Risk Aversion or Mistaken Beliefs?¹

Thomas J. Sargent

September 18, 2017

¹Originally, “Three Martingales and More”
Risks and beliefs

\[\phi(\varepsilon) = K \exp \left(-\frac{1}{2} \varepsilon' \varepsilon \right) \sim \mathcal{N}(0, I) \]

\[\hat{\phi}(\varepsilon) = K \exp \left(-\frac{1}{2} (\varepsilon - \lambda)'(\varepsilon - \lambda) \right) \sim \mathcal{N}(-\lambda, I) \]

\[= m(\varepsilon) \phi(\varepsilon) \]

\[m(\varepsilon) = \exp \left(-\lambda' \varepsilon - \frac{1}{2} \lambda' \lambda \right) \geq 0 \]

\[Em(\varepsilon) = 1 \]

Entropy \equiv Em(\varepsilon) \log m(\varepsilon) = \frac{1}{2} \lambda' \lambda
Likelihood ratios (martingale increments)

<table>
<thead>
<tr>
<th>Probability</th>
<th>Likelihood ratio</th>
<th>Describes</th>
</tr>
</thead>
<tbody>
<tr>
<td>econometric</td>
<td>1</td>
<td>macro risk factors</td>
</tr>
<tr>
<td>risk neutral</td>
<td>m_{t+1}^λ</td>
<td>prices of risks</td>
</tr>
<tr>
<td>mistaken</td>
<td>m_{t+1}^w</td>
<td>experts’ forecasts</td>
</tr>
<tr>
<td>dubious</td>
<td>$m_{t+1} \in \mathcal{M}$</td>
<td>specification doubts</td>
</tr>
</tbody>
</table>

$$m_{t+1}^b = \exp \left(-b'_t \varepsilon_{t+1} - \frac{b'_t b_t}{2} \right); \ b_t = 0 \text{ or } \lambda_t \text{ or } w_t \text{ or } \ldots$$
Young researchers

- Jaroslav Borovička
- Anmol Bhandari
- Timothy Christensen
- Bálint Szőke
Middle aged researchers

- Monika Piazzesi
- Jessica Wachter
- Amir Yaron
- Stanley Zin
- Lars Hansen
1970’s-1980’s informal justification:
RE as outcome of learning from an infinite history

- Least squares learning converges to rational expectations equilibrium
- Depends on assumption that agents know correct functional forms
- Proof technique: stochastic approximation – partition dynamics into fast (justifying a LLN) and slow (justifying an ODE)
- But in systems with long intertemporal dependence, rates of convergence are slow
Good econometricians

- Have only limited data and hunches about functional forms
- After best econometrics, they fear models are incorrect
- Oliver Cromwell’s rule: “think it possible that you might be mistaken”
Agent like good econometrician

- Has parametric model estimated from limited data
- Acknowledges that other specifications fit nearly as well
 - Other parameter values
 - Other functional forms
 - Other nonlinearities and history dependencies
Econometrician’s and agent’s shared model

\[x_{t+1} = Ax_t + C\varepsilon_{t+1} \]
\[y_{t+1} = Dx_t + G\varepsilon_{t+1} \]
\[\varepsilon_{t+1} \sim \mathcal{N}(0, I) \]
\[r_t = \bar{r}x_t \]
\[d_t = \bar{d}x_t \]

\(y_{t+1} \): utility-relevant variables
\(r_t \): risk-free one-period interest rate
\(d_t \): payout process from an asset
Want

Price at t of a claim to random payout stream $\{d_{t+j}\}_{j=1}^{\infty}$
Rational expectations with risk neutral representative investor

Stock prices (Shiller):

Stock price p_t:

$$ p_t = \exp(-r_t) E_t (p_{t+1} + d_{t+1}) $$

Expectations theory of term structure of interest rates

(Hicks-Shiller):

time t price $p_t(n)$ of a zero coupon n risk-free claim to one dollar at time $t+n$

$$ p_t(1) = \exp(-r_t) $$

$$ p_t(n+1) = \exp(-r_t) E_t p_{t+1}(n) $$

$$ p_t(n) = \exp(B_n x_t) $$
Rational expectations with risk neutral representative investor

Works

- “Pretty well” for conditional means
- Less well for conditional variances (Shiller “volatility puzzles”)
Wouldn’t it be nice . . .

. . . if we could make the theory apply even if investors
 - Are risk averse
 - Don’t have rational expectations
but continue to use the same formulas

“Ask and it shall be given” (if you don’t ask too much)
Likelihood ratio

Let

\[m_{t+1} = \exp \left(-\lambda_t \varepsilon_{t+1} - \frac{1}{2} \lambda_t' \lambda_t \right) \]

\[\lambda_t = \lambda x_t \]

\[E_t m_{t+1} = 1, \quad m_{t+1} \geq 0 \]

- \(m_{t+1} \) is a likelihood ratio that distorts conditional distribution of \(\varepsilon_{t+1} \).
- Multiplication of \(\mathcal{N}(0, I) \) by \(m_{t+1} \) shifts density of \(\varepsilon_{t+1} \) to \(\mathcal{N}(-\lambda x_t, I) \).
- Covariances of returns with \(m_{t+1} \) affect mean returns
Likelihood ratio, II

- Likelihood ratio expresses risk aversion
- λ_t is price representative agent charges for bearing exposure to ε_{t+1}
- Expected return of an asset depends on how its payout covaries with ε_{t+1}
Modern (post Shiller) asset pricing

Stock price (Lucas-Hansen):

\[p_t = \exp(-r_t)E_t(m_{t+1}(p_{t+1} + d_{t+1})) \]

Term structure (Backus-Zin):

\[
egin{align*}
 p_t(1) & = \exp(-r_t) \\
 p_t(n+1) & = \exp(-r_t)E_t(m_{t+1}p_{t+1}(n)) \\
 p_t(n) & = \exp(B_nx_t)
\end{align*}
\]

“Ask and it shall be given” works (this time)
“Risk-neutral” dynamics

\[x_{t+1} = (A - C\lambda)x_t + C\tilde{\varepsilon}_{t+1} \]
\[\tilde{\varepsilon}_{t+1} \sim \mathcal{N}(0, I) \]
\[\lambda_t = \lambda x_t \]
Risk-neutral dynamics

- Risk neutral dynamics assert that shock distribution ε_{t+1} has conditional mean $-\lambda_t$ instead of 0.
- Dependence of λ_t on x_t modifies dynamics asserted by econometrician’s model.
Expectation under twisted distribution

Mathematical expectation of y_{t+1} under probability distribution twisted by likelihood ratio m_{t+1} is

$$\tilde{E}_t y_{t+1} = E_t m_{t+1} y_{t+1}$$
Risk-neutral pricing represented

With respect to risk neutral dynamics, modern (Backus-Zin) term structure theory is

\[
\begin{align*}
 p_t(1) &= \exp(-r_t) \\
 p_t(n+1) &= \exp(-r_t)\tilde{E}_t(p_{t+1}(n)) \\
 p_t(n) &= \exp(B_n x_t)
\end{align*}
\]

where \(\tilde{E}_t\) is an expectation with respect to the risk-neutral measure.

- Same formulas as (Shiller) rational expectations asset pricing theory, but ...
- Take mathematical expectations with respect to a different probability measure
Another likelihood ratio m_{t+1}

Mistaken beliefs (according to the econometrician’s model):

 ▶ Identical asset pricing formulas
 ▶ Identical econometric fits

Insight of Hansen, Sargent, Tallarini (1999) and Piazzesi, Salomao, Schneider (2015)
Identification

λ_t can be interpreted as either

- Risk price vector expressing “representative” agent’s risk aversion, or
- Representative agent’s belief distortion relative to econometrician’s model

To distinguish, need more information (Piazzesi, Salomao, Schneider, PSS) or more theory (Hansen and Szőke) or both (Szőke)
Piazzesi, Salomao, Schneider (2015)

- Representative agent’s risk aversion leads him to price risks ε_{t+1} with prices $\lambda_t^* = \lambda^* x_t$

- Representative agent has twisted beliefs $(A^*, C) = (A - Cw^*, C)$ relative to econometrician’s model (A, C)

- Professional forecasters use twisted beliefs (A^*, C) to answer survey questions about forecasts
More information: experts’ forecasts

Piazzesi, Salomao, Schneider (2015)

- Use data on \(\{x_t\}_{t=0}^T \) to estimate econometrician’s model \(A, C \)
- Project experts’ forecasts \(\{\hat{x}_{t+1}\} \) to get \(\hat{x}_{t+1} = A^* x_t \) and interpret \(A^* \) as belief distortion
- Back out mean distortion \(w^* x_t = -C^{-1}(A^* - A)x_t \) to density of \(\epsilon_{t+1} \)
- Reinterpret \(\lambda \) estimated by rational expectations econometrician as \(\lambda^* + w^* \), where \(\lambda_t^* = \lambda^* x_t \) is the (smaller) price of risk vector actually charged by a distorted beliefs representative agent
PSS approach

An econometrician who mistakenly imposes rational expectations estimates risk prices λ_t that consist of the sum of two parts:

- Smaller risk prices λ^*_t actually charged by the twisted beliefs representative agent
- Conditional mean distortions w^*_t of the risks ε_{t+1} that the twisted beliefs representative agent’s model displays relative to the econometrician’s
PSS empirical specification

Key variables in state space system

- Level and slope of the yield curve
 - short rate
 - spread between 5 year and short rate
- Inflation
- Conditional expectations of these variables
\[w^* \neq 0 \]

- Experts’ model differs systematically from econometrician’s
- Experts perceive level and slope of yield curve to be more persistent than the econometrician estimates
- Subjective risk prices \(\lambda^*x_t \) vary less than \(\lambda x_t \) estimated by rational expectations econometrician
Why are beliefs distorted?

- PSS offer no explanation
- Mistakes? Ignorance of good econometrics? Or ???
- How distorted are they?
A theory of belief distortions

A dubious investor

- Shares the econometrician’s model but doubts it.
- Evaluates streams of payouts under a (vast) set of alternative specifications near his model (which equals the econometrician’s)
- Constructs lower bound on set of values traced out by a set of models
Valuation under econometrician’s model

Log consumption process

\[c_{t+1} - c_t = Dx_t + G\varepsilon_{t+1} \]
\[x_{t+1} = Ax_t + C\varepsilon_{t+1} \]

Value function

\[V(x_0, c_0) := E \left[\sum_{t=0}^{\infty} \beta^t c_t \mid x_0, c_0 \right] = c_0 + \beta E \left[V(x_1, c_1) \mid x_0, c_0 \right] \]
Lars Hansen’s dubious agent

- Shares econometrician’s model A, C, D, G
- Expresses doubts by using (a continuum of) likelihood ratios to form discounted entropy ball of size η around econometrician’s model.
- Wants valuation that is good for every model in the entropy ball.
- Constructs lower bound on values and worst-case model that attains it
Why discounted entropy?

It includes models that undiscounted entropy excludes

- Undiscounted entropy over infinite sequences excludes many models that are very difficult to distinguish from econometrician’s model with limited data
- Undiscounted entropy includes only models that share laws of large numbers
Hansen agent’s sequence problem, 1

\[J(x_0, c_0 | \eta) := \min_{\{m_{t+1}\}_{t=0}^{\infty}} E \left[\sum_{t=0}^{\infty} \beta^t M_t c_t | x_0, c_0 \right] \]

s.t. \[c_{t+1} - c_t = D x_t + G \epsilon_{t+1} \]
\[x_{t+1} = A x_t + C \epsilon_{t+1} \]

\[E \left[\sum_{t=0}^{\infty} \beta^t M_t E \left[m_{t+1} \log m_{t+1} | x_t, c_t \right] | x_0, c_0 \right] \leq \eta \]

\[M_{t+1} = M_t m_{t+1}, \quad E[m_{t+1} | x_t, c_t] = 1, \quad M_0 = 1 \]

Likelihood ratio process \(\{M_t\}_{t=0}^{\infty} \) is a multiplicative martingale
Likelihood ratio

\[m_{t+1} := \exp \left(- \frac{w'_t w_t}{2} - w'_t \varepsilon_{t+1} \right) \]

implies

\[E \left[m_{t+1} \log m_{t+1} \mid x_t, c_t \right] = \frac{1}{2} w'_t w_t \]

Simplifies dubious agent’s Bellman equation
Hansen agent's sequence problem, II

\[J(x_0, c_0 \mid \eta) := \min_{\{w_t\}_{t \geq 1}} \mathbb{E}^w \left[\sum_{t=0}^{\infty} \beta^t c_t \mid x_0, c_0 \right] \]

s.t. \[c_{t+1} - c_t = D x_t + G(\tilde{\epsilon}_{t+1} - w_t), \quad \tilde{\epsilon}_{t+1} \sim \mathcal{N}(0, I) \]
\[x_{t+1} = A x_t + C(\tilde{\epsilon}_{t+1} - w_t) \]
\[\frac{1}{2} \mathbb{E}^w \left[\sum_{t=0}^{\infty} \beta^t w'_t w_t \mid x_0, c_0 \right] \leq \eta \]

// \tilde{\theta
Discounted entropy ball
Szőke’s dubious agent

- Shares the econometrician’s model A, C, D, G
- Expresses doubts by using (a continuum of) likelihood ratios to form a discounted entropy ball around econometrician’s model
- Insists that some martingales in discounted entropy ball represent particular alternative parametric models.
- Computes a worst-case model that attains a bound on values over this set of models.
Concern about another parametric model

Investor wants to include particular alternative model with

\[
E_t [\bar{m}_{t+1} \log \bar{m}_{t+1}] = \frac{1}{2} \bar{w}' \bar{w} = \xi(x_t)
\]

and discounted entropy

\[
E^{\bar{w}} \left[\sum_{t=0}^{\infty} \beta^t \xi(x_t) \mid x_0, c_0 \right]
\]

Replace entropy constraint with

\[
\frac{1}{2} E^w \left[\sum_{t=0}^{\infty} \beta^t w'_t w_t \mid x_0, c_0 \right] \leq E^w \left[\sum_{t=0}^{\infty} \beta^t \xi(x_t) \mid x_0, c_0 \right]
\]
Yaron’s bazooka

Bansal and Yaron (2004) mix LRR with EZ preferences

- LRR is statistically difficult to detect and estimate; but . . .
- Epstein-Zin or dubious agent really hates LRR
 - There are conditions under which EZ value function is indirect utility function of dubious agent
- That sets stage for big risk-prices
Concern about bigger “long-run risk” in Szőke model

Inspired by Bansal and Yaron (2004) LRR, an agent fears a particular

\[x_{t+1} = \bar{A}x_t + C\bar{\varepsilon}_{t+1} \]

- Corresponds to \(\bar{w}_t = \bar{w}x_t \) with

\[\bar{w} = -C^{-1}(\bar{A} - A) \]

- Implies quadratic \(\xi \) function:

\[\xi(x_t) := x_t'\bar{w}'\bar{w}x_t =: x_t'\Xi x_t \]
Tilted discounted entropy balls

- Untilted set (with η_1)
- Model 1
- Tilted set (model 1)
- Model 2
- Tilted set (model 2)

baseline
State-dependent contributions to entropy constraint

Time t contributions to RHS of

$$\frac{1}{2} E^w \left[\sum_{t=0}^{\infty} \beta^t w_t' w_t \mid x_0, c_0 \right] \leq E^w \left[\sum_{t=0}^{\infty} \beta^t \xi(x_t) \mid x_0, c_0 \right]$$

relax the discounted entropy constraint in states x_t in which $\xi(x_t)$ is larger

This sets the stage for state-dependent mean distortions in worst-case model

That can ignite countercyclical market prices of uncertainty
Szőke agent’s sequence problem

Linear quadratic problem

\[J(x_0, c_0 | \Xi) := \max_{\tilde{\theta} \geq 0} \min \{ w_t \}_{t \geq 1} E^w \left[\sum_{t=0}^{\infty} \beta^t c_t + \tilde{\theta} \frac{1}{2} \sum_{t=0}^{\infty} \beta^t (w'_t w_t - x'_t \Xi x_t) \mid x_0, c_0 \right] \]

s.t. \[c_{t+1} - c_t = Dx_t + G(\tilde{\varepsilon}_{t+1} - w_t), \quad \tilde{\varepsilon}_{t+1} \sim \mathcal{N}(0, I) \]
\[x_{t+1} = Ax_t + C(\tilde{\varepsilon}_{t+1} - w_t) \]

Worst-case shock mean distortion

\[\tilde{w}_t = \tilde{w} x_t \]

Worst-case model is (\(\tilde{A}, C, \tilde{D}, G \))

\[\tilde{A} = A - C\tilde{w} \]
\[\tilde{D} = D - G\tilde{w} \]
Econometrician’s model

corr(Δct, Δct−s)
\text{data}
\text{(A, C, D, G)}

corr(Δct, πt−s)

corr(πt, Δct−s)

corr(πt, πt−s)
US Term structure
Recognized patterns

- Nominal yield curve usually slopes upward
- Long minus short yield spread narrows before US recessions, widens after
- Consequently, slope of yield curve helps predict aggregate inputs and outputs
- Long and short yields are (almost) equally volatile ("Shiller puzzle")
- To solve "Shiller puzzle": risk prices (or something observationally equivalent) must depend on volatile state variables
<table>
<thead>
<tr>
<th></th>
<th>Average slope</th>
<th>Slopes near recessions</th>
<th>Volatile long yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucas (1978)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Epstein-Zin with LRR</td>
<td>maybe</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>(PS (2007), HS (2001))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSS (2015)</td>
<td>built-in</td>
<td>built-in</td>
<td>yes</td>
</tr>
<tr>
<td>Szőke (2017)</td>
<td>YES</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Forces at play

- Affine risk prices with persistent consumption *growth* can nail the 2nd column
- 3rd column requires state-dependent prices of risk
Three probability twisters

- $w_t^* \sim$ Piazzesi, Salomao, Schneider’s mistaken agent
- $\tilde{w}_t \sim$ Szőke’s especial LRR parametric worry
- $\tilde{\tilde{w}}_t \sim$ Szőke’s worst-case model
Motivation

An appealing feature of robust control theory is that it lets us deviate from rational expectations, but still preserves a set of powerful cross-equation restrictions on decision makers’ beliefs . . . Consequently, estimation can proceed essentially as with rational expectations econometrics. The main difference is that now restrictions through which we interpret the data emanate from the decision maker’s best response to a worst-case model instead of to the econometrician’s model. Szőke (2017)
Szőke’s empirical strategy, I

- Use $\{x_t, c_t\}_{t=0}^T$ to estimate the econometrician’s A, C, D, G
- View Ξ as matrix of additional free parameters and estimate them simultaneously with risk prices $\tilde{\lambda}x_t$ in $\tilde{\lambda}_t = \tilde{\lambda}x_t$ from data $\{p_t(n+1)\}_{n=1}^N$, $t = 0, \ldots, T$ by imposing cross-equation restrictions

$$p_t(n + 1) = \exp(-r_t)E_t \left[m_{t+1} \tilde{\lambda}_{t+1} p_{t+1}(n) \right]$$

$$m_{t+1} = \exp \left(-\tilde{\lambda}_{t+1} \varepsilon_{t+1} - \frac{\tilde{\lambda}_{t+1}^2}{2} \right)$$

$$m_{t+1} = \exp \left(-\tilde{\lambda}_{t+1} \varepsilon_{t+1} - \frac{\tilde{\lambda}_{t+1}^2}{2} \right)$$

where E_t is taken with respect to the econometrician’s model and $\tilde{\lambda}_t = \tilde{\lambda}x_t$ is the dubious investor’s worst-case model.
Assess improvements in predicted behavior of term structure of interest rates

Use estimated worst-case dynamics to form distorted forecasts $\tilde{x}_{t+1} = (A - C\tilde{w})x_t$ and compare them to those of professional forecasters.

Compute discounted relative entropy of worst-case twisted model $(A - C\tilde{w}), C, (D - G\tilde{w}), G$ relative to the econometrician’s model A, C, D, G and use it and Chernoff-Newman-Stuck entropy measures to assess difficulty of distinguishing two models.
Interpretations from Szőke model

Conditional mean distortions w_{x_t}:

- **PSS**: w_t^* is vector of “mistakes” or “suboptimal forecasts”
- **Szőke**: \tilde{w}_t is vector of “model uncertainty” prices: compensations that Szőke’s representative agent charges to bear ε_{t+1} with unknown probability distribution
Insights from Szőke’s model

- A theory of belief distortions $\tilde{w}_t = \tilde{w}x_t$
- A theory about the question that professional forecasters answer:
 - they answer with their worst-case model because they hear “tell me forecasts that rationalize your (max-min) decisions”
- A way to assess how large belief distortions are relative to the econometrician’s model
Insights from Szőke’s model, II

He uses his estimated Ξ matrix

- To infer an equivalence class of alternative parametric models parameterized by \bar{w} that concerns the representative investor
 - It has more long-run risk than econometrician’s model
- He infers a worst-case mean distortion $\tilde{w}x_t$ whose state dependence causes the term structure to move with x_t in ways that explain hitherto unexplained term structure movements (e.g., Shiller’s “volatility puzzle”)
Concluding remarks

Joint probability distributions of interest rates and macroeconomic shocks are important in macroeconomics

- Costs of aggregate fluctuations (business cycles)
- Consumption Euler equations (aka ‘New Keynesian IS curves’)
- Optimal taxation and government debt management
- Central bank ‘expectations management’ strategies
- Long-run risk (aka ‘secular stagnation’)

Dave Backus contributed immensely and graciously to what we know and how we can go about learning more.

Rather than curse darkness, Dave lit candles.