Interest Rate Uncertainty and Economic Fluctuations

Drew D. Creal
Chicago Booth

Jing Cynthia Wu
Chicago Booth & NBER
Monetary policy transmission

monetary policy → short/medium rate → long rate → macro economy

interest rate uncertainty
Question: interest rate uncertainty \rightarrow macroeconomy
Literature

Uncertainty

- first moment
- second moment
 - SV in VAR: Cogley and Sargent (2001, 2005), and Primiceri (2005)
- This paper: first moment + second moment

Term structure models

 - does not fit yield volatility
 - restrict yield fitting
 - only 1 volatility factor
- This paper: fit both yields and volatility
Contribution: a new model for interest rate uncertainty

Contribution to the uncertainty literature:
- jointly model the first and second moments
 - first moment: conditional mean of macro variables
 - second moment: volatility of interest rates

Contribution to the term structure literature:
- introduce multiple volatility factors that fit the data
 - volatility factors and yield factors are distinct
Result highlight: two dimensions of uncertainty

We find

- 2 volatility factors capture the cross section of yield volatility
- We rotate to “short-term” uncertainty and “long-term” uncertainty
- Increases in either of them lead higher unemployment rates
- But they interact with inflation in opposite directions.
Outline

1. Model and estimation
2. Economic implication
3. Yield curve fitting
Factors

- $m_t : M \times 1$ Macro factors
- $g_t : G \times 1$ Gaussian yield factors
- $h_t : H \times 1$ yield volatility factors
Dynamics

\[
m_{t+1} = \mu_m + \Phi_m m_t + \Phi_m g_t + \Phi_m h_t + \sum_m \epsilon_{m,t+1}.
\]
\[
g_{t+1} = \mu_g + \Phi_g m_t + \Phi_g g_t + \Phi_g h_t + \sum_g \epsilon_{m,t+1} + \sum_g D_t \epsilon_{g,t+1},
\]
\[
h_{t+1} = \mu_h + \Phi_h h_t + \sum_h \epsilon_{m,t+1} + \sum_h D_t \epsilon_{g,t+1} + \sum_h \epsilon_{h,t+1}.
\]

where the diagonal time-varying volatility is a function of \(h_t \)

\[
D_t = \text{diag} \left(\exp \left(\frac{\Gamma_0 + \Gamma_1 h_t}{2} \right) \right).
\]

\(h_t \) enters the model through

- conditional mean: \(h_t \)
- conditional variance: \(D_t \)
Bond prices

Short rate

\[r_t = \delta_0 + \delta_1 g_t. \]

Pricing equation

\[P^n_t = E^Q_t [\exp (-r_t) P^{n-1}_{t+1}] \]

under risk neutral dynamics

\[g_{t+1} = \mu_g^Q + \Phi_g^Q g_t + \sum_{g, t+1} \varepsilon_g^Q \]
Bond prices

Bond prices are exponentially affine

\[P_t^n = \exp \left(\bar{a}_n + \bar{b}'_n g_t \right) \]

where

\[\bar{a}_n = -\delta_0 + \bar{a}_{n-1} + \mu_g \bar{b}_{n-1} + \frac{1}{2} \bar{b}'_{n-1} \Sigma_g \Sigma_g' \bar{b}_{n-1}, \]

\[\bar{b}_n = -\delta_1 + \Phi_g \bar{b}_{n-1}. \]

Yields \(y_t^n \equiv -\frac{1}{n} \log P_t^n \) are linear

\[y_t^n = a_n + b'_n g_t \]

with \(a_n = -\frac{1}{n} \bar{a}_n, \ b_n = -\frac{1}{n} \bar{b}_n. \)

Novel approach

- bond prices identical to Gaussian ATSMs
Tension between fitting the yield curve and volatility

$$y^m_t = a_n + b'_n g_t + b'_{n,h} h_t$$

Spanned models ($b_{n,h} \neq 0$)
- dual role: volatility factors price bonds
- h_t are forced to fit the conditional mean of yields.

Unspanned models/USV ($b_{n,h} = 0$)
- fit volatility better, but only allow one factor
- restrict yield fitting, see Creal and Wu (2015)

Our model ($b_{n,h} = 0$)
- no restriction on fitting yield curve
- multiple volatility factors
Bayesian estimation

Model
- non-Gaussian non-linear state space model
- likelihood not known in closed form

MCMC
- In each step, conditionally linear Gaussian state space model
- Kalman filter: draw parameters not conditioning on the state variables
- forward filtering and backward sampling: draw state variables jointly

particle filter: compute likelihood
Data and factors

Monthly from June 1953 to December 2013

Yields
- Fama-Bliss zero-coupon yields from CRSP
- maturities: 1m, 3m, 1y, 2y, 3y, 4y, 5y

Macro
- FRED

Factors
- g_t: 3m, 5y and 1y with errors
- h_t: volatility of 3m and 5y
- m_t: inflation and unemployment
Impulse responses

- Short unc -> short unc
- Short unc -> inflation
- Short unc -> unemployment
- Long unc -> long unc
- Long unc -> inflation
- Long unc -> unemployment
Time-varying impulse responses

- Short unc \rightarrow Short unc
- Short unc \rightarrow Inflation
- Short unc \rightarrow Unemployment
- Long unc \rightarrow Long unc
- Long unc \rightarrow Inflation
- Long unc \rightarrow Unemployment

Great Recession
Great Inflation
Volcker
Great Moderation
Greenspan

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)
Uncertainty and recession

\[h_{jt} = \alpha + \beta \mathbb{1}_{\text{recession},t} + u_{jt} \]

- Coeff: 2.3 for short term; 0.6 for long term
- \(p \)-values: 0 for both
Model specification

- $M = 0, 2$
- $G = 3$
- $H = 0, 1, 2, 3$
Yield volatilities: how many factors?

BIC chooses \(H = 2 \) as well.
Yield volatilities: adding macro variables

- Term structure of yield volatility: $H = 2$
- Term structure of yield volatility: macro model with $H = 2$
Cross section of yields

Table: measurement errors

<table>
<thead>
<tr>
<th>model unites</th>
<th>(H_0) %</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(H_3)</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m</td>
<td>0.2524</td>
<td>0.9917</td>
<td>1.0170</td>
<td>1.0539</td>
<td>1.0059</td>
</tr>
<tr>
<td>3m</td>
<td>0.1283</td>
<td>0.7155</td>
<td>0.6539</td>
<td>0.6196</td>
<td>0.7007</td>
</tr>
<tr>
<td>12m</td>
<td>0.1262</td>
<td>0.7726</td>
<td>0.7599</td>
<td>0.7583</td>
<td>0.7995</td>
</tr>
<tr>
<td>24m</td>
<td>0.0941</td>
<td>1.0499</td>
<td>0.9904</td>
<td>0.9586</td>
<td>0.9894</td>
</tr>
<tr>
<td>36m</td>
<td>0.0781</td>
<td>0.9577</td>
<td>0.8912</td>
<td>0.8489</td>
<td>0.8822</td>
</tr>
<tr>
<td>48m</td>
<td>0.1070</td>
<td>0.9103</td>
<td>0.8748</td>
<td>0.8598</td>
<td>0.8804</td>
</tr>
<tr>
<td>60m</td>
<td>0.0841</td>
<td>0.9382</td>
<td>0.8644</td>
<td>0.8728</td>
<td>0.9298</td>
</tr>
</tbody>
</table>
Conclusion

We propose a new model

- study the effect of interest rate uncertainty on macro variables
- uncertainty enters both the first and second moments
- the model has multiple volatility factors
- volatility factors evolve separately from yield factors

We find

- 2 volatility factors capture the cross section of yield volatility
- increases in either of them lead higher unemployment rates
- but they interact with inflation in opposite directions.
Literature

Volatility in mean with different applications

- **SV**: *Jo* (2013)

Bayesian

- *Chib and Ergashev* (2009) and *Bauer* (2014)
Stochastic discount factor

Pricing equation I

\[P^n_t = \mathbb{E}^Q_t \left[\exp (-r_t) P^{n-1}_{t+1} \right] \]

Pricing equation II

\[P^n_t = \mathbb{E}_t \left[M_{t+1} P^{n-1}_{t+1} \right] . \]

Pricing kernel for any process of \(h_t \) under \(Q \).

\[M_{t+1} = \frac{\exp (-r_t) p^Q (g_{t+1}|I_t; \theta) p^Q (h_{t+1}|I_t; \theta)}{p (g_{t+1}|I_t; \theta) p (h_{t+1}|I_t; \theta)} \]

If we assume the process for \(h_t \) is the same under \(P \) and \(Q \)

\[M_{t+1} = \frac{\exp (-r_t) p^Q (g_{t+1}|I_t; \theta)}{p (g_{t+1}|I_t; \theta)} \]
Observed yields

Stack

\[y^n_t = a_n + b'_n g_t \]

for different maturities \(n_1, n_2, \ldots, n_N \) to

\[Y_t = A + B g_t + \eta_t \]

where \(A = (a_{n_1}, \ldots, a_{n_N})' \), \(B = (b'_{n_1}, \ldots, b'_{n_N})' \).
State space form I conditional on $h_{0:T}$

Transition equation

$$g_{t+1} = \mu_g + \Phi_{gm} m_t + \Phi_g g_t + \Phi_{gh} h_t + \sum g m \varepsilon_{m,t+1} + \sum g D_t \varepsilon_{g,t+1}$$

Observation equations

$$m_{t+1} = \mu_m + \Phi_m m_t + \Phi_{mg} g_t + \Phi_{mh} h_t + \sum m \varepsilon_{m,t+1}$$

$$h_{t+1} = \mu_h + \Phi_h h_t + \sum h m \varepsilon_{m,t+1} + \sum h g D_t \varepsilon_{g,t+1} + \sum h \varepsilon_{h,t+1}$$

$$Y_{t+1} = A + B g_{t+1} + \eta_{t+1}$$

- The volatilities $h_{0:T}$ are known
- Gaussian factors $g_{1:T}$ are latent
State space form II conditional on $g_{1:T}$

Transition equation

$$h_{t+1} = \mu_h + \Phi_h h_t + \sum_{hm} \varepsilon_{m,t+1} + \sum_{hg} D_t \varepsilon_{g,t+1} + \sum_{h} \varepsilon_{h,t+1}$$

Observation equations

$$m_{t+1} = \mu_m + \Phi_m m_t + \Phi_{mg} g_t + \Phi_{mh} h_t + \sum_{m} \varepsilon_{m,t+1}$$

$$\hat{g}_{t+1} = \Gamma_0 + \Gamma_1 h_t + \hat{\varepsilon}_{t+1}$$

where we define $\tilde{g}_{t+1} = D_t \varepsilon_{g,t+1}$, $\hat{g}_{t+1} = \log (\tilde{g}_{t+1} \odot \tilde{g}_{t+1})$.

- Gaussian factors $g_{1:T}$ are observed.
- The volatilities $h_{0:T}$ are latent.
- Approximate the error with mixture of normals using Omori, Chib, Shephard, and Nakajima(2007).
Sketch of MCMC algorithm

- Conditional on \(h_{0:T} \), use state space form I
 - Draw \(\theta_g \) using Kalman filter without depending on \(g_{1:T} \)
 - Draw \(g_{1:T} \) using forward filtering and backward sampling

- Conditional on \(g_{1:T} \), use state space form II
 - Draw \(\theta_h \) using Kalman filter without depending on \(h_{0:T} \)
 - Draw \(h_{0:T-1} \) using forward filtering and backward sampling

- Draw the remaining parameters
Particle filter

- Calculate the likelihood of the model: $p(Y_{1:T}; \theta)$
- Calculate filtered estimates
- We use the mixture Kalman filter, see Chen and Liu (2000)
Interpretation of Gaussian factors

We rotate the state vector as

\[
\begin{pmatrix}
 y^3_t \\
 y^{60}_t \\
 y^{12}_t \\
 \vdots
\end{pmatrix}
 =
\begin{pmatrix}
 0 \\
 0 \\
 0 \\
 \vdots
\end{pmatrix}
 +
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \vdots & \vdots & \vdots
\end{pmatrix}
 g_t + \eta_t
\]

The provides an interpretation of the state variables \(g_t = (g_{1t}, g_{2t}, g_{3t})' \).

- \(g_{1t} = y^3_t \) is the short-term maturity - m.e.
- \(g_{2t} = y^{60}_t \) is the long-term maturity - m.e.
- \(g_{3t} = y^{12}_t \) is the mid-term maturity - m.e.
Magnitude of uncertainty