Model-Based Machine Learning

Chris Bishop

Machine learning algorithms

generative adversarial network
K-means clustering

Markov random field
Radial basis functions
logistic regression
random forest principal components

Hidden Markov model
convolutional networks support vector machines

Gaussian mixture
linear regression
Independent component analysis neural networks
Gaussian process
Boltzmann machines
Kalman filter
deep networks factor analysis

The 'No Free Lunch' Theorem

Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points.

Wolpert (1996)

There is no universal machine learning algorithm

The goal of machine learning is to find an algorithm that is well matched to the problem being solved

Model-based machine learning

Derive the appropriate ML algorithm by making modelling assumptions explicit

Traditional:
"how do I map my problem onto standard algorithms"?

Model-based:
"what is the model that represents my problem"?

Machine learning algorithm

Logistic Regression

$$
y=\sigma\left(\sum_{i} w_{i} x_{i}\right)
$$

Deep Neural Networks

Data and prior knowledge

Translation invariance

Convolutional Neural Networks

'Big data'

Uncertainty everywhere

Which movie should the user watch next?
Which word did the user write?
What did the user say?
Which web page is the user trying to find?
Which link will user click on?
Which gesture is the user making?
What is the prognosis for this patient?
Many others ...

Probability

Limit of infinite number of trials (frequentist)
Quantification of uncertainty (Bayesian)

60\%

40\%

aka.ms/ntdice

A Crash Course on Factor Graphs

A Crash Course on Factor Graphs

PCA as an algorithm

$$
\begin{gathered}
\overline{\mathrm{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathrm{x}_{n} \\
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)^{\mathrm{T}}
\end{gathered}
$$

$$
\mathbf{S} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

retain $M<D$ eigenvectors

PCA as a model

inference

modelling

M. E. Tipping and C. M. Bishop (1997)

The Kalman filter
The hidden Markov model

Movie Recommender

Assumptions

1) Each movie can be characterized by its position on the trait line, represented as a continuous number.
2) A person's preferences can be characterized by a position on the trait line, again represented as a continuous number.
3) A positive preference value means a person prefers movies with positive values of the trait (and vice versa for negative values). The absolute size of the preference value indicates the strength of preference.

Escapist

Escapist

Assumptions

1) Each movie can be characterized by its position on the trait line in trait space, represented as a continuous number for each trait.
2) A person's preferences can be characterized by a position on the trait line in trait space, again represented as a continuous number for each trait.
3) A positive preference value means a person prefers movies with positive values of the trait (and vice versa for negative values). The absolute size of the preference value indicates the strength of preference.
4) The effect of one trait value on whether a person likes or dislikes a movie is the same, no matter what other trait values that movie has.
5) Whether a person will like or dislike a movie depends only on the movie's traits and not on anything else.

Movie Recommender Demo

http://infernet

infer.net

TEAM DENTHMTIGH OW HARBOR

mbmlbook.com

Feedback please:
mbmlbook@microsoft.com
Model-Based Machine Learning

Thank you!

