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High Dimensionality

» Macro
» Finance

> Everywhere...
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A Very General Environment

Xt = B(L) Et

Et ~ (O7 Z)

Perhaps dim(x) = 5, or 50, or 50000, or 5000000, or ...
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Many Interesting Issues / Choices

v

x objects: Returns? Return volatilities? Return correlations?

» x universe: How many and which ones?

v

x frequency: Daily? Monthly? Quarterly?

v

Approximating model specification: VAR? Structural? DFM?

v

Estimation: Classical? Bayesian? Hybrid?

» Selection: Information criteria? Stepwise? LASSQ?

> Shrinkage: BVAR? Ridge? LASSO?

» Static vs. dynamic (rolling, expanding, TVP modeling)?
Identification: Mechanical (e.g. Cholesky)? SVAR? DSGE?

Understanding |: Visualization via network graphs

v

v

v

Understanding Il: Summarization via network degree

distributions
& Penn
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Estimating the VAR: Regularization
Constrained estimation:
A T 2 K
B = argming | > (yt - Zﬂm) +AD 1Bl
t=1 i i=1

Concave penalty functions non-differentiable at the origin produce
selection. Convex penalties produce shrinkage (e.g., ¢ = 2 is ridge)

q =1 is LASSO (concave and convex, selects and shrinks):
T

2 K
Brasso = argming [ > (yt - Zﬁﬁﬁt) +A>18il
i i=1

t=1

— Immediately useful for forecasting &Penn
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Understanding the VAR: Variance Decomposition
(Old Days, Circa 1980-2010)

— Parameters are not directly revealing

— So examine variance decomposition D — Saved by Sims!

D
X1 X2 X5
x1 di1 dip -0 dis
xp da1 dhp - dos
x5 ds1 dsp -+ dss
But what if dim(x) = 50007 & Penn



A New Approach to Understanding the VAR, I:
Variance Decomposition Summarization

Via the Network Degree Distribution
(Connectedness Perspective)

D
X1 X2 XN From Others
X1 di1 di2 E din >z
X2 do1 d22 Tt dan Zj7é2 dj
XN dn1 dn2 e dn >N dn
To
Others Zi;él di1 Zi;& dip -+ Zi;éN din Zi;éj djj

Connectedness: Pairwise, total “from,” total “to,” system-wide %Penn
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A New Approach to Understanding the VAR, II:
Variance Decomposition Visualization

Via the Network Graph

v

Node shading/thickness: Total directional connectedness “to
others”

v

Node location: Average pairwise directional connectedness

v

Link thickness: Average pairwise directional connectedness F?éPenn

» Link arrow sizes: Pairwise directional “to” and “from” .



Commodity Return Volatilities

19 sub-indices (based on futures contracts)

underlying the Bloomberg Commodity Price Index:

— 4 energies (crude oil, heating oil, natural gas, unleaded gasoline)
— 2 precious metals (gold, silver)

— 4 industrial metals (aluminum, copper, nickel, zinc)

— 2 livestocks (live cattle, lean hogs)

— 4 grains (corn, soybeans, soybean oil, wheat)

— 3 “softs” (coffee, cotton, sugar)

Garman-Parkinson-Klass range-based daily realized volatility

May 2006 - January 2016
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Full-Sample Network Graph

.‘~\¥::7-’ -
Nat@Gas

Penn

11/14



Full-Sample Network Graph, Six-Group Aggregation
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Rolling-Sample System-Wide Connectedness

25

1 1 1 1
2009 2011 2013 2015

#Penn

13 /14



Conclusion

THERE'S NOTHING NEW UNDER THE SUN...
— Standard time-series dynamic econometric modeling

— VAR estimation, forecasting, understanding, ...

...BUT NEW TOOLS ARE REQUIRED FOR
BIG-DATA ENVIRONMENTS:

— Regularization methods for estimation

— Network methods for understanding
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