively high risks such as the

plug-in and KZ portfolios, whose Sharpe ratios drop from 0.311/0.325 to 0.140/0.101,

after the deduction of transaction costs.

• MAXSER portfolio maintains its advantage over other portfolios. Its Sharpe ratio is

more than 20% higher than that of GMV-LS, the second best portfolio in terms of

Sharpe ratio among the portfolios under comparison.

In summary, both without or with taking transaction costs into account, our MAXSER

portfolio generally outperforms other portfolios. Moreover, as we will see in the next section,

the comparisons that we observe in terms of Sharpe ratio are statistically significant.

4.3.2 Statistical Tests About Sharpe Ratio

In order to show the statistical significance of the advantage of our MAXSER portfolio

in terms of Sharpe ratio, for the 100 random asset pools formed by S&P 500 stocks and

Fama-French three factors, we also conduct the Sharpe ratio tests (4.1) based on raw returns

and returns net of transaction costs. The histograms of the p-values based on the 100 random

investment pools are given in Figures 4∼5.
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Figure 4. Histograms of p-values for the Sharpe ratio test (4.1) against the portfolios under comparison,

based on 100 random investment pools. In this figure transaction costs are not taken into account.

39



MAXSER VS Equally weighted

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MAXSER VS Factor

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

MAXSER VS KZ

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

MAXSER VS NLSF

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MAXSER VS MV−P

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

MAXSER VS MV−LS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

MAXSER VS MV−NLS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

MAXSER VS GMV−LS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

MAXSER VS GMV−NLS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

MAXSER VS MV−P−NSS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

MAXSER VS MV−LS−NSS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MAXSER VS MV−NLS−NSS

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MAXSER VS MV−P−SSCV

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

MAXSER VS MV−LS−SSCV

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MAXSER VS MV−NLS−SSCV

p−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 5. Histograms of p-values for the Sharpe ratio test (4.1) against the portfolios under comparison,

based on 100 random investment pools. In this figure transaction costs are deducted from portfolio returns.
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Note that if the null hypothesis H0 in (4.1) holds, then the p-values would be roughly

uniformly distributed. This is obviously not the case here. Furthermore, we observe from

Figures 4 and 5 that in all comparisons, the p-values are mostly small. The histograms

indicate that, among all portfolios under comparison, MAXSER does in general yield the

highest Sharpe ratio.

5 CONCLUSION

In this paper, we propose a novel approach to construct the mean-variance efficient

portfolio when the number of assets in the investment pool is not small compared with sample

size. We prove that, under a mild sparsity assumption on the optimal portfolio, the MAXSER

portfolio asymptotically achieves the mean-variance efficiency and meanwhile controls the

risk effectively. To the best of our knowledge, this is the first time that these two objectives

can be simultaneously achieved for large portfolios.

In addition to the sound statistical properties, the MAXSER portfolio possesses an

attractive feature for practical implementation. Being a sparse portfolio strategy, MAXSER

performs favorably by investing in only a small portion of assets. Moreover, our strategy

involves relatively low transaction costs as demonstrated in the empirical studies.
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