SILICON VALLEY DATA SCIENCE

Data Science and Software Product Development

John Akred | @BigDataAnalysis DSAA 2018 To receive a copy of these slides, please send me a direct message on Twitter (@BigDataAnalysis)

MY INTREPID COLLEAGUES

WE DO DATA RIGHT.

- We work in cross-functional teams made up of data scientists, engineers, and solutions architects.
- We combine enterprise know-how with custom methods derived from Silicon Valley best practices.
- We use an agile development approach to make iterative progress against difficult problems.
- We focus on delivering business value as early as possible, while iterating toward the larger goal.

- Prioritize for highest business value when innovating with technology
- Design with outcomes in mind
- Be agile: share intermediate outputs, incorporate feedback
- Collaborate constantly with stakeholders and partners

OUR PHILOSOPHY

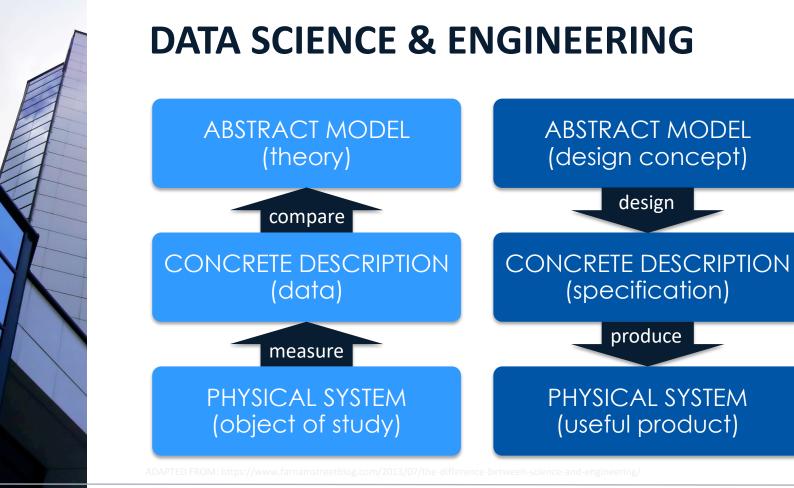
- Challenges of Integrating Data Science and Software Development
- Challenges in the Enterprise
 Environment
- Methods: What do we have to work with?
- A Method for Integrating Data Science with Agile Software Development
- Opportunities for research
 and best practices

AGENDA

Challenges of Integrating Data Science and Software Development

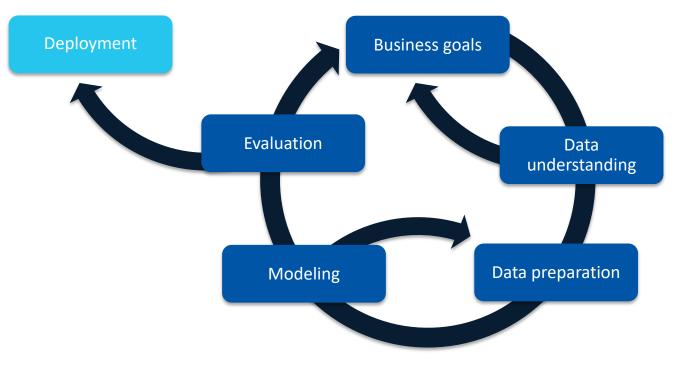
BUSINESS INTELLIGENCE AND DATA SCIENCE

Business Intelligence	Data Science
Information in dashboards	Guided decision-making
How much churn was there?	How might I reduce churn rate?
Current and historical	Future-looking
What?	Why? How?
Business-focused skills	Math-focused skills
Proprietary tools	Open source tools
Tactical	Strateaic

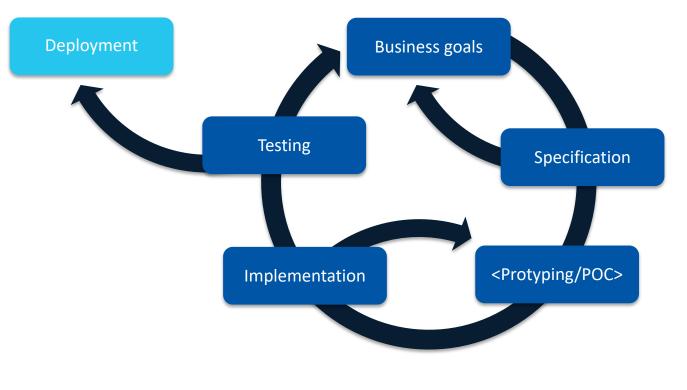


© 2017 SILICON VALLEY DATA SCIENCE LLC. ALL RIGHTS RESERVED

CRISP-DM



Software Development



WANT SOME?

- Solid data strategy
- Functioning platform
- Tolerance for failure
- Ability to act on insights

CHALLENGES IN THE ENTERPRISE ENVIRONMENT

BUSINESS LIKES LINEAR PROGRESS

progress

@SVDataScience

© 2017 SILICON VALLEY DATA SCIENCE LLC. ALL RIGHTS RESERVED.

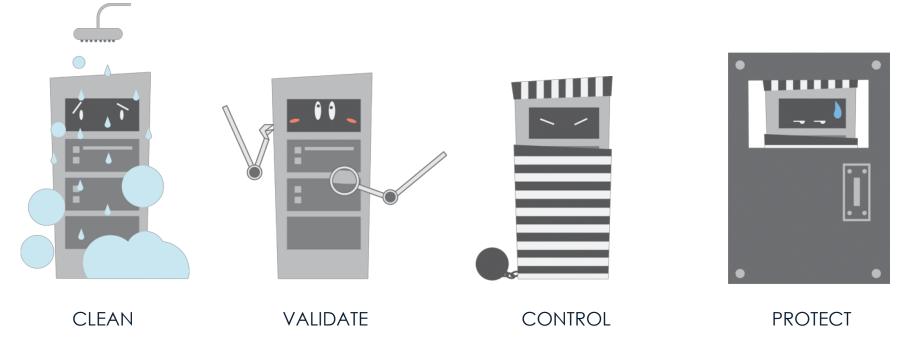
14

DATA SCIENCE LAUGHS AT LINEAR PROGRESS

@SVDataScience

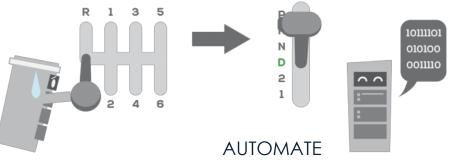
© 2017 SILICON VALLEY DATA SCIENCE LLC. ALL RIGHTS RESERVED.

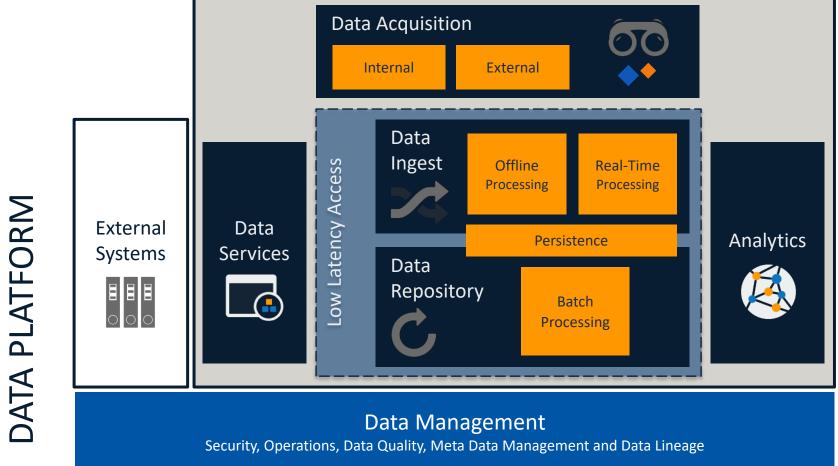
CONVENTIONAL DATA STRATEGY "WHAT YOU DO **TO** DATA"



MODERN DATA STRATEGY

"WHAT YOU DO WITH DATA"



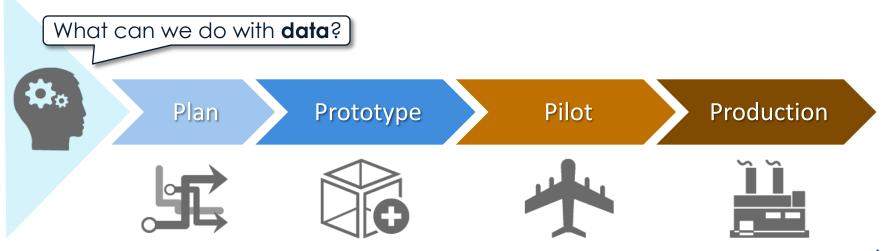


THE DATA VALUE CHAIN

from raw data to data-driven product

FROM IDEA TO PRODUCTION

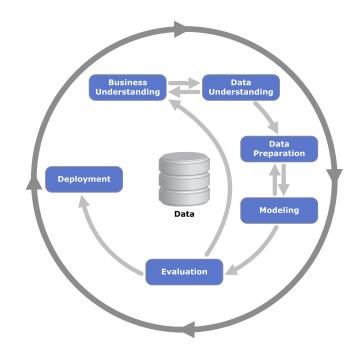
We identify the business goals, distill those into hypotheses, and then work in short, iterative cycles to achieve tangible gains.



What are our options? Methodologies for Data Science

Methods for Data Science

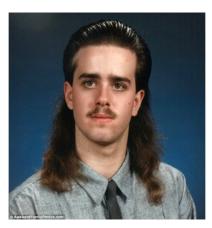
What main methodology are you using for your analytics, data mining, or data science projects ? [200 votes total] 2014 poll 2007 poll				
CRISP-DM (86)	43% 42%			
My own (55)	27.5%			
SEMMA (17)	8.5% 13%			
Other, not domain-specific (16)	8% 4%			
KDD Process (15)	7.5% 7.3%			
My organizations' (7)	3.5% 5.3%			
A domain-specific methodology (4)	2 % 4 .7%			
None (0)	0% 4.7%			



http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html

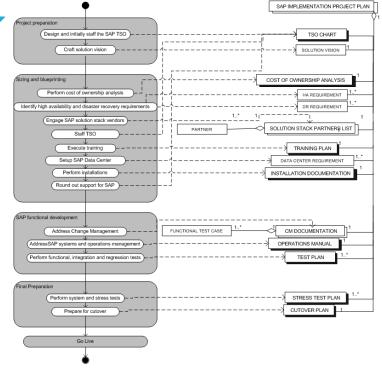
SOFTWARE ENGINEERING METHODS

SCRUMFALL The "Mullet" of Methodologies

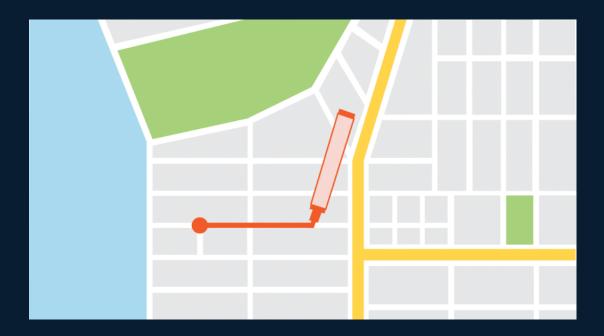


WATERFALL

Great in theory, sometimes in practice



Where to?



Manifesto for Agile Software Development

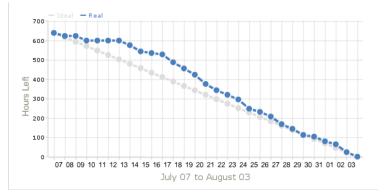
We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan

> That is, while there is value in the items on the right, we value the items on the left more.

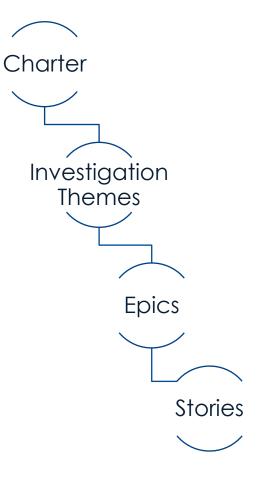
Common Objections

- Software development emphasizing shipping product
- Data Science is nonlinear



- ✓ Incremental revenue
- ✓ Time to market
- Economic functional implementation
- ✓ Cost avoidance
- ✓ Brand benefit
- ✓ Goodwill

HOW DO WE GET THERE?



Agile Data Science Basics

- The **Project Charter** identifies the desired end point, and expected timeline for getting there
- There is a **plan** for the overall project which charts the investigation themes that will be focused on over the expected timeline
- The project is organized and run in **sprints** (typically) two week increments of work
- Work is organized into **stories** specific tasks necessary for reaching the goal which can be reasonably expected to be completed in the sprint
- Each sprint has a regular cadence of coordination and feedback meetings
 - **Kickoff** populate the backlog with the stories selected for the current sprint, assign responsibility for each story
 - **Standups** daily, BRIEF coordination meetings
 - **Retrospective** the time to show what's been accomplished and steer the project based on lessons learned, "product" feedback, etc.

Charter:

Why is a data science & engineering consulting company building its own Caltrain app?

SILICON VALLEY DATA SCIENCE

START	START END						
Burlingame		San Francisco					
#	Local	Limited	Bullet				
\$5.25 one way (\$0.50 less with Clipper, \$10.50 day pass)			My Commute				
Time to train	Schedul	Riding time					
Riding this train	3:38PM #257 -	26					
Riding this train	4:07PM #159	33					
40	4:53PM #263 -	38					
4.0.4	5:17PM	- 5:43PM					

CR

- Commuter rail between San Francisco and San Mateo and Santa Clara counties ~30 stations
- 118 passenger cars
- 60% >=30 years old
- 2014 weekday ridership is 52,019 people
- On-time performance is about 92%?
- No reliable real-time status information
- API outage between April 5th and June 2nd

SPRINT PLANS

AGILE DOES NOT MEAN AN ABSENCE OF INTENT

Can we understand Caltrain System Status?						
Build the Pipeline						
Trains Sprint Plan		Build the App				
		Mobile App Build				
Event Classifier		Caltrain API	Mobile App Integration Testing	Pilot Testing		
Tweets	weets Processing Pipeline		Prediction Service			
				>		
5	7	9	11	13		
	Status? t Plan Event C Tweets	Status? Build the Pi t Plan Event Classifier Tweets Processing	Status? Build the Pipeline Build the A Build the A Caltrain API Tweets Processing Pipeline	Status? Build the Pipeline Build the App Mobile App Build Event Classifier Tweets Processing Pipeline Prediction Service		

INVESTIGATION THEME: UNDERSTANDING SCHEDULE VARIANCE: HOW DO WE KNOW IF THE TRAIN IS LATE?

- Direct observation
 - We can hear the train horn
 - We can see the train when it goes by
- Purpose-built systems:
 - We can use Caltrain API's (when working)
- Other signals
 - We can check Twitter for delay info or rider comments

John Akred @BigDataAnalysis · May 7

#caltrain run 380 southbound express on time at Hillsdale as of 18:48.

Collapse

🛧 Reply 🧘 Delete ★ Favorite 🚥 More

6:42 PM - 7 May 2014 · Details

SPRINTS

EPIC HYPOTHESIS: WE CAN CLASSIFY A PASSING TRAIN INTO "LOCAL" OR "EXPRESS"

- Define a candidate approach and technical method:
 - I'm going to compare the beginning and ending fundamental frequencies of a sound to determine how fast a train is moving
 - I'm going to build a classifier based on that derived difference between starting and ending frequency to identify local vs. express—essentially trying to observe the Doppler effect on fast-moving express trains

@SVDataSciend

STORIES & EPICS: WHICH WAY IS THAT TRAIN GOING, AND HOW FAST?

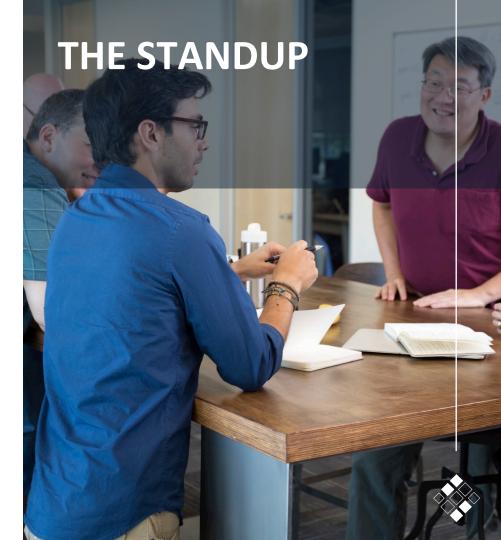
- **Stories** are the unit of work. They should identify activities that can reasonably be expected to be completed in a sprint.
- **Epics** are collections of stories that comprise all or part of an investigation theme

Trains 🗸 🕜 Dashboard 🗸	Q Search John 🗸 📀 Add item		
Type - All Estimate - All	Add filter		
Team Focus	Rachel P. created #275	4 months ago 📑	
(22) (8) (3)	7 Tom F. completed, accepted by Susie L. 3 months ago.		
	As an engineer I want to fix the frequency of images collected they are collected at least one per second instead of one every ✓ #275		
Backlog In progress Complete	Create	d by Rachel P. about 4 months ago	
Backlog Priority \$	CurrentPriority $\P^{\mathbb{A}}_{\mathbb{Z}}$ CompletePriority $\P^{\mathbb{A}}_{\mathbb{Z}}$		
■ Ito analyze additional data sourc #22	produce code for analyzing in > #21 🛛 🕅 🧱 to create a twitter data pipeline		
🔲 🔲 build a pipeline for video data s #27 🕓 🔯 to	research streaming solution f → #41 (S) 🐒 to capture realtime video of trai ✓ #45		
🚺 🐒 to have power and ethernet on t #46 🚺 🛞 🌞 in	stall an audio/video collectio → #34		
🤨 🔲 find common patterns in caltrai #44 😢 🖽 an	nalyze images for trains so tha +#42		
🔲 🗮 to	build a pipeline for audio dat +#14		
🥑 🖽 😋	pture video data in real time → #47		
2 🐹 ta	create exploratory visualizati +#49		

So called out of a desire for **brevity** and **accountability**

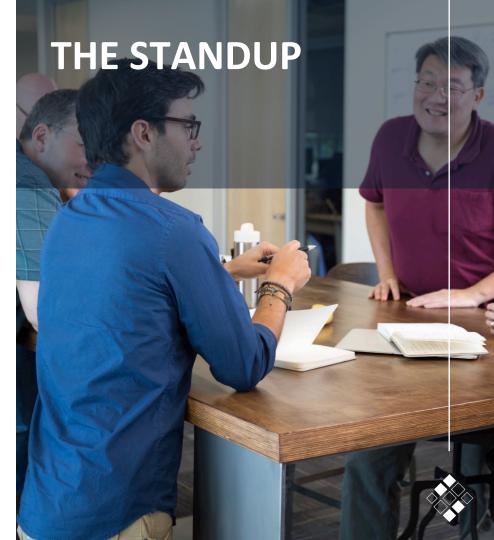
DO:

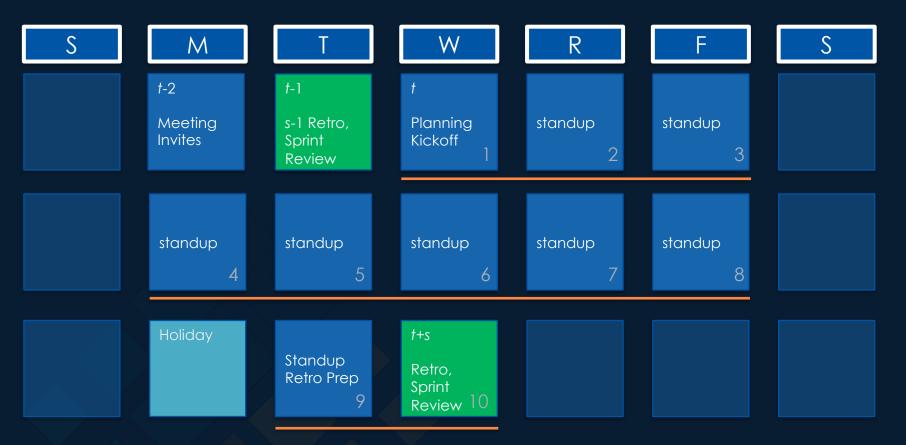
- Collect your thoughts briefly in advance
- Keep it snappy!
- Stay on point:
 - Yesterday
 - Today
 - Blockers



DON'T:

- Prepare
- Try to solve problems on the spot
- Allow long discussions
- Get hung up on blame or responsibility for blockers
- Leave without understanding what everyone is working on





example sprint

SPRINT REVIEWS & RETROSPECTIVES

SPRINT REVIEW AGENDA:

1.HIGHLIGHTS

2.REVIEW STORIES

3.DEMO

4.LESSONS LEARNED

5.RECOMMENDATIONS

- About Us section is complete
- Began exploratory analysis on Caltrain API/website
- Debugged the image script logs
- Updated UI for app

SPRINT REVIEW AGENDA:

1.HIGHLIGHTS

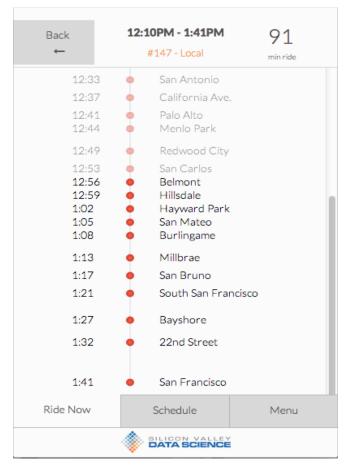
2.REVIEW STORIES

3.DEMO

4.LESSONS LEARNED

5.RECOMMENDATIONS

☑ / 🗆	#	Story
	250	Write about section for app
\checkmark	261	Update flume to grab rows with magic numbers from image logs
\checkmark	260	Add magic number to the logs output from image script
\checkmark	259	Basic evaluation platform from predicting ETAs
\checkmark	262	Run PCA on Caltrain API data
\checkmark	256	Trace through basic Caltrain day/examples
\checkmark	248	Create graphics that will be used in the app
\checkmark	252	Create how to use the app page
\checkmark	270	Set up test flight
\checkmark	274	Set up Android developer tools



RETROSPECTIVE AGENDA:

1.HIGHLIGHTS

2.REVIEW STORIES

4.LESSONS LEARNED

3.DEMO

5.RECOMMENDATIONS

- Hidden Markov Models are a pain in the neck
- Simple decision tree is better at classifying train direction and speed

RETROSPECTIVE AGENDA:

1.HIGHLIGHTS

2.REVIEW STORIES

3.DEMO

4.LESSONS LEARNED

5.RECOMMENDATIONS

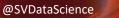
We're in a good spot to move forward with the basic classifier from combined video and audio pipelines

SUMMARY

- Methods for *doing* data science != methods for running data science projects
- Running projects is about calling the shot, managing expectations, and being able to deliver as much value as possible
- We can successfully adapt scrum and other aspects of "agile" methods to our data science projects

FROM THE LAB

to the Factory



- A helpful framework
- Deploying data science
 - Insight deployment
 - Product deployment
- Regulatory complexity
- Operational complexity
- Model management
- Summary

IN THIS SECTION, WE'LL COVER...

What decisions do you make that, if informed by data and analysis, could more be more reliable or drive more valuable outcomes

Harvard Business Review

OPERATIONS

To Work with Data, You Need a Lab and a Factory

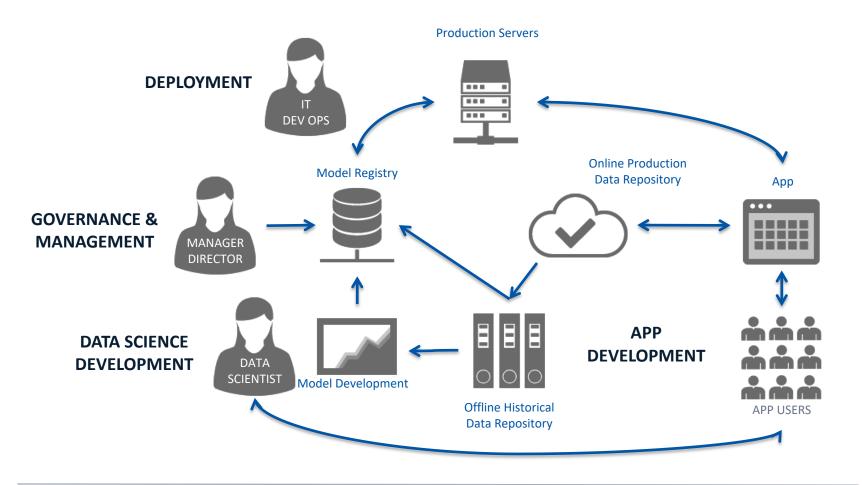
by Thomas C. Redman and Bill Sweeney

APRIL 24, 2013

Companies that aim to score big over the long term with big data must do two very different things well. They must find interesting, novel, and useful insights about the real world in the data. And they must turn those insights into products and services, and deliver those products and services at a profit.

@SVDataScience

https://hbr.org/2013/04/two-departments-for-data-succe/



THE LAB AND THE FACTORY

	Lab	Factory	
People	Data scientists and engineers	Platform/data engineers	
Process & Systems emphasizes	 Speed Collaboration Exploration Reproducibility 	 Stability & robustness Governance max(Value – Cost) 	

THE LAB AND THE FACTORY

The Hard Part: two functions in one platform

- 1. Hire the right people
- 2. Architect for agility
- 3. Integrated data/engineering culture

DATA INSIGHTS AND DATA PRODUCTS

- **Data insights** "why?" and "what if?"
- Data products rely on user and/or company data to carry out primary function
- On a spectrum rather than either/or

DATA INSIGHT DEPLOYMENT

Business question: "What is customer LTV by segment? What causes customers to leave?"

Data science project: Churn model by customer segment incorporating customer behavior

DATA INSIGHT DEPLOYMENT

	Requirements	
People	Data-driven culture	
Process	Agile product development Reproducible data science	
Systems	A/B testing (experimentation) Robust data science tooling	

DATA PRODUCT DEPLOYMENT

Business need: Identify and prevent churn by targeted retention offers to valuable customers.Data product: On-demand customer churn prediction

REGULATORY COMPLEXITY

European parliament approves tougher data privacy rules

'Groundbreaking' changes strengthen EU privacy protections, enshrine right to be forgotten and give regulators wide-reaching powers

The Guardian, April 14, 2016

Google takes right to be forgotten battle to France's highest court

Company is appealing against decision by French data protection authority to apply search-results ruling to all its domains

The Guardian, May 19, 2016

Hard to Explain

The regulations prohibit any automated decision that "significantly affects" EU citizens. This includes techniques that evaluate a person's "performance at work, economic situation, health, personal preferences, interests, reliability, behavior, location, or movements." At the same time, the legislation provides what Goodman calls a "right to explanation." In other words, the rules give EU citizens the option of reviewing how a particular service made a particular algorithmic decision.

Wired, July 2016

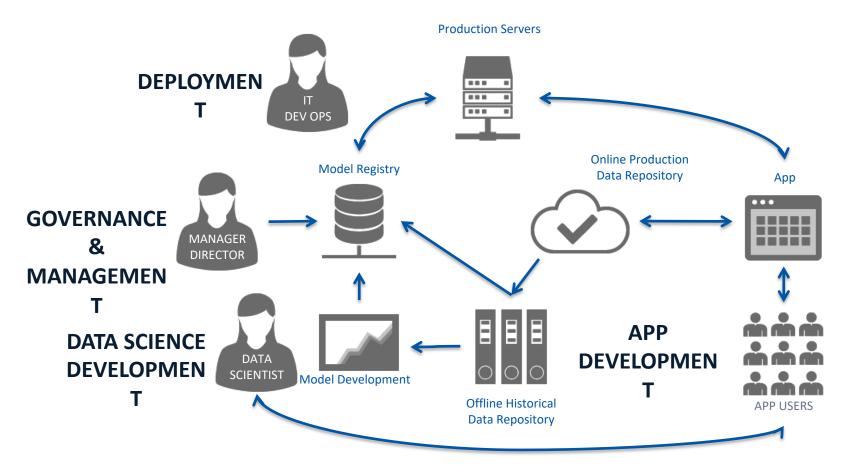
OPERATIONAL COMPLEXITY

- How do you know when your production model needs to be retrained?
- What happens when some data is no longer collected, or a new data source becomes available?
- How can you ensure the inputs themselves are valid, and your model is robust to violations of these assumptions?
- What happens when your production model breaks?
 Would you even know?

WHAT HAPPENS WHEN DATA PRODUCTS DEPEND ON EACH OTHER?

MODEL MANAGEMENT

Data Governance	Model Development	Model Deployment
Versioning	Versioning	Versioning
Lineage	Containerization	Lab and factory
Ownership	Automation	Auditability
Discoverability	Monitoring	Monitoring
Auditability	Auditability	Feedback loop



SUMMARY

- The Lab and the Factory are in fact not distinct, but interrelated
- There's also a spectrum between insights and products
- There are critical feedback loops in the lifecycle
- In order to productionalize your insights/products, you must understand and manage various complexities

THE EXPERIMENTAL ENTERPRISE

Data science allows us to observe our experiments and respond to the – changing environment.

We need to both support investigative work and build a solid layer for production.

The foundation of the experimental enterprise focuses on making infrastructure readily accessible.

