
Reproducible Research
lessons learnt from software development

IEEE DSAA 2018, Kevin Kunzmann

02/10/2018

About me

• studied mathematics. . .
• got into statistics and programming . . .
• started working in biostatistics . . .
• realized how hard it is to make analyses truely reproducible . . .
• developed a reproducibility-fetish . . .
• but not a software developer!
• kevin-kunzmann@mrc-bsu.cam.ac.uk / @kevin kunzmann

MRC | Medical Research Council 1 of 56

mailto:kevin-kunzmann@mrc-bsu.cam.ac.uk

Outline

1. What is reproducible research and why do we need more of it?

2. Version control

3. Literate programming

4. Build automation

5. Containerization

• incremental approach adding ‘layers’ of reproducibility
• live demos introducing new techniques hands-on
• ultimate challange: get the sample analysis running on your system!
• code online at https://github.com/kkmann/reproducibleresearch

MRC | Medical Research Council 2 of 56

https://github.com/kkmann/reproducibleresearch

Assumed prerequisites

• Unix system
• some basic bash
• install docker / singularity:

$ sudo apt-get install docker-ce

$ sudo apt-get install singularity-container

• basic git

$ sudo apt-get install git

• if you want to follow the analysis example: some Python/R

MRC | Medical Research Council 3 of 56

Example analysis

• analysis example: tensorflow getting-started example
(https://www.tensorflow.org/tutorials/)

• goal: classify 28-by-28 pixel images of the digits 0-9 from MNIST
dataset of hand-drawn digits

• mainly built on python/tensorflow/keras, later combined with R
• just constructing a simple neural network model in TensorFlow and

training it

MRC | Medical Research Council 4 of 56

https://www.tensorflow.org/tutorials/

Where are we?

• absolutely not restricted to academic projects ;)

MRC | Medical Research Council 5 of 56

What is reproducible research?

• small/medium analytic projects: end product often still a
[pdf/html/docx] report

• reproducible: same code, same data same result
• replicable: same code, new data qualitatively same result
• replicability is hard and expensive, not our topic today, but . . .
• . . . reproducibility should be minimum standard!

MRC | Medical Research Council 6 of 56

Why is reproducibility so important?

1. increases trust in results:
I (In the life sciences) amount of code required to produce results often

longer than the actual paper
I having the code available to reproduce the results in a paper will increase

quality of peer review!

2. makes analyses extensible
3. increased long-term efficiency
I often: person that has to reproduce your results will be you!
I be gentle to you future self!
I adopting a reproducible workflow can save you lots of work

MRC | Medical Research Council 7 of 56

Connection to software development?

• data analyses today is mostly software driven
• ‘customers’ usually not aware of complex software stack behind the

reports
• (narrow) definition:

analysis = software program turning data into report/figures
• many problems of software development apply:
I testing (not covered today!)
I agile development (versioning!)
I documentation
I dependency management/isolation

• tools can help with technical side of the issue, but:
I not necessarily geared towards reproducible research
I in some communities: not even known at all!

MRC | Medical Research Council 8 of 56

Some modest advice from a
reproducibility-fetishist

• reproducibility is a continuum, small but simple improvements are
good first steps!

• cost/benefit of measures must be taken into account!
• technical solutions can only complement: A fully containerized

analysis without any documentation might be reproducible but is still
practically useless for anyone not involved in the initial analysis

MRC | Medical Research Council 9 of 56

What we will look at today

1. What is reproducible research and why do we need it? X
2. Version control: keep track of changes to files over time, different

variants of files, collaboration, (git, github.com)
3. Literate Programming: combine text and code, ‘programming reports’,

(jupyter, knitr, RMarkdown, pandoc)
4. Build automation: Automate the ‘build process’ of your reports (make)
5. Containerization: Dependency management by packaging the entire

computing system used for the analysis in an isolated container
(docker, singularity)

MRC | Medical Research Council 10 of 56

We have all been there. . .

• never assume that something is finished and does not need to be
revisited later

MRC | Medical Research Council 11 of 56

Why version control?

• analyses often initially exploratory: requirements and hypotheses
evolve over time

• when multiple people are involved: diverging versions/variants
• version control allows to keep track of changes over time and

between varariants (branches)
• allows going back in time or developing different variants in parallel

with the option of merging them together at a later point!

MRC | Medical Research Council 12 of 56

git (https://git-scm.com/)

• originally developed by Linus Torvals for managing the linux kernel
development (2005)

• the name? most probably: pronouncible 3-letter combination not
already in use by other unix commmand . . .

• free and open-source
• widely used in industry and academia
• extremely powerful professional tool
• easy to get started with, hard to master (you can break things. . .

completely)

MRC | Medical Research Council 13 of 56

https://git-scm.com/

git is not exactly beginner-friendly

Figure: xkcd git 2x

MRC | Medical Research Council 14 of 56

Why use git for research?

• git is designed with distributed development in mind (there is no
central repository) perfect for academia!

• git emphasizes ‘branching’ (diverging versions from the main line of
development), useful to try out new angles/features on an analysis

• acts as a time-machine for your work
• excellent community support + de-facto standard for web based

services (github.com, gitlab.com)

MRC | Medical Research Council 15 of 56

git vs. github.com

• git is a command line tool
• github.com (or gitlab.com) are (commercial) code hosting platforms

running git servers
• mostly free to use but beware of data protection laws when uploading

data!
• github.com and the like make online collaboration extremely easy
• this workshop’s materials are publicly available at
https://github.com/kkmann/reproducibleresearch

MRC | Medical Research Council 16 of 56

https://github.com/kkmann/reproducibleresearch

git basics for today

• git quickly becomes complicated and deserves a workshop on its
own!

• git survival package for today:

$ sudo apt-get install git

$ git clone xxx

$ cd xxx

$ git checkout jupyter

$ git checkout master

MRC | Medical Research Council 17 of 56

Version control

• probably one of the two most important tools for reproducible
analyses (besides ‘make’, cf. later)

• git is the de-facto standard (SVN and Mercurial still used)
• git is the real stuff: very sophisticated, professional tool, steep

learning curve, easy to break things
• git + ecosystem encourages collaboration
• Any form of professional version control encourages a clean and

transparent workflow!
• good place to start learning are the tutorials at:
I https://try.github.io/
I https://www.atlassian.com/git/tutorials

MRC | Medical Research Council 18 of 56

https://try.github.io/
https://www.atlassian.com/git/tutorials

Document your code!

Guido van Rossum
“Code is more often read than written.”

MRC | Medical Research Council 19 of 56

Document your code

• one of the first things you (should) learn when programming:
document your code!

• “Code tells you how; Comments tell you why.”, Jeff Atwood
I good code should be fairly self-explaining
I still need to document what you do and why!

MRC | Medical Research Council 20 of 56

Bad example

set up sequential keras model
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(), # input layer
tf.keras.layers.Dense(512, activation=tf.nn.relu), # hidden layer
tf.keras.layers.Dropout(0.2), # dropout layer
tf.keras.layers.Dense(10, activation=tf.nn.softmax) # output layer

])
compile the model, using adam optimizer and categorical crossentropy
as loss function, monitor accuracy during training
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’])

• restating the obvious
• hard to maintain after changes
• what is this model for?

MRC | Medical Research Council 21 of 56

Better

build neural network model in Keras for MNIST classification task
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’])

• don’t state the obvious, be concise
• explain what and why, not how
• also: stick to code formatting guidelines!

MRC | Medical Research Council 22 of 56

Literate Programming

Donald Knuth, 1984
“I believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to
be works of literature. Hence, my title: ‘Literate Programming’.”

MRC | Medical Research Council 23 of 56

Documenting data analysis code

• documentation even more important (explain the goal, choices)
• documentation often much longer than code documentation-first

approach
• instead of embedding the comments in a code file, embedd the code

in a text document!

MRC | Medical Research Council 24 of 56

1st candidate: Jupyter notebook

• http://jupyter.org/

• spin-off from IPython (around since 2001!)
• name composed of JUlia + PYThon + R: many languages (not just

python) supported via kernels
• code is organized in ‘chunks’ (blocks)
• results are displayed right below corresponding code chunk
• interactive approach; code can be executed in arbitrary order
• code can be combined with markdown formatted text

MRC | Medical Research Council 25 of 56

http://jupyter.org/

Demo

MRC | Medical Research Council 26 of 56

Notebook formats and reproducible research

• great for early prototyping!
• limited formatting flexibility (cannot suppress unwanted chunks, no

custom templating etc.)
• source file (.ipynb) not really human-readable
• encourage mistakes by sloppy execution order (code chunks can be

executed in arbitrary order!)
• more in-depth critique: Joel Grus JupyterCon 2018 “I don’t like

notebooks”

MRC | Medical Research Council 27 of 56

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1

Enter markdown + pandoc

• markdown (.md files) :
I https://daringfireball.net/projects/markdown/
I John Gruber, 2004
I extremely simple markup language
I supports only most essential features (headings, lists, simple tables,

hyperlinks, etc.)
I ‘least common denominator’ for pletora of different markup languages

(html, LaTeX, . . .)

• pandoc
I https://pandoc.org/
I John MacFarlane, 2006
I converts between markup languages via markdown, supports html,

pdf, .ods, .docx, etc.
I extensive theming possible via templates, very flexible
I no support for literate programming (code chunks) out of the box!

MRC | Medical Research Council 28 of 56

https://daringfireball.net/projects/markdown/
https://pandoc.org/

RMarkdown + knitr + pandoc

1. RMarkdown: extends markdown to include code chunks
https://rmarkdown.rstudio.com/

2. knitr: R package responsible for ‘knitting’ text, code and output in
simple markdown file
https://yihui.name/knitr/

3. markdown file can then be rendered in almost arbitrary output
formats (html, pdf, .ods, .docx) using pandoc

• knitr + RMarkdown support multiple languages (R, python, julia, SQL,
bash, C++, Stan, etc.)

MRC | Medical Research Council 29 of 56

https://rmarkdown.rstudio.com/
https://yihui.name/knitr/

R Markdown basic structure

text

‘‘‘{[interpreter] [chunk-name] [, chunk options]}

[your code]

‘‘‘

more text

• look at this in more detail during next demo

MRC | Medical Research Council 30 of 56

RMarkdown + knitr + pandoc

• extremely flexible via custom pandoc templates
• RMarkdown still human-readable source file
• no notebook-like messed up order of execution (optionally available in

RStudio though)
• clear ‘build process’ from .Rmd to .md via knitr and from .md to

almost any output format
• allows combination of multiple interpreters in one document!
• excellent python + r interoperability via R package reticulate

https://rstudio.github.io/reticulate/articles/introduction.html

• objects can be shared between R and python sessions in one
document

MRC | Medical Research Council 31 of 56

Alternatives

• for even more control, use .Rnw (Sweave) files using LATEXas markup
language

• Sweave files can only be output as .pdf (or .ps)
• much more complex markup language (LATEX)
• Pweave for python does the same thing

MRC | Medical Research Council 32 of 56

Demo

RMarkdown + knitr + pandoc

MRC | Medical Research Council 33 of 56

Build Automation

• by now, we have a single source file (.Rmd) for our analysis report
• so far: built the report via RStudio’s GUI
• problem: not automatic, requires point-and-click user interaction
• problem: potential hidden stuff going on under the hood
• imagine big project with multiple interdependent reports, need to be

processed in correct order!
• need to completely automate build process!

MRC | Medical Research Council 34 of 56

‘make’ reports reproducibly

• similar problem in software development: compile and link programs!
• tool of choice: make!
• software-dinosaur: around since 1976 (by Stuart Feldman)
• make executes ‘makefiles’ specifying recipies for how to ‘make’ files
• make keeps track of file dependecies and only rebuilds what is

necessary - acts as cache!
• make is just as useful for automation of report builds

MRC | Medical Research Council 35 of 56

makefile structure

• a minimal makefile for out report:
report.pdf: mnist report.Rmd

R -e "rmarkdown::render(’report.Rmd’, output_file = ’report.pdf’)"

• recipes for files (report.pdf) with requirements (mnist folder, holds the
data) and a bash command (knit the .Rmd file)

• dependencies are monitored for changes - report.pdf is only rebuilt
when the content of the mnist folder changes or the RMarkdown
source file

• dependency checking acts like caching during development
• with proper makefile: user just needs to call make in project folder -

done.

MRC | Medical Research Council 36 of 56

Bonus: pandoc templates

• technically relatively easy . . .
• . . . but practically a bit tricky (especially for .ods and .docx outputs!)
• not really documented
• beyond the scope of this workshop
• best advice: look at respective pandoc default templates and go from

there
https://github.com/jgm/pandoc-templates

• can be tightly integrated with R
https://bookdown.org/yihui/rmarkdown/document-templates.html

MRC | Medical Research Council 37 of 56

https://github.com/jgm/pandoc-templates
https://bookdown.org/yihui/rmarkdown/document-templates.html

Demo

make

MRC | Medical Research Council 38 of 56

Wrap-up: make

• make might easily be the most important tool (and oldest) for
reproducible research

• enables automation of the entire output generation
• can be used without literate programming to automate plot generation

or non-output prerequisite operations
• essential for complex multi-layered projects (caching!)
• ‘makes’ the structure and sequence of the report generation

transparent (what depends on what)

MRC | Medical Research Council 39 of 56

Are we there yet?

MRC | Medical Research Council 40 of 56

‘Reproducible’ vs. ‘portable’

• we have: fully automatic way to get from data to nice .pdf report (just
call ‘make’)

• but: piled up huge stack of software dependencies along the way!
1. base linux system with all its system libaries
2. make
3. R and some packages
4. python and some packages
5. pandoc
6. LaTeX and some packages
7. custom report template

• analysis might be reproducible (on my system) but not portable (to
another system)

MRC | Medical Research Council 41 of 56

Dependency management

• Most programming languages have some sort of package manager
(pip for python, built-in for R)

• reproducibility not necessarily primary design principle
• reproducibility tacked-on later (virtual environments, packrat + MRAN

repository)
• do not solve system-level dependencies
• better than nothing but not really robust for complex analysis

employing several different languages / software packages!

MRC | Medical Research Council 42 of 56

Fix #1: write specification manifest

• write a manifest with specification of the entire software, where to get
it, and how to install it . . .

• nightmare to maintain up-to-date valid ‘protocol’
• error-prone (not really testable)
• future availability of required software and compatibility is hard to

guarantee

MRC | Medical Research Council 43 of 56

Fix #2: virtual machines

• better: put everything in a virtual machine
• relatively easy and works fine
• but: not exactly the right concept: VMs are full blown systems

capable of multiple task - we just need a minimal set-up to execute
our analysis reliably

• VMs: large, ineffective, difficult to administrate
• lightweight alternative: containerization

MRC | Medical Research Council 44 of 56

Fix #3: Container

• disclaimer: I am far from being a container expert!
• good news: you don’t have to be either to use this stuff!
• technically wrong, but for our purposes: container = lightweight VM
• can be tuned to efficiency (only the stuff you need) or towards

reusability
• layer-wise construction makes them effective to store
• no need to start from scratch! plenty of base layers available for free
• effectively provides a portable computing environment to execute

our ‘make’ command in

MRC | Medical Research Council 45 of 56

Docker

• https://www.docker.com/

• very popular containerization software
• great community support
• easy to use (for our purposes)
• even works on Windows using the Windows Subsystem for Linux
• open source code
• comes with free container hosting service ‘dockerhub’
https://hub.docker.com/

MRC | Medical Research Council 46 of 56

https://www.docker.com/
https://hub.docker.com/

Building a docker container

• building your own container is like cooking a curry
• you can start from scrach but you don’t need to
• any publicly available container can be used as base layer
• rocker project maintains versioned images for R and Rstudio
I rocker/verse container includes everything for using Rmarkdown + knitr +

pandoc pipeline (incl. LaTeX)
https://hub.docker.com/r/rocker/verse/

I https://www.rocker-project.org/

MRC | Medical Research Council 47 of 56

https://hub.docker.com/r/rocker/verse/
https://www.rocker-project.org/

The dockerfile

• basic example of a dockerfile building an image based on
rocker/verse for a specific R version

FROM rocker/verse:3.5.1

MAINTAINER Kevin Kunzmann kevin.kunzmann@mrc-bsu.cam.ac.uk

RUN sudo apt-get update

RUN sudo apt-get install -y python3-pip python3-dev python3-tk
RUN sudo pip3 install -U pip
RUN sudo pip3 install numpy==1.14.3 matplotlib==2.2.2 tensorflow==1.8.0

MRC | Medical Research Council 48 of 56

Building and distributing a container image

docker build -t [imagename] .

docker push [imagename]

• that’s it!
• docker container image for this tutorial available at:

https://hub.docker.com/r/kkmann/reproducibleresearchtutorial

MRC | Medical Research Council 49 of 56

https://hub.docker.com/r/kkmann/reproducibleresearchtutorial

Running ‘make’ inside a container

docker pull kkmann/reproducibleresearchtutorial

docker run --name=dsaa2018 --rm -d -p 8787:8787;

-e PASSWORD=dsaa2018;

-v ${PWD}:/home/rstudio/DSAA;

kkmann/reproducibleresearchtutorial

docker exec -it -w /home/rstudio/DSAA dsaa2018 make all

docker kill dsaa2018

• container images can also be identified by sha256 hash in case of
updates (cf. demo)

• ‘-v’ mounts host volumes in the container (keep data / analysis
scource code out of container!)

MRC | Medical Research Council 50 of 56

Demo

MRC | Medical Research Council 51 of 56

Docker is not ideal for RR

• docker was never intended to be used for reproducibility!
• requires root access!
I fine on your local machine, but some things need to be run on

server/cloud
I ideally, analysis runs in a cloud environment portability

• ideal container system should work with cloud / HPC environments
on user level (no root!)

MRC | Medical Research Council 52 of 56

Solution: Singularity

• https://www.sylabs.io/

• new kid on the block (stable release 2.5.2: 2018)
• free, open-source, cross-platform
• designed for HPC (no root access required!) and reproducibility
• fully compatible with docker!
I can pull and run docker containers out of the box!
I similar command structure

MRC | Medical Research Council 53 of 56

https://www.sylabs.io/

Demo

MRC | Medical Research Council 54 of 56

Wrap-up: ideal structure

• git repository with analysis code
I literate programming reports (.Rmd) + any required code files
I top level make file with target ‘all’ executing all required steps in correct

order
I bash script to run make inside container

• container image with entire computing environment

• process to reproduce anywhere:
1. clone git repository (at specified release tag!)
2. run ‘make all’ inside the container (ideally via provided bash script)

• minimal dependencies: git, singularity-container or docker

MRC | Medical Research Council 55 of 56

Put it to the test

1. install singularity, Ubuntu package sources outdated, stable 2.6.0
must be installed manually
$ git clone https://github.com/sylabs/singularity.git

$ cd singularity

$ git fetch --all

$ git checkout 2.6.0

$./autogen.sh

$./configure --prefix=/usr/local

$ make

$ sudo make install

$ cd ..

2. clone analysis code
$ git clone https://github.com/kkmann/reproducibleresearch

$ cd reproducibleresearch

3. execute the run script (needs to download image the first time!)
$ chmod u+x run_singularity.sh

$./run_singularity.sh

MRC | Medical Research Council 56 of 56

	Version Control
	Literate Programming
	Build Automation
	Containerization
	Closing Remarks

