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Abstract

We develop an asset pricing model with rich heterogeneity in asset demand across

investors, designed to match institutional holdings. The equilibrium price vector is

uniquely determined by market clearing across institutional investors and households.

We relate the model to Euler equations, mean-variance portfolio choice, factor mod-

els, and cross-sectional regressions on characteristics. We propose an instrumental

variables estimator for the asset demand system to address the endogeneity of insti-

tutional demand and asset prices. Using U.S. stock market data, we illustrate how

our approach could be used to understand the role of institutions in asset market

movements, volatility, and predictability.
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I. Introduction

Traditional asset pricing models start with strong assumptions about preferences, beliefs, and

constraints that imply asset demand with little (if any) heterogeneity across investors. For

example, the celebrated portfolio separation theorem implies that all investors hold identical

portfolios up to leverage (Tobin 1958). More recent models based on heterogeneous beliefs,

information, or constraints imply heterogeneous portfolios in equilibrium. However, asset

demand in these models is difficult to estimate because beliefs, information, or constraints

are not directly observed. As a consequence, we typically do not estimate asset pricing

models on institutional or individual holdings data, even though portfolio choice is at the

core of these models. Instead, we rely on simplifying assumptions that allow us to estimate

asset demand based on the joint moments of portfolio returns and aggregate or individual

consumption. Although institutional holdings data have been used in the empirical asset

pricing literature, an equilibrium model that simultaneously matches asset demand and

imposes market clearing does not exist.

We take a different approach that is inspired by the literatures on differentiated prod-

uct demand systems (Lancaster 1966; Rosen 1974) and macroeconomic models of asset de-

mand systems (Brainard and Tobin 1968; Tobin 1969). We model the portfolio choice of

each investor as a function of characteristics (e.g., market equity, book equity, profitability,

investment, dividends, and market beta) and latent demand (i.e., structural error). The

characteristics-based model accommodates rich heterogeneity in asset demand across in-

vestors and is designed to match institutional holdings, including zero holdings and index

funds. We allow the coefficients on characteristics to vary across investors so that the aggre-

gate demand elasticity varies across assets that are held by different investors. We show that

the equilibrium price vector is uniquely determined by market clearing across institutional

investors and households, under a simple condition that demand is downward sloping for all

investors.

The characteristics-based model relates to the traditional literature on asset pricing and

portfolio choice. We start with a portfolio-choice problem of investors with heterogeneous

beliefs, subject to short-sale constraints. The investor’s first-order condition is the Euler

equation that relates the intertemporal marginal rate of substitution to asset returns (Lu-

cas 1978). An approximate solution to the portfolio-choice problem is the mean-variance

portfolio (Markowitz 1952), where the optimal portfolio varies across investors because of

heterogeneous beliefs. The mean-variance portfolio simplifies to the characteristics-based

model under a common assumption in empirical asset pricing, which is that returns have a

factor structure and that an asset’s expected return and factor loadings depend only on its
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own characteristics (Ross 1976; Fama and French 1993). Finally, a log-linear approximation

of the characteristics-based model is a cross-sectional regression of log market-to-book eq-

uity on characteristics, but one in which the coefficients on characteristics could vary across

assets. Thus, we explicitly connect the characteristics-based model, which simultaneously

matches asset prices and institutional holdings, to traditional asset pricing frameworks.

Although our contribution is primarily methodological, we illustrate our approach using

U.S. stock market and institutional holdings data, based on Securities and Exchange Com-

mission Form 13F. The 13F data contain quarterly stock holdings of institutions that manage

more than $100 million since 1980. The types of 13F institutions are banks, insurance com-

panies, investment advisors (including hedge funds), mutual funds, pension funds, and other

13F institutions (i.e., endowments, foundations, and nonfinancial corporations). These in-

stitutions collectively manage 63 percent of the U.S. stock market with the remaining 37

percent attributed to direct household holdings and non-13F institutions.

To identify the asset demand system, we start with the traditional assumption in asset

pricing that shares outstanding and characteristics other than price are exogenous, deter-

mined by an exogenous endowment process. We propose an instrumental variables estimator

to address the endogeneity of latent demand and asset prices, which produces estimates that

are different from ordinary least squares. Our identification relies on two assumptions, build-

ing on the insight from the literature on indexing effects that plausibly exogenous variation in

residual supply identifies demand (Harris and Gurel 1986; Shleifer 1986). The first assump-

tion is that investors have an exogenous investment universe, which is a subset of stocks that

they are allowed to hold. In practice, the investment universe is defined by an investment

mandate or a benchmark, which is perhaps most transparent in the case of index or sector

funds. The second assumption is that an investor’s portfolio choice does not depend directly

on the investment universe of investors outside their group, defined by institution type and

assets under management. These two assumptions allow us to construct an instrument for

price that isolates exogenous variation in residual supply.

Once we estimate the asset demand system, we illustrate our approach through four asset

pricing applications. First, we estimate the price impact of demand shocks for all institutions

and stocks, which arises from imperfectly elastic aggregate demand for stocks. We find that

price impact for the average institution has decreased from 1980 to 2014, especially for the

least liquid stocks at the 90th percentile of the distribution. This means that the cross-

sectional distribution of price impact has significantly compressed over this period. For

example, the price impact for the average investment advisor with a 10 percent demand

shock on the least liquid stocks has decreased from 0.87 percent in 1980 to 0.25 percent in

2014.
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Second, we use the characteristics-based model to decompose the cross-sectional variance

of stock returns into supply- and demand-side effects. The supply-side effects are changes

in shares outstanding, changes in characteristics, and the dividend yield. These three effects

together explain only 8 percent of the cross-sectional variance of stock returns. The demand-

side effects are changes in assets under management, the coefficients on characteristics, and

latent demand. Changes in assets under management explain 29 percent, but changes in

latent demand are even more important, explaining 59 percent of the cross-sectional variance

of stock returns. Thus, stock returns are mostly explained by demand shocks that are

unrelated to changes in observed characteristics (i.e., “excess volatility” according to Shiller

(1981)). These moments establish a new set of targets for a growing literature on asset

pricing models with institutional investors,1 just as the variance decomposition of Campbell

(1991) has been a useful guide for consumption-based asset pricing.

Third, we use a similar variance decomposition to examine whether larger institutions

explain a disproportionate share of the stock market volatility in 2008. We find that the

largest 25 institutions, which manage about a third of the stock market, explain only 6

percent of the cross-sectional variance of stock returns. Smaller institutions, which also

manage about a third of the stock market, explain 42 percent of the cross-sectional variance

of stock returns. Direct household holdings and non-13F institutions, which account for

the remaining third of the stock market, explain 48 percent of the cross-sectional variance

of stock returns. The largest institutions explain a relatively small share of stock market

volatility because they tend to be diversified buy-and-hold investors that hold more liquid

stocks with smaller price impact.

Fourth, we use the characteristics-based model to predict cross-sectional variation in

stock returns. The model implies mean reversion in stock prices if there is mean reversion in

latent demand. We estimate the persistence of latent demand and use the predicted demand

system to estimate expected returns for each stock. When we construct five portfolios sorted

by estimated expected returns, the high expected-return portfolio contains small-cap value

stocks, consistent with the known size and value premia. The spread in annualized average

returns between the high and low expected-return portfolios is 8 percent when equal-weighted

and 3 percent when value-weighted. Thus, the high returns due to mean reversion in latent

demand are more prominent for smaller stocks.

The remainder of the paper is organized as follows. Section II describes the characteristics-

based model and relates it to traditional asset pricing and portfolio choice. Section III de-

scribes the stock market and institutional holdings data. Section IV explains our identifying

1See Vayanos (2004), Dasgupta, Prat, and Verardo (2011), Basak and Pavlova (2013), He and Krishna-
murthy (2013), and Vayanos and Woolley (2013).
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assumptions and presents estimates of the asset demand system. Section V presents the

empirical findings on the role of institutions in stock market movements, volatility, and pre-

dictability. Section VI discusses several extensions of the characteristics-based model for

future research. Section VII concludes. Appendix A contains proofs of the results in the

main text.

II. Asset Pricing Model

A. Financial Assets

There are N financial assets indexed by n = 1, . . . , N . Let St(n) be the number of shares

outstanding of asset n in period t. Let Pt(n) and Dt(n) be the price and dividend per share

for asset n in period t. Then Rt(n) = (Pt(n) +Dt(n))/Pt−1(n) is the gross return on asset

n from period t − 1 to t. Let lowercase letters denote the logarithm of the corresponding

uppercase variables. That is, st(n) = log(St(n)), pt(n) = log(Pt(n)), and rt(n) = log(Rt(n)).

We denote theN -dimensional vectors corresponding to these variables in bold as st = log(St),

pt = log(Pt), and rt = log(Rt). We denote a vector of ones as 1, a vector of zeros as 0, an

identity matrix as I, and a diagonal matrix as diag(·) (e.g., diag(1) = I).

In addition to price and shares outstanding, the assets are differentiated along K char-

acteristics. In the case of stocks, for example, these characteristics could include various

measures of fundamentals such as dividends, book equity, profitability, and investment. We

denote characteristic k of asset n in period t as xk,t(n). We stack these characteristics in

an N ×K matrix as xt, whose nth row is xt(n)
′ and (n, k)th element is xk,t(n). Following

the literature on asset pricing in endowment economies (Lucas 1978), we assume that shares

outstanding, dividends, and other characteristics are exogenous. That is, only asset prices

are endogenously determined in the model. Shares outstanding and characteristics could be

endogenized in a production economy, as we discuss in Section VI.

B. Asset Demand

The financial assets are held by I investors, indexed by i = 1, . . . , I. Each investor allocates

wealth Ai,t in period t across assets in its investment universe Ni,t ⊆ {1, . . . , N} and an

outside asset. The investment universe is a subset of assets that the investor is allowed

to hold, which in practice is determined by an investment mandate or a benchmark. For

example, the investment universe of an index fund is the set of assets that compose the

index. We denote the number of assets in the investment universe as |Ni,t|. The outside

asset represents all wealth outside the N assets that are the subject of our study, as we

further explain below.
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We model investor i’s portfolio weight on asset n ∈ Ni,t in period t as

wi,t(n) =
δi,t(n)

1 +
∑

m∈Ni,t
δi,t(m)

, (1)

where

δi,t(n) = exp

{
β0,i,t(pt(n) + st(n)) +

K∑
k=1

βk,i,txk,t(n)

}
εi,t(n). (2)

Portfolio weights are a function of characteristics, including log market equity pt(n) + st(n).

Price per share enters demand only through market equity because the number of shares

outstanding is not economically meaningful. We follow the notational convention that the

Kth characteristic is a constant (i.e., xK,t(n) = 1) so that βK,i,t is the intercept. The

structural error εi,t(n), which we refer to as latent demand, captures investor i’s demand for

unobserved (to the econometrician) characteristics of asset n. As we discuss in Section III, we

do not observe short positions in our empirical application. Therefore, we restrict εi,t(n) ≥ 0

so that the portfolio weights are positive.

The budget constraint and equation (1) imply that the portfolio weight on the outside

asset is

wi,t(0) = 1−
∑

n∈Ni,t

wi,t(n) =
1

1 +
∑

m∈Ni,t
δi,t(m)

. (3)

Although there are |Ni,t|+ 1 assets including the outside asset, there are only |Ni,t| degrees
of freedom because of the budget constraint. In an ideal data set, the outside asset would

be comprehensive and include cash and bond positions if the subject of study is stocks.

However, such a data set is not publicly available in the United States, as we discuss in

Section III.

We normalize the mean of latent demand εi,t(n) to one so that the intercept βK,i,t in

equation (2) is identified. Then the intercept βK,i,t and latent demand εi,t(n) play different

roles in equation (2). On the one hand, βK,i,t determines demand for all assets in the

investment universe relative to the outside asset. In equation (3), the portfolio weight on the

outside asset is decreasing in βK,i,t. On the other hand, cross-sectional variation in εi,t(n)

captures relative demand across assets in the investment universe.

The characteristics-based model is flexible enough to capture index funds. Suppose that

β0,i,t = 1, βk,i,t = 0 for k = 1, . . . , K − 1, and εi,t(n) = 1 for all assets n ∈ Ni,t. Then
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equations (1) and (3) simplify to

wi,t(n) =
Pt(n)St(n)

exp{−βK,i,t}+
∑

m∈Ni,t
Pt(m)St(m)

, (4)

wi,t(0) =
exp{−βK,i,t}

exp{−βK,i,t}+
∑

m∈Ni,t
Pt(m)St(m)

.

In this special case, the investor is an index fund whose portfolio weights are proportional to

market equity, and the intercept βK,i,t determines the portfolio weight on the outside asset

(e.g., cash).

C. Market Clearing

We complete the model with market clearing for each asset n:

Pt(n)St(n) =

I∑
i=1

Ai,twi,t(n). (5)

That is, the market value of shares outstanding must equal the wealth-weighted sum of

portfolio weights across all investors. In equation (5) and throughout the paper, we follow

the notational convention that wi,t(n) = 0 for any asset that is not in investor i’s investment

universe (i.e., n /∈ Ni,t). If asset demand were homogeneous, market clearing (5) implies

that all investors hold the market portfolio in equilibrium, just as in the capital asset pricing

model (CAPM) (Sharpe 1964; Lintner 1965). In contrast, the characteristics-based model

accommodates rich heterogeneity in asset demand across investors and is designed to match

institutional holdings.

In equation (2), the coefficients on characteristics are indexed by i and, therefore, vary

across investors. In particular, investors have heterogeneous demand elasticities. Let wi,t

be an N -dimensional vector of investor i’s portfolio weights in period t so that qi,t =

log(Ai,twi,t)− pt is the vector of log shares held. The elasticity of individual demand is

−∂qi,t

∂p′
t

= I− β0,i,tdiag(wi,t)
−1Gi,t, (6)

where Gi,t = diag(wi,t) − wi,tw
′
i,t. Demand elasticity is decreasing β0,i,t. Returning to our

example in equation (4), an index fund with β0,i,t = 1 has inelastic demand.

Let qt = log(
∑I

i=1Ai,twi,t)−pt be the vector of log shares held across all investors. The
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elasticity of aggregate demand is

−∂qt

∂p′
t

= I−
I∑

i=1

Ai,tβ0,i,tH
−1
t Gi,t, (7)

where Ht =
∑I

i=1Ai,tdiag(wi,t). The diagonal elements of matrices (6) and (7) are strictly

positive when β0,i,t < 1 for all investors. Thus, the following assumption is a sufficient

condition for both individual and aggregate demand to be downward sloping.

Assumption 1. The coefficient on log market equity satisfies β0,i,t < 1 for all investors.

In most asset pricing models, demand is downward sloping for various reasons including

risk aversion, hedging motives (Merton 1973), and price impact (Wilson 1979; Kyle 1989).

As we discuss in Subsection F, Assumption 1 ensures that the asset demand system is invert-

ible and that asset prices are well defined, regardless of the distribution of parameters and

characteristics. Therefore, we maintain Assumption 1 for convenience in our implementation

of the characteristics-based model.

D. Relation to Traditional Asset Pricing and Portfolio Choice

The traditional literature on asset pricing and portfolio choice derives optimal asset demand

from assumptions about preferences, beliefs, and constraints. Instead, we model asset de-

mand directly as a function of characteristics, inspired by the literature on differentiated

product demand systems. We derive the conditions under which the characteristics-based

model is a special case of the optimal portfolio in a traditional model of portfolio choice.

Let wi,t be an |Ni,t|-dimensional vector of portfolio weights that investor i chooses in

period t.2 The investor chooses the portfolio weights in each period to maximize expected

log utility over terminal wealth in period T :

max
wi,t

Ei,t[log(Ai,T )],

where Ei,t denotes investor i’s expectation in period t.3 Heterogeneous beliefs imply het-

erogeneous portfolios across investors in equilibrium. The law of motion for the investor’s

2Our notation presupposes that positions in redundant assets (with collinear payoffs) have already been
eliminated through aggregation so that the covariance matrix of log excess returns is invertible.

3We assume log utility for expositional purposes because the multi-period portfolio-choice problem reduces
to a one-period problem in which hedging demand is absent (Samuelson 1969).
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wealth is

Ai,t+1 = Ai,t(Rt+1(0) +w′
i,t(Rt+1 −Rt+1(0)1)),

where Rt+1(0) is the gross return on the outside asset. The investor also faces short-sale

constraints:

wi,t ≥ 0, (8)

1′wi,t < 1. (9)

Since the portfolio weight on the outside asset is wi,t(0) = 1−1′wi,t, constraint (9) rules out

leverage through the outside asset.

Let Λi,t ≥ 0 and λi,t ≥ 0 be the Lagrange multipliers on the short-sale constraints (8)

and (9) in period t. The Lagrangian for the portfolio-choice problem is

Li,t = Ei,t

[
log(Ai,T ) +

T−1∑
s=t

(Λ′
i,swi,s + λi,s(1− 1′wi,s))

]
. (10)

We denote the conditional mean and covariance of log excess returns, relative to the outside

asset, as

μi,t =Ei,t[rt+1 − rt+1(0)1] +
σ2
i,t

2
,

Σi,t =Ei,t[(rt+1 − rt+1(0)1− Ei,t[rt+1 − rt+1(0)1])(rt+1 − rt+1(0)1)
′],

where σ2
i,t is a vector of the diagonal elements of Σi,t. Without loss of generality, we order

and group the assets into those for which the short-sale constraint is not binding versus

binding as

wi,t =

[
w

(1)
i,t

0

]
, μi,t =

[
μ
(1)
i,t

μ
(2)
i,t

]
,Σi,t =

[
Σ

(1,1)
i,t Σ

(1,2)
i,t

Σ
(2,1)
i,t Σ

(2,2)
i,t

]
. (11)

The following lemma, proved in Appendix A, describes the solution to the portfolio-choice

problem.

Lemma 1. The first-order condition for the portfolio-choice problem is the constrained
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Euler equation:

Ei,t

[(
Ai,t+1

Ai,t

)−1

Rt+1

]
= 1− (I− 1w′

i,t)(Λi,t − λi,t1). (12)

An approximate solution to the portfolio-choice problem is

w
(1)
i,t ≈ Σ

(1,1)−1
i,t

(
μ
(1)
i,t − λi,t1

)
, (13)

where the approximation is exact in the continuous-time limit (Campbell and Viceira 2001,

pp. 28–29). The portfolio weight on the outside asset is

wi,t(0) = 1− 1′Σ(1,1)−1
i,t

(
μ
(1)
i,t − λi,t1

)
, (14)

and the Lagrange multiplier on short-sale constraint (9) is

λi,t =
max

{
1′Σ(1,1)−1

i,t μ
(1)
i,t − 1, 0

}
1′Σ(1,1)−1

i,t 1
. (15)

Lemma 1 summarizes the known relation between Euler equations in asset pricing (12)

and closed-form solutions in portfolio choice (13). The right side of equation (12) simplifies

to 1 when the investor is unconstrained (i.e., Λi,t = 0 and λi,t = 0). Under this frictionless

benchmark, we impose rational expectations to obtain

Et

[(
Ai,t+1

Ai,t

)−1

Rt+1

]
= 1. (16)

The literature on consumption-based asset pricing tests this moment condition on both ag-

gregate and household consumption data. An important insight is that a test of equation (16)

does not require household holdings data under the maintained null that investors are un-

constrained and have rational expectations (Mankiw and Zeldes 1991; Brav, Constantinides,

and Geczy 2002; Vissing-Jørgensen 2002).

For any asset n with wi,t(n) > 0 (equivalently, εi,t(n) > 0), we write the characteristics-

based model (1) as

wi,t(n)

wi,t(0)
= exp

{
x̂t(n)

′β̂i,t
}
,

10



where

x̂t(n) =

⎡⎢⎣pt(n) + st(n)

xt(n)

log(εi,t(n))

⎤⎥⎦ , β̂i,t =
[
βi,t

1

]
,

and βi,t is a (K + 1)-dimensional vector whose kth element is βk−1,i,t. The connection be-

tween the characteristics-based model and the mean-variance portfolio is not obvious because

equation (13) suggests the demand for an asset depends on the characteristics of all other

assets through the covariance matrix. However, the mean-variance portfolio simplifies if we

assume that returns have a one-factor structure and that an asset’s expected return and

factor loadings depend only on its own characteristics (Ross 1976; Fama and French 1993).

Assumption 2. The covariance matrix of log excess returns is Σ
(1,1)
i,t = Γ

(1)
i,t Γ

(1)′
i,t + γi,tI,

where Γ
(1)
i,t is a vector of factor loadings and γi,t > 0 is idiosyncratic variance. Let

yt(n) =

⎡⎢⎢⎣
x̂t(n)

vec(x̂t(n)x̂t(n)
′)

...

⎤⎥⎥⎦
be a

∑M
m=1(K + 2)m-dimensional vector of an Mth-order polynomial in both observed and

unobserved characteristics. Expected excess returns and factor loadings are polynomial

functions of characteristics:

μi,t(n) =yt(n)
′Φi,t + φi,t,

Γi,t(n) =yt(n)
′Ψi,t + ψi,t,

where Φi,t and Ψi,t are vectors and φi,t and ψi,t are scalars that are constant across assets.

The key content of Assumption 2 is that an asset’s characteristics are sufficient for its

factor loadings, which also implies that they are sufficient for the variance of the optimal

portfolio. The assumption that the idiosyncratic variance is constant across assets is not

critical for the results that follow. We could modify Assumption 2 and instead assume

that expected returns and factor loadings, scaled by each asset’s idiosyncratic variance, are

polynomial functions of characteristics. Similarly, we could relax the one-factor assumption

and generalize to a multi-factor case (i.e., Γ
(1)
i,t is a matrix instead of a vector). However,

the resulting expressions are less intuitive and less preferable for expositional purposes.

The following proposition, proved in Appendix A, shows that the mean-variance portfolio

simplifies to a polynomial function of characteristics under Assumption 2.
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Proposition 1. Under Assumption 2, the optimal portfolio weight (13) on each asset

n for which the short-sale constraint is not binding is

wi,t(n)

wi,t(0)
= yt(n)

′Πi,t + πi,t, (17)

where

Πi,t =
1

γi,twi,t(0)

⎛⎝Φi,t −Ψi,t

Γ
(1)′
i,t

(
μ
(1)
i,t − λi,t1

)
Γ
(1)′
i,t Γ

(1)
i,t + γi,t

⎞⎠ , (18)

πi,t =
1

γi,twi,t(0)

⎛⎝φi,t − λi,t − ψi,t

Γ
(1)′
i,t

(
μ
(1)
i,t − λi,t1

)
Γ
(1)′
i,t Γ

(1)
i,t + γi,t

⎞⎠ ,

and wi,t(0) and λi,t are given by equations (14) and (15), respectively.

In a traditional model of portfolio choice, the investor ultimately cares about the trade-

off between risk (i.e., the covariance matrix) and expected return. Under Assumption 2,

however, the investor indirectly cares about characteristics because they are sufficient for

expected returns and the covariance matrix. The expression for the coefficients on char-

acteristics (18) has an intuitive interpretation. Because the term after Ψi,t is a scalar, the

investor’s demand for characteristics is simply a linear combination of the vectors on expected

returns Φi,t and factor loadings Ψi,t. That is, the investor prefers assets with characteristics

that are associated with higher expected returns or smaller factor loadings (i.e., less risk).

The key content of equation (17) is that Πi,t and πi,t are constant across assets. Therefore,

the only reason that the portfolio weights vary across assets in equation (17) is that the vector

of characteristics yt(n) varies across assets. Of course, Πi,t and πi,t are not literally constant

in the sense that they depend on three scalars that are functions of characteristics (i.e., λi,t,

wi,t(0), and the term after Ψi,t). We are now ready to state the main result, which is a

straightforward implication of Proposition 1.

Corollary 1. Restrict the coefficients on characteristics in equation (17) so that

Πi,t =

⎡⎢⎢⎣
β̂i,t

1
2!
vec

(
β̂i,tβ̂

′
i,t

)
...

⎤⎥⎥⎦
and πi,t = 1. To an Mth-order approximation, the optimal portfolio weight on each asset n
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for which the short-sale constraint is not binding is

wi,t(n)

wi,t(0)
≈ exp

{
β0,i,t(pt(n) + st(n)) +

K∑
k=1

βk,i,txk,t(n) + log(εi,t(n))

}
.

Proof. We write equation (17) as

wi,t(n)

wi,t(0)
=1 + yt(n)

′Πi,t

=1 + x̂t(n)
′β̂i,t +

vec(x̂t(n)x̂t(n)
′)′vec

(
β̂i,tβ̂

′
i,t

)
2!

· · ·

=

M∑
m=0

(
x̂t(n)

′β̂i,t
)m

m!
≈ exp

{
x̂t(n)

′β̂i,t
}
,

which follows from an Mth-order polynomial expansion of the exponential function. QED

Of course, the order of the polynomial M determines the size of the approximation

error. In the limit as M becomes large, Corollary 1 implies that the characteristics-based

model is a restricted version of the mean-variance portfolio (17) under Assumption 2. This

means that the substitution effects implied by the characteristics-based model could be fully

consistent with traditional models of portfolio choice. As a matter of specification, a model

of portfolio weights that is exponential-linear in characteristics is parsimonious and pairs

nicely with the fact that portfolio weights appear log-normal in the 13F data. In particular,

the characteristics-based model captures an index fund exactly with no approximation error,

as equation (4) shows.

E. Relation to Cross-Sectional Regressions on Characteristics

The characteristics-based model also relates to cross-sectional regressions of log market-to-

book equity on characteristics. Let It(n) = {i|wi,t(n) > 0} be the set of investors that hold

asset n in period t. Substituting equation (1) into equation (5), we write market clearing in

logarithms as

pt(n) + st(n) = log

⎛⎝ ∑
i∈It(n)

Ai,t
exp{log(δi,t(n))}

1 +
∑

m∈Ni,t
exp{log(δi,t(m))}

⎞⎠
We approximate this equation to first-order around log(δi,t(n)) ≈ ct(n) for asset n and to

zeroth-order around log(δi,t(m)) ≈ ct(m) for all other assets m �= n, where ct(n) is an
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asset-specific constant. Then log market equity of asset n is

pt(n) + st(n) ≈ log

⎛⎝ ∑
i∈It(n)

Ai,twi,t(n)

⎞⎠+
∑

i∈It(n)
θi,t(n)(log(δi,t(n))− ct(n)),

where

wi,t(n) =
exp{ct(n)}

1 +
∑

m∈Ni,t
exp{ct(m)} ,

θi,t(n) =

∑
i∈It(n)Ai,twi,t(n)(1− wi,t(n))∑

i∈It(n)Ai,twi,t(n)
.

Substituting out δi,t(n) with equation (2) and rearranging, we have

pt(n) + st(n) ≈
K∑
k=1

βk,t(n)xk,t(n) + εt(n), (19)

where

βk,t(n) =

∑
i∈It(n) θi,t(n)βk,i,t

1−∑i∈It(n) θi,t(n)β0,i,t
, (20)

εt(n) =
log(

∑
i∈It(n)Ai,twi,t(n)) +

∑
i∈It(n) θi,t(n)(log(εi,t(n))− ct(n))

1−∑i∈It(n) θi,t(n)β0,i,t
. (21)

Equation (19) presents an intuitive interpretation of asset prices in the characteristics-

based model. If we subtract log book equity from both sides of equation (19), we have a

cross-sectional regression of log market-to-book equity on characteristics, but one in which

the coefficients on characteristics could vary across assets. The numerator of equation (20) is

a weighted average of βk,i,t across investors that hold asset n, which means that asset prices

vary more with characteristics that are more important to investors. The denominator of

equation (20) is one minus a weighted average of β0,i,t across the same investors, which means

that asset prices vary more with characteristics when demand is less elastic.
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F. Existence and Uniqueness of Equilibrium

To prove the existence and uniqueness of equilibrium, we write market clearing (5) in loga-

rithms and vector notation as

p = f(p) = log

(
I∑

i=1

Aiwi(p)

)
− s. (22)

In this equation and the remainder of this section, we drop time subscripts to simplify

notation.

Proposition 2. Under Assumption 1, f(p) has a unique fixed point in R
N .

The proof of Proposition 2 in Appendix A proceeds by showing that the function p−f(p)
is globally invertible under Assumption 1. Although Proposition 2 guarantees a unique equi-

librium, we still need an algorithm for computing the equilibrium price vector in practice.

Appendix B describes an efficient algorithm for computing the equilibrium in any counter-

factual experiment, which we have developed for the empirical applications in Section V.

Of course, the use of the characteristics-based model for policy experiments is valid only

under the null that it is a structural model that is policy invariant. The Lucas (1976) critique

applies under the alternative that the coefficients on characteristics ultimately capture beliefs

or constraints that change with policy. Furthermore, we cannot answer welfare questions

without taking an explicit stance on preferences, beliefs, and constraints. However, this may

not matter for most asset pricing applications in which price (rather than welfare) is the

primary object of interest. The remainder of the paper proceeds under the assumption that

the characteristics-based model is a structural model of asset demand, which is motivated

by Corollary 1.

III. Stock Market and Institutional Holdings Data

A. Stock Characteristics

The data on stock prices, dividends, returns, and shares outstanding are from the Center

for Research in Security Prices (CRSP) Monthly Stock Database. We restrict our sample to

ordinary common shares (i.e., share codes 10, 11, 12, and 18) that trade on NYSE, AMEX,

and Nasdaq (i.e., exchange codes 1, 2, and 3). We further restrict our sample to stocks with

non-missing price and shares outstanding. Accounting data are from the Compustat North

America Fundamentals Annual Database. We merge the CRSP data with the most recent

Compustat data as of at least 6 months and no more than 24 months prior to the trading
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date. The lag of at least 6 months ensures that the accounting data were public on the

trading date.

In addition to log market equity, the characteristics in our specification include log book

equity, profitability, investment, dividends to book equity, and market beta. Our choice of

book equity, profitability, and investment is guided by a five-factor model that is known to

describe the cross section of stock returns (Fama and French 2015; Hou, Xue, and Zhang

2015). Dividends and market beta have a long tradition in empirical asset pricing as measures

of fundamentals and systematic risk, respectively. Our specification is based on a parsimo-

nious and relevant set of characteristics for explaining expected returns and factor loadings,

motivated by Assumption 2. We are concerned about collinearity between characteristics

and overfitting if we consider a larger model with more characteristics. We stay away from

return variables because they could violate our identifying assumption that characteristics

other than price are exogenous to latent demand, as we discuss in Section IV. In addition,

Hou, Xue, and Zhang (2015) find that characteristics that are already in our specification

absorb the explanatory power of some return variables (e.g., profitability absorbs momentum

and book-to-market equity absorbs long-term reversal).

Our construction of these characteristics follows Fama and French (2015), which we briefly

summarize here. Profitability is the ratio of operating profits to book equity.4 Investment

is the annual log growth rate of assets. Dividends to book equity is the ratio of annual

dividends per split-adjusted share times shares outstanding to book equity. We estimate

market beta from a regression of monthly excess returns, over the 1-month T-bill rate, onto

excess market returns using a 60-month moving window (with at least 24 months of non-

missing returns). In each period, we winsorize profitability, investment, and market beta at

the 2.5th and 97.5th percentiles to reduce the impact of large outliers. Since dividends are

positive, we winsorize dividends to book equity at the 97.5th percentile.

Following Fama and French (1992), our analysis focuses on ordinary common shares that

are not foreign or a real estate investment trust (i.e., share code 10 or 11) and have non-

missing characteristics and returns. In our terminology, these are the stocks that make up

the investment universe. The outside asset includes the complement set of stocks, which are

either foreign (i.e., share code 12), real estate investment trusts (i.e., share code 18), or have

missing characteristics or returns.

4Operating profits are annual revenues minus the sum of cost of goods sold; selling, general, and admin-
istrative expenses; and interest and related expenses.
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B. Institutional Stock Holdings

The data on institutional common stock holdings are from the Thomson Reuters Institutional

Holdings Database (s34 file), which are compiled from the quarterly filings of Securities

and Exchange Commission Form 13F. All institutional investment managers that exercise

investment discretion on accounts holding Section 13(f) securities, exceeding $100 million in

total market value, must file the form. Form 13F reports only long positions and not short

positions. We also do not know the cash and bond positions of institutions because these

assets are not 13(f) securities.

We group institutions into six types: banks, insurance companies, investment advisors,

mutual funds, pension funds, and other 13F institutions. An investment advisor is a regis-

tered company under Securities and Exchange Commission Form ADV. Investment advisors

include many hedge funds, and we separate investment advisors that are mutual funds into a

different group. The group of other 13F institutions includes endowments, foundations, and

nonfinancial corporations. Appendix C provides details of how we construct the institution

type.

We merge the institutional holdings data with the CRSP-Compustat data by CUSIP

number and drop any holdings that do not match (i.e., 13(f) securities whose share codes are

not 10, 11, 12, or 18). We compute the dollar holding for each stock that an institution holds

as price times shares held. Assets under management (AUM) is the sum of dollar holdings

for each institution. We compute the portfolio weights as the ratio of dollar holdings to

assets under management. We define the investment universe for each institution in each

period as stocks that are currently held or ever held in the previous seven quarters. Thus, the

investment universe includes a zero holding whenever a stock that was held in the previous

seven quarters is no longer in the portfolio.

Market clearing (5) requires that shares outstanding equal the sum of shares held across

all investors. For each stock, we define the shares held by the household sector as the

difference between shares outstanding and the sum of shares held by 13F institutions.5 The

household sector represents direct household holdings and smaller institutions that are not

required to file Form 13F. We also include as part of the household sector any institution

with less than $10 million in assets under management, no stocks in the investment universe,

or no outside assets.

Table 1 summarizes the 13F institutions in our sample from 1980 to 2014. In the be-

ginning of the sample, there were 544 institutions that managed 35 percent of the stock

5In a small number of cases, the sum of shares reported by 13F institutions exceeds shares outstanding,
which may be due to shorting or reporting errors (Lewellen 2011). In these cases, we scale down the reported
holdings of all 13F institutions to ensure that the sum equals shares outstanding.

17



market. This number grows steadily to 2,832 institutions that managed 63 percent of the

stock market by the end of the sample. From 2010 to 2014, the median institution managed

$325 million, while the larger institutions at the 90th percentile managed $5,483 million.

Most institutions hold concentrated portfolios. From 2010 to 2014, the median institution

held 67 stocks, while the more diversified institutions at the 90th percentile held 444 stocks.

Table C1 in Appendix C contains a more detailed breakdown of Table 1 by institution type.

IV. Estimating the Asset Demand System

A. Empirical Specification

We divide equation (1) by equation (3) to obtain our empirical specification:

wi,t(n)

wi,t(0)
= exp

{
β0,i,t(pt(n) + st(n)) +

K−1∑
k=1

βk,i,txk,t(n) + βK,i,t

}
εi,t(n). (23)

This equation relates the cross section of holdings to characteristics for each investor i in each

period t. A lower coefficient on log market equity means that demand is more elastic. For

example, an investor that tilts its portfolio toward value stocks would have a low coefficient

on log market equity and a high coefficient on log book equity. We impose the coefficient

restriction β0,i,t < 1 to ensure that demand is downward sloping and that equilibrium is

unique (see Proposition 2).

We estimate the nonlinear model (23) on the investment universe of each investor, which

includes zero holdings (i.e., εi,t(n) = 0). If we were to limit the estimation sample to strictly

positive holdings (i.e., εi,t(n) > 0), we could take the logarithm of equation (23) and obtain

a linear specification:

log

(
wi,t(n)

wi,t(0)

)
= β0,i,t(pt(n) + st(n)) +

K−1∑
k=1

βk,i,txk,t(n) + βK,i,t + log(εi,t(n)). (24)

This specification is inefficient and potentially biased because the fact that an investor does

not hold certain assets could be useful for identifying the coefficients on characteristics. We

will compare the estimated coefficients under the two specifications to see if this issue is

relevant.6

We estimate equation (23) by institution whenever there are more than 1,000 strictly

positive holdings in the cross section. For institutions with fewer than 1,000 holdings, we

6Santos Silva and Tenreyro (2006) highlight an analogous issue in international trade that estimates of
the gravity equation depend on whether they are estimated in levels (with observations of zero bilateral
trade) or logarithms.
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pool them with similar institutions in order to estimate their coefficients. While the cutoff

of 1,000 is arbitrary, a lower cutoff of 500 causes convergence problems for our estimator

in some cases. We group institutions by type (i.e., banks, insurance companies, investment

advisors, mutual funds, pension funds, and other 13F institutions) and quantiles of assets

under management conditional on type. We set the total number of groups in each period

to target 2,000 strictly positive holdings on average per group.

B. Inconsistency of Ordinary Least Squares

Before we state our identifying assumptions, we highlight the challenge of estimating the

characteristics-based model in a simple example. Suppose that an investor has strictly

positive holdings for all assets in its investment universe and that the only characteristic

that enters equation (24) is log market equity. The ordinary least squares estimator for the

coefficient on log market equity converges in probability to

β̂0,i,t − β0,i,t → Cov(log(εi,t(n)), pt(n) + st(n))

Var(pt(n) + st(n))
≈ Cov(log(εi,t(n)), εt(n))

Var(pt(n) + st(n))
,

where the approximation is based on equation (19).

Ordinary least squares is consistent if an investor’s latent demand is uncorrelated with

the average latent demand across investors. This requires that the investor be atomistic so

that the mechanical correlation through its own latent demand is negligible. Moreover, the

investor’s latent demand must be uncorrelated with that of other investors, which rules out

any factor structure in latent demand. Because these assumptions are unlikely to hold for

institutional investors or households, we offer an alternative identification strategy based on

weaker assumptions.

C. Identifying Assumptions

Our starting point is the identifying assumption that is implied by the literature on asset

pricing in endowment economies (Lucas 1978):

E[εi,t(n)|pt(n), st(n), x1,t(n), . . . , xK,t(n)] = 1. (25)

Equation (23) could be estimated by nonlinear least squares under this moment condition,

which describes most of the empirical literature on household portfolio choice and cross-

border capital flows in international finance. We retain the first part of moment condition

(25) that shares outstanding and characteristics other than price are exogenous, determined

by an exogenous endowment process. However, we relax the second part that prices are
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exogenous to latent demand.

Our identification strategy relies on two assumptions, which generalizes the insight from

the literature on indexing effects that plausibly exogenous variation in residual supply iden-

tifies demand (Harris and Gurel 1986; Shleifer 1986). The first assumption is that the

investment universe, which is the subset of assets that an investor is allowed to hold, is

exogenous. In practice, the investment universe is defined by an investment mandate or a

benchmark, which is perhaps most transparent in the case of index or sector funds. The

second assumption is that an investor’s portfolio choice does not depend directly on the

investment universe of investors outside their group, defined above by institution type and

assets under management. This assumption is sufficiently weak to allow for direct interaction

in portfolio choice within groups due to relative performance evaluation or capital regulation

(for banks and insurance companies).

These two assumptions allow us to construct an instrument for price as follows. Let

Gi,t(n) ⊇ {i} be the set of investors in the same group as investor i, who hold asset n in

period t. We break up market clearing (5) into three parts as

Pt(n)St(n) =
∑

j∈Gi,t(n)

Aj,twj,t(n) +
∑

j /∈Gi,t(n)

Aj,t

(
wj,t(n)− 1

1 + |Nj,t|
)
+

∑
j /∈Gi,t(n)

Aj,t
1

1 + |Nj,t| .

The first two terms on the right side, which are the demand of investors in the same group and

the portfolio choice of investors outside the group, are endogenous. However, the third term,

which depends only on the investment universe of investors outside the group, is assumed

to be exogenous. Thus, we construct an instrument that isolates the variation in price that

comes from exogenous variation in residual supply as

p̂i,t(n) = log

⎛⎝ ∑
j /∈Gi,t(n)

Aj,t
1

1 + |Nj,t|

⎞⎠− st(n).

This instrument has an interpretation as the counterfactual price if investors outside the

group were to mechanically index to a 1/N rule within their investment universe.

The instrument for price allows us to weaken moment condition (25) to

E[εi,t(n)|p̂i,t(n), st(n), x1,t(n), . . . , xK,t(n)] = 1. (26)

This moment condition is sufficiently weak to allow for correlation in latent demand across

investors.

20



D. Estimation on a Hypothetical Index Fund

We show that our estimator for the nonlinear model (23) produces valid estimates by testing

it on a hypothetical index fund. We start with the portfolio weights of the Vanguard Group

(manager number 90457), which has a fully diversified portfolio, and replace them with exact

market weights. That is, we construct an index fund that is the same size and has the same

investment universe as the Vanguard Group, whose portfolio weights are given by

wi,t(n)

wi,t(0)
= exp{pt(n) + st(n) + βK,i,t}

=exp{(pt(n) + st(n)− x1,t(n)) + x1,t(n) + βK,i,t}, (27)

where x1,t(n) is log book equity. We then estimate the nonlinear model (23) by generalized

method of moments (GMM) under moment condition (26). If our estimator is valid, we

should recover a coefficient of one on log market equity and zero on the other characteristics.

Equivalently, we should recover a coefficient of one on both log market-to-book equity and

log book equity based on the alternative normalization (27).

Figure 1 reports the estimated coefficients for the hypothetical index fund. As expected,

we recover a coefficient of one on both log market-to-book equity and log book equity and

zero on the other characteristics, except for small deviations due to estimation error.

E. Estimated Demand System

Figure 2 summarizes the coefficients for the nonlinear model (23), estimated by GMM under

moment condition (26). We report the cross-sectional mean of the estimated coefficients by

institution type, weighted by assets under management. For ease of interpretation, Figure 2

is on the same scale as Figure 1 and reports the coefficients on log market-to-book equity

β0,i,t and log book equity β0,i,t + β1,i,t instead of β0,i,t and β1,i,t.

A lower coefficient on log market-to-book equity implies a higher demand elasticity (6).

Thus, Figure 2 shows that mutual funds have less elastic demand than other types of institu-

tions or households for most of the sample period. Banks, insurance companies, and pension

funds have become less elastic from 1980 to 2014, while investment advisors and households

have become more elastic during the same period. In 2014, banks, insurance companies,

mutual funds, and pension funds have less elastic demand than investment advisors and

households. This finding is consistent with the view that large institutions cannot deviate

too far from market weights because of benchmarking or price impact.

The coefficient on log book equity captures demand for size. Especially in the second half

of the sample period, banks and insurance companies tilt their portfolio toward larger stocks
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than other types of institutions. In contrast, investment advisors tilt their portfolio toward

smaller stocks. As we report in Table C1 of Appendix C, the largest investment advisors are

an order of magnitude smaller than other types of large institutions. Therefore, our findings

are consistent with the fact that the size of institutions is positively related to the average

size of stocks in their portfolio (Blume and Keim 2012).

On average, institutions tilt their portfolio toward stocks with higher profitability, lower

investment, and lower market beta than households. These characteristics are known to

generate positive abnormal returns relative to the CAPM. Therefore, this finding is consistent

with the view that some institutions are “smart money” investors. The coefficient on market

beta for institutions tends to fall in recessions, which means that the demand for market

risk is pro-cyclical. For example, the coefficient on market beta for investment advisors hits

troughs in 1982:3, 2001:3, and 2009:1. Finally, households tilt their portfolio toward higher

dividend stocks than institutions. Among institutions, banks tilt their portfolio toward

higher dividend stocks than other types of institutions.

Given the estimated coefficients, we recover estimates of latent demand by equation (23).

Figure 3 reports the cross-sectional standard deviation of log latent demand by institution

type, weighted by assets under management. A higher standard deviation implies more

extreme portfolio weights that are tilted away from observed characteristics. For most of

the sample period, households have less variation in latent demand than institutions. The

only exception is during the financial crisis, when the standard deviation of latent demand

for households peaked in 2008:2.

F. Alternative Estimators

We examine how our benchmark estimates compare with those based on two alternative

estimators. The first alternative is estimation of the linear model (24) by restricted least

squares under the moment condition

E[log(εi,t(n))|pt(n), st(n), x1,t(n), . . . , xK,t(n)] = 0,

imposing the coefficient restriction β0,i,t < 1. The second alternative is estimation of the

linear model (24) by GMM under the moment condition

E[log(εi,t(n))|p̂i,t(n), st(n), x1,t(n), . . . , xK,t(n)] = 0.

These two alternatives show the importance of instrumenting for price and estimating in

levels with zero holdings.

22



The upper panel of Figure 4 is a scatter plot of the coefficient on log market equity esti-

mated by restricted least squares versus linear GMM. We fit a linear regression line through

the scatter points, both equal-weighted and value-weighted by assets under management. On

average, the least squares estimates are higher than the linear GMM estimates, especially for

larger institutions. This result is consistent with the hypothesis that prices are endogenous

to latent demand, which leads to a positive bias in the least squares estimates.

The lower panel of Figure 4 is a scatter plot of the coefficient on log market equity esti-

mated by linear GMM versus nonlinear GMM. We again fit a linear regression line through

the scatter points. The value-weighted regression line is close to the 45-degree line, which

means that the two alternative estimates are similar for larger institutions. However, the

equal-weighted regression line is mostly above the 45-degree line, which means that the lin-

ear GMM estimates are on average higher than the nonlinear GMM estimates. For smaller

institutions, the coefficient on log market equity is lower when we estimate in levels with

zero holdings.

V. Asset Pricing Applications

Let At be an I-dimensional vector of investors’ wealth, whose ith element is Ai,t. Let βt be

a (K + 1)× I matrix of coefficients on characteristics, whose (k, i)th element is βk−1,i,t. Let

εt be an N × I matrix of latent demand, whose (n, i)th element is εi,t(n). Market clearing

(22) defines an implicit function for log price:

pt = g(st,xt,At, βt, εt). (28)

That is, asset prices are fully determined by shares outstanding, characteristics, the wealth

distribution, the coefficients on characteristics, and latent demand.

We use equation (28) in four asset pricing applications. First, we use the model to

estimate the price impact of demand shocks for all institutions and stocks. Second, we

use the model to decompose the cross-sectional variance of stock returns into supply- and

demand-side effects. Third, we use a similar variance decomposition to see whether larger

institutions explain a disproportionate share of the stock market volatility in 2008. Finally,

we use the model to predict cross-sectional variation in stock returns.

A. Price Impact of Demand Shocks

If the aggregate demand for stocks is downward sloping, demand shocks could have persistent

effects on prices. For example, a large empirical literature documents the price impact of
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demand shocks that arise from index additions and deletions (see Wurgler and Zhuravskaya

2002, for a review). We estimate the price impact of demand shocks for all institutions and

stocks based on the estimated demand system in Section IV.

We define the coliquidity matrix for investor i as

∂pt

∂ log(εi,t)′
=

(
I−

I∑
j=1

Aj,tH
−1
t

∂wj,t

∂p′
t

)−1

Ai,tH
−1
t

∂wi,t

∂ log(εi,t)′

=

(
I−

I∑
j=1

Aj,tβ0,j,tH
−1
t Gj,t

)−1

Ai,tH
−1
t Gi,t. (29)

The (n,m)th element of this matrix is the elasticity of asset price n with respect to investor i’s

latent demand for assetm.7 The coliquidity matrix measures the price impact of idiosyncratic

shocks to an investor’s latent demand. The matrix inside the inverse in equation (29) is the

aggregate demand elasticity (7), which implies larger price impact for assets that are held

by less elastic investors. The nth diagonal element of the matrix outside the inverse in

equation (29) is Ai,twi,t(n)(1 − wi,t(n))/(
∑I

j=1Aj,twj,t(n)). This implies larger price impact

for investors whose holdings are large relative to other investors that hold the asset.

We estimate the price impact for each stock and institution through the diagonal elements

of matrix (29), then average by institution type. Figure 5 summarizes the cross-sectional

distribution of price impact across stocks for the average bank, insurance company, invest-

ment advisor, mutual fund, and pension fund. Average price impact has decreased from

1980 to 2014, especially for the least liquid stocks at the 90th percentile of the distribution.

This means that the cross-sectional distribution of price impact has significantly compressed

over this period. For example, the price impact for the average investment advisor with a 10

percent demand shock on the least liquid stocks (at the 90th percentile) has decreased from

0.87 percent in 1980:2 to 0.25 percent in 2014:2.

Summing equation (29) across all investors, we define the aggregate coliquidity matrix

as

I∑
i=1

∂pt

∂ log(εi,t)′
=

(
I−

I∑
i=1

Ai,tβ0,i,tH
−1
t Gi,t

)−1 I∑
i=1

Ai,tH
−1
t Gi,t. (30)

7Kondor and Vayanos (2014) propose a liquidity measure that is a monotonic transformation of our
measure: (

∂qi,t(n)

∂ log(εi,t(n))

)−1
∂pt(n)

∂ log(εi,t(n))
=

(
(1 − wi,t(n))

(
∂pt(n)

∂ log(εi,t(n))

)−1

− 1

)−1

.
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The aggregate coliquidity matrix measures the price impact of systematic shocks to latent

demand across all investors. The nth diagonal element of the matrix outside the inverse

in equation (30) is a holdings-weighted average of 1− wi,t(n) across investors. This implies

larger price impact for assets that are smaller shares of investors’ wealth, which are effectively

assets with lower market cap.

We estimate the aggregate price impact for each stock through the diagonal elements of

matrix (30). Figure 6 summarizes the cross-sectional distribution of aggregate price impact

across stocks and how that distribution has changed over time. Aggregate price impact

has decreased from 1980 to 2014. For the median stock, the price impact of a 10 percent

aggregate demand shock has decreased from 33 percent in 1980:2 to 26 percent in 2014:2.

Aggregate price impact is strongly countercyclical, peaking in 1991:4, 2000:1, and 2009:1.

B. Variance Decomposition of Stock Returns

Following Fama and MacBeth (1973), a large literature asks to what extent characteristics

explain the cross-sectional variance of stock returns. A more recent literature asks whether

institutional demand explains the significant variation in stock returns that remains un-

explained by characteristics (Nofsinger and Sias 1999; Gompers and Metrick 2001). We

introduce a variance decomposition of stock returns that offers a precise answer to this

question.

We start with the definition of log returns:

rt+1 = pt+1 − pt + vt+1, (31)

where vt+1 = log(1+ exp{dt+1 − pt+1}). We then decompose the change in log price as

pt+1 − pt = Δpt+1(s) + Δpt+1(x) + Δpt+1(A) + Δpt+1(β) + Δpt+1(ε),

where

Δpt+1(s) =g(st+1,xt,At, βt, εt)− g(st,xt,At, βt, εt),

Δpt+1(x) =g(st+1,xt+1,At, βt, εt)− g(st+1,xt,At, βt, εt),

Δpt+1(A) =g(st+1,xt+1,At+1, βt, εt)− g(st+1,xt+1,At, βt, εt),

Δpt+1(β) =g(st+1,xt+1,At+1, βt+1, εt)− g(st+1,xt+1,At+1, βt, εt),

Δpt+1(ε) =g(st+1,xt+1,At+1, βt+1, εt+1)− g(st+1,xt+1,At+1, βt+1, εt).

We compute each of these counterfactual price vectors through the algorithm described in
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Appendix B. We then decompose the cross-sectional variance of log returns as

Var(rt+1) =Cov(Δpt+1(s), rt+1) + Cov(Δpt+1(x), rt+1) + Cov(vt+1, rt+1)

+ Cov(Δpt+1(A), rt+1) + Cov(Δpt+1(β), rt+1) + Cov(Δpt+1(ε), rt+1). (32)

Equation (32) says that variation in asset returns must be explained by supply- or

demand-side effects. The first three terms represent the supply-side effects due to changes

in shares outstanding, changes in characteristics, and the dividend yield. The last three

terms represent the demand-side effects due to changes in assets under management, the

coefficients on characteristics, and latent demand.

Table 2 presents the variance decomposition of annual stock returns, pooled over 1981 to

2014. Because characteristics get updated in June for many stocks whose fiscal years end in

December (see Section III), we use annual stock returns at the end of June to give charac-

teristics the best chance of explaining stock returns. On the supply side, shares outstanding

explain 1.4 percent, and characteristics explain 6.1 percent of the cross-sectional variance

of stock returns. Dividend yield explains only 0.4 percent, which means that change in log

price drives most of the cross-sectional variance of stock returns.

On the demand side, assets under management explain 28.6 percent, and the coefficients

on characteristics explain 4.7 percent of the cross-sectional variance of stock returns. Latent

demand is clearly the most important, explaining 58.8 percent of the cross-sectional variance

of stock returns. Thus, stock returns are mostly explained by demand shocks that are

unrelated to changes in observed characteristics. This finding is consistent with the fact that

cross-sectional regressions of stock returns on characteristics have low explanatory power

(Fama and French 2008; Asness, Frazzini, and Pedersen 2013).

Our variance decomposition establishes a new set of targets for a growing literature on

asset pricing models with institutional investors (see footnote 1). A common feature of these

models is that asset prices move with the wealth distribution across heterogeneous investors

(Basak and Pavlova 2013). Characteristics such as dividends also matter for institutions

that care about their performance relative to a benchmark. Finally, latent demand matters

insofar as institutions have heterogeneous beliefs or constraints, endowment shocks, or private

signals. In future work, models with institutional investors could be tested quantitatively

based on our variance decomposition.

C. Stock Market Volatility in 2008

In the aftermath of the financial crisis, various regulators have expressed concerns that large

investment managers could amplify volatility in bad times (Office of Financial Research 2013;
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Haldane 2014). The underlying intuition is that even small shocks could translate to large

price movements through the sheer size of their balance sheets. Going against this intuition,

however, is the fact that large institutions tend to be diversified buy-and-hold investors that

hold more liquid stocks. We use the characteristics-based model to better understand the

relative contributions of institutional investors and households in explaining the stock market

volatility in 2008.

We modify the variance decomposition (32) as

Var(rt+1) =Cov(Δpt+1(s) + Δpt+1(x) + vt+1, rt+1)

+

I∑
i=1

Cov(Δpt+1(Ai) + Δpt+1(βi) + Δpt+1(εi), rt+1).

The first term is the total supply-side effect due to changes in shares outstanding, changes

in characteristics, and the dividend yield. The second term is the sum of the demand-side

effects across all investors due to changes in assets under management, the coefficients on

characteristics, and latent demand. In our implementation of the variance decomposition,

we first order the largest 25 institutions by their assets under management at the end of

2007, then smaller institutions, then households.

Table 3 presents the variance decomposition of stock returns in 2008. The supply-side

effects explain only 5.0 percent of the cross-sectional variance of stock returns, which means

that the demand-side effects explain the remainder of the variance. Barclays Bank (now part

of Blackrock) is the largest institution in 2007:4, managing $699 billion. Its assets fell by

41 percent from 2007:4 to 2008:4. During this period, its contribution to the cross-sectional

variance of stock returns was 0.5 percent. Summing across the largest 25 institutions, their

overall contribution to the cross-sectional variance of stock returns was 5.5 percent. Smaller

institutions explain 41.9 percent, and households explain 47.6 percent of the cross-sectional

variance of stock returns. The three groups of investors each managed about a third of the

stock market, and their assets fell by nearly identical shares in 2008. However, the relative

contribution of the largest 25 institutions to stock market volatility was much smaller than

the smaller institutions and households.

The reason for this finding is that the large institutions tend to be diversified buy-and-

hold investors that hold more liquid stocks with smaller price impact. Equation (19) makes

this intuition precise. Holding characteristics constant, any movement in stock prices must

be explained by changes in equation (21). The numerator of equation (21) depends on a

weighted average of latent demand across investors. As shown in Figure 3, the standard

deviation of latent demand increased for households in 2008, but not for large institutions.
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The denominator of equation (21) is essentially the aggregate demand elasticity, which is

higher for the more liquid stocks held by the large institutions.

D. Predictability of Stock Returns

To a first-order approximation, the conditional expectation of log returns (31) is

Et[rt+1] ≈ g(Et[st+1],Et[xt+1],Et[At+1],Et[βt+1],Et[log(εt+1)])− pt. (33)

This equation says that asset returns are predictable if any of its determinants are pre-

dictable. Based on the importance of latent demand in Table 2, we isolate mean reversion

in latent demand as a potential source of predictability in stock returns.

We start with the assumption that all determinants of stock returns, except for latent

demand, are random walks. We then model the dynamics of log latent demand from period

t to t+ 1 as

log(εi,t+1(n)) = ρi,t log(εi,t(n)) + ρi,tε−i,t(n) + νi,t+1(n), (34)

where

ε−i,t(n) =

∑
j∈It(n)\{i}Aj,t log(εj,t(n))∑

j∈It(n)\{i}Aj,t

is a wealth-weighted average of log latent demand across investors, excluding investor i. The

coefficient ρi,t in equation (34) captures mean reversion in latent demand. The coefficient

ρi,t captures either momentum (if positive) or contrarian (if negative) strategies with respect

to aggregate demand.

In June of each year, we estimate equation (34) through an ordinary least squares regres-

sion of latent demand on lagged latent demand and lagged aggregate demand in June of the

previous year. We estimate the regression by institution whenever there are more than 1,000

observations. Otherwise, we pool the institutions by the groups described in Section IV,

based on institution type and assets under management. Figure 7 summarizes the estimated

coefficients by reporting their cross-sectional mean by institution type, weighted by assets

under management. Latent demand is quite persistent with an annual autoregressive co-

efficient around 0.7. Latent demand also responds to aggregate demand with a coefficient

around 0.2.

We use the predicted values from regression (34) as estimates of expected latent demand.

We then substitute expected latent demand in equation (33) and compute the counterfactual
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price vector through the algorithm described in Appendix B. We then sort stocks into five

portfolios in December based on the estimated expected returns in June. The 6-month lag

ensures that the 13F filing in June was public on the trading date. We track the portfolio

returns from January 1982 to December 2014, annually rebalancing in December.

Table 4 summarizes the characteristics of the five portfolios sorted by estimated expected

returns. The first row reports the median expected return within each portfolio, which varies

from −26 percent for the low expected-return portfolio to 32 percent for the high expected-

return portfolio. The high expected-return portfolio contains stocks with lower market equity

and higher book-to-market equity. This means that the characteristics-based model identifies

small-cap value stocks as having high expected returns, consistent with the known size and

value premia.

Panel A of Table 5 reports annualized average excess returns, over the 1-month T-bill

rate, on the equal-weighted portfolios. In the full sample, the high minus low portfolio has

an average excess return of 8.04 percent with a standard error of 2.34 percent. When we

split the sample in half, the average excess return on the high minus low portfolio is 10.97

percent in the first half and 5.29 percent in the second half.

To better understand these portfolios, Panel B of Table 5 reports betas and alpha with

respect to the Fama-French (1993) three-factor model. The three factors are excess market

returns, small minus big (SMB) portfolio returns, and high minus low (HML) book-to-market

portfolio returns. The high minus low portfolio has a market beta of −0.35, an SMB beta

of 0.37, and zero HML beta. The high minus low portfolio has an annualized alpha of 10.43

percent with respect to the Fama-French three-factor model, which is statistically significant.

Panel A of Table 6 reports annualized average excess returns on the value-weighted

portfolios. In the full sample, the high minus low portfolio has an average excess return of

2.88 percent with a standard error of 2.45 percent. When we split the sample in half, the

average excess return on the high minus low portfolio is −0.27 percent in the first half and

5.84 percent in the second half. These returns are lower than those for the equal-weighted

portfolios in Table 5, which implies that the high returns due to mean reversion in latent

demand are more prominent for smaller stocks. As reported in Panel B, the high minus low

portfolio has an annualized alpha of 3.84 percent with respect to the Fama-French three-

factor model, which is statistically insignificant.

VI. Extensions of the Characteristics-Based Model

We briefly discuss potential extensions of the characteristics-based model that are beyond

the scope of this paper, which we leave for future research.
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A. Endogenizing Supply and the Wealth Distribution

We have assumed that shares outstanding and asset characteristics are exogenous. However,

we could endogenize the supply side of the characteristics-based model, just as asset pricing

in endowment economies has been extended to production economies.8 Once we endogenize

corporate policies such as investment and capital structure, we could answer a broad set of

questions at the intersection of asset pricing and corporate finance. For example, how do

the portfolio decisions of institutions affect real investment at the business-cycle frequency

and growth at lower frequencies?

We have also assumed that the wealth distribution is exogenous, or more primitively, that

net capital flows between institutions are exogenous. By modeling how households allocate

wealth across institutions (Hortaçsu and Syverson 2004; Shin 2014), we could have a more

realistic demand system to better understand the relative importance of substitution across

institutions versus substitution across assets within an institution for asset prices.

B. Relaxing the Assumption of Factor Structure in Returns

The derivation of the characteristics-based model in Proposition 1 required the assumption

of factor structure in returns. If returns do not have a factor structure, a simple modification

of the characteristics-based model is

w
(1)
i,t

wi,t(0)
= Σ

(1,1)−1
i,t exp

{
x̂
(1)
t β̂i,t

}
. (35)

This model is equivalent to the mean-variance portfolio (13) if

μ
(1)
i,t − λi,t1 = wi,t(0) exp

{
x̂
(1)
t β̂i,t

}
.

That is, expected returns are exponential-linear in characteristics.

Of course, it is an empirical question whether equation (35) would work better in prac-

tice. We have two concerns with this approach. First, the covariance matrix is notoriously

difficult to estimate, and a relatively robust way to estimate the covariance matrix is to

impose a factor structure in returns. For this reason, Brandt, Santa-Clara, and Valkanov

(2009) directly model portfolio weights as a function of characteristics, which is similar to

our approach. Second, we need to specify how the covariance matrix varies across investors

or otherwise assume that it is homogeneous, which may be unrealistic. Both of these con-

cerns point to Assumption 2 as a reasonable compromise, in which case we are back to the

8Recent efforts to incorporate institutional investors in production economies include Gertler and Karadi
(2011), Adrian and Boyarchenko (2013), Brunnermeier and Sannikov (2014), and Coimbra and Rey (2015).
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characteristics-based model through Proposition 1.

C. Other Holdings Data

The 13F data do not contain short positions, so we do not know short interest at the

institution level. However, data on aggregate short interest for NYSE, AMEX, and Nasdaq

stocks are available. Therefore, we could construct an aggregate short interest sector and

model it as one of the investors that enter market clearing (5). While this approach is less

ideal than having short positions at the institution level, it could guide us on whether short

interest matters for our empirical results.

In principle, our estimates of the asset demand system would improve if we could incorpo-

rate other asset classes like cash and fixed income. Unfortunately, U.S. data on institutional

bond holdings are incomplete because only insurance companies and mutual funds are re-

quired to file their holdings. In addition, there is no easy way to merge the 13F data with

the bond holdings data (e.g., Thomson Reuters eMAXX). Securities Holding Statistics of the

European Central Bank contain the complete institutional holdings across all asset classes

in the euro area. However, these data are currently not available for public use. Our hope is

that once a framework like ours proves to be useful, collection and availability of institutional

holdings data will improve.

VII. Conclusion

Traditional asset pricing models make assumptions that are not suitable for institutional

investors. First, strong assumptions about preferences, beliefs, and constraints imply asset

demand with little heterogeneity across investors. Second, these models assume that in-

vestors are atomistic and have no price impact. A more recent literature allows for some

heterogeneity in asset demand by modeling institutional investors explicitly (see footnote 1).

However, it has not been clear how to operationalize these models to take full advantage

of institutional holdings data. Our contribution is to develop an asset pricing model with

rich heterogeneity in asset demand that matches institutional holdings. We also propose an

instrumental variable estimator for the asset demand system to address the endogeneity of

institutional demand and asset prices.

The characteristics-based model could answer a broad set of questions related to the role

of institutions in asset markets, which are difficult to answer with reduced-form regressions

or event studies. For example, how do large-scale asset purchases affect asset prices through

substitution effects in institutional holdings? How would regulatory reform of banks and

insurance companies affect asset prices and real investment? How does the secular shift
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from defined-benefit to defined-contribution plans affect asset prices, as capital moves from

pension funds to mutual funds and insurance companies? Which institutions drive asset

pricing anomalies? We hope that our framework is useful for answering these types of

questions.
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Table 1

Summary of 13F Institutions

Assets under
management Number of

Percent ($ million) stocks held

Number of of market 90th 90th
Period institutions held Median percentile Median percentile

1980–1984 544 35 336 2,667 117 382
1985–1989 781 41 399 3,599 114 448
1990–1994 980 46 403 4,549 105 507
1995–1999 1,322 51 464 6,564 101 551
2000–2004 1,803 57 371 6,082 87 516
2005–2009 2,446 65 333 5,415 73 458
2010–2014 2,832 63 325 5,483 67 444

This table reports the time-series mean of each summary statistic within the given period, based on Securities
and Exchange Commission Form 13F. The sample period is quarterly from 1980:1 to 2014:4.

Table 2

Variance Decomposition of Stock Returns

Percent of
variance

Supply:
Shares outstanding 1.4

(0.2)
Stock characteristics 6.1

(0.3)
Dividend yield 0.4

(0.0)
Demand:

Assets under management 28.6
(0.3)

Coefficients on characteristics 4.7
(0.2)

Latent demand 58.8
(0.4)

Observations 125,320

The cross-sectional variance of annual stock returns is decomposed into supply- and demand-side effects.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is annual from
1981:2 to 2014:2.
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Table 3

Variance Decomposition of Stock Returns in 2008

Change
AUM AUM in AUM Percent of

ranking Institution ($ billion) (percent) variance

Supply: Shares outstanding, stock
characteristics & dividend yield 5.0 (0.9)

1 Barclays Bank 699 -41 0.5 (0.1)
2 Fidelity Management & Research Co. 577 -63 1.4 (0.2)
3 State Street Corp. 547 -37 0.4 (0.1)
4 Vanguard Group 486 -41 0.5 (0.0)
5 AXA Financial 309 -70 0.4 (0.1)
6 Capital World Investors 309 -44 0.5 (0.2)
7 Wellington Management Co. 272 -51 0.4 (0.1)
8 Capital Research Global Investors 270 -53 0.1 (0.1)
9 T. Rowe Price Associates 233 -44 -0.2 (0.1)
10 Goldman Sachs & Co. 182 -59 0.1 (0.1)
11 Northern Trust Corp. 180 -46 0.1 (0.0)
12 Bank of America Corp. 159 -50 0.0 (0.1)
13 JPMorgan Chase & Co. 153 -51 0.1 (0.1)
14 Deutsche Bank Aktiengesellschaft 136 -86 0.3 (0.1)
15 Franklin Resources 135 -60 0.3 (0.1)
16 College Retirement Equities 135 -55 0.0 (0.0)
17 Janus Capital Management 134 -53 0.3 (0.1)
18 Morgan Stanley Dean Witter & Co. 133 45 0.2 (0.1)
19 Amvescap London 110 -42 0.1 (0.1)
20 Dodge & Cox 93 -65 -0.1 (0.0)
21 UBS Global Asset Management 90 -63 0.0 (0.1)
22 Davis Selected Advisers 87 -54 0.1 (0.1)
23 Neuberger Berman 86 -73 -0.1 (0.1)
24 Blackrock Investment Management 86 -69 0.1 (0.0)
25 OppenheimerFunds 83 -64 0.2 (0.1)

Subtotal: Largest 25 institutions 5,684 -47 5.5

Smaller institutions 6,493 -53 41.9 (2.6)
Households 6,321 -47 47.6 (3.0)
Total 18,499 -49 100.0

The cross-sectional variance of annual stock returns in 2008 is decomposed into supply- and demand-side
effects. This table reports the total demand-side effect for each institution due to changes in assets under
management, the coefficients on characteristics, and latent demand. The largest 25 institutions are ranked by
assets under management in 2007:4. Heteroskedasticity-robust standard errors are reported in parentheses.
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Table 4

Characteristics of Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns

Characteristic Low 2 3 4 High

Expected return -0.26 -0.04 0.06 0.16 0.32
Log market equity 6.44 5.92 5.15 4.12 2.85
Book-to-market equity 0.49 0.54 0.64 0.79 1.12
Profitability 0.23 0.23 0.22 0.18 0.11
Investment 0.08 0.08 0.08 0.07 0.03
Number of stocks 798 795 795 794 760

Stocks are sorted into five portfolios in December of each year based on their estimated expected returns in
June. This table reports the time-series mean of the median characteristic for each portfolio. The sample
period is monthly from January 1982 to December 2014.

Table 5

Equal-Weighted Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns High

Low 2 3 4 High −Low

Panel A: Average excess returns (percent)
1982–2014 8.26 9.64 10.88 11.84 16.30 8.04

(3.49) (3.28) (3.15) (3.21) (3.60) (2.34)
1982–1997 7.13 8.82 9.93 11.67 18.10 10.97

(4.21) (4.09) (4.03) (4.27) (4.63) (2.81)
1998–2014 9.32 10.41 11.78 12.00 14.61 5.29

(5.50) (5.09) (4.81) (4.78) (5.47) (3.68)
Panel B: Fama-French three-factor betas and alpha
Market beta 1.15 1.06 0.96 0.89 0.79 -0.35

(0.03) (0.02) (0.02) (0.03) (0.04) (0.04)
SMB beta 0.62 0.65 0.74 0.85 0.99 0.37

(0.06) (0.05) (0.05) (0.06) (0.10) (0.10)
HML beta 0.29 0.32 0.28 0.30 0.29 0.00

(0.05) (0.04) (0.05) (0.06) (0.09) (0.09)
Alpha (percent) -2.92 -1.03 1.10 2.44 7.51 10.43

(0.95) (0.87) (1.00) (1.29) (2.09) (2.07)

This table reports summary statistics for equal-weighted portfolios sorted by estimated expected returns.
Average excess returns, over the 1-month T-bill rate, and the Fama-French three-factor alpha are annualized.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is monthly from
January 1982 to December 2014.
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Table 6

Value-Weighted Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns High

Low 2 3 4 High −Low

Panel A: Average excess returns (percent)
1982–2014 8.49 8.78 8.65 9.66 11.37 2.88

(2.98) (2.65) (2.63) (2.79) (3.50) (2.45)
1982–1997 11.08 10.13 10.96 11.44 10.81 -0.27

(3.83) (3.71) (3.61) (3.73) (4.69) (3.00)
1998–2014 6.05 7.51 6.48 7.98 11.89 5.84

(4.52) (3.78) (3.81) (4.12) (5.17) (3.83)
Panel B: Fama-French three-factor betas and alpha
Market beta 1.07 0.99 0.98 1.00 0.91 -0.16

(0.02) (0.01) (0.01) (0.02) (0.04) (0.05)
SMB beta 0.07 -0.04 -0.08 -0.07 0.51 0.44

(0.03) (0.02) (0.02) (0.04) (0.09) (0.10)
HML beta 0.01 0.14 0.10 0.10 -0.04 -0.06

(0.03) (0.02) (0.02) (0.05) (0.08) (0.09)
Alpha (percent) -0.37 0.22 0.39 1.19 3.46 3.84

(0.68) (0.58) (0.62) (1.02) (2.01) (2.30)

This table reports summary statistics for value-weighted portfolios sorted by estimated expected returns.
Average excess returns, over the 1-month T-bill rate, and the Fama-French three-factor alpha are annualized.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is monthly from
January 1982 to December 2014.
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Figure 1. Coefficients on characteristics for an index fund. The nonlinear model (23) is
estimated for a hypothetical index fund, which is the same size and has the same investment
universe as the Vanguard Group, at each date by GMM under moment condition (26). The
quarterly sample period is from 1997:1 to 2014:4.
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Figure 2. Coefficients on characteristics. The nonlinear model (23) is estimated for each
institution at each date by GMM under moment condition (26). This figure reports the
cross-sectional mean of the estimated coefficients by institution type, weighted by assets
under management. The quarterly sample period is from 1980:1 to 2014:4.
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Figure 3. Standard deviation of latent demand. The nonlinear model (23) is estimated for
each institution at each date by GMM under moment condition (26). This figure reports
the cross-sectional standard deviation of log latent demand by institution type, weighted by
assets under management. The quarterly sample period is from 1980:1 to 2014:4.
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Figure 4. Comparison of the coefficient on log market equity. The upper panel is a scatter
plot of the coefficient on log market equity estimated by restricted least squares versus linear
GMM. The lower panel is a scatter plot of the coefficient on log market equity estimated by
linear versus nonlinear GMM. The annual sample period is from 1980:2 to 2014:2.

44



0

.05

.1

.15

.2

0

.05

.1

.15

.2

0

.05

.1

.15

.2

1980:1 1990:1 2000:1 2010:1 1980:1 1990:1 2000:1 2010:1

Banks

Insurance companies Investment advisors

Mutual funds Pension funds

90th percentile Median

10th percentile

E
la

st
ic

ity
 o

f p
ric

e 
to

 la
te

nt
 d

em
an

d

Year: Quarter

Figure 5. Price impact across stocks and institutions. Price impact for each stock and
institution is estimated through the diagonal elements of matrix (29), then averaged by
institution type. This figure summarizes the cross-sectional distribution of price impact
across stocks for the average bank, insurance company, investment advisor, mutual fund,
and pension fund. The quarterly sample period is from 1980:1 to 2014:4.
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Figure 6. Aggregate price impact across stocks. Aggregate price impact for each stock is
estimated through the diagonal elements of matrix (30). This figure summarizes the cross-
sectional distribution of aggregate price impact across stocks. The quarterly sample period
is from 1980:1 to 2014:4.
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Figure 7. Dynamics of latent demand. An ordinary least squares regression of log latent
demand on previous year’s log latent demand and aggregate demand is estimated for each
institution in June of each year. This figure reports the cross-sectional mean of the coefficients
by institution type, weighted by assets under management. The annual sample period is from
1981:2 to 2014:2.
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Appendix A. Proofs

Proof of Lemma 1. We write expected log utility over wealth in period T as

Ei,t[log(Ai,T )] = log(Ai,t) +

T−1∑
s=t

Ei,t

[
log

(
Ai,s+1

Ai,s

)]

= log(Ai,t) +
T−1∑
s=t

Ei,t[log(Rs+1(0) +w′
i,s(Rs+1 − Rs+1(0)1))]. (A1)

Then the first-order condition for the Lagrangian (10) is

∂Li,t

∂wi,t
= Ei,t

[(
Ai,t+1

Ai,t

)−1

(Rt+1 − Rt+1(0)1)

]
+ Λi,t − λi,t1 = 0. (A2)

Multiplying this equation by 1w′
i,t and rearranging, we have

Ei,t

[(
Ai,t+1

Ai,t

)−1

Rt+1(0)1

]
= 1+ 1w′

i,t(Λi,t − λi,t1). (A3)

Equation (12) follows by adding equations (A2) and (A3).

We approximate equation (A1) as

Ei,t[log(Ai,T )] ≈ log(Ai,t) +
T−1∑
s=t

Ei,t

[
rs+1(0) +w′

i,sμi,s −
w′

i,sΣswi,s

2

]
,

which follows from Campbell and Viceira (2002, equation 2.23):

log

(
Ai,t+1

Ai,t

)
≈ rt+1(0) +w′

i,t

(
rt+1 − rt+1(0)1+

σ2
i,t

2

)
− w′

i,tΣi,twi,t

2
.

Then the first-order condition for the Lagrangian (10) is

∂Li,t

∂wi,t

= μi,t − Σi,twi,t + Λi,t − λi,t1 = 0.

Solving for the optimal portfolio, we have

wi,t = Σ−1
i,t (μi,t + Λi,t − λi,t1). (A4)

Partition the short-sale constraints into those that are not binding versus binding as
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Λ′
i,t =

[
0′ Λ

(2)′
i,t

]
. We also partition the covariance matrix (11) and write its inverse as

Σ−1
i,t =

[
Ω

(1)
i,t −Σ

(1,1)−1
i,t Σ

(1,2)
i,t Ω

(2)
i,t

−Σ
(2,2)−1
i,t Σ

(2,1)
i,t Ω

(1)
i,t Ω

(2)
i,t

]
,

where

Ω
(1)
i,t =

(
Σ

(1,1)
i,t − Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t

)−1

,

Ω
(2)
i,t =

(
Σ

(2,2)
i,t − Σ

(2,1)
i,t Σ

(1,1)−1
i,t Σ

(1,2)
i,t

)−1

.

Then equation (A4) becomes

[
w

(1)
i,t

0

]
=

⎡⎣ Ω
(1)
i,t

(
μ
(1)
i,t − λi,t1

)
− Σ

(1,1)−1
i,t Σ

(1,2)
i,t Ω

(2)
i,t

(
μ
(2)
i,t + Λ

(2)
i,t − λi,t1

)
−Σ

(2,2)−1
i,t Σ

(2,1)
i,t Ω

(1)
i,t

(
μ
(1)
i,t − λi,t1

)
+ Ω

(2)
i,t

(
μ
(2)
i,t + Λ

(2)
i,t − λi,t1

)⎤⎦ .
Multiplying the second block by Σ

(1,1)−1
i,t Σ

(1,2)
i,t and adding the two blocks, we have

w
(1)
i,t =

(
I− Σ

(1,1)−1
i,t Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t

)
Ω

(1)
i,t

(
μ
(1)
i,t − λi,t1

)
=Σ

(1,1)−1
i,t

(
μ
(1)
i,t − λi,t1

)
.

The portfolio weight on the outside asset (14) follows from the budget constraint wi,t(0) =

1− 1′w(1)
i,t and equation (13). When short-sale constraint (9) binds, we have

1′w(1)
i,t = 1′Σ(1,1)−1

i,t

(
μ
(1)
i,t − λi,t1

)
= 1.

Equation (15) follows by solving for λi,t. QED

Proof of Proposition 1. Under Assumption 2, let μ
(1)
i,t = y

(1)′
i,t Φi,t + φi,t1 be the vector of

expected excess returns on assets for which the short-sale constraint is not binding. Similarly,

let Γ
(1)
i,t = y

(1)′
i,t Ψi,t + ψi,t1 be the vector of factor loadings on those assets. The vector of
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optimal portfolio weights is

w
(1)
i,t

wi,t(0)
=

1

wi,t(0)

(
Γ
(1)
i,t Γ

(1)′
i,t + γi,tI

)−1 (
μ
(1)
i,t − λi,t1

)
=

1

γi,twi,t(0)

(
I− Γ

(1)
i,t Γ

(1)′
i,t

Γ
(1)′
i,t Γ

(1)
i,t + γi,t

)(
μ
(1)
i,t − λi,t1

)

=
1

γi,twi,t(0)

⎛⎝y
(1)
i,t Φi,t + φi,t1− λi,t1−

(
y
(1)
i,t Ψi,t + ψi,t1

) Γ
(1)′
i,t

(
μ
(1)
i,t − λi,t1

)
Γ
(1)′
i,t Γ

(1)
i,t + γi,t

⎞⎠
=y

(1)
i,t Πi,t + πi,t1,

where the second line follows from the Woodbury matrix identity. QED

Proof of Proposition 2. The function f(p) is continuously differentiable because wi(p)

is continuously differentiable. Let B− = {i|β0,i ≤ 0} be the set of investors for whom the

coefficient on log market equity is negative, and let B+ = {i|0 < β0,i < 1} be the complement

set of investors. Consider the characteristic equation for the matrix I− ∂f/∂p′:

det

(
(1− c)I− ∂f

∂p′

)
=det(H−1) det

(
(1− c)H−

I∑
i=1

Ai
∂wi

∂p′

)

=det(H−1) det

⎛⎝∑
i∈B−

Ai(1− c)diag(wi)−
∑
i∈B−

Aiβ0,iGi

+
∑
i∈B+

Ai(1− c− β0,i)diag(wi) +
∑
i∈B+

Aiβ0,iwiw
′
i

⎞⎠ = 0.

Note that det(H−1) > 0 becauseH−1 is symmetric positive definite. If c < 1−maxi∈{1,...,I} β0,i,

the second determinant on the right side is also positive because the expression inside paren-

theses is a sum of four symmetric positive definite matrices. By contradiction, every solution

of the characteristic equation must satisfy c ≥ 1 − maxi∈{1,...,I} β0,i. That is, the minimum

eigenvalue of I− ∂f/∂p′ must be greater than 1−maxi∈{1,...,I} β0,i.

The norm of the inverse of a positive definite matrix is equal to the inverse of its minimum

eigenvalue. This implies that∥∥∥∥∥
(
I− ∂f

∂p′

)−1
∥∥∥∥∥ ≤ 1

1−maxi∈{1,...,I} β0,i
.

By the Hadamard theorem (Granas and Dugundji 2013, p. 83), this uniform bound is suffi-
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cient for the function p− f(p) to be globally invertible. Therefore, f(p) has a unique fixed

point. QED

Appendix B. Algorithm for Computing the Equilibrium Price Vector

This appendix describes an efficient algorithm for computing the equilibrium in any counter-

factual experiment. Starting with any price vector pm, the Newton’s method would update

the price vector through

pm+1 = pm +

(
I− ∂f(pm)

∂p′

)−1

(f(pm)− pm).

For our application, this approach would be computationally slow because the Jacobian has

a large dimension. Therefore, we approximate the Jacobian with only its diagonal elements:

∂f(pm)

∂p′ ≈diag

(
min

{
∂f(pm)

∂p(n)
, 0

})
=diag

(
min

{∑I
i=1Aiβ0,iwi(n,pm)(1− wi(n,pm))∑I

i=1Aiwi(n,pm)
, 0

})
,

where the minimum ensures that the elements are bounded away from one. In the empirical

applications of this paper, we have found that this algorithm is fast and reliable, converging

in fewer than 100 steps in most cases.

Appendix C. Institution Types

To group institutions into six types, we use the type codes from the Thomson Reuters

Institutional Holdings Database (s34 file) and manager numbers from the Mutual Fund

Holdings Database (s12 file). Thomson Reuters assigns each manager to a type code: 1)

banks, 2) insurance companies, 3) investment companies, 4) investment advisors, and 5)

other managers (i.e., pension funds, endowments, and foundations). Unfortunately, there

is a known error in the type codes since December 1998 (Wharton Research Data Services

2008). We correct the type codes through the following steps.

1. For managers that existed prior to December 1998, we replace the incorrect type code

after December 1998 with the correct one before that date.

2. We reassign type code 5 to 1 when the manager is unambiguously a bank based on its

name. Similarly, we reassign type code 5 to 2 when the manager is unambiguously an

insurance company.
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3. In cases where the type code for a manager changes, we use the most recent type code

so that a manager has a unique type code throughout the sample.

4. We construct a database of investment advisors based on the historical archives of

Securities and Exchange Commission Form ADV since June 2006. We use the bigram

algorithm to match manager names to business or legal names in the investment advisor

database. We reassign type codes 3 and 5 to 4 when there is a valid match.

Using the corrected type codes, we assign type code 1 to banks and type code 2 to

insurance companies. We assign type codes 3 and 4 to mutual funds if the manager number

matches a record in the Mutual Fund Database. Otherwise, we assign type codes 3 and 4

to investment advisors. Among managers with type code 5, we identify pension funds based

on a list of top 300 pension funds (Towers Watson 2015).

Table C1 summarizes the 13F institutions in our sample by type from 1980 to 2014.

We note that these statistics do not necessarily match the U.S. national accounts (Board of

Governors of the Federal Reserve System 2015). The reason is that the 13F statements are

based on who exercises investment discretion over the assets, whereas the national accounts

are based on who ultimately owns the assets. For example, the assets of a pension fund

whose portfolio is managed by an investment advisor would be accounted under investment

advisors according to the 13F statements but pension funds in the national accounts.
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Table C1

Summary of 13F Institutions by Type

Assets under
management Number of

Percent ($ million) stocks held

Number of of market 90th 90th
Period institutions held Median percentile Median percentile

A. Banks

1980–1984 206 14 331 2,889 159 495
1985–1989 203 14 493 4,224 202 599
1990–1994 200 13 491 6,220 204 714
1995–1999 175 11 592 15,924 225 1,047
2000–2004 158 11 451 21,075 215 1,282
2005–2009 156 10 401 16,684 184 1,230
2010–2014 140 8 382 12,343 167 903

B. Insurance companies

1980–1984 60 3 381 2,281 96 350
1985–1989 66 3 471 2,642 96 397
1990–1994 69 3 603 3,560 117 554
1995–1999 67 4 1,311 8,169 153 962
2000–2004 57 4 1,398 12,495 192 1,650
2005–2009 49 3 1,580 27,022 232 1,771
2010–2014 44 2 1,233 34,216 209 1,703

C. Investment advisors

1980–1984 128 5 275 1,153 84 227
1985–1989 258 7 237 1,149 71 212
1990–1994 356 7 208 1,108 68 197
1995–1999 642 5 261 1,322 70 198
2000–2004 1,096 7 266 1,661 69 220
2005–2009 1,719 13 266 2,298 62 254
2010–2014 2,140 17 267 2,801 57 256

D. Mutual funds

1980–1984 95 9 509 3,522 143 387
1985–1989 186 13 675 5,037 130 431
1990–1994 291 19 879 6,556 129 512
1995–1999 372 28 1,549 15,877 141 694
2000–2004 328 31 2,382 25,233 176 1,085
2005–2009 274 33 3,031 43,716 180 997
2010–2014 237 27 3,766 41,326 176 928

E. Pension funds

1980–1984 31 3 687 3,407 84 325
1985–1989 38 4 730 7,230 143 615
1990–1994 39 4 914 13,439 238 896
1995–1999 34 3 1,843 23,791 375 1,258
2000–2004 39 3 4,140 37,138 499 1,875
2005–2009 42 3 6,306 35,311 574 2,052
2010–2014 53 3 4,666 27,331 518 1,522

F. Other

1980–1984 25 1 211 1,257 74 202
1985–1989 32 1 357 1,727 77 384
1990–1994 26 1 428 2,185 75 233
1995–1999 32 0 313 2,516 78 210
2000–2004 125 1 179 1,561 53 233
2005–2009 206 3 194 2,722 43 353
2010–2014 218 5 272 5,625 51 521

This table reports the time-series mean of each summary statistic within the given period, based on Securities and Exchange
Commission Form 13F. The sample period is quarterly from 1980:1 to 2014:4.
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