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Abstract
Recent studies show the remarkable power of fine-grained information disclosed by users on social network sites
to infer users’ personal characteristics via predictive modeling. Similar fine-grained data are being used success-
fully in other commercial applications. In response, attention is turning increasingly to the transparency that or-
ganizations provide to users as to what inferences are drawn and why, as well as to what sort of control users can
be given over inferences that are drawn about them. In this article, we focus on inferences about personal char-
acteristics based on information disclosed by users’ online actions. As a use case, we explore personal inferences
that are made possible from ‘‘Likes’’ on Facebook. We first present a means for providing transparency into the
information responsible for inferences drawn by data-driven models. We then introduce the ‘‘cloaking device’’—a
mechanism for users to inhibit the use of particular pieces of information in inference. Using these analytical tools
we ask two main questions: (1) How much information must users cloak to significantly affect inferences about
their personal traits? We find that usually users must cloak only a small portion of their actions to inhibit inference.
We also find that, encouragingly, false-positive inferences are significantly easier to cloak than true-positive in-
ferences. (2) Can firms change their modeling behavior to make cloaking more difficult? The answer is a definitive
yes. We demonstrate a simple modeling change that requires users to cloak substantially more information to
affect the inferences drawn. The upshot is that organizations can provide transparency and control even into
complicated, predictive model-driven inferences, but they also can make control easier or harder for their users.
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Introduction
Successful pricing strategies, marketing campaigns, and
political campaigns depend on the ability to optimally
target consumers and voters. This generates incentives
for firms, political parties, and governments to exploit
information related to people’s personal characteristics,
such as their gender, marital status, religion, sexual or
political orientation, and personality. The boom in
availability of online data has accelerated efforts to do
so. However, personal characteristics often are hard
to determine with certainty because of privacy restric-
tions or simply because they are not directly observed.
As a result, online marketers increasingly depend on
statistical inferences based on available information.

A predictive model can be used to give each user a
score that ranks users by the estimated probability of
having a certain personal trait, such as being gullible,
introverted, female, a drug user, or gay.1 Users then
can be targeted based on these inferred propensities
and their relationship to particular content or advertis-
ing campaigns. Alternatively, such inferred characteris-
tics can be used implicitly in advertising campaigns or
other systems, via models trained on feedback from
those who responded positively. In practice, usually a
combination of model confidence and a budget for
showing content or advertisements leads to targeting
users in some top percentile of the score distribution
given by predictive models.2
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Online user targeting systems, particularly in digital ad-
vertising, increasingly are trained using information on
users’ web browsing behavior.2 In addition, when possi-
ble, targeters include information disclosed by users on
social networks. For instance, to target ads Facebook
uses a combination of your social activity on their net-
work (pages you and your friends Like), web browsing
history, interactions with various businesses (such as loy-
alty program information shared with Facebook), and
your location.* Recently, Facebook has extended this
type of targeting to work outside of direct Facebook prop-
erties; third-party mobile applications can take advantage
of Facebook’s advertising tools through the use of Face-
book Audience Network.{

While some online users may benefit from being tar-
geted based on inferences of their personal characteristics,
others may find such inferences unsettling. Not only may
these inferences be incorrect due to a lack of data or inad-
equate models, some users may not wish to have certain
characteristics inferred at all. To many, privacy invasions
via statistical inferences are at least as troublesome as pri-
vacy invasions based on personal data.3

In response to an increase in demand for privacy
from online users, suppliers of browsers such as Chrome
and Firefox have developed features such as ‘‘Do Not
Track,’’ ‘‘Incognito,’’ and ‘‘Private Windows’’ to control
the collection of information about web browsing. How-
ever, these features provide neither clear transparency
into what inferences are drawn and why, nor easy, fine-
grained control over what information may be used
for inference. Furthermore, as of now, social networks
such as Facebook do not have a strong analog to these
privacy features that would allow for transparency and
control in how user information is used to decide on
the presentation of content and advertisements.{

In this article,x as a means for providing transpar-
ency into the reasons why a particular inference is
drawn about an individual, we draw on an idea intro-
duced for explaining the reasons behind instance-
level document classifications.7 Specifically, what is a
minimal set of evidence such that if it had not been
present, the inference would not have been drawn?

Let’s call this an evidence counterfactual. The evidence
counterfactual can be applied beyond document classi-
fication to the sorts of inference that interest us here.

As a concrete example, consider that Manu has
been determined by the system’s inference procedure
to be gay, based on the things that Manu has chosen
to Like.** Note that the inference of the personal
trait may be direct or may be subtle—for example, a
prediction that Manu would be a good target for a
particular ad, where the inference of an associated
personal trait is implicit. The system subsequently de-
livers to Manu an advertisement for a local LGBTQ
activism group. Although Manu actively supports
the LGBTQ community, he prefers to keep certain as-
pects of his personal life between him and his friends,
and not have the system using these aspects to make
ad targeting decisions. What is a minimal set of
Manu’s Likes such that if they were not used for infer-
ence Manu would no longer receive the ad, or alterna-
tively be classified by the system as being gay?

We introduce the idea of a ‘‘cloaking device’’ as a ve-
hicle to provide, and to study, control over inferences.
Specifically, the cloaking device provides a mechanism
for users to inhibit the use of particular pieces of infor-
mation in inference. Combined with the transparency
provided by the evidence counterfactual, a user could
be given control over model-driven inferences. So, con-
tinuing our example, Manu would be given the ability
to request that the Likes responsible for this inference
not be used by the system for future inferences. Impor-
tantly, the user can cloak particular information from
inference, without having to stop sharing the informa-
tion with his social network friends. Thus, hopefully,
this combination will allow control with a minimal
amount of disruption to the user’s normal activity.
This hope rests on the relationship between the evi-
dence and the behavior of the predictive models.

Importantly, cloaking the information used to draw
inferences provides users with deeper control than sim-
ply inhibiting individual inferences, such as would be
achieved by blocking particular content, ads, or adver-
tisers. The cloaking device essentially tells the system:
‘‘do not draw inferences like this about me’’—or more
practically, ‘‘do not show me ads or content for the
same reasons that you decided to show me this.’’

We use these mechanisms as analytical tools to an-
swer two main questions: (1) How much information
must users cloak to significantly affect inferences

*www.facebook.com/about/ads.
{www.facebook.com/business/news/audience-network.
{Facebook introduced a feature called ‘‘Why am I seeing this ad?’’ (www.facebook
.com/ads/preferences), which gives users partial transparency on why they are
being targeted. Users can select not to be targeted with particular categories of
ads or advertisers; they can modify their ‘‘ad preferences’’ to hide categories of
information from being used for targeting, and they can see a high-level over-
view of some inferences being made about them (e.g., liberal political affiliation,
traveled recently).
xPrior versions of this article have been available online4,5 and have been
presented.6 **We will capitalize ‘‘Like’’ when referring to the action or its result on Facebook.
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about their personal traits? We find that generally a
user does not need to cloak the majority of his or her
information to inhibit inference. In fact, we find that
for the most common online inference setting, users
need to cloak only a small portion of the information
recorded about them. We also find that, encouragingly,
false-positive (FP) inferences are generally easier to
cloak than true-positive (TP) inferences.

The second question we address is (2) Can firms
change their modeling behavior to make cloaking
more difficult? The answer is a definitive yes. In our
main results we replicate the methodology of Kosinski
et al.1 for modeling personal traits; then we demonstrate a
simple modeling change that still gives accurate infer-
ences of personal traits, but requires users to cloak sub-
stantially more information to affect the inferences
drawn. The upshot is that firms can provide transparency
and control even into very complicated, predictive model-
driven inferences, but they also can make modeling
choices to make control easier or harder for their users.

We also discuss that transparency and control can be
separated. For example, firms could provide users with
‘‘one-click’’ cloaking, through which the fine-grained
information responsible for a particular inference
would be cloaked without the users needing to or
even being able to see the specific information. An in-
dividual targeted with content that makes him or her
uncomfortable could simply click the ‘‘cloak’’ button,
and the system would hide the fine-grained data from
its future inference procedures.

Background and Related Work
Online privacy is becoming an increasing concern for
consumers, regulators, and policy makers.8,9 Treat-
ments of privacy in the analytics literature often
focus on the issue of confidentiality of personal charac-
teristics.10,11 However, with the rapid increase in the
amount of social media data available, statistical infer-
ence about personal characteristics is drawing atten-
tion.3,9,12 Several articles have shown the predictive
power of information disclosed on Facebook to infer
users’ personal characteristics.1,13,14 Specifically, the
set of Facebook pages that users choose to ‘‘Like’’ on
the platform can predict their gender, religion, sexual
or political orientation, and many more personal traits.
As a result, recent studies have begun to examine the
implications of the use of large-scale behavioral data.

Shmueli15 discusses the growing trend in both aca-
demia and industry to collect behavioral data on a
large scale, and presents several difficulties related to

acquiring and analyzing big behavioral data. A partic-
ular problem arises when big data is used to create
black box predictive models that are often misleadingly
described using causal interpretations. These massive
models are used to drive decisions for millions of indi-
viduals; they can learn trends that are incorrect, or per-
petuate social biases, and result in social and emotional
outcomes that are harmful to people and social groups.
Barocas et al.9 develop a research agenda to begin
approaching these types of problems by building
awareness of various machine learning methods, en-
hancing transparency in model interpretation, and
assessing the possible sources of bias that can be intro-
duced in modeling.

A study surveyed Facebook users and found that
they did not feel that they had the appropriate tools
to mitigate their privacy concerns when it comes to so-
cial network data.16 In an online experiment utilizing a
Facebook social recommender system for music that
gives users control over recommendations and explains
how they were derived, Knijnenburg et al. show that
inspectability and control of the system increased
users’ ratings for recommendations and their satisfac-
tion with the system.17 A related study finds that differ-
ent types of explanations by a recommendation agent
enhance users’ trust in the system.18 Furthermore,
there is evidence that when given the appropriate
tools, people will choose to give up some of the benefits
they derive from their social network activity to meet
their privacy concerns.19 Besides being a conceptual
tool to help with the analysis of control, the cloaking
device can be a practical tool to achieve it.

The term ‘‘evidence counterfactual’’5,6 focuses on the
causal nature of explanations for data-driven infer-
ences.* Before digging deeper, it is important to clarify
that we are considering specifically explanations for
why a classification (or other decision) was made, in
contrast to explanations of other phenomena in the
world. Robnik-Sikonja and Kononenko22 discuss the
difference between explanations at the ‘‘model level’’
and explanations at the ‘‘domain level’’; not consider-
ing this distinction can lead to confusion. So, for ex-
ample, we would consider an explanation for why a
data-driven predictive model classified an individual
as being introverted—what evidence caused the pre-
dictive model to issue this classification? This is the

*Martens and Provost7 focused on document classification but conjecture that the
method they introduce could be used for other domains with similar data. It
subsequently has been used to explain inferences for fraud detection20 and
online ad targeting,6,21 in addition to the present problem.
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phenomenon that we want to provide transparency
into.22 Explaining instance-level classifications by
assessing the (causal) influence of data inputs is
receiving increasing attention in research and prac-
tice for improving the transparency of algorithmic
decision-making.5–7,20–24

A Model of Cloaking
We can now describe the core design, use, and value of
the cloaking device. Given an individual, and a specific
model-based inference about the individual, the evi-
dence counterfactual explanation reveals the particular
evidence (features of the individual, e.g., Likes) that
caused the inference to be made. Recalling our example
from the Introduction section, a targeting model in-
ferred that Manu would be a good target for specific
content based on the items that he had Liked on Face-
book. The cloaking device allows the individual to hide
(to ‘‘cloak’’) particular evidence, for example, one or
more Likes, from the inference procedure. Once a
Like is cloaked, the inference (decision-making) proce-
dure would remove it from its input, and therefore treat
the user as if he had not Liked this item. The evidence
counterfactual presents the user with a minimal set of
Likes to cloak to change an inference made about him.

More generally, consider any domain where the fea-
tures can be seen as evidence for or against a particular
nondefault* inference. Consider also the increasingly
common scenario25 where there are a vast number of
possible pieces of evidence, but any individual normally
only exhibits a very small number of them—such as
when drawing inferences from Likes on Facebook.{

Now consider the task of predicting whether or not a
user is gay using Facebook Likes. While some users
might choose to take actions on the social platform
that suggest or reveal that they are gay, some may
not wish for this information to be available to adver-
tisers or others drawing automatic inferences based
on online user behavior. Users who prefer not to
share this personal status even with their friends may

not want it to be predicted by the system. Furthermore,
a user who is in fact not gay may not want an incorrect
inference to be drawn about him or her. Figure 1 illus-
trates two users, their probabilities of being gay as pre-
dicted by a model-based inference procedure, and the
effect of removing evidence from their data. As evi-
dence is removed by cloaking Likes, we see that remov-
ing fewer than 15 Likes for one user results in a
dramatic drop in the predicted probability of being
gay, whereas for the same number of removals the
probability is reduced hardly at all for the other user.

The cloaking device thus has two important dimen-
sions of value. First, it provides a practical device that
could be implemented by social media sites (and oth-
ers) to provide such transparency and control to their
users. Second, it provides us with a means for studying
the relationship between evidence and model-based in-
ference, and thereby transparency and control, in set-
tings such as these. This article focuses on the latter,
both for its own intrinsic interest and also as potential
support for the former.

Technically, cloaking is defined in the context of a
particular predictive model. We assume for this article
that the model is fixed, such as in situations where new
models are put into production infrequently. Scenarios
where the system relearns models after cloaking would
be an interesting line of future study. (Note that to
minimize ‘‘rediscovering’’ cloaked traits, Likes can be
cloaked from inference but not from learning.) For
this article, we consider classification or ranking tasks,
where the inferences are made by a linear model with
the presence/absence of each Like being the features.
The procedure can be extended to nonlinear models
(see Martens and Provost7). All of the features and tar-
gets in these models are assumed to be binary. In par-
ticular, for our results the main model replicates the
predictive modeling used by Kosinski et al.1 and we
use their data on predicting personal traits from Face-
book Likes. More specifically, the modeling procedure
first reduces modeling dimensionality by computing
the singular-value decomposition (SVD) of the matrix
of users and their Likes, and choosing the top-100
SVD dimensions’ vectors as the modeling dimensions
(as has become standard practice with such high-
dimensional data). Then, logistic regression models are
built on these dimensions to predict a variety of personal
traits, as detailed below.

For inference we simulate what is to our understand-
ing the most common method of taking online ac-
tions based on such models. Specifically, we assume

*The inference not being the default is important for explaining the reasons for
model-based prediction. The default prediction is the prediction that is given
when there is not enough evidence for predicting anything else, for example,
predicting that there is no fraud on a particular account. Thus, the explanation
for a default prediction—that there is no evidence for any alternative—often will
be viewed as either trivial or unsatisfying. Usually the default inference is either
the most common alternative or the least costly alternative, and very often
these two concur. See Martens and Provost7 for further discussion and other
nuances of explaining model-based inferences.
{As with predictive modeling projects generally, engineering the right
representation often is key to achieving top-notch performance. So, for example,
one might code the lack of a particularly popular Like as positive evidence. We
will only consider the presence of a Like in our results, but our qualitative results
should generalize across such alternative representations.
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that a positive inference is drawn—for example, a user
would be subject to targeting—if the model assigns
the user a score placing him or her in a specified top
quantile (d) of the score distribution produced by the
predictive model.*

More formally, let xij be an indicator equal to 1
if user i has Liked a piece of information j and 0 other-
wise. For the main results we build the SVD-logistic
regression model described above; then, we convert it
to a mathematically (and functionally) equivalent lin-
ear logistic regression singular-value decomposition
(LRSVD) model in the original features, via the trans-
formation described in Appendix A. This transforma-
tion facilitates direct manipulation of the original

Likes. From now on unless stated otherwise we will
consider this linear logistic model.

Let bj be the coefficient in the (linear) model associ-
ated with feature j 2 f1; . . . ; Jg. Without loss of gener-
ality, assume that these are ranked by decreasing value
of bj. Each such coefficient corresponds to the marginal
increase in a user’s score if he or she were to choose to
Like feature j. Consider the following model output
score given to user i, which ranks users by their esti-
mated probability of having a characteristic s.

si = +
J

j = 1
bjxij: (1)

For simplicity, let us call those users for whom the
positive inference is made the ‘‘targeted’’ users. For a
particular set of users, define the cutoff score sd to be
the score of the highest ranked user in the quantile

FIG. 1. For two users, the lines track the predicted probability of being gay as a function of cloaking Likes. For
each line, the leftmost point shows the estimated probability of being gay for the user before any cloaking.
Moving left to right, for each user, Likes are removed one-by-one from consideration by the inference
procedure in order of greatest effect on the estimated score (before the score is converted to a probability
estimate). One user’s probability drops dramatically with cloaking fewer than 15 Likes (blue solid-circle line);
the other’s is hardly affected at all (red dashed-diamond line).

*For example, for targeting online ads, a typical value for d would range between
90% and 100%. Perlich et al.2 describe in detail online targeting with predictive
models based on fine-grained user data.
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directly below the targeted users. Thus, the set of tar-
geted, top-ranked users Ts for classification task s is

Ts = fijsi > sdg: (2)

To analyze the difficulty or ease of cloaking for each
user in the targeted group, we iteratively remove Likes
from his or her profile until he or she is successfully
cloaked. For our linear models, we do this by iteratively
subtracting from his or her score the coefficient of the
feature that is present (non-zero) in his or her data in-
stance that has the largest coefficient in the model.
Figure 1 shows two examples. A user is considered
to be successfully cloaked when his or her score falls
below sd.*,{

Figure 2 shows the discriminative power associated
with each Like in our data individually (i.e., not in the
context of the predictive model) for the task of pre-
dicting if male users are gay. The 10 points with asso-
ciated text labels are the Likes that have the largest
coefficients from the LRSVD model. The top-10
highest-coefficient Likes for the user shown by the
red dashed-diamond line in Figure 1 are shown here
as large red points. Six out of this user’s top-10
Likes overlap with the top 10 for the entire task.
This highlighted user is the user that the LRSVD
model predicts as having the highest probability of
being gay.

To quantify the difficulty of cloaking via Like re-
moval, we let gs

i, d represent the effort to cloak user i
from the top d% of the score distribution for a charac-
teristic s. gs

i, d is defined precisely in Algorithm 1; it is
the minimum number of Likes that must be removed
to move i below the threshold. All else being equal,

FIG. 2. The discriminative power of Likes on Facebook when determining if a user is gay (Y = 1). Each point
represents one Like; the axes represent the probabilities of having that Like for the two classes in the data set.
Labels are given to the top 10 Likes as sorted by their corresponding coefficients in the LRSVD model. The large
points colored in red are the top 10 pages Liked by the user with the highest probability of being gay as
predicted by the LRSVD model. This is the same user who appeared as the red dashed-diamond line in Figure 1.
LRSVD, logistic regression singular-value decomposition.

*If the targeted group is defined by a fixed threshold score (such as the estimated
probability being above a fixed threshold), this is straightforward. If the targeted
group is defined instead based on the actual quantile, then when a user is removed
from the targeted group another user takes his or her place. In this article, we
consider users in isolation and do not consider the effects of cloaking on sets of users.
{More generally, for nonlinear models, the evidence counterfactual would reveal a
minimal set of Likes such that their removal would successfully cloak the individual.7
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the effort to cloak a user is smaller when (1) the coef-
ficients of his or her removed features are larger, (2)
the threshold score is larger, and/or (3) his or her pre-
dicted score is smaller.

Algorithm 1: Algorithm to determine the amount of effort needed to
cloak a user for a particular predictive task.

gs
i, d)0

Let Gi = {bjjxij >0}
Sort ck ˛ Gi in descending order as 1.jGij
k)1
while si > sd do

si)si � ck
gs

i, d)gs
i, d þ 1

k)kþ 1
end

The absolute effort to cloak a particular classification
task s is given by averaging gs

i, d across users in Ts,

gs
d =

+i2Ts
gs

i, d

jTsj
: (3)

The relative effort to cloak a task for user i is defined
by normalizing the absolute effort by the total quantity
of information revealed by the user,

ps
i, d =

gs
i, d

+J
j = 1xij

: (4)

We can then define the relative effort to cloak a clas-
sification task s by averaging this measure across users
in Ts,

ps
d =

+i2Ts
ps

i, d

jTsj
: (5)

For the rest of this article, we use d = 0:90 to indicate
that the top 10% of users are being targeted. (For other
values of d, the results hold qualitatively.)

Results
Let us now examine the effort required to cloak the in-
ferences of a variety of personal characteristics, based
on data on Facebook users. We first describe the data
and then proceed to assess the effort required to
cloak user characteristics.

Data
Our data were collected through a Facebook applica-
tion called my Personality.* It contains information
on 164,883 individuals from the United States, includ-
ing their responses to survey questions and a subset of
their Facebook profiles. Users can be characterized by

their sexual orientation, gender, political affiliation, reli-
gious view, IQ, alcohol and drug consumption behavior,
personality dimensions, and lifestyle choices. Users do
not necessarily reveal all of these personal characteris-
tics. For these users we also know their Facebook Likes.

The personal characteristics are the target variables for
the various modeling and inference problems. Some per-
sonal characteristics were extracted directly from users’
Facebook profiles, whereas others were collected by sur-
vey. Binary variables are kept without change. Variables
that fall on a Likert scale are separated into two groups,
users who have the largest Likert value and users who
have any other value. Continuous variables are repre-
sented as binary variables using the 90th percentile as a
cutoff. Multicategory variables are subsampled to only
include the two most frequent categories, with the in-
stances representing the other categories discarded for
the corresponding inference task. Notice also that the
feature data are very sparse; for each characteristic, a
user on average displays less than 0:5% of the total set
of Likes. Table 1 presents summary statistics of the data.

Replicating the prior prediction results
We first replicate the predictive modeling and infer-
ence procedure reported by Kosinski et al.1 Specifically,

Table 1. Summary statistics of the data set

Task
Number

users
Number

pages
%

positive
Average

likes

Age �37 145,400 179,605 12.7 216
Agreeableness �5 136,974 179,440 1.4 218
Conscientiousness �5 136,974 179,440 1.8 218
Extraversion �5 136,974 179,440 3.3 218
IQ �130 4540 136,289 13.0 186
IQ < 90 4540 136,289 7.3 186
Is democrat 7301 127,103 59.6 262
Is drinking 3351 118,273 48.5 262
Is female 164,285 179,605 61.6 209
Is gay 22,383 169,219 4.6 192
Is homosexual 51,703 179,182 3.5 257
Is lesbian 29,320 175,993 2.7 307
Is Muslim 11,600 148,943 5.0 238
Is single 124,863 179,605 53.5 226
Is smoking 3376 118,321 23.7 261
Life satisfaction �6 5958 141,110 12.5 252
Network density �65 32,704 178,737 1.2 214
Neuroticism �5 136,974 179,440 0.4 218
Num friends �585 32,704 178,737 14.0 214
Openness �5 136,974 179,440 4.3 218
ss belief = 1 13,900 169,487 17.8 229
ss belief = 5 13,900 169,487 7.9 229
Uses drugs 2490 105,001 17.2 264

Number of pages indicates how many unique Facebook pages have at
least one Like by users who have a label for the given trait. Percent pos-
itive are how many positive instances there are for each trait. Average
Likes indicate the average number of Likes a user associated with the
given task has.*Thanks to the authors of the prior study1 for sharing the data.
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we build predictive models on the SVD dimensions in
Python using logistic regression as implemented in the
scikit-learn package. For each model, we choose the
regularization parameter by (five-fold) cross-validation,
as is the state-of-the-art practice.26 Appendix B reports
the predictive performance across the set of tasks. The
results concur with those reported by Kosinski et al.1

As in the original article, the predictive performance is
quite strong across the classification tasks.

Main result: how hard is it to cloak?
Table 2 reports the efforts to cloak users who belong to
the target group, that is, those users in the top 10% of
users as ranked by model score. First, we will focus on
the ‘‘All’’ columns (in the next section we break down
the results by TPs and FPs). The results show that al-
though users on average display hundreds of Likes,
on average they need to cloak fewer than 10 to success-
fully inhibit inference. This corresponds to cloaking only
about 2%–3% of a user’s Likes on average. Digging a little
deeper, the prediction tasks are sorted in Table 2 by p,

showing that the averages give a fair picture: with only
a couple of exceptions, the proportion of information
needed to inhibit inference is around 2%–4%. The actual
numbers of Likes that must be removed vary more, as
the top-decile users have different total numbers of
Likes, but nevertheless we see no extreme outliers.

To put these results in context, it would be useful to
understand how strongly the cloakability of a trait is re-
lated to the statistical dependency structure of the data-
generating process. One might think that people who
indeed hold a particular trait would exhibit it through-
out their behavior, and in particular throughout the
things that they Like. How do these cloakability results
compare to what one would expect if Likes and the trait
were not actually interrelated?

To draw this comparison, we conduct a randomiza-
tion test to assess both qualitatively and quantitatively
whether cloakability for these individuals is indeed
harder than it would be in the absence of this statistical
interdependency. We first create a sampling distribu-
tion to be used to randomly assign Likes to individuals.
We want only to remove the interdependency between
the Likes and the dependency between the target and
the Likes, so we retain the general popularity of Likes
as follows (otherwise, due to the skew in popularity, in-
dividuals would have collections of oddly unpopular
Likes). For each personality trait prediction task, we as-
sign to each Like a weight equal to the fraction of users
for that task who have that particular Like. We then
normalize the set of weights so that their sum is
equal to one to create a sampling distribution. Then,
for each user, we draw from this distribution a set of
Likes without replacement. For each user, we draw
the same number of Likes as the user had in the original
data set. Thus, in the resultant population, the popular-
ity distribution over the Likes is the same as in the orig-
inal data, and the numbers of Likes that people have are
the same, and the relationship between the number of
Likes and the target trait is the same. However, there
are no statistical dependencies among the Likes or be-
tween the Likes and the trait. This procedure is re-
peated 1000 times and each time we apply the same
procedure as above to the new population, computing
the values of g0:9 and p0:9. This results in a distribution
over g0:9 and p0:9 when the dependencies are removed.

Figure 3a shows the difference between g 0:9 in the
no-dependency population and the true g0:9. Quantita-
tively, for all tasks, we find that the actual absolute ef-
fort to cloak is always higher (p<0:01, sign test) than
cloaking would be if Likes were randomly assigned.

Table 2. The amount of Likes one needs to remove
(effort) to cloak different users’ traits predicted
by the LRSVD models

Task

g0:9 p0:9

All TP FP All, % TP, % FP, %

Age �37 10.3 13.0 5.8 7.7 9.7 4.4
Agreeableness �5 5.0 6.5 5.0 2.3 3.3 2.3
Conscientiousness �5 4.7 6.7 4.7 3.9 4.7 3.9
Extraversion �5 4.4 5.9 4.3 1.9 2.4 1.8
IQ < 90 6.9 16.3 4.6 4.5 9.0 3.5
IQ �130 6.6 3.4 7.3 2.8 3.5 2.6
Is democrat 8.5 8.5 2.0 1.7 1.7 0.3
Is drinking 6.8 7.5 3.9 2.0 2.2 1.2
Is female 10.0 10.0 5.5 1.9 1.9 1.3
Is gay 5.7 10.9 3.2 3.8 7.4 2.2
Is homosexual 3.5 6.6 2.9 2.4 4.7 1.9
Is lesbian 3.1 5.4 2.8 1.9 3.5 1.7
Is Muslim 11.7 27.8 2.9 9.6 20.2 3.9
Is single 13.7 15.5 7.9 3.4 3.8 2.1
Is smoking 8.4 9.8 5.6 2.8 3.2 1.9
Life satisfaction �6 5.1 7.2 4.6 2.2 3.2 2.0
Network density �65 10.5 15.3 10.4 2.1 2.6 2.1
Neuroticism �5 9.1 5.7 9.2 2.2 1.6 2.2
Num friends �585 5.0 6.6 4.2 2.1 2.5 1.9
Openness �5 6.7 7.7 6.6 2.3 2.8 2.3
ss belief = 1 5.7 6.9 4.9 2.9 3.6 2.4
ss belief = 5 8.3 11.1 7.8 2.1 2.5 2.1
Uses drugs 12.2 12.1 12.2 2.7 3.3 2.2
Mean 7.5 9.9 5.6 3.1 4.5 2.3
Median 6.8 7.7 4.9 2.3 3.3 2.1

Absolute efforts (numbers of Likes removed) are presented in the left
panel, and relative efforts (percentages of Likes removed) are in the right
panel. For each panel, we show in the first column, the full set of users
with data for the trait, in the second column only the TP users, and in
the third column only the FP users.

FP, false positive; LRSVD, logistic regression singular-value decompo-
sition; TP, true positive.
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Qualitatively, we see that indeed cloaking seems very
easy in the random case. In all but three cases, one
needs to cloak fewer than two Likes on average to in-
hibit inference. In all cases, inference can be inhibited
by cloaking fewer than four Likes on average. The fig-
ure shows that generally the statistical dependency

structure renders cloaking several times harder than
it would otherwise be.

Figure 3b shows the difference in the relative effort
to cloak, p0:9, between the randomized setting and the
true setting. Here the highest level result is the same:
in every case, the relative effort is no worse than in the

FIG. 3. Comparison between the efforts needed to cloak predictions for the populations of real users, and for
users for whom the statistical interdependencies among the Likes and between the Likes and the personal trait
have been removed. (a) Absolute (g0:9) and (b) relative (p0:9) efforts are shown for the LRSVD model. Error bars
depict 95% confidence intervals. The upshot is that the presence of the statistical dependencies makes it
significantly harder to cloak, although the total amount of effort still is small. The differences are more striking
for absolute effort than for relative effort, because the real users who are in the top deciles have substantially
more likes in total.
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true setting (p<0:01, sign test). However, some of the
differences quantitatively are not as striking as in the
comparison of absolute effort. In fact, in one case (‘‘is
lesbian’’) the difference is essentially zero. This seeming
paradox is explained by the fact that the numbers of
Likes for the true top-decile individuals can be quite dif-
ferent from the numbers of Likes for the top-decile indi-
viduals in the no-dependency setting. So, for example,
the actual top-decile individuals for ‘‘is lesbian’’ have
twice as many Likes on average as the top-decile individ-
uals in the randomized setting.

The upshot is that although in an absolute sense it is
relatively easy to inhibit inference by cloaking Likes,
the statistical dependence structure among the Likes
and the predicted trait makes it more difficult than it
would be without such structure.

Cloaking TPs versus FPs
At the outset, we introduced the idea that there are
multiple settings where one might want to inhibit infer-
ence. Possibly the most important distinction is be-
tween inhibiting an inference that is in fact true (a
TP inference) and inhibiting an inference that is false
(an FP inference).

Based on the prior results, one might expect that an
FP inference would be easier to cloak because the
statistical dependency to the (positive) trait is by defi-
nition missing. Thus, in a sense, the FP user ‘‘acciden-
tally’’ was targeted, similarly to how the top-decile
randomized users ‘‘accidentally’’ were targeted. In neither
case was the presence of the trait reflected in the behavior
of the user. However, there is an important distinction:
in the randomized setting, the statistical dependencies
also were broken among the Likes, as opposed to simply
between each Like and the target trait. For FPs, intui-
tively there still may be strong statistical interdependen-
cies between the Likes—so if one has some Likes that
trigger the inference by the predictive model, one may
have many Likes that trigger the inference.

Thus, in addition to measuring the cloakability
across all users in the targeted group, Table 2 also re-
ports the same results for TP and FP users separately.
The results show that cloaking is indeed generally
more difficult for TP users than for FP (p<0:05, sign
test). The differences in cloakability between TP and
FP users are shown in Figure 4.

These results may provide some intuitive satisfac-
tion. It is relatively easier to ‘‘fix’’ an incorrect clas-
sification, than to ‘‘hide’’ from a correct inference.
The most striking example of this is in prediction for

the ‘‘is Muslim’’ trait. On average, to inhibit the positive
inference for someone who actually is Muslim, 28 Likes
have to be cloaked. This is almost twice as many as for
any other trait. On the contrary, to inhibit the ‘‘is Mus-
lim’’ classification for a non-Muslim, only three traits
need to be cloaked. This suggests a line of future inqui-
ry: does this illustrate a case of a strong dependency be-
tween a personal trait and the individual’s choice of
actions? Or is there some alternative explanation hav-
ing to do with the subtleties of predictive modeling?
Other such examples can be seen, although to a lesser
extent, for ‘‘age� 37,’’ ‘‘IQ< 90,’’ and ‘‘is gay.’’

A comprehensive analysis of this question is beyond
the scope of this article; however, we can offer an initial
view. Besides the statistical dependency relationships
discussed above, the observed differences in cloakabil-
ity for the TP and FP users can also be attributed to the
interaction between two factors: variance in predicted
probability and the order in which each model ranks
the users subject to prediction. For some tasks, we
find that the predicted probabilities for all users in
the targeted group are tightly clustered; other tasks
have a wide range of probabilities. Within the targeted
group, each model finds itself discriminating between
TP and FP users differently. Some models see a major-
ity of TP users being ranked above FP users, while oth-
ers find TP and FP to be mixed. If a majority of FP
users find themselves ranked below their TP counter-
parts, ceteris paribus they will be easier to cloak simply
because they are closer to the threshold. In addition, if
the variance in predicted probability is large, and many
FP users fall at the lower end of the targeted range,
again the FP users will find it easier to cloak themselves
from inference.

Making cloaking more difficult
In the previous section, we showed that inhibiting in-
ference requires cloaking only a relatively small amount
of personal information—in the prediction setting used
above, only around seven (3%) out of one’s hundreds
of Likes on average need to be cloaked—and that the
statistical dependence structure among the Likes and
the predicted trait makes cloaking more difficult than
it would be without such dependency structure. How-
ever, we showed this for a particular predictive model
and modeling procedure; even though it is a best-
practices modeling procedure, we did not show that
cloaking would be easy using any predictive model.

Could it be that organizations could make different
modeling decisions that would allow them still to
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predict accurately and offer transparency and control
with a cloaking device, but make it much harder for
the users actually to cloak themselves? Those who
run some organizations may be quite happy to provide
transparency and easy control, either because they be-
lieve it is simply the right thing to do, or because they
believe that it will increase user/customer satisfaction,

or even because they believe it will be more profitable
as the targeting actually will be better. Others may
want to give the semblance of transparency and control,
but actually dissuade users from manipulating their
profiles to cloak. To explore whether a targeter can
manipulate cloakability through modeling choices,
let us briefly examine two alternative model choices.

FIG. 4. Differences in cloaking effort required (g0:9 and p0:9) for true-positive versus false-positive users, based
on the LRSVD model. Bars above the zero level indicate that true positives are harder to cloak; bars below the
zero level indicate that false positives are harder to cloak. Error bars depict the 95% confidence interval.

ENHANCING TRANSPARENCY AND CONTROL 207



The Naive Bayes (NB) model is a linear model quite
similar to logistic regression,* but with a certain partic-
ularity. NB assumes that the pieces of evidence taken as
input (the Likes) are conditionally independent of each
other given the target (the trait). Mechanically, the al-
gorithm for inducing the NB model from data treats
each Like independently. When the Likes in fact are
highly correlated, this creates a pathology in predictive
behavior: the resulting inference model will tend to ‘‘dou-
ble count’’ when users present correlated Likes.{ How-
ever, our unscrupulous targeter may decide to use this
pathology to its advantage. The model will tend to give
extra high scores when correlated evidence is presented
and will tend to give the highest scores to users with
large numbers of such Likes. Because of the double
counting, a top-ranked user would have to cloak many
more Likes to achieve the same effect as a user ranked
highly by a model that does not exhibit this pathology
(like the LRSVD model).

For completeness, in addition to the LRSVD model
and the NB model, we also will examine a straight-
forward logistic regression model trained on the full
(non-SVD) raw Like feature space. We would expect
the results for LRSVD and LR to be similar, but the
NB model would require significantly more cloaking
to inhibit inference.

Table 3 presents the values for our cloaking measure
across different models.{ As expected, the cloaking ef-
forts required for the LR and LRSVD models are sim-
ilar. In contrast, cloaking is indeed substantially more
difficult for NB. Rather than needing to cloak only a
half-dozen or so Likes, for the NB models users on av-
erage have to cloak 57 Likes. This is on average 15% of a
user’s Like set. At the extreme, an average person clas-
sified as ‘‘is Muslim’’ has to cloak 50% of her or his
Likes! A person classified as ‘‘conscientiousness �5’’
has to cloak 44% of her or his Likes. Classified as ‘‘is fe-
male,’’ with the NB model? You will have to cloak over
377 (25%) of your Likes to escape that classification.

In summary, a targeter wishing to make cloaking
more difficult could do so without imposing any re-
strictions on the users by changing the predictive
model choice. While it is clear that Like pages do not
conform to the independence assumption inherent to

NB, we find that across all tasks (with the exception
of ‘‘is female’’), the difference in predictive performance
(measured by the area under the ROC curve [AUC] as
in Kosinski et al.1) between LRSVD/LR and NB models
is 10% on average. Thus, by taking a measured loss in
predictive performance, it is possible to make cloaking
significantly more difficult.

However, this increased difficulty presumes that the
user must manually choose Likes to cloak—one by one.
In the next section we discuss how, if users are willing to
trust the system to cloak for them, the difficulty van-
ishes. Moreover, we can give cloakability even in cases
where we cannot or choose not to provide transparency.

Discussion and Limitations
The conclusion that cloaking may be more or less dif-
ficult based on the number of features (Likes) that one
would need to cloak is based on several assumptions.
First, there is a presumption that the individual and/or
the firm would like to have some inferences made—
for example, the individual may be interested in
receiving some targeted content; the firm may be

Table 3. The effort to cloak different users’ characteristics
using a logistic regression with 100 singular-value
decomposition components, a logistic regression,
and Naive Bayes model

Task

g0:9 p0:9

LRSVD LR NB LRSVD, % LR, % NB, %

Age �37 10.3 7.3 37.7 7.7 7.4 17.9
Agreeableness �5 5.0 2.9 7.2 2.3 4.3 12.6
Conscientiousness �5 4.7 3.4 16.1 3.9 4.8 44.1
Extraversion �5 4.4 3.6 58.0 1.9 2.5 10.2
IQ< 90 6.9 3.7 21.6 4.5 7.3 7.2
IQ�130 6.6 2.9 14.4 2.8 3.3 9.4
Is democrat 8.5 9.4 61.7 1.7 2.0 10.6
Is drinking 6.8 5.4 17.1 2.0 2.1 8.2
Is female 10.0 11.6 377.4 1.9 2.0 25.9
Is gay 5.7 9.1 20.6 3.8 15.0 15.3
Is homosexual 3.5 3.4 8.2 2.4 3.9 10.8
Is lesbian 3.1 2.5 7.4 1.9 3.9 13.6
Is Muslim 11.7 8.9 31.1 9.6 10.1 46.5
Is single 13.7 10.2 105.8 3.4 2.8 12.5
Is smoking 8.4 7.0 26.2 2.8 3.2 13.5
Life satisfaction �6 5.1 4.1 10.3 2.2 7.2 8.3
Network density �65 10.5 2.6 75.7 2.1 3.9 7.7
Neuroticism �5 9.1 2.3 254.5 2.2 3.6 18.0
Num friends �585 5.0 4.7 52.6 2.1 2.5 10.6
Openness �5 6.7 3.7 28.6 2.3 2.5 11.1
ss belief = 1 5.7 4.5 24.2 2.9 3.6 10.4
ss belief = 5 8.3 4.7 18.4 2.1 4.1 6.2
Uses drugs 12.2 8.2 31.5 2.7 3.4 9.0
Mean 7.5 5.5 56.8 3.1 4.6 14.8
Median 6.8 4.6 26.2 2.3 3.6 10.8

Absolute efforts are presented in the left panel, and relative efforts are
in the right panel.

LR, logistic regression; LRSVD, logistic regression singular-value de-
composition; NB, Naive Bayes model.

*Indeed equivalent under certain assumptions.27

{Technically, since many Likes that supply evidence of a user being part of the
positive class are highly correlated with one another, the NB modeling will
essentially assign all of these Likes high coefficients, whereas the LR modeling
spreads the overall impact across the coefficients of the correlated Likes (in one
way or another depending on the type and degree of regularization).
{The predictive (generalization) performance for the NB model is slightly lower
than that for the logistic regression models. For details, see Appendix B.
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interested in showing some targeted ads even if an in-
dividual does not want to see all. Otherwise, simply
toggling inferences on or off would suffice. Under
this presumption, there is the further assumption that
individuals would like to be given and/or the firm
would like to give its users explicit fine-grained control
over which features (Likes) are cloaked. In many situ-
ations, this assumption is reasonable: Facebook may
want as many Likes as possible to remain viable for in-
ference, while still allowing users to cloak particularly
concerning ones.

If we were to relax this latter assumption, then the
cloaking mechanism could be used easily regardless
of the number of features that need to be cloaked.
For example, ‘‘one-click cloaking’’ could be offered.
Specifically, when faced with an undesired inference,
an individual could click the ‘‘cloak me from stuff
like that’’ button. Behind the scenes, the system could
apply the evidence counterfactual, determine a mini-
mal set of features (Likes) to cloak to inhibit the infer-
ence, and cloak these particular features. Then, these
features would not be available for future inferences,
and thus, the system would provide more than just
‘‘don’t show me that content again’’—it would not
show other contents for the same reasons. The system
could even provide the list of cloaked features, if this
were deemed valuable.

One-click cloaking separates control from transpar-
ency—a firm could give either, neither, or both. There
are some important, real situations where this separa-
tion is important. Firms may not want to give away
the fine-grained details of their predictive modeling.
The reasons for such reluctance range from issues of
competitive advantage (someone may be able to reverse
engineer the model-in-use with enough probes), to re-
luctance to divulge the data used for drawing infer-
ences, to the actual technical inability to show the
specific features used in a human-digestible manner.
For example, perhaps the features being used are actu-
ally higher level features, constructed by the machine
learning mechanism (e.g., by a deep learning system).
A particularly ironic instance of the latter problem
comes with the use of ‘‘doubly anonymized’’ data for
drawing inferences in production.28 The idea behind
doubly anonymized data is that not only are the iden-
tities of the individuals anonymized but the identity of
the features are anonymized (e.g., irreversibly hashed)
for use in drawing inferences from a predictive model
as well. The predictive models will operate identically
regardless of whether the feature is ‘‘likes dogfood’’ or

‘‘2A3#99HSW5B.’’ However, one cannot offer trans-
parency if one cannot access human-comprehensible
versions of the features.* However, even in cases
where a firm cannot or prefers not to give transparency,
it can give control via one-click cloaking: there is no
need to reveal or even to be able to understand the fea-
tures to apply the evidence counterfactual and the asso-
ciated cloaking.

One reason why one would want to cloak the under-
lying features, rather than simply to inhibit particular
inferences, is because doing so will also inhibit future
inferences made for the same reasons. If I cloak ‘‘likes
dogfood,’’ then no ads or content will be shown to
me because of this. How well this cross-target cloaking
actually works is an open question. As is illustrated
by the NB results above, it may be that there is a
wealth of redundant information in a sparse, ultrahigh-
dimensional feature set. Furthermore, it may be that
slightly different sets of Likes are most predictive for
different targets. If the cloaking does not ‘‘cover’’ closely
associated features, then one may end up being targeted
in the future—not for identical reasons, but for closely
associated reasons. Future research could examine the
effectiveness of cross-target cloaking systematically
and possibly suggest better cloaking mechanisms if
the exact mechanism introduced above is insufficient.

One direction toward that end is to cloak on higher-
level features, rather than on the ultrafine-grained fea-
tures, as suggested briefly above. In the modeling we
did earlier, we follow the methodology of Kosinski
et al.1 and first run unsupervised dimensionality reduc-
tion to create higher-level features, essentially 100 vec-
tors of weights across the space of Likes, then learn a
logistic regression model using these high-level fea-
tures. However, the cloaking that we perform is on
the fine-grained features—cloaking the Likes them-
selves. Instead, we could provide cloaking across the
high-level features (e.g., SVD dimensions, deep-learned
intermediate features). We may or may not be able to
provide reasonable transparency, but as with one-
click cloaking, if we have separated control from trans-
parency, we could in principle allow cloaking over
the higher-level space.{ Our conjecture is that cloak-
ing on the higher-level features will further reduce

*The irony is that a firm that has tried to improve its privacy friendliness via double
anonymization may no longer be able to offer transparency into the reasons why a
particular inference has been made.
{We would need to define how exactly to compute the evidence counterfactual on
this space, as it is no longer sparse binary. For example, we could set variables to a
chosen value other than zero, such as the population mean, median or mode, or
the mean in the nontargeted population.

ENHANCING TRANSPARENCY AND CONTROL 209



undesired inferences, and that it also will reduce infer-
ences that are not undesired.

In this article, we have assumed that features are
cloaked from inference but not from learning/model
building. If we also were to cloak from model building,
then given the redundancy in the relationship between
features and target, it is likely with enough cloaking the
modeling would learn to predict the target based on
some other features. The individual could then have sim-
ilar or even the same inferences drawn in the future. This
could be undesirable from a user-experience point of
view, and also could lead to an arms race between a ma-
chine learning system and the cloaking users. It would be
interesting to study the properties of such a dynamic sys-
tem, for example, from a game-theoretic perspective.

A number of articles study preserving individual pri-
vacy in the presence of high-dimensional fine-grained
data. For example, Ghinita et al.29 address the anonym-
ization of sparse high-dimensional data under the no-
tion of k-anonymity and l-diversity. Chen et al.30

discuss differentially private high-dimensional data
publication. These works focus on preserving sensitive
individual information from being revealed to an
adversarial party. In this article, we have adopted an
alternative approach designed for situations where a
cooperative data manager/service provider wants to
provide transparency and control over inferences drawn
from models applied to (high-dimensional) data on
individuals.

Conclusion
In this article, we developed a method—what we call
the cloaking device—to provide individuals with con-
trol over the inferences made about them by statistical
models. The cloaking device makes use of the evidence
counterfactual to provide transparency into the partic-
ular information on which inferences are based and en-
ables users to inhibit the use of particular pieces of
information for drawing future inferences. As a result,
this understanding and transparency allow users to
control the final inferences made about them in a pre-
cise and unobtrusive way.

Using the cloaking device, we answer two questions:
(1) how difficult is it for users to cloak themselves
from inference and (2) can organizations making infer-
ences make them harder to hide from? Using data from
Facebook and a common targeting strategy, we find that
users only need to cloak a small portion of their Face-
book Likes to successfully inhibit particular inferences
of personal traits. In addition, we find that it is easier

to hide from an FP inference than from a TP. These re-
sults provide some level of intuitive satisfaction. When a
user is targeted due to an incorrect inference about some
personal trait, they need to hide a smaller number of
Likes when compared to someone in the targeted
group that does indeed exhibit the trait. On investigating
the patterns of Likes that occur in Facebook profiles, we
find that the combinations of Likes that exist for an in-
dividual are not random. This interrelated nature of
Likes results in cloaking becoming more difficult than
if Likes occurred independently.

While we find that cloaking with our modeling
setup is not difficult, we show that simple changes to
modeling can result in significant changes in a user’s
ability to hide from inference. When compared to lo-
gistic regression models, whose inferences are rela-
tively easy to cloak, using an NB model results in
inferences that are far more difficult to mask. The pre-
dictive accuracy of our NB models is on average 10%
worse than logistic regression, but the result is a sig-
nificant increase in cloaking difficulty. However, this
example is only comparing two simple predictive
models. In reality, an organization intent on making
cloaking more difficult could explore other modeling
options that provide better predictive performance
while still increasing the difficulty of cloaking. A cal-
culated trade-off can be made in terms of predictive
power and cloaking effort.

In the Discussion and Limitations section, we out-
line several implications of our research and provide
some of its limitations. The concepts we discuss sug-
gest several possible directions for future research.
For example, one-click cloaking would require less ef-
fort from users and thereby give them added control.
On the contrary, it may be less desirable from the
firm’s point of view, as users may end up cloaking
more features.

As digital data become increasingly centered on the
inherent network structure of many online platforms
and online inferences are incorporating social network
data into their models, expanding cloaking to utilize
network-based techniques can have a dramatic effect
on inference and cloakability.31 In our setting, utilizing
network data could lead to not only cloaking features
but to also suggesting the cloaking of friends to avoid
being targeted.
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LRSVD ¼ logistic regression singular-value decomposition
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SVD ¼ singular-value decomposition

TP ¼ true positive
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Appendix A: Singular Value Decomposition
The performance of a logistic regression model can be
improved by reducing the set of features if it is very
large or if the data are sparse. A common technique
is to use a singular value decomposition (SVD).

Let M be a feature matrix that contains n records and
m features. M can be decomposed into:

M = USV�: (6)

In the above decomposition, U is an n · n unitary
matrix, S is an n · m diagonal matrix composed of
the singular values of M sorted in descending order,
and V� is the m · m conjugate transpose of the unitary
matrix V. To reduce the space, we can choose to only
include a subset of the first k features from the matrix
S when training a new model.

A model trained on this reduced feature space will
not directly yield coefficients for each of the original
features. A simple transformation will allow for a map-
ping between a model trained on the SVD space to the
original set of features before the reduction. Let bSVD be
the set of coefficients from the linear model trained on
the SVD space and let b be the coefficients on the orig-
inal set of features. We map from one to the other by
the following:

b = bSVDS
� 1V�: (7)

Appendix B: Classification Performance
Table 4 reports the area under the ROC curve and lift at
10% across classification tasks and across different pre-
dictive models.

Table 4. Area under the ROC curve and lift at 10%
for each classification task using a logistic regression
with 100 singular-value decomposition components,
a logistic regression, and a Naive Bayes model

Task
%

positive

AUC Lift at 10%

LRSVD LR NB LRSVD LR NB

Age �37 12.7 0.868 0.904 0.816 4.92 5.82 3.81
Agreeableness �5 1.4 0.604 0.590 0.587 1.85 1.82 2.06
Conscientiousness �5 1.8 0.677 0.670 0.626 2.53 2.64 2.28
Extraversion �5 3.3 0.680 0.671 0.590 2.48 2.55 1.90
IQ< 90 7.3 0.631 0.625 0.571 2.42 2.78 2.60
IQ�130 13.0 0.620 0.636 0.619 1.97 2.37 1.98
Is democrat 59.6 0.889 0.888 0.822 1.65 1.65 1.58
Is drinking 48.5 0.782 0.790 0.683 1.70 1.74 1.66
Is female 61.6 0.922 0.967 0.667 1.61 1.62 1.38
Is gay 4.6 0.890 0.904 0.784 6.92 7.64 7.56
Is homosexual 3.5 0.788 0.839 0.694 4.76 6.25 4.84
Is lesbian 2.7 0.729 0.797 0.605 3.50 5.19 2.88
Is Muslim 5.0 0.949 0.949 0.894 8.40 8.71 8.50
Is single 53.5 0.637 0.665 0.644 1.40 1.44 1.28
Is smoking 23.7 0.785 0.792 0.673 2.46 2.81 2.18
Life satisfaction �6 12.5 0.594 0.579 0.570 1.62 1.66 1.50
Network density �65 1.2 0.609 0.575 0.518 3.00 3.52 2.24
Neuroticism �5 0.4 0.673 0.603 0.523 2.40 2.12 1.67
Num friends �585 14.0 0.717 0.734 0.625 2.66 2.95 2.45
Openness �5 4.3 0.665 0.660 0.635 2.27 2.49 2.20
ss belief = 1 17.8 0.689 0.700 0.651 2.26 2.50 2.02
ss belief = 5 7.9 0.641 0.616 0.546 1.94 2.22 1.93
Uses drugs 17.2 0.781 0.772 0.683 3.12 3.18 2.83
Mean 0.731 0.736 0.653 2.95 3.29 2.75
Median 0.689 0.700 0.635 2.42 2.55 2.18

AUC, area under the ROC curve.
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