Estimating and Understanding High-Dimensional Dynamic Stochastic Econometric Models

(For Volatility, Derivatives, and More...)

Francis X. Diebold (Penn) Kamil Yılmaz (Koç)

April 27, 2017

High Dimensionality

- Macro
- ► Finance
- Everywhere...

Some Recent Work

Diebold, F.X. and Yilmaz, K. (2015), "Measuring the Dynamics of Global Business Cycle Connectedness," in S.J. Koopman and N. Shephard (eds.), *Unobserved Components and Time Series Econometrics: Essays in Honor of Andrew C. Harvey*, Oxford University Press, 45-89.

Demirer, M., Diebold, F.X., Liu, L. and Yilmaz, K. (2017), "Estimating Global Bank Network Connectedness," *Journal of Applied Econometrics*, in press.

Diebold, F.X., Liu, L. and Yilmaz, K. (2017), "Commodity Connectedness," Manuscript.

A Very General Environment

$$x_t = B(L) \varepsilon_t$$
$$\varepsilon_t \sim (0, \Sigma)$$

Perhaps dim(x) = 5, or 50, or 50000, or 5000000, or ...

Many Interesting Issues / Choices

- x objects: Returns? Return volatilities? Return correlations?
- x universe: How many and which ones?
- x frequency: Daily? Monthly? Quarterly?
- Approximating model specification: VAR? Structural? DFM?
- Estimation: Classical? Bayesian? Hybrid?
 - Selection: Information criteria? Stepwise? LASSO?
 - Shrinkage: BVAR? Ridge? LASSO?
 - Static vs. dynamic (rolling, expanding, TVP modeling)?
- Identification: Mechanical (e.g. Cholesky)? SVAR? DSGE?
- Understanding I: Visualization via network graphs
- Understanding II: Summarization via network degree distributions

Estimating the VAR: Regularization

Constrained estimation:

$$\hat{\beta} = \operatorname{argmin}_{\beta} \left(\sum_{t=1}^{T} \left(y_t - \sum_{i} \beta_i x_{it} \right)^2 + \lambda \sum_{i=1}^{K} |\beta_i|^q \right)$$

Concave penalty functions non-differentiable at the origin produce selection. Convex penalties produce shrinkage (e.g., q=2 is ridge)

q=1 is LASSO (concave and convex, selects and shrinks):

$$\hat{\beta}_{LASSO} = argmin_{\beta} \left(\sum_{t=1}^{T} \left(y_t - \sum_{i} \beta_i x_{it} \right)^2 + \lambda \sum_{i=1}^{K} |\beta_i| \right)$$

Immediately useful for forecasting

Understanding the VAR: Variance Decomposition (Old Days, Circa 1980-2010)

- Parameters are not directly revealing
- So examine variance decomposition D Saved by Sims!

		D		
	<i>x</i> ₁	<i>X</i> ₂		<i>X</i> 5
<i>x</i> ₁	$d_{1,1}$	$d_{1,2}$		$d_{1,5}$
<i>x</i> ₂	$d_{2,1}$	$d_{2,2}$	• • •	$d_{2,5}$
÷	:	:	٠	:
<i>X</i> 5	$d_{5,1}$	$d_{5,2}$		$d_{5,5}$

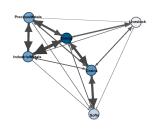
But what if dim(x) = 5000?

A New Approach to Understanding the VAR, I: Variance Decomposition Summarization Via the Network Degree Distribution (Connectedness Perspective)

			D		
	x_1	<i>x</i> ₂		XN	From Others
<i>x</i> ₁	d_{11}	d ₁₂		d_{1N}	$\sum_{j eq 1} d_{1j}$
<i>x</i> ₂	d_{21}	d_{22}	• • •	d_{2N}	$\sum_{j eq 1} d_{1j} \ \sum_{j eq 2} d_{2j}$
:	:	÷	٠.	÷	:
×N	d_{N1}	d_{N2}		d_{NN}	$\sum_{j\neq N} d_{Nj}$
То					
Others	$\sum_{i\neq 1} d_{i1}$	$\sum_{i\neq 2} d_{i2}$	• • •	$\sum_{i\neq N} d_{iN}$	$\sum_{i \neq j} d_{ij}$

Connectedness: Pairwise, total "from," total "to," system-wide Penn

A New Approach to Understanding the VAR, II: Variance Decomposition Visualization Via the Network Graph



- Node shading/thickness: Total directional connectedness "to others"
- Node location: Average pairwise directional connectedness
- ► Link thickness: Average pairwise directional connectedness
- Link arrow sizes: Pairwise directional "to" and "from"

Commodity Return Volatilities

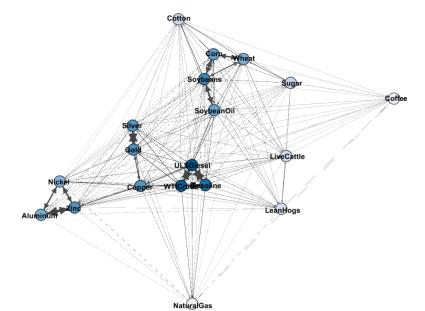
19 sub-indices (based on futures contracts) underlying the Bloomberg Commodity Price Index:

- 4 energies (crude oil, heating oil, natural gas, unleaded gasoline)
- 2 precious metals (gold, silver)
- 4 industrial metals (aluminum, copper, nickel, zinc)
- 2 livestocks (live cattle, lean hogs)
- 4 grains (corn, soybeans, soybean oil, wheat)
- 3 "softs" (coffee, cotton, sugar)

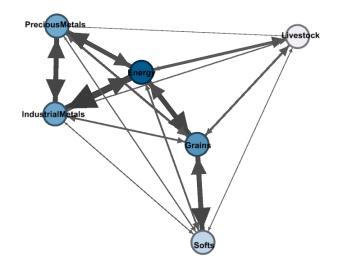
Garman-Parkinson-Klass range-based daily realized volatility

May 2006 - January 2016

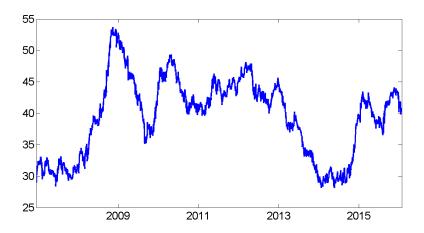
Full-Sample Network Graph



Full-Sample Network Graph, Six-Group Aggregation



Rolling-Sample System-Wide Connectedness



Conclusion

THERE'S NOTHING NEW UNDER THE SUN...

- Standard time-series dynamic econometric modeling
 - $-\ VAR$ estimation, forecasting, understanding, ...

...BUT NEW TOOLS ARE REQUIRED FOR BIG-DATA ENVIRONMENTS:

- Regularization methods for estimation
 - Network methods for understanding

