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1 Introduction

The empirical evidence on the effects of investors’ dispersion of beliefs on asset prices and their

dynamics is vast and mixed. For example, several works find a negative relation between belief

dispersion and a stock mean return (Diether, Malloy, and Scherbina (2002), Chen, Hong, and

Stein (2002), Goetzmann and Massa (2005), Park (2005), Berkman, Dimitrov, Jain, Koch, and

Tice (2009), Yu (2011)). Others argue that the negative relation is only valid for stocks with

certain characteristics (e.g., small, illiquid, worst-rated or short sale constrained) and in fact,

find either a positive or no significant relation (Qu, Starks, and Yan (2003), Doukas, Kim,

and Pantzalis (2006), Avramov, Chordia, Jostova, and Philipov (2009)). Existing theoretical

works (discussed in Section 1.1), on the other hand, do not provide satisfactory answers for

these mixed results. In fact, most studies find belief dispersion to be an extra risk factor for

investors, and therefore generate only a positive dispersion-mean return relation.

In this paper, we develop a tractable model of belief dispersion which is able to simultane-

ously support the empirical regularities in a stock price, its mean return, volatility, and trading

volume. To our knowledge this is the first paper accomplishing this. Towards that, we develop a

dynamic general equilibrium model populated by a continuum of constant relative risk aversion

(CRRA) investors who differ in their (dogmatic or Bayesian) beliefs. Our model delivers fully

closed-form expressions for all quantities of interest.

In our analysis, we summarize the wide range of investors’ beliefs by two sufficient measures,

the average bias and dispersion in beliefs, and demonstrate that equilibrium quantities are

driven by these two key endogenous variables. We take the average bias to be the bias of

the representative investor whereby how much an investor’s belief contributes to the average

bias depends on her wealth and risk attitude. Investors whose beliefs get supported by actual

cash-flow news become relatively wealthier through their investment in the stock, and therefore

contribute more to the average bias. This leads to fluctuations in the average bias so that

following good (bad) cash-flow news, the view on the stock becomes relatively more optimistic

(pessimistic). On the other hand, consistently with empirical studies, we construct our belief

dispersion measure as the cross-sectional standard deviation of investors’ disagreement which

also enables us to reveal its dual role. First, we uncover a novel role of belief dispersion in

that it amplifies the average bias so that the same good (bad) news leads to more optimism

(pessimism) when dispersion is higher. Second, we show that belief dispersion indicates how

much the average bias fluctuates, and therefore measures the extra uncertainty investors face,

consistently with its typically attributed role in the literature.
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Turning to our model implications, we first find that in the presence of belief dispersion the

stock price is convex in cash-flow news, indicating that the stock price is more sensitive to news

in relatively good states. It also implies that the increase in the stock price following good

news is more than the decrease following bad news, as supported by empirical evidence (Basu

(1997), Xu (2007)). Convexity arises because, the better the cash-flow news, the higher the

extra boost for the stock price coming from elevated optimism. Consequently, the stock price

increases with belief dispersion when the view on the stock is relatively optimistic, and decreases

otherwise, also consistent with empirical evidence (Yu (2011)). Our model also implies that

the stock price may increase and its mean return may decrease in investors’ risk aversion in

relatively bad states. This is because in a more risk averse economy investors have less exposure

to the stock which limits the wealth transfers to pessimistic investors in bad times, leading to a

relatively optimistic view on the stock, hence to a higher stock price and a lower mean return.

We next examine the widely-studied relation between belief dispersion and a stock mean

return. Since dispersion represents the extra uncertainty investors face, risk averse investors

demand a higher return to hold the stock when dispersion is higher. However, dispersion also

amplifies optimism and pushes up the stock price further following good news leading to a

lower mean return in those states. When the view on the stock is relatively optimistic, the

second effect dominates and we find a negative dispersion-mean return relation. As discussed

earlier, empirical evidence on this relation is mixed, with some studies finding a negative while

others finding a positive or no significant relation. Our model generates both possibilities and

demonstrates that this relation is negative when the view on the stock is relatively optimistic,

and positive otherwise. Diether, Malloy, and Scherbina (2002) provide supporting evidence to

our finding by documenting an optimistic bias in their study overall, and by also showing that

the negative effect of dispersion becomes stronger for more optimistic stocks. A similar evidence

is also provided by Yu (2011).

We further find that the stock volatility increases monotonically in belief dispersion, consis-

tent with empirical evidence (Ajinkya and Gift (1985), Anderson, Ghysels, and Juergens (2005),

Banerjee (2011)). This is because the average bias in beliefs fluctuates more, and hence so does

the stock price, when belief dispersion is higher. In addition to belief dispersion, the investors’

Bayesian learning process also increases the fluctuations in the average bias, and hence leads

to a higher stock volatility. This occurs because all investors become relatively more optimistic

(pessimistic) following good (bad) news due to belief updating. Our closed-form stock volatility

expression allows us to disentangle the respective effects of belief dispersion and Bayesian learn-

ing, and yields a novel testable implication that Bayesian learning induces less stock volatility
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when belief dispersion is higher. Moreover, we find that the stock trading volume is also in-

creasing in belief dispersion, consistently with empirical evidence (Ajinkya, Atiase, and Gift

(1991), Bessembinder, Chan, and Seguin (1996), Goetzmann and Massa (2005)). This finding

is intuitive since when dispersion is higher, investors with relatively different beliefs, who also

have relatively higher trading demands, are more dominant. We also find a positive relation

between the stock volatility and trading volume due to the positive effect of dispersion on both

quantities, also supported empirically (Gallant, Rossi, and Tauchen (1992), Banerjee (2011)).

We further demonstrate that most of our results above do not necessarily obtain in the more

familiar, otherwise identical, two-investor economies with heterogeneous beliefs. In particular,

we show that in these economies, the stock price is no longer convex in cash-flow news across all

states of the world, and a higher belief dispersion can actually lead to a lower stock volatility and

trading volume in some states of the world, in contrast to our model implications. This happens

because in these economies, unlike in our model, belief heterogeneity effectively vanishes in

relatively extreme states, which forces these models to be dominated by a particular type of an

investor and to have implications similar to those in a homogeneous agent economy in those

states. The transition from the states in which belief heterogeneity is prevalent to the relatively

extreme states in which belief heterogeneity vanishes generates irregular behavior for economic

quantities across states of the world.

Finally, we generalize our baseline setting with a single stock to one with multiple stocks, on

which investors have different beliefs. We demonstrate that all our main results and underlying

economic mechanisms still go through in this more elaborate economy. The multi-stock setting

also enables us to establish a tighter link between our model implications and the documented

empirical evidence, which are primarily based on cross-sectional studies. Towards that we cal-

ibrate our model by matching the time-average dispersion levels of stocks and other statistics,

to the corresponding values reported in the literature. We find that the effects of belief disper-

sion in our model are economically significant and the magnitudes of those effects support the

documented empirical evidence on a stock price, its mean return, volatility and trading volume.

1.1 Related Theoretical Literature

In this paper, we solve a dynamic heterogeneous beliefs model with a continuum of, possibly

Bayesian, investors having general CRRA preferences, and obtain fully closed-form solutions

for all quantities of interest. Generally, these models are hard to solve for long-lived assets

beyond logarithmic preferences (e.g., Detemple and Murthy (1994), Zapatero (1998), Basak
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(2005)). Our methodological contribution and the tractability of our model is in large part due

to the investor types having a Gaussian distribution. This assumption follows from the recent

works by Cvitanić and Malamud (2011) and Atmaz (2014). Cvitanić and Malamud focus on

the survival and portfolio impact of irrational investors and do not characterize the investor

belief heterogeneity, and consequently express the equilibrium quantities, in terms of average

bias and dispersion in beliefs as we do, while Atmaz does, but employs logarithmic preferences

and focuses on short interest.

The literature on heterogeneous beliefs in financial markets is vast. There are two key differ-

ences between our model and earlier works which enable our model to simultaneously support

the empirical regularities. First, most of the earlier works are set in a two-agent framework, and

usually consider the overall effects of belief heterogeneity rather than decomposing its effects

due to average bias and dispersion in beliefs, as we do. This is notable because it enables us

to isolate the effects of dispersion from the effects of other moments and conduct comparative

statics analysis with respect to belief dispersion only, resulting in sharp results. Second and

more importantly, as discussed above, in our model no investor dominates the economy in rel-

atively extreme states, which otherwise may lead to irregular behavior for economic quantities

as we demonstrate in Section 5.

One strand of the extensive heterogeneous beliefs literature examines the relation between

belief dispersion and stock mean return. As discussed earlier, most studies find this relation to

be positive (e.g., Abel (1989), Anderson, Ghysels, and Juergens (2005), David (2008), Banerjee

and Kremer (2010)). On the other hand, Chen, Hong, and Stein (2002) and Johnson (2004)

establish a negative relation by imposing short selling constraints for certain type of investors

and considering levered firms, respectively. Buraschi, Trojani, and Vedolin (2013) develop a

credit risk model and show that an increasing heterogeneity of beliefs has a negative (positive)

effect on the mean return for firms with low (high) leverage. However, this result does not hold

for unlevered firms. Differently from these works, we show that the dispersion-mean return

relation is negative when the view on the stock is relatively optimistic and positive otherwise.

Another strand in the heterogeneous beliefs literature examines the impact of belief het-

erogeneity on stock volatility and typically finds a positive effect (e.g., Scheinkman and Xiong

(2003), Buraschi and Jiltsov (2006), Li (2007), David (2008), Dumas, Kurshev, and Uppal

(2009), Banerjee and Kremer (2010), Andrei, Carlin, and Hasler (2015)). Yet another strand

in this literature employs belief dispersion models to explain empirical regularities in trading

volume. Early works include Harris and Raviv (1993) and Kandel and Pearson (1995). This

strand also includes the works which find a positive relation between belief dispersion and
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trading volume, as in our work (e.g., Varian (1989), Shalen (1993), Cao and Ou-Yang (2008),

Banerjee and Kremer (2010)). Even though our paper differs from each one of these papers

in several aspects, one common difference is that none of the above papers generate the stock

price convexity as in our model.1

Finally, this paper is also related to the literature on parameter uncertainty and Bayesian

learning. In this literature, Veronesi (1999) and Lewellen and Shanken (2002) show that learn-

ing leads to stock price overreaction, time-varying expected returns and higher volatility. In

particular, Veronesi shows that the stock price overreaction leads to a convex stock price.2

Timmermann (1993, 1996), Barsky and De Long (1993), Brennan and Xia (2001), Pástor and

Veronesi (2003) show that learning increases volatility and generates predictability for stock

returns. However, differently from our work, all these works employ homogeneous investors

setups, and therefore are not suitable for studying the effects of belief dispersion.

The remainder of the paper is organized as follows. Section 2 presents the main model,

Section 3 analyzes the average bias and dispersion in beliefs, and Section 4 provides our results

on the stock price, its dynamics and trading volume. Section 5 presents the comparisons with

the two-investor economy, Section 6 the multi-stock economy and its quantitative analysis,

and Section 7 our general model with Bayesian learning. Section 8 concludes. The Appendix

contains the proofs of the main model. Internet Appendix IA contains the proofs of the two-

investor economy, IB the proofs of the multi-stock economy and the discussion of the relevant

empirical evidence for comparisons, and IC the proofs of the general model with Bayesian

learning.

2 Economy with Dispersion in Beliefs

We consider a simple and tractable pure-exchange security market economy with a finite horizon

evolving in continuous time. The economy is assumed to be large as it is populated by a

continuum of investors with heterogeneous beliefs and standard CRRA preferences. In the

1Other works studying the effects of heterogeneous beliefs in financial markets include Basak (2000), Kogan,
Ross, Wang, and Westerfield (2006), Jouini and Napp (2007), Yan (2008), Xiong and Yan (2010). Additionally,
more general works study the effects of heterogeneous beliefs in the presence of other investor heterogeneities,
including Cvitanić, Jouini, Malamud, and Napp (2012), Bhamra and Uppal (2014) (risk aversion and time
preference), Chabakauri (2015) (risk aversion and various portfolio constraints), Chabakauri and Han (2015)
(risk aversion and non-pledgeable labor income), Detemple and Murthy (1997) (short-selling and borrowing
constraints), Gallmeyer and Hollifield (2008) (short-selling constraints), Osambela (2015) (funding constraint).

2In Veronesi (1999) the stock price convexity arises due to parameter uncertainty and the learning process,
whereas in our model the convexity follows from the stochastic average bias in beliefs and obtains even when
there is no parameter uncertainty and learning. In more recent work, Xu (2007) develops a model in which the
stock price is a convex function of the public signal. However, in his model no-short-sales constraints are needed
to obtain this result and he does not investigate the stock mean return and volatility as we do.
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general specification of our model, investors optimally learn over time in a Bayesian fashion.

However, to highlight that our results are not driven by parameter uncertainty and learning,

we first consider the economy when all investors have dogmatic beliefs. The richer case when

investors update their beliefs over time is relegated to Section 7 where we show that all our

results hold in this more complex economy. Moreover, to demonstrate our main economic

mechanism and results as clearly as possible, we first consider economies with a single risky

stock. The generalization to the more elaborate economy with multiple stocks is undertaken in

Section 6, where we again show that all our main predictions remain valid.

2.1 Securities Market

There is a single source of risk in the economy which is represented by a Brownian motion ω

defined on the true probability measure P. Available for trading are two securities, a risky stock

and a riskless bond. The stock price S is posited to have dynamics

dSt = St [µStdt+ σStdωt] , (1)

where the stock mean return µS and volatility σS are to be endogenously determined in equi-

librium. The stock is in positive net supply of one unit and is a claim to the payoff DT , paid

at some horizon T , and so ST = DT . This payoff DT is the horizon value of the cash-flow news

process Dt with dynamics

dDt = Dt [µdt+ σdωt] , (2)

where D0 = 1, and µ and σ are constant, and represent the true mean growth rate of the

expected payoff and the uncertainty about the payoff, respectively. The bond is in zero net

supply and pays a riskless interest rate r, which is set to 0 without loss of generality.3

2.2 Investors’ Beliefs

There is a continuum of investors who commonly observe the same cash-flow news process D

(2), but have different beliefs about its dynamics. The investors are indexed by their type θ,

where a θ-type investor agrees with others on the stock payoff uncertainty σ but believes that

the mean growth rate of the expected payoff is µ+ θ instead of µ. This allows us to interpret a

θ-type investor as an investor with a bias of θ in her beliefs. Consequently, a positive (negative)

3Since in this setting consumption can occur only at time T (i.e., no intermediate consumption), the interest
rate can be taken exogenously. Our normalization of zero interest rate is for expositional simplicity and it is
commonly employed in models with no intermediate consumption, see, for example, Pástor and Veronesi (2012)
for a recent reference.
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bias for an investor implies that she is relatively optimistic (pessimistic) compared to an investor

with true beliefs. Under the θ-type investor’s beliefs, the cash-flow news process has dynamics

dDt = Dt [(µ+ θ) dt+ σdωt (θ)] ,

where ω (θ) is her perceived Brownian motion with respect to her own probability measure Pθ,

and is given by ωt (θ) = ωt − θt/σ. Similarly, the risky stock price dynamics as perceived by

the θ-type investor follows

dSt = St [µSt (θ) dt+ σStdωt (θ)] , (3)

which together with the dynamics (1) yields the following consistency relation between the

perceived and true stock mean returns for the θ-type investor

µSt (θ) = µSt + σSt
θ

σ
. (4)

The investor type space is denoted by Θ and it is taken to be the whole real line R to

incorporate all possible beliefs including the extreme ones and to avoid having arbitrary bounds

for investor biases. We assume a Gaussian distribution with mean m̃ and standard deviation

ṽ for the relative frequency of investors over the type space Θ. A higher m̃ (ṽ) implies that

initially there are more investors with relatively optimistic (large) biases. This specification

conveniently nests the benchmark homogeneous beliefs economy with no bias when m̃ = 0

and ṽ → 0. Moreover, this assumption ensures that the investor population has a finite (unit)

measure and admits much tractability, and can be justified on the grounds of the typical investor

distribution observed in well-known surveys.4 We further assume that all investors are initially

endowed with an equal fraction of stock shares. Since a group of investors with the same beliefs

and endowments are identical in every aspect, we represent them by a single investor with

the same belief and whose initial endowment of stock shares is equal to the relative frequency

of that group. This simplifies the analysis and provides the following initial wealth for each

distinct θ-type investor

W0 (θ) = S0
1√

2πṽ2
e−

1
2

(θ−m̃)2

ṽ2 , (5)

where S0 is the (endogenous) initial stock price.

4See, for example, the Livingston survey and the survey of professional forecasters conducted by the Philadel-
phia Federal Reserve. Generally, the observed distributions are roughly symmetric, single-peaked and assign less
and less people to the tails, resembling a Binomial distribution for a limited sample. For a large economy, these
properties can conveniently be captured by our Gaussian distribution assumption, which also follows from the
recent works by Cvitanić and Malamud (2011) and Atmaz (2014) in dynamic settings as discussed in Section 1.1.
Söderlind (2009) also invokes this assumption but in a single-period static model, and obtains implications that
are different from ours, since ours are much driven by the dynamic interactions between economic quantities as
we demonstrate in the ensuing analysis.
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2.3 Investors’ Preferences and Optimization

Each distinct θ-type investor chooses an admissible portfolio strategy φ (θ), the fraction of

wealth invested in the stock, so as to maximize her CRRA preferences over the horizon value

of her portfolio WT (θ)

Eθ
[
WT (θ)1−γ

1− γ

]
, γ > 0, (6)

where Eθ denotes the expectation under the θ-type investor’s subjective beliefs Pθ, and the

financial wealth of the θ-type investor Wt (θ) follows

dWt (θ) = φt (θ)Wt (θ) [µSt (θ) dt+ σStdωt (θ)] . (7)

In this setting investors’ preferences are over the horizon value of their wealth/consumption

rather than intermediate consumption, which would otherwise endogenize the interest rate in

equilibrium. As the previous literature highlights, the presence of belief heterogeneity may

have important effects on the interest rate in the economy (e.g., Detemple and Murthy (1994),

David (2008)). However, in this paper, our focus is not on the interest rate, but on the marginal

effects of belief dispersion on risky stocks, and as we demonstrate in Section 6.2, we can still

calibrate our model and quantify these effects even though the interest rate is exogenous.

3 Equilibrium in the Presence of Belief Dispersion

To explore the implications of belief dispersion on the stock price and its dynamics, we first

need a reasonable measure of it. In this Section, we define belief dispersion in a canonical way,

to be the standard deviation of investors’ biases in beliefs. Using the cross-sectional standard

deviation of investors’ disagreement as belief dispersion is also consistent with the commonly

employed belief dispersion measures in empirical studies.5 However, for this, we first need to

determine the average bias in beliefs from which the investors’ biases deviate. The average bias

is defined to be the bias of the representative investor in the economy. We then summarize

5See, for example, Diether, Malloy, and Scherbina (2002), Johnson (2004), Boehme, Danielsen, and Sorescu
(2006), Sadka and Scherbina (2007), Avramov, Chordia, Jostova, and Philipov (2009) who employ the standard
deviation of levels in analysts’ earnings forecasts, normalized by the absolute value of the mean forecast. An-
derson, Ghysels, and Juergens (2005), Moeller, Schlingemann, and Stulz (2007), Yu (2011) employ the standard
deviation of (long-term) growth rates in analysts’ earnings forecasts as the measure of belief dispersion. Since
we define ours as the standard deviation of investors’ biases, our belief dispersion measure is similar to those
used in the latter works. As Moeller, Schlingemann, and Stulz (2007) argue, there are several advantages of
using the standard deviation of growth rates rather than of levels as a measure of belief dispersion, since the
timing of the forecasts affect levels but not growth rates, and since growth rates are easily comparable across
firms whereas normalization introduces noise for the levels.
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the wide range of investors’ beliefs in our economy by these two variables, the average bias

and dispersion in beliefs, and determine their values in the ensuing equilibrium. As we also

demonstrate in Section 4, the equilibrium quantities are driven by these two key (endogenous)

variables, in addition to those in a homogeneous beliefs economy. Moreover, specifying the

belief dispersion this way enables us to isolate its effects from the effects of other moments and

conduct comparative statics analysis with respect to it only.

Equilibrium in our economy is defined in a standard way. The economy is said to be

in equilibrium if equilibrium portfolios and asset prices are such that (i) all investors choose

their optimal portfolio strategies, and (ii) stock and bond markets clear. We will often make

comparisons with equilibrium in a benchmark economy where all investors have unbiased beliefs.

We refer to this homogeneous beliefs economy as the economy with no belief dispersion.

Definition 1 (Average bias and dispersion in beliefs). The time-t average bias in beliefs,

mt, is defined as the implied bias of the corresponding representative investor in the economy.

Moreover, expressing the average bias in beliefs as the weighted average of the individual

investors’ biases

mt =

ˆ
Θ

θht (θ) dθ, (8)

with the weights ht (θ) > 0 are such that
´

Θ
ht (θ) dθ = 1, we define the dispersion in beliefs,

vt, as the standard deviation of investors’ biases

v2
t ≡
ˆ

Θ

(θ −mt)
2 ht (θ) dθ. (9)

The extent to which an investor’s belief is represented in the economy depends on her wealth

and risk attitude. In our dynamic economy, the investors whose beliefs are supported by the

actual cash-flow news become relatively wealthier. This increases the impact of their beliefs in

the determination of equilibrium prices. Our definition of the average bias in beliefs captures

this mechanism by equating it to the bias of the representative investor who assigns more weight

to an investor whose belief has more impact on the equilibrium prices. Finding the average bias

this way is similar to representing heterogeneous beliefs in an economy by a consensus belief as

in Rubinstein (1976), and more recently in Jouini and Napp (2007).6

6The main idea, as elaborately discussed in Jouini and Napp (2007), is to summarize the heterogeneous
beliefs in the economy by a single consensus belief so that when the consensus investor has that consensus
belief and is endowed with the aggregate consumption in the economy, the resulting equilibrium is as in the
heterogeneous-investors economy. In a model with intertemporal consumption and finitely-many agents having
CRRA preferences, Jouini and Napp show that when investors’ preferences are not logarithmic, the consensus
belief is not necessarily well-defined since the process which aggregates investors’ beliefs is not a martingale, and
hence not a proper belief process. Differently from their analysis, as we demonstrate in the proof of Proposition
1 in the Appendix, it turns out this issue does not arise in our setting and we obtain a well-defined consensus
belief process for all risk aversion values due to the investors’ preferences being over horizon wealth.
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The average bias in beliefs, by construction, implies that when it is positive the (average)

view on the stock is optimistic, and when negative pessimistic. The weights, ht (θ), are such that

the weighted average of individual investors’ biases is the bias of the representative investor. We

also discuss alternative weights, average bias and dispersion measures in Remark 1. Importantly,

it is these weights that allow us to define belief dispersion in an intuitive way. Proposition 1

presents the average bias and dispersion along with the corresponding unique weights in our

economy in closed form.

Proposition 1. The time-t average bias mt and dispersion vt in beliefs are given by

mt = m+
(

lnDt −
(
m+ µ− 1

2
σ2
)
t
) v2

t

γσ2
, v2

t =
v2σ2

σ2 + 1
γ
v2t

, (10)

where their initial values m and v are related to the initial mean m̃ and standard deviation ṽ

of investor types as

m = m̃+
(

1− 1

γ

)
v2T, v2 =

(γ
2
ṽ2 − γ2

2T
σ2
)

+

√(γ
2
ṽ2 − γ2

2T
σ2
)2

+
γ2

T
ṽ2σ2. (11)

The weights ht (θ) are uniquely identified to be given by

ht (θ) =
1√
2πv2

t

e
− 1

2
(θ−mt)

2

v2t , (12)

where mt, vt are as in (10).

Consequently, a higher belief dispersion vt leads to a higher average bias mt for relatively good

cash-flow news Dt > exp
(
m+ µ− 1

2
σ2
)
t, and to a lower average bias otherwise.

We see that the average bias in beliefs (10) is stochastic and depends on the cash-flow news

D.7 When there is good news, the relatively optimistic investors’ beliefs get supported, and

through their investment in the stock they get relatively wealthier. This in turn increases their

weight in equilibrium and consequently makes the view on the stock more optimistic. The

analogous mechanism makes the view on the stock more pessimistic following bad news.8

As highlighted in Proposition 1, a higher belief dispersion leads to a higher average bias for

relatively good cash-flow news and to a lower average bias otherwise. This is notable since it

reveals that the extent of optimism/pessimism depends crucially on the level of belief dispersion

7For notational convenience, we denote the initial values of the average bias and dispersion in beliefs by m
and v instead of m0 and v0, respectively. We note that the average bias can also be represented in terms of the

initial values by mt = σ
(
σm+ 1

γ v
2ωt

)
/
(
σ2 + 1

γ v
2t
)

.
8The wealth transfers among investors is the main underlying mechanism in dynamic heterogeneous-beliefs

models. We add to this literature by demonstrating in our subsequent analysis that these wealth transfers affect
economic quantities also through the average bias and dispersion in beliefs, which are relatively easier to observe
in the data.
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Figure 1: Investors’ weights. These panels plot the weights ht (θ) for each distinct θ-type investor

for different levels of current belief dispersion vt. The belief dispersion is vt = 3.23% in solid blue and

3.61% in dashed green lines. The vertical dotted black lines correspond to the benchmark economy

with no belief dispersion. The cash-flow news is relatively bad Dt = 1.22 in panel (a), and good

Dt = 2.50 in panel (b). The baseline parameter values are as in Table 1 of Section 6 for the typical

stock (stock 1) in our multiple-stocks model: m̃ = 0, ṽ = 3.39%, µ = 14.23%, σ = 8.25%, γ = 2,

t = 4.37 and T = 10.

vt. In particular, dispersion amplifies the effects of cash-flow news on the average bias, and

hence the same level of good (bad) news leads to more optimism (pessimism) when dispersion

is higher. We illustrate this feature in Figure 1, where we plot the weights ht (θ) for different

levels of dispersion in relatively bad (panel (a)) and good (panel (b)) cash-flow news states.

The average bias is given by the point on the x−axis where the respective plot centers. We

see that higher dispersion plots are flatter and center at a point further away from the origin,

which shows that investors with relatively large biases are indeed assigned higher weights and

optimism/pessimism is amplified under higher dispersion. Investors’ attitude towards risk, γ,

influences the average bias too. In a more risk averse economy, investors hold relatively less stock

which limits the wealth transfers to the investors whose beliefs are supported. Consequently,

this reduces the sensitivity of the average bias to cash-flow news, leading to less optimism

(pessimism) for the same level of good (bad) news.

In the presence of heterogeneity in beliefs, the belief dispersion has a dual role. Besides

amplifying the current average bias in beliefs mt, the current belief dispersion vt also drives

the extent to which average bias fluctuates next instant, and hence represents the riskiness

of average bias. Indeed, it can be shown from (10) that the dynamics of average bias is

11



dmt = µmtdt + σmtdωt, where the diffusion term is σmt = v2
t /γσ. As for the dynamics of

belief dispersion itself, as (10) highlights, the dispersion is at its highest level initially and then

decreases over time deterministically as investors with extreme beliefs tend to receive less and

less weight over time due to their diminishing wealth and impact in equilibrium. We discuss

the limiting behavior of dispersion in detail in Remark 2 of Section 5.

Equation (12) indicates that the time-t weights ht (θ), which can be thought of as the time-t

“effective” relative frequency of investors, have a convenient Gaussian form with mean mt and

standard deviation vt as also illustrated in Figure 1. This feature allows us to characterize

the wide range of investor heterogeneity in our economy by the average bias and dispersion in

beliefs since they are the first two (thus sufficient) central moments of Gaussian weights.

Remark 1 (Alternative average bias and dispersion in beliefs measures). In a dynamic

economy such as ours, to characterize the equilibrium quantities in terms of the moments of

belief heterogeneity the stochastic impact of investors’ beliefs and wealth ought to be taken into

account. To capture the larger impact of wealthier investors on equilibrium prices, one may

alternatively define the average bias in beliefs as in (8) but using the wealth-share distribution

W (θ) /S as the weights. This definition does not require the construction of the representative

investor and yields alternative average bias and dispersion in beliefs measures denoted by m̃t

and ṽt, respectively, which can be shown to be given by

m̃t≡
ˆ

Θ

θ
Wt (θ)

St
dθ=mt−

(
1− 1

γ

)
v2
t (T−t) , ṽ2

t ≡
ˆ

Θ

(θ−m̃t)
2 Wt (θ)

St
dθ=

1

γ
v2
t +
(
1− 1

γ

)
v2
T , (13)

where mt, vt are as in (10).9 As the expressions in (13) highlight, our average bias and dispersion

in beliefs coincide with their respective wealth-share weighted counterparts when the preferences

are logarithmic (γ = 1) and also at the horizon T . For non-logarithmic preferences, at any point

in time, the wealth-share weighted average bias m̃t differs from the average bias mt, but only

by a constant. This constant arises since the distinct θ-type investor with the highest wealth

is not the same investor whose bias has the highest impact on equilibrium quantities when

γ 6= 1. However, since the difference between the two average bias measures is a constant, we

obtain similar results and predictions if, instead of mt and vt, we use the wealth-share weighted

average bias and dispersion measures as in (13).

9Above expressions are derived in the proof of Proposition 5 in the Appendix.
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4 Stock Price, Its Dynamics and Trading Volume

In this Section, we investigate how the stock price, its mean return, volatility and trading

volume are affected by the average bias and dispersion in beliefs. In particular, we demonstrate

that in the presence of belief dispersion, the stock price is convex in cash-flow news. A higher

belief dispersion gives rise to a higher stock price and a lower mean return when the view on

the stock is relatively optimistic, and vice versa when pessimistic. We further show that a

higher belief dispersion leads to a higher stock volatility and trading volume. These findings

are consistent with empirical evidence.

4.1 Equilibrium Stock Price

Proposition 2. In the economy with belief dispersion, the equilibrium stock price is given by

St = Ste
mt(T−t)− 1

2γ
(2γ−1)v2t (T−t)2 , (14)

where the average bias mt and dispersion vt in beliefs are as in Proposition 1, and the equilibrium

stock price in the benchmark economy with no belief dispersion is given by St = Dte
(µ−γσ2)(T−t).

Consequently, in the presence of belief dispersion,

i) The stock price is convex in cash-flow news Dt.

ii) The stock price is increasing in belief dispersion vt when mt > m̃+(1/2γ) (2γ − 1) v2
t (T − t),

and is decreasing otherwise.

iii) The stock price is decreasing in investors’ risk aversion γ, as in the benchmark economy

for relatively good cash-flow news. However, the stock price is increasing in investors’ risk

aversion for relatively bad cash-flow news and low levels of risk aversion.

The stock price in the benchmark economy is driven by cash-flow news Dt, whereby good

news (higher Dt) leads to a higher stock price since investors increase their expectations of the

stock payoff DT . The equilibrium stock price in the presence of belief dispersion has a simple

structure, and is additionally driven by the average bias mt and dispersion vt in beliefs. The

role of the average bias in beliefs is to increase the stock price further following good news, and

conversely decrease following bad news. This is because, as discussed in Section 3, following

good cash-flow news the view on the stock becomes relatively more optimistic which then leads

to a further increase in the expectation of the stock payoff, and consequently in the stock price,

and vice versa following bad news. Figure 2 plots the equilibrium stock price against cash-flow

news for different levels of belief dispersion, illustrating above points.
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Figure 2: Stock price convexity and effects of belief dispersion. This figure plots the equilib-

rium stock price St against cash-flow news for different levels of current belief dispersion vt. The dotted

line corresponds to the equilibrium stock price in the benchmark economy with no belief dispersion.

The baseline parameter values are as in Figure 1.

Figure 2 also illustrates the extra boost in the stock price due to increased optimism following

good news. The notable implication here is the convex stock price-news relation as opposed to

the linear one in the benchmark economy (Property (i)). The convexity implies that the increase

in the stock price following good news is more than the decrease following bad news (all else

fixed), which is also supported empirically (Basu (1997), Xu (2007)). It also implies that the

stock price is more sensitive to news (good or bad) in relatively good states. Conrad, Cornell,

and Landsman (2002) document that bad news decreases the stock price more in good states

which is also in line with our finding. As mentioned in the Introduction, a similar convexity

property is obtained by Veronesi (1999), but due to parameter uncertainty in a model with

homogeneous agents.

Turning to the role of belief dispersion vt, we see that its influence on the stock price (14)

enters via two channels: directly (v2
t term) and indirectly (via average bias in beliefs mt).

The direct effect always decreases the stock price for plausible levels of risk aversion (γ > 1/2)

since dispersion represents the riskiness of the average bias (as discussed in Section 3). The

indirect effect, due to dispersion amplifying the average bias (Section 3), increases the stock

price further following relatively good news and decreases it further following relatively bad

news. Since both effects have a negative impact following bad news, the stock price always

decreases in relatively bad states due to dispersion. On the other hand, for sufficiently good

cash-flow news, the indirect effect of dispersion dominates and the stock price increases. These

are also illustrated in Figure 2.
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Figure 3: Effects of risk aversion on stock price. These figures plot the equilibrium stock price

St against relative risk aversion coefficient γ for different levels of standard deviation of investor types

ṽ. The dotted lines correspond to the equilibrium stock price in the benchmark economy with no

belief dispersion. The cash-flow news is relatively bad Dt = 1.22 in panel (a) and good Dt = 2.50 in

panel (b). The baseline parameter values are as in Figure 1.10

Consequently, a notable implication here is that the stock price increases in belief dispersion

when the view on the stock is relatively optimistic, and decreases otherwise (Property (ii)). A

higher belief dispersion leading to a higher stock price is often found to be somewhat surprising

since, instead of requiring a premium for the extra uncertainty due to belief dispersion, investors

appear to pay a premium for it. Our model reconciles with this seemingly counterintuitive

finding by demonstrating that a higher dispersion may lead to a higher stock price when the

stock price is driven by sufficiently optimistic beliefs. This is supported by evidence in Yu

(2011). Yu provides evidence that a higher belief dispersion increases growth stock (low book-

to-market) prices more than value stock prices, and associates growth stocks with optimism

motivated by the findings of Lakonishok, Shleifer, and Vishny (1994), La Porta (1996). He also

finds weak evidence that value stock prices in fact decrease under higher dispersion.

Figure 3 presents the effects of risk aversion on the equilibrium stock price and highlights

that in the presence of belief dispersion the stock price may actually increase in investors’ risk

aversion γ (Property (iii)). In the benchmark economy, the stock price always decreases in

investors’ risk aversion. This is intuitive since in a more risk averse economy, investors demand

10We note that unlike earlier Figures, these plots are not for different levels of current belief dispersion vt but
for different levels of standard deviation of investor types ṽ, since vt depends on γ and therefore cannot be fixed
across different levels of relative risk aversion.
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a higher return to hold the risky stock and so push down its price. In the presence of belief

dispersion, risk aversion has an additional stochastic impact on the stock price through the

average bias in beliefs. As discussed in Section 3, a higher risk aversion makes the average

bias less sensitive to news since it reduces the magnitude of wealth transfers among investors.

Therefore, the same level of bad news generates less pessimism, which leads to a relatively

higher stock price in a more risk averse economy. For a range of low risk aversion values this

additional impact overrides the benchmark behavior resulting with the stock price actually

being increasing in investors’ risk aversion. On the other hand, for relatively good news, both

the increased risk aversion and the accompanying reduced optimism induce investors to demand

a higher return, which leads to the stock price being monotonically decreasing in investors’ risk

aversion as in the benchmark economy.

4.2 Equilibrium Mean Return

In our economy, the mean return perceived by each θ-type investor, µS (θ), is different than the

(observed) true mean return, µS, with the relation between them being given by (4). To make

our results comparable to empirical studies, in this Section we present our results in terms of

the true mean return (as observed in the data), henceforth, simply referred to as the mean

return. Proposition 3 reports the equilibrium mean return and its properties.

Proposition 3. In the economy with belief dispersion, the equilibrium mean return is given by

µSt = µSt
v4
t

v4
T

−mt
v2
t

v2
T

, (15)

where the average bias mt and dispersion vt in beliefs are as in Proposition 1, and the equilibrium

mean return in the benchmark economy with no belief dispersion is given by µSt = γσ2.

Consequently, in the presence of belief dispersion,

i) The mean return is decreasing in belief dispersion vt when mt > v2
t (m̃+ 2v2

t (T − t))
× (2v2

t − v2
T )−1, and is increasing otherwise.

ii) The mean return is increasing in investors’ risk aversion γ, as in the benchmark economy

for relatively good cash-flow news. However, the mean return is decreasing in investors’

risk aversion for relatively bad cash-flow news and low levels of risk aversion.

The presence of belief dispersion makes the equilibrium mean return stochastic (a constant

in benchmark economy) and strictly decreasing in the average bias in beliefs mt.
11 This is

11It may appear somewhat unusual to have the mean return expression (15) involve a term with the belief
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Figure 4: Effects of belief dispersion on mean return. This figure plots the equilibrium mean

return µSt against cash-flow news for different levels of current belief dispersion vt. The dotted line

corresponds to the equilibrium mean return in the benchmark economy with no belief dispersion. The

baseline parameter values are as in Figure 1.

because, the higher the average bias, the higher the stock price (Section 4.1), and therefore,

the stock receives more negative subsequent news on average when the view on it is relatively

optimistic, which in turn leads to a lower mean return.12

Figure 4 plots the equilibrium mean return against cash-flow news for different levels of

belief dispersion and illustrates that a higher belief dispersion vt leads to a lower mean return

when the view on the stock is sufficiently optimistic, and to a higher mean return otherwise

(Property (i)). The intuition for this is similar to that for the stock price: dispersion represents

additional risk for investors (Section 3), and therefore investors demand a higher return to

hold the stock when dispersion is higher. However, we know that dispersion also amplifies the

average bias in beliefs (Section 3), which in turn leads to a lower mean return when the view on

the stock is optimistic and to a higher mean return when pessimistic. When there is sufficiently

optimistic view on the stock, the latter effect dominates and produces the negative relation

between belief dispersion and mean return.

As discussed in the Introduction, the empirical evidence on the relation between belief

dispersion and mean return is vast and mixed, and existing theoretical works explain only one

dispersion raised to the fourth power. This occurs because the equilibrium mean return is equal to the market
price of risk times the stock volatility, as alternatively expressed in (A.34), and both these quantities involve
the squared dispersion term v2

t . A similar term also arises in our richer economy with Bayesian learning as (56)
illustrates.

12The stock receiving more negative subsequent news on average when the view on it is relatively optimistic
is due to the fact that the true data generating process, the cash-flow news, has constant parameters, which
imply that the consecutive ratios (Dt/Dt−h) and (Dt+h/Dt) are i.i.d. lognormal.
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side of this relation. Our model generates both the negative and positive effects and implies that

the documented negative relation must be due to the optimistic bias and it should be stronger,

the higher the optimism. Diether, Malloy, and Scherbina (2002) provide supporting evidence for

our implications by finding an optimistic bias in their study overall, and by also showing that

the negative effect of dispersion is indeed stronger for more optimistic stocks. Similar evidence

is also provided by Yu (2011) who documents that high dispersion stocks earn lower returns

than low dispersion ones and this effect is more pronounced for growth (low book-to-market)

stocks which tend to represent overly optimistic stocks (see, for example, Lakonishok, Shleifer,

and Vishny (1994), La Porta (1996) and Skinner and Sloan (2002)).

Property (ii) highlights an interesting feature that the equilibrium mean return may de-

crease in investors’ risk aversion for relatively bad news states over a range of risk aversion

values. Analogous to the intuition given for the stock price (Section 4.1), this result is again

due to bad news leading to less pessimism in more risk averse economies. We again note that

for relatively good news, the mean return monotonically increases in investors’ risk aversion as

in the benchmark economy. This is because both the increased risk aversion and the accompa-

nying reduced optimism induce investors to demand a higher return. A similar non-monotonic

relation between the mean return and risk aversion is demonstrated by David (2008). Our result

compliments David’s by providing the additional insight that the relation between the mean

return and risk aversion depends on the level of the optimism/pessimism on the stock, and is

non-monotonic only when the view is relatively pessimistic, but it is monotonic otherwise.

4.3 Stock Volatility and Trading Volume

In our economy, investors manifest their differing beliefs by taking diverse stock positions,

which in turn generate trade and wealth transfers among investors. As discussed in Section 3,

these wealth transfers make the average bias in beliefs stochastic, which then leads to extra

uncertainty for investors. In this Section, we demonstrate how this extra uncertainty and

investors’ trading motives give rise to higher stock volatility and trading volume.

Proposition 4. In the economy with belief dispersion, the equilibrium stock volatility is given

by

σSt = σSt +
v2
t

γσ
(T − t) , (16)

where the dispersion in beliefs vt is as in Proposition 1, and the equilibrium stock volatility in

the benchmark economy with no belief dispersion is given by σSt = σ.

Consequently, in the presence of belief dispersion, the stock volatility is increasing in belief
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Figure 5: Effects of belief dispersion on stock volatility. This figure plots the equilibrium stock

volatility σSt against current belief dispersion vt. The dotted line corresponds to the equilibrium stock

volatility in the benchmark economy with no belief dispersion. The baseline parameter values are as

in Figure 1.

dispersion vt.

The key implication of Proposition 4 is that the stock volatility increases monotonically in

belief dispersion vt.
13 This is because, the higher the dispersion, the average bias in beliefs

fluctuates more and hence so does the stock price (Section 4.1), and this additional fluctuation

in the stock price across news states increases the stock volatility. Figure 5 illustrates this

feature by plotting the equilibrium stock volatility against belief dispersion. This result is

also consistent with the empirical evidence (Ajinkya and Gift (1985), Anderson, Ghysels, and

Juergens (2005) and Banerjee (2011)).

We now explore the aggregate trading activity in our economy. Towards this, we first

express each θ-type investor’s portfolio holdings in terms of the number of shares held in the

stock, ψ (θ) = φ (θ)W (θ) /S, with dynamics dψt (θ) = µψt (θ) dt + σψt (θ) dωt, where µψ (θ)

and σψ (θ) are the drift and volatility of θ-type investor’s portfolio process ψ (θ), respectively.

Following recent works in continuous-time settings (e.g., Xiong and Yan (2010), Longstaff and

Wang (2012)), we consider a trading volume measure V that sums over the absolute value of

investors’ portfolio volatilities,

Vt ≡
1

2

ˆ
Θ

|σψt (θ)| dθ, (17)

13The stock volatility can also be written as σSt = σStv
2
t /v

2
T where the ratio v2

t /v
2
T > 1 for all t < T . As we

discuss in Section 1.1, several other theoretical works demonstrate that a higher investor belief heterogeneity
leads to a higher stock volatility. Our contribution here is to express the stock volatility and obtain this result in
terms of belief dispersion itself (rather than overall belief heterogeneity), which is not straightforward to obtain
in two-investor economies as we show in Section 5.

19



Belief dispersion
0 0.01 0.02 0.03 0.04 0.05

T
ra

di
ng

 v
ol

um
e 

m
ea

su
re

 

0

0.1

0.2

0.3

0.4
γ=2
γ=3

(a) Effects of belief dispersion

Stock volatility
0.08 0.1 0.12 0.14 0.16 0.18

Tr
ad

in
g 

vo
lu

m
e 

m
es

ur
e 

0

0.1

0.2

0.3

0.4
γ=2
γ=3

(b) Trading volume-stock volatility relation

Figure 6: Effects of belief dispersion on trading volume measure. These figures plot the

equilibrium trading volume measure Vt against current belief dispersion vt in panel (a) and against

stock volatility σSt in panel (b) for different relative risk aversion coefficients γ. The baseline parameter

values are as in Figure 1.

where the adjustment 1/2 is to prevent double summation of the shares traded across investors.14

Proposition 5 reports the equilibrium trading volume measure in closed form and its properties.

Proposition 5. In the economy with belief dispersion, the equilibrium trading volume measure

is given by

Vt=
σ

X2
t

v2
t

v2
T

[(
Xt

2
+

√
X2
t +4

2

)
φ

(
Xt

2
−
√
X2
t +4

2

)
−
(
Xt

2
−
√
X2
t +4

2

)
φ

(
Xt

2
+

√
X2
t +4

2

)]
, (18)

where the dispersion in beliefs vt is as in Proposition 1, and φ (.) is the probability density

function of the standard normal random variable, and X is a (positive) deterministic process

given by

X2
t = γ2σ

4

v4
T

[
1

γ
v2
t +

(
1− 1

γ

)
v2
T

]
.

Consequently, in the presence of belief dispersion, the trading volume measure is increasing in

belief dispersion vt and is positively related to the stock volatility σSt.

With belief dispersion, investors take diverse stock positions following cash-flow news, which

in turn generate non-trivial trading activity. Naturally, the aggregate trading activity in the

14As is well recognized, employing the standard definition of trading volume, 1
2

´
Θ
|dψt (θ)| dθ in a continuous-

time setting is problematic since the local variation of the driving uncertainty, Brownian motion ω, and hence an
investor’s portfolio, is unbounded. The measure V defined in (17) does not suffer from this issue and indicates
the unexpected trading volume by not taking into account of expected changes in investors’ portfolio processes.
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stock, which is captured by our trading volume measure V, increases as the belief dispersion

increases. This is because, when dispersion is higher, investors with relatively different beliefs

have more weight and higher trading demand, which increase the stock trading volume. Figure

6a illustrates this feature by depicting the equilibrium trading volume measure against belief

dispersion. This result is well-supported by empirical evidence (Ajinkya, Atiase, and Gift

(1991), Bessembinder, Chan, and Seguin (1996) and Goetzmann and Massa (2005)). Figure

6b plots the equilibrium trading volume measure against stock volatility and illustrates the

positive relation between these two economic quantities. This positive relation is intuitive since

a higher dispersion leads to both a higher stock volatility and a higher trading volume measure.

This result is also supported by empirical evidence; for example, Gallant, Rossi, and Tauchen

(1992) document a positive correlation between the conditional stock volatility and trading

volume, and more recently, Banerjee (2011) shows that stocks in high trading volume quintiles

tend to have higher return variances.

5 Comparisons with Two-Investor Economy

So far, we have investigated an economy with a continuum of investors having heterogeneous

beliefs. In this Section, we consider the more familiar, otherwise identical, two-investor economy

with heterogeneous beliefs. We solve for the equilibrium stock price, its dynamics and trading

volume and demonstrate that most of our earlier results do not necessarily obtain in this

more familiar setting. In this regard, we first show that in the two-investor economy it does

not appear to be possible to neither write the average bias in terms of belief dispersion nor

express the equilibrium quantities in terms of these two quantities as we do in Sections 3 and 4,

respectively. We also show that, in contrast to our main model’s implications, the stock price is

no longer convex in cash-flow news across all states of the world, and a higher belief dispersion

has ambiguous effects on the stock volatility and trading volume.

Now we consider a variant of our economy in Section 2 in which there are two investors

instead of a continuum of them. The other features remain the same. In particular, the

securities market is as in Section 2.1 and the investors’ beliefs are as in Section 2.2. That

is, under the θn-type investor’s beliefs, n = 1, 2, the cash-flow news process has dynamics

dDt = (µ+ θn)Dtdt+σDtdωnt, where ωn is her perceived Brownian motion with respect to her

own probability measure Pθn , and is given by ωnt = ωt − θnt/σ. We again index each θn-type

investor by her bias θn, with the type space now becoming Θ = {θ1, θ2} rather than Θ = R

as in our main model. Without loss of generality we assume θ1 < θ2, hence we interpret the
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first investor as the relatively pessimistic investor with a bias θ1, and the second investor as the

relatively optimistic investor with a bias θ2. We assume that investors are initially endowed

with equal shares of the stock, ψ10 = ψ20 = 0.5. Investors’ preferences are as in Section 2.3,

however for tractability we take the investors’ relative risk aversion coefficient γ to be a positive

integer, as is usually assumed in this literature (e.g., Yan (2008), Dumas, Kurshev, and Uppal

(2009), Dumas, Lewis, and Osambela (2016)).

We again proceed by first constructing the average bias and dispersion in beliefs following

Definition 1 in our main model.15 That is, the time-t average bias in beliefs, mt, is the implied

bias of the corresponding representative investor, expressed as the weighted average of the

individual investors’ biases

mt =
2∑

n=1

θnhnt, (19)

with the weights hnt > 0 satisfying
∑2

n=1 hnt = 1, and the dispersion in beliefs, vt, is the

standard deviation of investors’ biases

v2
t ≡

2∑
n=1

(θn −mt)
2 hnt. (20)

We then determine the ensuing equilibrium weights, average bias and belief dispersion, and

solve for the equilibrium stock price, its dynamics and the trading volume measure in this

economy. Proposition 6 reports these quantities.16 Kogan, Ross, Wang, and Westerfield (2006)

study the stock price and dynamics in a similar setting with a focus on the long-run survival

and price impact of investors with biases. Our analysis here complements theirs by providing

closed-form expressions for the stock price, its dynamics and the trading volume measure.

Proposition 6. In the two-investor economy with heterogeneous beliefs, the time-t average bias

and investors’ corresponding equilibrium weights are given by

mt =

γ∑
k=0

Gt,ke
γσ( kγ

θ1
σ

+ γ−k
γ

θ2
σ )(T−t)∑γ

j=0Gt,je
γσ( jγ

θ1
σ

+ γ−j
γ

θ2
σ )(T−t)

(
k

γ
θ1 +

γ − k
γ

θ2

)
, (21)

h1t =

γ∑
k=0

Gt,ke
γσ( kγ

θ1
σ

+ γ−k
γ

θ2
σ )(T−t)∑γ

j=0Gt,je
γσ( jγ

θ1
σ

+ γ−j
γ

θ2
σ )(T−t)

k

γ
, h2t = 1− h1t, (22)

15Other, alternative dispersion measures employed in the literature for two-investor economies include the
simple difference in (possibly stochastic) biases (θ2 − θ1) (e.g., Basak (2005), Dumas, Kurshev, and Uppal
(2009), Xiong and Yan (2010)) and the relative likelihood ratio process (η2t/η1t) (e.g., David (2008), Bhamra
and Uppal (2014)). However, both of these measures capture the overall effects of belief heterogeneity rather
than decomposing its effects due to average bias and dispersion in beliefs, as we do. Moreover, these measures
are hard to generalize when there are more than two investors in the economy.

16For clarity, throughout this section, we use the same notation for equilibrium quantities as in our main
model.
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and the dispersion in beliefs by (20) with (21)–(22) substituted in, where Gt,k is as in (27). The

equilibrium stock price, mean return and volatility are given by

St = e(µ−γσ
2)(T−t)Dt

γ∑
k=0

gt,ke
σ( kγ

θ1
σ

+ γ−k
γ

θ2
σ )(T−t), (23)

µSt =

[
γσ−

γ∑
k=0

gt,k

(
k

γ

θ1

σ
+
γ−k
γ

θ2

σ

)][
σ+

γ∑
k=0

pt,k

(
k

γ

θ1

σ
+
γ−k
γ

θ2

σ

)
−

γ∑
k=0

gt,k

(
k

γ

θ1

σ
+
γ−k
γ

θ2

σ

)]
, (24)

σSt =σ +

γ∑
k=0

pt,k

(
k

γ

θ1

σ
+
γ − k
γ

θ2

σ

)
−

γ∑
k=0

gt,k

(
k

γ

θ1

σ
+
γ − k
γ

θ2

σ

)
, (25)

where

gt,k =
Gt,k∑γ
j=0Gt,j

, pt,k =
Gt,ke

σ( kγ
θ1
σ

+ γ−k
γ

θ2
σ )(T−t)∑γ

j=0Gt,je
σ( jγ

θ1
σ

+ γ−j
γ

θ2
σ )(T−t)

, (26)

Gt,k = γ!
k! (γ−k)!

η
k
γ

1tη
γ−k
γ

2t e(γ−1)σ( kγ
θ1
σ

+ γ−k
γ

θ2
σ )Te

− 1
2

[
k
γ

θ21
σ2

+ γ−k
γ

θ22
σ2

+2γσ( kγ
θ1
σ

+ γ−k
γ

θ2
σ )−( kγ

θ1
σ

+ γ−k
γ

θ2
σ )

2
]
(T−t)

, (27)

η1t = e
θ1
σ
ωt− 1

2

θ21
σ2
t, η2t = e

θ2
σ
ωt− 1

2

θ22
σ2
t. (28)

The equilibrium trading volume measure is given by

Vt =
1

2

2∑
n=1

Wnt

St

∣∣φntσWn/St + σφnt
∣∣ , (29)

where the investors’ wealth-share Wn/S, the portfolio strategies φn, as well as their correspond-

ing diffusion terms, σWn/S, and σφn, are provided in the Internet Appendix IA, for n = 1, 2.

Proposition 6 reveals that in the two-investor economy, the average bias in beliefs and belief

dispersion have more complex structures as compared to their counterparts (10) in our main

model.17 In particular, it does not appear to be possible to write the average bias in terms of

dispersion and obtain its amplification effect as we do in Proposition 1. Moreover, in this setting

17One apparent difference in the expressions of Proposition 6 from the corresponding ones in our main model
of Propositions 1–5 is that the two-investor economy quantities are driven by the stochastic likelihood ratios
η1t and η2t (through (27)), capturing belief heterogeneity. In our main model, investors’ likelihood ratios do
not appear in equilibrium quantities because summing (integrating) across all the investors in the equilibrium
market clearing condition yields a compact exponential function that embeds investors’ likelihood ratios. As we
demonstrate in the proof of Proposition 1 in the Appendix, this compact function is related to the average bias
and dispersion and allows us to express the equilibrium quantities in terms of these moments. Furthermore, in
this two-investor economy as well as in our main model, the likelihood ratio processes η turns out to be path-
independent primarily because of the cash-flow news process (2) having constant coefficients in its dynamics
which in turn leads to path-independent stock price and dynamics. This is in contrast to a setting with more
complex cash-flow news process dynamics which may lead to path-dependent likelihood ratio processes (e.g.,
Basak (2000)), and hence path-dependent stock price and dynamics.
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the distribution of investors’ equilibrium weights, hnt, do not have the convenient Gaussian form

as in our main model. Therefore, we cannot characterize the investor belief heterogeneity, and

consequently express the equilibrium quantities, in terms of the first two central moments, the

average bias and dispersion in beliefs. Instead, the expressions for the equilibrium stock price

and its dynamics are now more involved and are in terms of various weighted-average quantities,

gt,k and pt,k, which are not straightforward to interpret economically. This is in contrast to our

main model presented in Section 4, where the corresponding equilibrium quantities are in terms

of easily interpretable moments, the average bias and dispersion in beliefs, which also enable us

to isolate the effects of dispersion and conduct comparative statics with respect to dispersion

only.

We now look at the effects of belief dispersion in the two-investor economy. To illustrate

these, Figure 7 plots the equilibrium quantities against cash-flow news in this economy with

one investor optimistic and the other pessimistic, as well as presenting the corresponding plots

for single-investor economies. Figure 7a reveals that the stock price is no longer convex in

cash-flow news across all states as opposed to that in our model (discussed in Section 4.1).

Likewise, Figure 7b illustrates that the mean return does not always decrease in cash-flow

news, but in fact may even increase in moderate states. These different implications in the two-

investor economy occur because belief heterogeneity effectively vanishes in relatively extreme

states (as also elaborated on in Remark 2 below). The pessimistic (optimistic) investor controls

almost all the wealth in the economy in very bad (good) news states, leading to equilibrium

behavior similar to that in single pessimistic (optimistic) investor economies in those states. The

transition from the moderate states in which belief heterogeneity is still prevalent to relatively

extreme states leads to the irregular behavior in the plots. In contrast in our main model

with a continuum of investors having all possible beliefs, investor heterogeneity does not vary

across states of the world (since belief dispersion vt is deterministic) and does not vanish in

relatively extreme states, leading to simple uniform economic behavior. For example, following

very good news, a relatively pessimistic investor would lose much wealth both in our model

and in the two-investor economy. However, since there are numerous optimistic investors in our

main model, the wealth transfer does not accumulate to one type of optimistic investor and

make her dominate the economy, but rather shared among relatively optimistic investors.

The belief heterogeneity effectively vanishing in relatively extreme states also leads to

nonuniform behavior for the stock volatility and trading volume in the two-investor economy.

In particular, Figure 7c reveals that a higher belief dispersion increases the stock volatility only
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Figure 7: Effects of belief dispersion in the two-investor economy. These figures plot the

equilibrium stock price St in panel (a), the mean return µSt in panel (b), the stock volatility in panel

(c), and the trading volume measure in panel (d) against cash-flow news in an otherwise identical two-

investor economy with an optimistic and a pessimistic investor. The dotted black lines in panels (a)

and (b) correspond to the stock price Spt and mean return µpSt in an economy with a single pessimistic

investor with a bias in beliefs −3.39%. The dashed black lines in panels (a) and (b) correspond to

the stock price Sot and mean return µoSt in an economy with a single optimistic investor with a bias

in beliefs 3.39%. The dotted black lines in panels (c) and (d) correspond to the stock volatility and

trading volume measure in an economy with a single investor. The dashed green lines in panels (c) and

(d) correspond to the stock volatility and trading volume measure in an economy with a one standard

deviation higher belief dispersion than the average. The other applicable parameter values are as in

Figure 1.
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for moderate news states in which neither investor dominates the economy. However, for rela-

tively extreme states the stock volatility actually decreases with higher belief dispersion, as the

effective investor heterogeneity vanishes and the single-investor benchmark economy prevails.

Similarly, Figure 7d reveals that the trading volume measure may actually decrease with higher

belief dispersion in the two-investor economy, in contrast to our uniformly increasing trading

volume belief dispersion result.

In sum, by keeping investor heterogeneity the same across states, our main model is able

to generate intuitive, simple and uniform results, which are not immediately possible in the

two-investor economy, as Figure 7 illustrates. We note that the discussion above is not specific

to a two-investor economy, i.e., Θ = {θ1, θ2}. Our conclusions would be equally valid in a

more general model with finitely-many-investors, i.e., Θ = {θ1, . . . , θN} where N can be a large

number. In this more general model, the belief heterogeneity would again vanish in relatively

extremely states because now the most pessimistic (most optimistic) investor would eventually

control almost all the wealth in the economy in very bad (good) news states. This would again

lead to equilibrium behavior similar to that in single-investor economies in the extreme states,

implying the irregular behavior depicted in the plots.

Remark 2 (Survival across states and over time). As the above discussion highlights, in

the two-investor economy only one type of investor survives in extreme states of the world where

survival is defined as an investor’s wealth ratio (e.g., W1t/W2t) not vanishing in the limit, or

equivalently in our analysis an investor’s equilibrium weight (e.g., h1t) not vanishing. Formally,

as shown in the proof of Proposition 6 in Internet Appendix IA, we obtain the following limiting

behavior of equilibrium weights hnt in (22) and belief dispersion vt:

as Dt → 0 h1t → 1, vt → 0, (30)

as Dt →∞ h1t → 0, vt → 0. (31)

The two-investor economy collapses to a single-investor economy in the limit of extreme states

(Dt → 0 or Dt → ∞) as the belief dispersion vanishes. This is in sharp contrast to our main

model with a continuum of investors for which belief dispersion never vanishes

as Dt → 0 or Dt →∞ vt = vσ(σ2 + v2t/γ)−1/2 > 0, (32)

because belief dispersion in (10) does not depend on the cash-flow news Dt – this is also

illustrated in Figure 1 depicting that changes in Dt only shifts the equilibrium weight schedule

ht (θ) without scaling it.
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Even though our main model and the two-investor economy yield different implications for

survival across states, they imply the same behavior for survival over time. In particular, both

models imply that in the long run as T →∞, only the investor with a bias closest to (γ − 1)σ2

survives, a finding consistent with earlier works in similar settings (e.g., Kogan, Ross, Wang,

and Westerfield (2006), Cvitanić and Malamud (2011)). In particular, in our two-investor

economy we obtain (Internet Appendix IA)

as T →∞

h1T → 1, vT → 0 if θ1+θ2
2

> (γ − 1)σ2,

h1T → 0, vT → 0 if θ1+θ2
2

< (γ − 1)σ2.
(33)

Only in the knife-edge case when both investors’ biases are equally distanced from (γ − 1)σ2

both investors survive, that is when (θ1 + θ2) /2 = (γ − 1)σ2, as also demonstrated by Kogan,

Ross, Wang, and Westerfield (2006). In our main model with a continuum of investors with

all possible beliefs this knife-edge case does not arise since an investor with a bias of (γ − 1)σ2

always exists and becomes the only surviving investor in the long-run, implying

as T →∞ vT → 0. (34)

It is also important to note that even though investor heterogeneity disappears in the long-

run, it may take a very long time to do so. For example, in our main model using the belief

dispersion equation in (10), it can be shown that the half-life of dispersion at time t is 3γσ2/v2
t .

Using the parameter values as in Figure 1, this half-life expression would indicate that it takes

837.5 years for a belief dispersion of 3.20% to decrease to 0.40% (halving 3 times) and it takes

another 2552.3 years from 0.40% to halve and become 0.20%, consistent with Yan (2008).

6 Multiple Stocks Economy and Empirical Evidence

Our results so far have been presented in the context of a single-stock economy to highlight

our insights as clearly as possible. In this Section, we generalize our baseline setting to feature

multiple stocks, on which investors have dispersed beliefs. The purpose of this generalization

is twofold. The first is to demonstrate that all our main results and underlying economic

mechanisms still go through in this more elaborate economy. The second is to establish a tighter

link between our model’s quantitative implications and the documented empirical evidence,

which are primarily based on cross-sectional studies. Towards that, we calibrate our model and

demonstrate that the effects of belief dispersion in our model are economically significant and

the magnitudes of those effects support the documented empirical evidence.

27



6.1 Economy with Multiple Stocks

The multi-stock economy we consider here is the simplest and the most straightforward exten-

sion of our single-stock setting of Section 2, also admitting much tractability.18 In this setting,

there are instead N risky stocks and N sources of risk, generated by a standard N -dimensional

Brownian motion ω = (ω1, . . . , ωN−1, ω)ᵀ defined on the true probability measure P. Each stock

price Sn, n = 1, . . . , N , is posited to have dynamics dSnt = Snt [µSntdt+ σSntdωt] , where the

stock mean return µSn and the N -dimensional stock volatility vector σSn are to be determined

in equilibrium. The stocks are in positive net supply of one unit and are claims to the payoffs

DnT , paid at some horizon T . For n = 1, . . . , N − 1, these payoffs DnT are the horizon value of

the cash-flow news processes with dynamics

dDnt = Dnt [µndt+ σndωnt + σdωt] , (35)

where µn, σn, σ are constants, and represent the true mean growth rate of the expected payoff

and the uncertainty about the payoff due to ωn, ω, respectively. To maintain tractability, the

cash-flow news for the last (residual) stock N is chosen so that the aggregate cash-flow news

D =
∑N

n=1 Dn has the dynamics (2) as in our single-stock setting.19

There is a continuum of investors who commonly observe all cash-flow news processes Dn

(35), but have different beliefs about the dynamics of the first I < N of them. We refer

to the first I stocks as dispersed stocks, and the ones that investors agree on as the non-

dispersed stocks. The investors are again indexed by their type θ, where a θ-type investor

is now associated with an I-dimensional bias vector θ = (θ1, . . . , θI)
ᵀ with its ith element

representing the investor’s bias on the mean growth rate of stock i expected payoff. Hence,

under the θ-type investor’s beliefs, the cash-flow news processes have dynamics

dDit = Dit [(µi + θi) dt+ σidωit (θ) + σdωt] , for i = 1, . . . , I, (36)

dDnt = Dnt [µndt+ σndωnt + σdωt] , for n = I + 1, . . . , N − 1, (37)

18Solving multi-stock pure-exchange economies is typically a daunting task, but there has been some re-
cent successes in the literature (e.g., Cochrane, Longstaff, and Santa-Clara (2007), Martin (2013), Chabakauri
(2013)). Introducing belief dispersion on individual stock payoffs in these settings would add even more com-
plexity. One recent work accomplishing tractability in a related two-country international finance setting is
Dumas, Lewis, and Osambela (2016).

19In this setting, we focus on the price and dynamics of the first N − 1 stocks, which includes all I dispersed
stocks, and not the N th stock whose payoff has been left unspecified and theoretically can be negative. Modeling
individual and aggregate cash-flow news as geometric Brownian motions is somewhat in the spirit of Brennan
and Xia (2001). To prevent the N th stock payoff potentially taking on negative values, one could consider a
setup with cash-flow news processes having stochastic volatilities as in Menzly, Santos, and Veronesi (2004),
Longstaff and Piazzesi (2004), but this would much complicate our analysis and is beyond the scope of our goal
in this section.

28



where ωi (θ), i = 1, . . . , I, are her perceived Brownian motions with respect to her own proba-

bility measure Pθ, and is given by ωit (θ) = ωit − θit/σi.20

The investor type space, denoted by Θ, is taken to be the whole I-dimensional Euclidean

space RI to incorporate all possible beliefs on the dispersed stocks. Accordingly, we now assume

a multivariate Gaussian distribution with an I-dimensional mean vector m̃ = (m̃1, . . . , m̃I)
ᵀ and

a diagonal variance matrix ṽ2 = diag (ṽ2
1, . . . , ṽ

2
I ) whose main diagonal entries starting in the

upper left corner are ṽ2
1, . . . , ṽ

2
I and the entries outside the main diagonal are all zero, for the

relative frequency of investors over the type space Θ.21 As before, we assume that all investors

are initially equally endowed in all the stocks, implying that the initial total wealth of the group

of investors having the bias vector θ, denoted as the distinct θ-type investor, as

W0 (θ) = W0 (θ1, . . . , θI) = S0

I∏
i=1

1√
2πṽ2

i

e
− 1

2

(θi−m̃i)
2

ṽ2
i ,

where S0 is the (endogenous) initial aggregate stock price S0 =
∑N

n=1 Sn0. In this setting, each

distinct θ-type investor chooses an admissible N -dimensional portfolio strategy (investment in

each stock) so as to maximize her CRRA preferences over the horizon value of her portfolio

WT (θ) as in (6) subject to the corresponding budget constraint.

We proceed by first constructing the average bias and dispersion in beliefs for dispersed

stocks following Definition 1 in our main model. The time-t average bias in beliefs, mit, on

stock i = 1, . . . , I is the implied bias of the corresponding representative investor, expressed as

the weighted average of the individual investors’ biases

mit =

ˆ
Θ

θiht (θ) dθ, (38)

where the weights ht (θ) > 0 are such that
´

Θ
ht (θ) dθ = 1, while the dispersion in beliefs, vit,

is the standard deviation of investors’ biases

v2
it ≡
ˆ

Θ

(θi −mit)
2ht (θ) dθ. (39)

Proposition 7 reports the average bias and dispersion in beliefs, along with the corresponding

equilibrium stock prices, mean returns and volatilities in this economy in closed form.

Proposition 7. The time-t average bias mit and dispersion vit in beliefs of dispersed stock

20The dynamics of the N th stock could be derived from (36)–(37) and (2) using the identity Dt =
∑N
n=1Dnt.

21This simplifying assumption is the most straightforward natural extension of our main model and ensures
that the investor population again has a finite (unit) measure. While admitting much tractability, it however
rules out potential correlations across biases on individual stocks.
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i = 1, . . . , I, are given by

mit = mi +
(

lnN + ln
Dit

Dt

−
(
mi + µi − µ−

1

2
σ2
i

)
t
)1

γ

v2
it

σ2
i

, v2
it =

v2
i σ

2
i

σ2
i + 1

γ
v2
i t
, (40)

where their initial values mi and vi are related to the mean m̃i and standard deviation ṽi of

investor types as

mi = m̃i +
(

1− 1

γ

)
v2
i T, v2

i =
(γ

2
ṽ2
i −

γ2

2T
σ2
i

)
+

√(γ
2
ṽ2
i −

γ2

2T
σ2
i

)2

+
γ2

T
ṽ2
i σ

2
i . (41)

Moreover, the equilibrium stock price, mean return and volatility of dispersed stock i = 1, . . . , I,

are given by

Sit = Site
mit(T−t)− 1

2γ
(2γ−1)v2it(T−t)

2+v2it(T−t)
2

, (42)

µSit = µSit −mit
v2
it

v2
iT

, σSit =

√
σ2
Sit

+ σ2
i

((
1 +

v2
it

γσ2
i

(T − t)
)2

− 1
)
, (43)

while the corresponding quantities for non-dispersed stocks n = I + 1, . . . , N − 1, are given by

Snt = Dnte
(µn−γσ2)(T−t), µSnt = γσ2, σSnt =

√
σ2 + σ2

n, (44)

where the equilibrium stock price, mean return and volatility in the benchmark economy with no

belief dispersion are given by

Sit = Dite
(µi−γσ2)(T−t), µSit = γσ2, σSit =

√
σ2 + σ2

i . (45)

Consequently, in the presence of belief dispersion, for a dispersed stock i = 1, . . . , I,

i) A higher belief dispersion vit leads to a higher average bias mit for relatively good cash-flow

news Dit > (Dt/N) exp(mi + µi − µ− 1
2
σ2
i )t, and to a lower average bias otherwise.

ii) The stock price is convex in its cash-flow news Dit.

iii) The stock price is increasing in belief dispersion vit when mit > m̃i − (1/2γ) v2
it (T − t),

and is decreasing otherwise.

iv) The mean return is decreasing in belief dispersion vit when mit > v2
itm̃i (2v

2
it − v2

iT )
−1
, and

is increasing otherwise.

v) The stock volatility is increasing in belief dispersion vit.

The average bias and dispersion in beliefs (40) for dispersed stocks are multivariate versions

of the single-stock case, but now adjusted to incorporate individual stock-specific quantities, µi,

σi, m̃i, ṽi. The fluctuations in the average bias are due to the (relative) cash-flow news Dit/Dt,

which are driven only by the Brownian motion ωi that investors’ beliefs differ on. Consequently,
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the underlying economic mechanisms revealed in Section 3 for our main model are also present

in this setting with multiple stocks. In particular, for an individual dispersed stock, the belief

dispersion amplifies its average bias and the effective investor belief heterogeneity on it does

not vanish in relatively extreme states. Similarly, the equilibrium stock price, mean return and

volatility (42)–(43) for dispersed stocks are multi-stock versions of the corresponding single-

stock economy quantities with similar structures, but now incorporating individual stock specific

average bias mi and belief dispersion vi.
22

Since the underlying economic mechanisms and the structures of the economic quantities in

this setting are as in our main model, all the implications for a dispersed stock’s average bias,

its price, mean return and volatility, are also as before, as highlighted in the properties (i)–(v)

of Proposition 7. One difference from the single-stock case is that we are unable to obtain the

equilibrium trading volume measure in this multiple stock setting. This is because there is

a convoluted interaction of investors’ views on dispersed stocks which prevents us identifying

investors’ portfolio reaction to changes in cash-flow news, which is required to compute the

trading volume. Nevertheless, to see whether or not our model supports the documented em-

pirical evidence on trading volume, in the subsequent analysis we use our single-stock economy

trading volume measure (18) of Section 4.

6.2 Economic Significance and Empirical Relevance of Our Results

Having solved the multi-stock model, we now undergo a calibration exercise so as to see whether

our results on the effects of belief dispersion are economically significant, whether they support

the documented empirical evidence. Our calibration is based on matching the model implied

belief dispersion moments to the corresponding summary statistics in Yu (2011), who reports

for a typical stock, a time-average dispersion value of 3.23%, a standard deviation of 0.38%,

minimum of 2.70% and maximum of 4.42% for the sample period of 1981-2005.23

We proceed to determine the parameter values as follows. We set the number of stocks in

22These is a slight difference in the exact appearance of the belief dispersion in these equilibrium expressions
as compared to the corresponding single-stock economy quantities. This is because in this setting investors
only disagree on the dynamics of some of the stocks and the average bias on each dispersed stock i is driven
only by the single Brownian motion ωi rather than all of them. Hence, the direct effect of belief dispersion,
which represents the riskiness of the average bias, is somewhat different in this model. However, these small
differences turn out to be economically immaterial for our implications of belief dispersion as the properties
(i)–(v) of Proposition 7 highlight.

23We use the summary statistics in Yu (2011) because the dispersion measure he constructs for the typical
stock is the value-weighted average of individual stock dispersion levels reported in the I/B/E/S summary
database, which in turn is constructed as the standard deviation of analyst forecasts about the long-term
earnings growth rates. This construction is closest to our dispersion measure as also discussed in footnote 5 in
Section 3.
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our model to be N = 5, two of which are dispersed stocks I = 2. We take stock 1 as the

typical stock with an average belief dispersion, and stock 2 as an otherwise identical stock but

with a (one standard deviation) higher dispersion. To obtain the standard deviation of investor

types for stock 1, ṽ1, we match stock 1’s model implied time-average and minimum dispersion

values to the corresponding reported ones for the typical stock, 3.23% and 2.70% respectively.24

Towards this, we begin by deriving stock 1’s time-average squared dispersion, denoted by v̇2
1,

in terms of its initial dispersion v1 and the quantity γσ2
1/T in closed-form as

v̇2
1 =

1

T

ˆ T

0

v2
1tdt =

1

T

ˆ T

0

v2
1σ

2
1

σ2
1 + 1

γ
v2

1t
dt =

γσ2
1

T
ln

(
1 +

v2
1

γσ2
1/T

)
, (46)

and match it to the reported squared average dispersion, v̇2
1 = (3.23%)2. We then rearrange

the dispersion equation in (40) to obtain an expression for the stock 1’s minimum dispersion

v1T , again in terms of v1 an γσ2
1/T as

1

v2
1T

=
1

v2
1

+
1

γσ2
1/T

. (47)

Matching v1T = 2.70% in (47) and substituting it into (46) and numerically solving the non-

linear equation with one unknown yields the relation γσ2
1/T = 0.00136285. Next, we set the

relative risk aversion coefficient of investors as γ = 2 and the horizon T = 10 years, and

substitute these into the previous relation to back out σ1 = 8.25%, which is assumed to be the

same for all stocks σn, n = 1, .., N − 1 and aggregate payoff σ.25 The standard deviation of

investor types for stock 1, ṽ1, is then obtained by first backing out the initial dispersion v1 from

(47) and then using the relation between v1 and ṽ1 (41), yielding ṽ1 = 3.39%. Similarly, the

standard deviation of investor types for stock 2, ṽ2, is obtained by matching its time-average

dispersion v̇2 (obtained similarly as in (46)) to one standard deviation higher than stock 1’s,

3.23% + 0.38% = 3.61%, and backing out its initial dispersion v2 as in the case for v1, and then

using the relation between v2 and ṽ2 (41), yielding ṽ2 = 3.94%.

The means of investor types for dispersed stocks, m̃1 and m̃2 are taken to be 0 to give equal

24For simplicity, we obtain the time-average dispersion by taking the square root of the time-average squared

dispersion, (1/T )
´ T

0
v2

1tdt rather than the time-average dispersion (1/T )
´ T

0
v1tdt, which differs from the former

due to Jensen’s inequality. However, the quantitative differences between these two measures are insignificant
in our calibration since the reported belief dispersion is only a few percentage points in the data. On the other
hand, using the minimum rather than the maximum dispersion value for calibration ensures that the dispersion
values in our model remain within the corresponding reported range in Yu (2011) which is not guaranteed for
the alternative choice of maximum dispersion.

25Other works in this literature use similar relative risk aversion coefficient values in their calibration, including
Buraschi, Trojani, and Vedolin (2013) (γ = 2), and Dumas, Kurshev, and Uppal (2009), Dumas, Lewis, and
Osambela (2016) (γ = 3). Our choice of the horizon value T = 10 is chosen so that we obtain plausible decay
rate for the belief dispersion in our model. As a robustness check, we also consider alternative risk aversion
coefficients γ = 1 and γ = 3 with respective horizons of T = 5 and T = 15 in the Internet Appendix IB and
show that our model yields similar quantitative results under these alternative parameter values.
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Name Symbol Value

Number of stocks N 5
Number of dispersed stocks I 2
Mean of investor types for stock 1 m̃1 0
Mean of investor types for stock 2 m̃2 0
Standard deviation of investor types for stock 1 ṽ1 3.39%
Standard deviation of investor types for stock 2 ṽ2 3.94%
Mean growth rate of the expected payoff of each stock n = 1, ..., N−1 µn 14.23%
Uncertainty about the payoff of each stock n = 1, ..., N−1 σn 8.25%
Mean growth rate of the expected aggregate payoff µ 14.23%
Uncertainty about the aggregate payoff σ 8.25%
Investors’ relative risk aversion coefficient γ 2
Horizon T 10
Representative time t 4.37

Table 1: Parameter values. This table reports the parameter values used in the baseline calibration

for our multiple-stock economy. The derivation of these values is presented in the text.

initial weights to optimistic and pessimistic views on them. We set the true mean growth rate of

the expected payoff of each stock as the reported average forecast of the long-term earnings-per-

share growth rate of 14.23% in Yu (2011), µ = µn = 14.23%, n = 1, .., N − 1.26 In addition to

the model parameters above, we also choose a representative time t < T to evaluate the effects

of belief dispersion in our model at an interim time as stated in Proposition 7. Towards that,

we choose the time t so that at that time the belief dispersion on the typical stock (stock 1) is

equal to its time-average value, v1t = v̇1 = 3.23%. Backing out t from the dispersion expression

in (40) yields t = 4.37, which is roughly the mid-point given the horizon value T = 10 in our

calibration. This procedure yields the parameter values in Table 1.

We now quantify the effects of belief dispersion using the expressions in Proposition 7 and

the parameter values in Table 1. Table 2 reports these effects at a representative time t for three

different news levels (Panel (a)) and when averaged over time for three different news quintiles

(Panel (b)) on a typical stock (stock 1) and a stock with 0.38% higher belief dispersion (stock

2). In Table 2a, average news is the true expected cash-flow news, and good (bad) news is

the news one standard deviation higher (lower) than the average one. Table 2a reveals that in

the presence of belief dispersion, good news leads to an optimism of 2.33% and bad news leads

26Even though the value for µ may appear large, our quantitative results do not vary much for smaller
alternative values for µ since our key quantities, the average bias and dispersion of beliefs are insensitive to it.
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to a pessimism of 1.55% for a typical stock. Importantly, the same good news leads to more

optimism (2.92%) and the same bad news leads to more pessimism (1.94%) for a stock with

0.38% higher dispersion. Table 2a also quantifies the stock price convexity. We see that good

news increases the typical stock price from its average news value by 37.06% (from S1t = 4.02

to 5.51), while (same size) bad news decreases its price by 33.46% (from S1t = 4.02 to 2.67),

less in absolute terms. We also see that, compared to the benchmark stock, good news leads to

a price increase of 14.80% (from Sit = 4.80 to 5.51) for a typical stock, and to a further increase

of 3.63% (from Sit = 5.51 to 5.71) for the higher dispersion stock. Conversely, compared to the

benchmark stock, good news leads to a decrease of 3.33% (from µSit = 1.36% to −1.97%) in

the mean return for a typical stock, and to a further decrease of 1.17% (from µSit = −1.97% to

−3.14%) for the higher dispersion stock. Finally, we see that the presence of belief dispersion

adds 2.74% (from σSit = 11.67% to 14.41%) to the volatility of a typical stock, and a further

0.69% (from σSit = 14.41% to 15.16%) to the higher dispersion stock.

To make our model implications comparable to those reported in the empirical literature,

we also look at the time-average effects of belief dispersion in our model. Towards this, we

simulate paths of and consider five cash-flow news quintiles from the highest, Q1, to the lowest,

Q5, to capture the differing effects of dispersion depending on the view on the stock, and

report three of them, Q1, Q3, Q5, in Table 2b.27 We see from Table 2b that the magnitudes

of the time-average effects of dispersion on the economic quantities are comparable to those

obtained in Panel (a) at a representative time t, and hence their discussion is omitted for brevity.

Differing from Panel (a), Table 2b also reports the effects of dispersion on the trading volume

measure using the single-stock economy quantity in (18). For this we focus on the amplification

effect of dispersion.28 We see that one standard deviation increase in belief dispersion of 0.38%

amplifies the typical stock’s trading volume by 19.02% (23.40%/19.66% = 1.1902). We note

that our quantitative results are robust to alternative values of important parameters used in

27More specifically, paralleling the portfolio sorts methodology commonly employed in empirical studies, we
first simulate 10, 000 paths of cash-flow news processes Di and D at a daily frequency for each stock i = 1, 2,
and construct five daily-rebalanced quintiles from the highest Di/D, Q1, to the lowest Di/D, Q5. The reported
average bias, stock price, and stock volatility for each quintile are the time-averages of the daily equally-weighed
quantities (40), (42), and (43), respectively. The reported mean returns for each quintile are the time-averages
of the daily equally-weighted simple holding returns. The reported trading volume measure corresponds to
our single-stock model in Section 4 and is the time-average of its daily value obtained using the closed-form
expression in (18).

28As we discuss in footnote 14, the trading volume measure we employ only indicates the unexpected trading
volume by not taking into account of expected changes in investors’ portfolio processes. Hence its level is hard
to interpret and highly sensitive to the parameter values as our quantification exercise reveals. However, the
amplification effect of dispersion (i.e., how much it changes in % terms from its average value for one standard
deviation change in the dispersion) is easier to interpret and turns out to be quite stable for alternative parameter
values as our quantification exercise indicates.
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Panel (a): Time-t effects of dispersion

Cash-flow news Benchmark stock Stock 1 Stock 2
No dispersion v1t = 3.23% v2t = 3.61%

Good news 0% 2.33% 2.92%
Average bias (mit) Avg. news 0% 0.64% 0.80%

Bad news 0% −1.55% −1.94%

Good news 4.80 5.51 5.71
Stock price (Sit) Avg. news 3.84 4.02 4.06

Bad news 2.89 2.67 2.62

Good news 1.36% −1.97% −3.14%
Mean return (µSit) Avg. news 1.36% 0.45% 0.13%

Bad news 1.36% 3.57% 4.34%

Stock volatility (σSit) Any news 11.67% 14.41% 15.16%

Panel (b): Time-average effects of dispersion

Cash-flow news Benchmark stock Stock 1 Stock 2
quintiles No dispersion v̇1 = 3.23% v̇2 = 3.61%

Q1 (High) 0% 2.24% 2.80%
Average bias (ṁi) Q3 0% 0.51% 0.66%

Q5 (Low) 0% −1.21% −1.49%

Q1 (High) 4.92 5.52 5.71

Stock price (Ṡi) Q3 3.81 3.96 4.01
Q5 (Low) 3.01 2.91 2.88

Q1 (High) 1.36% −1.78% −2.98%
Mean return (µ̇Si) Q3 1.36% 0.57% 0.23%

Q5 (Low) 1.36% 3.03% 3.54%

Stock volatility (σ̇Si) Any quintile 11.67% 14.49% 15.46%

Trading volume (V̇ ) Any quintile 0% 19.66% 23.40%
(single-stock)

Table 2: Quantitative effects of belief dispersion. Panel (a) reports the effects of belief dispersion

on the economic quantities of a typical stock (stock 1) and a stock with 0.38% higher dispersion (stock

2) at a representative time t for varying levels of cash-flow news. Average (Avg.) news is defined

as the true expected cash-flow news, and good (bad) news is the news one standard deviation higher

(lower) than the average one. Panel (b) reports the time-average of the effects of belief dispersion on

the economic quantities of a typical stock (stock 1) and a stock with 0.38% higher dispersion (stock

2) for varying cash-flow news quintiles. These quintiles are obtained by simulating paths of cash-flow

news processes for each stock i = 1, 2, and by constructing five daily-rebalanced quintiles from the

highest Q1, to the lowest, Q5. The effects of dispersion on the trading volume measure are based on

the single-stock economy quantity in (18). The benchmark stock with no belief dispersion values are

obtained by setting ṽ = 0% while keeping the remaining parameter values as in Table 1.
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the calibration as illustrated in Table 4 of the Internet Appendix IB (namely, γ = 1, γ = 3

with associated horizons T = 5, T = 15, respectively). Moreover, we have conducted a similar

calibration exercise for our baseline single-stock economy and have obtained similar magnitudes

for the effects of belief dispersion to those reported in Table 2.

Finally, we compare the magnitudes of the effects of belief dispersion in our model (presented

in Table 2) to those reported in the empirical literature, and present our findings in Table 3.

Even though we usually cite more than one empirical work for the support of our results in

earlier discussions, for clarity, we here pick one paper, which is typically the most recent one

among the ones we cite with the most comprehensive data set, or the one with the belief

dispersion proxy most comparable to ours. We necessarily make adjustments to the reported

values in the empirical works so that they are comparable to our results – we discuss how we

do this in Internet Appendix IB.3.

The empirical support for the stock price convexity comes from Xu (2007), whose results

indicate that one standard deviation of good news increases the typical stock price by 28.15%,

whereas the same size of bad news decreases it by 26.75%, less in absolute terms. Our corre-

sponding numbers in Table 2a for the typical stock (stock 1) are an increase of 37.06% (from

S1t = 4.02 to 5.51), and a decrease of 33.58% (from S1t = 4.02 to 2.67), respectively. For the

effects of belief dispersion on the stock price and mean return when the view is optimistic or

pessimistic, we compare our results to the findings of Yu (2011) for growth and value stocks,

which tend to represent optimistic and pessimistic stocks, respectively, as also discussed in

subsections 4.1–4.2. The corresponding optimistic and pessimistic stocks in our calibration are

represented by the cash-flow news quintiles Q1 and Q5, respectively, as their average bias levels

in Table 2b reveal. The results in Yu (2011) indicate that a one standard deviation increase in

dispersion increases the price of a (typical) growth stock by 6.35%, but decreases the price of

a (typical) value stock by 0.65%. The corresponding numbers in our calibration are modest,

and are an increase of 3.46% (from Ṡ1 = 5.52 to 5.71) for quintile Q1, and a decrease of 0.83%

(from Ṡ1 = 2.91 to 2.88) for quintile Q5.

For the mean return, we investigate the effects of belief dispersion relative to the stock

market mean return level, denoted by Mkt.Ret. in Table 3, which is 9.17% in Yu (2011) for his

sample, and is 1.36% in our calibration as well as for the benchmark stock with no dispersion.29

29It is well known that equilibrium models with standard CRRA preferences and fundamentals following
geometric Brownian motion processes, such as ours, do not deliver mean return levels for the stock market
as high as in the data for plausible parameter values. To obtain higher comparable mean return levels one
would typically need to employ more sophisticated/complex preferences or fundamental processes. However,
our primary goal here is not to argue that our model is able to generate comparable stock market mean return
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Effect of dispersion on: Evidence Model

Stock price convexity
Good news 28.15% 37.06%
Bad news −26.75% −33.58%

Xu (2007)

Stock price
Q1 (High) 6.35% 3.46%
Q5 (Low) −0.65% −0.83%

Yu (2011)

Mean return (normalized)
Q1 (High) −0.72× Mkt.Ret. −0.88× Mkt.Ret.

Q5 (Low) 0.20× Mkt.Ret. 0.38× Mkt.Ret.

Yu (2011)

Stock volatility amplification Any quintile 5.43% 6.70%
Banerjee (2011)

Trading volume amplification Any quintile 14.4%− 22.9% 19.02%
Goetzmann-Massa (2005) (single-stock)

Table 3: Effects of belief dispersion in our model versus empirical evidence. This table

presents the effects of belief dispersion on economic quantities in our model using the values and

quantity descriptions in Table 2 and the corresponding reported empirical evidence. Mkt.Ret. in this

table denotes the mean return for the stock market.

The reported numbers in Yu (2011) indicate that a one standard deviation increase in dispersion

leads to a decrease of 0.72 times the stock market mean return for growth stocks, but an increase

of 0.20 times the stock market mean return for value stocks. The corresponding numbers in ours

are a decrease of 0.88 times the stock market mean return (from µ̇S1 = −1.78% to −2.98% with

stock market mean return 1.36%) for quintile Q1, and an increase of 0.38 times the stock market

mean return (from µ̇S1 = 3.03% to 3.54% with stock market mean return 1.36%) for quintile Q5.

Banerjee (2011) provides empirical evidence on the effects of belief dispersion on stock return

volatility, indicating that a one standard deviation increase in dispersion amplifies the stock

volatility by 5.43%; in our model the amplification magnitude is 6.70% (from σ̇S1 = 14.49%

to 15.46%). Table 3 also looks at whether our trading volume result obtained in the single-

stock case is comparable to the documented empirical evidence. Goetzmann and Massa (2005)

documents that a one standard deviation increase in dispersion raises a typical stock’s trading

volume by 0.7 or 1.1 standard deviation (of trading volume) depending on the dispersion proxy.

Using the summary statistics in Chordia, Roll, and Subrahmanyam (2011) for the comparable

levels but to demonstrate that the marginal effects of belief dispersion is comparable to the documented evidence
relative to the stock market mean return.
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period, our calculations show that these numbers imply a trading volume amplification of

14.4%–22.9%, whereas in our model the amplification magnitude is 19.02% (from V̇ = 19.66%

to 23.40%). In sum, Table 3 illustrates that the magnitudes of the effects of belief dispersion

in our model support the documented empirical evidence on a stock price, its mean return,

volatility, and trading volume.

7 Economy with Bayesian Learning

So far, we have studied an economy where investors have dogmatic beliefs, which not only

simplified the analysis, but also demonstrated that our results are not driven by investors’

learning. In this Section, we consider a setting with parameter uncertainty and more rational

behavior for investors who optimally update their beliefs in a Bayesian fashion over time as

more data becomes available. This setting is also tractable. We again obtain fully-closed form

solutions for all quantities of interest, and show that all our results remain valid in this richer,

incomplete information economy. This specification also enables us disentangle the effects of

belief dispersion and parameter uncertainty on stock volatility, and establish the result that the

investors’ Bayesian learning induces less stock volatility when belief dispersion is higher.

To incorporate Bayesian learning in our main model, we make the following modification to

investors’ beliefs in Section 2.2. The investors are again indexed by their type θ, but instead

of believing the mean growth rate of the expected payoff is µ + θ at all times 0 ≤ t ≤ T ,

now the θ-type investor at time 0 believes that the mean growth rate of the expected payoff

is normally distributed with mean µ + θ and variance s2, N (µ+ θ, s2). This allows us to

interpret a θ-type investor as an investor with an initial bias of θ in her beliefs. The identical

prior variance s2 for all investors ensures that our results are not driven by heterogeneity in

confidence of their estimates. The normal prior and the Bayesian updating rule imply that the

time-t posterior distribution of µ, conditional on the information set Ft = {Ds : 0 ≤ s ≤ t}, is

also normally distributed, N (µ+ θ̂t, s
2
t ), where the time-t bias of θ-type investor θ̂t (difference

between her mean estimate and the true µ) and the type-independent mean squared error s2
t ,

which represents the level of parameter uncertainty, are reported in Proposition 8. Therefore,

under the θ-type investor’s beliefs, the posterior cash-flow news process has dynamics

dDt = Dt[(µ+ θ̂t)dt+ σdωt (θ)],

where ω (θ) is her perceived Brownian motion with respect to her own probability measure Pθ,

and is given by dωt (θ) = dωt− (θ̂t/σ)dt. We note that this specification conveniently nests the
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earlier dogmatic beliefs economy when s2 = 0.

We proceed by first constructing the average bias and dispersion in beliefs following Defini-

tion 1 in Section 3. The time-t average bias in beliefs, mt, is the implied bias of the corresponding

representative investor, expressed as the weighted average of the individual investors’ biases

mt =

ˆ
Θ

θ̂tht (θ) dθ, (48)

with the weights ht (θ) > 0 are such that
´

Θ
ht (θ) dθ = 1, while the dispersion in beliefs, vt, is

the standard deviation of investors’ biases

v2
t ≡
ˆ

Θ

(θ̂t −mt)
2ht (θ) dθ. (49)

Proposition 8 reports the average bias and dispersion in beliefs along with the corresponding

unique weights in this economy with belief dispersion and parameter uncertainty in closed form.

Proposition 8. The time-t average bias mt and dispersion vt in beliefs are given by

mt = m+
(
lnDt−

(
m+µ− 1

2
σ2
)
t
)(1

γ
v2+s2

) 1

σ2

v2
t

v2

s2

s2
t

, v2
t =

v2σ2

σ2+
(

1
γ
v2 + s2

)
t

s2
t

s2
, (50)

where the investors’ time-t parameter uncertainty st is given by

s2
t =

s2σ2

σ2 + s2t
, (51)

and the initial values m and v are related to the initial mean m̃ and standard deviation ṽ of

investor types as

m=m̃+
(
1− 1

γ

)
v2T, v2 =

(γ
2
ṽ2 − γ2

2T

(
σ2+s2T

))
+

√(γ
2
ṽ2 − γ2

2T
(σ2+s2T )

)2

+
γ2

T
ṽ2 (σ2+s2T ).

(52)

The weights ht (θ) are uniquely identified to be given by

ht (θ) =
1√
2πv2

t

e
− 1

2

(θ̂t−mt)
2

v2t
s2
t

s2
, (53)

where mt, vt and st are as in (50)–(51) and the time-t bias of θ-type investor θ̂t is given by

θ̂t =
s2
t

s2
θ +

s2
t

σ
ωt. (54)

Consequently, in the presence of belief dispersion and parameter uncertainty, for economies with

the same initial average bias m and dispersion v,

i) The average bias in beliefs is increasing in parameter uncertainty st when

Dt > exp
((
m+ µ− 1

2
σ2
)
t
)
, and is decreasing otherwise.

ii) The dispersion in beliefs is decreasing in parameter uncertainty st.
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The average bias and dispersion in beliefs (50) are generalizations of the earlier dogmatic

beliefs case and are now additionally driven by parameter uncertainty st.
30 We see that, sim-

ilarly to the effect of dispersion, a higher parameter uncertainty leads to a relatively more

optimistic (pessimistic) view on the stock following good (bad) news (Property (i)), and this

then amplifies the volatility of the average bias relative to the dogmatic beliefs case. However,

the underlying mechanisms of belief dispersion and parameter uncertainty are notably differ-

ent. In the case of dispersion, the view on the stock becomes more optimistic following good

news, because the optimistic investors, whose beliefs are supported, become wealthier and this

increases their impact on the average bias in beliefs. In the case of parameter uncertainty, the

view on the stock becomes more optimistic following good news, because all Bayesian investors

increase their estimates of the mean growth rate of the expected payoff µ. Proposition 8 also

reveals that a higher parameter uncertainty leads to a lower dispersion in beliefs (Property (ii)).

This is intuitive because investors’ estimates of µ is a weighted average of their prior and the

data (cash-flow news). The higher the parameter uncertainty, the more weight investors place

on the data, which in turn reduces the differences in their estimates and the belief dispersion.

We remark that in this Section, we consider the effects of parameter uncertainty st only for

economies with the same initial average bias m and dispersion v, as highlighted in Proposition

8. This way, economies only differ in their initial level of parameter uncertainty s and our

results are not driven by the indirect effects through the initial average bias and dispersion.31

Proposition 9 reports the equilibrium stock price, its dynamics and the trading volume measure

in this economy with belief dispersion and parameter uncertainty in closed form.

Proposition 9. In the economy with belief dispersion and parameter uncertainty, the equilib-

rium stock price, mean return and volatility are given by

St = Ste
mt(T−t)− 1

2
(2γ−1)( 1

γ
v2+s2) v

2
t
v2

s2

s2t
(T−t)2

, (55)

µSt = µSt
v4
t

v4
T

s4
T

s4
t

−mt
v2
t

v2
T

s2
T

s2
t

, σSt = σSt +
1

σ

(1

γ
v2 + s2

)v2
t

v2

s2

s2
t

(T − t) , (56)

where the average bias mt, dispersion vt in beliefs and parameter uncertainty st are as in

Proposition 8 and the equilibrium stock price St, mean return µSt, and stock volatility σSt in

the benchmark economy with no belief dispersion are as in Propositions 2–4, respectively.

30Note that when s2 = 0, the ratio s2
t/s

2 = 1 for all t, and the expressions in Proposition 8 collapse down to
the dogmatic beliefs economy expressions in Proposition 1.

31This is established by letting the initial indirect effect of parameter uncertainty fall on the mean m̃ and
standard deviation ṽ of investor types using the monotonic relations between m and m̃, and v and ṽ in (52).
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The equilibrium trading volume measure is given by

Vt=
σ

X2
t

v2
t

v2
T

s2
T

s2
t

[(
Xt

2
+
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X2
t +4

2

)
φ
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2
−
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X2
t +4

2

)
−
(
Xt

2
−
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X2
t +4

2

)
φ

(
Xt

2
+

√
X2
t +4

2

)]
, (57)

where φ (.) is the probability density function of the standard normal random variable, and X

is a (positive) deterministic process given by

X2
t =

γ2σ4

v4
T

[
1

γ
v2
t

s4
T

s4
t

+
(

1− 1

γ

)
v2
T

]
. (58)

Consequently, in the presence of belief dispersion and parameter uncertainty, in addition to the

properties in Propositions 2–5, for economies with the same initial average bias m and dispersion

v, the stock volatility is increasing in parameter uncertainty st but this effect is decreasing in

belief dispersion vt.

Proposition 9 confirms that our earlier implications for the stock price, its dynamics and

the trading volume remain valid with Bayesian learning. However, these equilibrium quantities

are now also driven by the parameter uncertainty st. More notably, the additional effect

due to the parameter uncertainty now makes the stock price even more volatile as compared

with the dogmatic beliefs case. This is because a higher parameter uncertainty makes the

average bias more volatile, which leads to a higher stock price following relatively good news,

and to a lower stock price otherwise, compared to the dogmatic beliefs case. Therefore, in

this economy, the stock volatility is not only increasing in belief dispersion as in our earlier

analysis, but also in parameter uncertainty. Importantly, our stock volatility expression in (56)

allows us to disentangle the effects of belief dispersion from those of parameter uncertainty

and yields a novel testable implication that the parameter uncertainty (and the subsequent

Bayesian learning) induces less stock volatility when belief dispersion is higher.32 This is because

fluctuations in the average bias, and hence in the stock price, due to parameter uncertainty is

lower when dispersion is higher. In the literature, both channels are shown to generate higher

stock volatility. By disentangling these effects, our result may help future works to measure the

relative contributions of parameter uncertainty and belief dispersion in stock volatility better.

32The parameter uncertainty channel is shut down by setting s2 = 0 in (56), which implies s2
t/s

2 = 1, and
yields σSt = σSt + (v2

t /σγ) (T − t). Similarly, the belief dispersion channel is shut down by setting v2 = 0 in
(56), which implies v2

t /v
2 = s4

t/s
4, and yields σSt = σSt + (s2

t/σ) (T − t).
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8 Conclusion

In this paper, we have developed a dynamic model of belief dispersion which simultaneously

explains the empirical regularities in a stock price, its mean return, volatility, and trading

volume. In our analysis, we have determined two sufficient measures, the average bias and

dispersion in beliefs, to summarize the wide range of investors’ beliefs and have demonstrated

that the equilibrium quantities are driven by these two key variables. Our model is tractable

and delivers exact closed-form expressions for all quantities.

We have found that the stock price increases in cash-flow news in a convex manner. We

have also shown that the stock price increases and its mean return decreases in belief dispersion

when the view on the stock is optimistic, and vice versa when pessimistic. We have found that

the presence of belief dispersion leads to a higher stock volatility, trading volume, and a positive

relation between these two quantities. We have disentangled the effects of belief dispersion and

learning on stock volatility, and found that the effects of learning is reduced when dispersion

is higher. Furthermore, we have demonstrated how the more familiar, otherwise identical, two-

investor economies with heterogeneous beliefs do not necessarily generate most of our main

results. Finally, we have calibrated the multiple-stock version of our model, and have found

that the effects of belief dispersion in our model are economically significant and the magnitudes

of those effects are in line with the empirical evidence.

In models such as ours where investors have preferences only over horizon wealth, the

discount factor is determined by the anticipation of future consumption. In contrast, in a

model with intertemporal consumption the discount factor is determined by market clearing in

the current consumption good. In such a model it is not immediately clear that all our results

would obtain. For example, when preferences in that setting are logarithmic there are no asset

pricing effects for the stock (e.g., Detemple and Murthy (1997), Atmaz (2014)), therefore the

model would not explain the empirical regularities observed in the stock market. On the other

hand, considering more general power preferences with intertemporal consumption leads to

the issue of the representative investor’s belief not being well-defined since the process that

aggregates investors’ beliefs is not a martingale, and hence not a proper belief process (see,

Jouini and Napp (2007)). Therefore, in that setting we may not obtain the average bias, then

back out the investors’ equilibrium weights, and define the belief dispersion as we do in our

model. Our setting turns out to not suffer from this issue and yields a well-defined belief

process for the representative investor for all risk aversion values due to her preferences being

over horizon wealth. We leave the analysis with intertemporal consumption for future research.
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Cvitanić, Jakša, and Semyon Malamud, 2011, Price Impact and Portfolio Impact, Journal of
Financial Economics 100, 201–225.

David, Alexander, 2008, Heterogeneous Beliefs, Speculation, and the Equity Premium, The
Journal of Finance 63, 41–83.
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Söderlind, Paul, 2009, Why disagreement may not matter (much) for asset prices, Finance
Research Letters 6, 73–82.

Timmermann, Allan G., 1993, How Learning in Financial Markets Generates Excess Volatility
and Predictability in Stock Prices, The Quarterly Journal of Economics 108, 1135–1145.

Timmermann, Allan G., 1996, Excess Volatility and Predictability of Stock Prices in Autore-
gressive Dividend Models with Learning, The Review of Economic Studies 63, 523–557.

Varian, Hal R., 1989, Differences of Opinion in Financial Markets, in Courtenay C. Stone,
ed., Financial Risk: Theory, Evidence and Implications , 3–37 (Kluwer Academic Publishers,
Boston, MA).

Veronesi, Pietro, 1999, Stock Market Overreaction to Bad News in Good Times: A Rational
Expectations Equilibrium Model, The Review of Financial Studies 12, 975–1007.

Xiong, Wei, and Hongjun Yan, 2010, Heterogeneous Expectations and Bond Markets, The
Review of Financial Studies 23, 1433–1466.

Xu, Jianguo, 2007, Price Convexity and Skewness, The Journal of Finance 62, 2521–2552.

Yan, Hongjun, 2008, Natural Selection in Financial Markets: Does It Work?, Management
Science 54, 1935–1950.

Yu, Jialin, 2011, Disagreement and Return Predictability of Stock Portfolios, Journal of Fi-
nancial Economics 99, 162–183.

Zapatero, Fernando, 1998, Effects of Financial Innovations on Market Volatility When Beliefs
are Heterogeneous, Journal of Economic Dynamics and Control 22, 597–626.

46



Appendix: Proofs of Main Model

Proof of Proposition 1. We proceed by first solving each θ-type investor’s problem, and

determining the equilibrium horizon prices and investors’ Lagrange multipliers, which are used

in the representative investor construction to infer her implied bias and to hence define the

average bias in beliefs, mt. We next identify the unique weights ht (θ) which along with the

average bias allow us to determine the belief dispersion, vt.

Dynamic market completeness implies a unique state price density process ξ under the true

measure P, such that the time-t value of a payoff XT at time T is given by Et [ξTXT ] /ξt, where

ξT/ξt represents the stochastic discount factor. Accordingly, the dynamic budget constraint (7)

of each θ-type investor under P can be restated as

Et [ξTWT (θ)] = ξtWt (θ) . (A.1)

We also rewrite each θ-type investor’s expected utility function (6) under P as

E

[
ηT (θ)

WT (θ)1−γ

1− γ

]
, (A.2)

where ηT (θ) is the Radon-Nikodým derivative of the subjective measure Pθ with respect to P,

ηT (θ) =
dPθ

dP
= e

θ
σ
ωT− 1

2
θ2

σ2
T . (A.3)

Maximizing each (distinct) θ-type investor’s expected objective function (A.2) subject to (A.1)

evaluated at time t = 0 leads to the optimal horizon wealth of each θ-type as

WT (θ) =

(
ηT (θ)

y (θ) ξT

) 1
γ

, (A.4)

where the Lagrange multiplier y (θ) solves (A.1) evaluated at time t = 0

y (θ)−
1
γ = E

[
ηT (θ)

1
γ ξ

1− 1
γ

T

]−1
ξ0S0√
2πṽ2

e−
1
2

(θ−m̃)2

ṽ2 . (A.5)

We next determine the time-T equilibrium state price density ξT . Substituting (A.4) into

the market clearing condition
´

Θ
WT (θ) dθ = DT yields ξ

− 1
γ

T

´
Θ
y (θ)−

1
γ ηT (θ)

1
γ dθ = DT , which

after rearranging we obtain the time-T equilibrium state price density

ξT = D−γT Mγ
T , (A.6)

where the auxiliary process M and the likelihood ratio process η (θ) are given by

Mt ≡
ˆ

Θ

(
ηt (θ)

y (θ)

) 1
γ

dθ, ηt (θ) = Et [ηT (θ)] = e
θ
σ
ωt− 1

2
θ2

σ2
t. (A.7)
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As we show below, y (θ)−
1
γ is (scaled) Gaussian over the type space Θ for some mean αo,

variance β2
o and a constant K:

y (θ)−
1
γ = K

1√
2πβ2

o

e
− 1

2
(θ−αo)2

β2o . (A.8)

Substituting ηt (θ) in (A.7) along with (A.8) into the definition of M in (A.7) yields

Mt = K

ˆ
R

1√
2πβ2

o

e
− 1

2
(θ−αo)2

β2o e
1
γ
θ
σ
ωt− 1

2
1
γ
θ2

σ2
tdθ = K

βt
βo
e
− 1

2

α2o
β2o

+ 1
2

α2t
β2t , (A.9)

where the last equality follows by completing the square and integrating, and the processes α

and β, with their initial values α0 = αo and β0 = βo, respectively, defined as

αt ≡ σ
σαo + 1

γ
β2
oωt

σ2 + 1
γ
β2
o t

, β2
t ≡

β2
oσ

2

σ2 + 1
γ
β2
o t
. (A.10)

We now verify y (θ)−
1
γ is as in (A.8). Substituting (A.6) into (A.5) gives

y (θ)−
1
γ =

(
E
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

])−1 ξ0S0√
2πṽ2

e−
1
2

(θ−m̃)2

ṽ2 , (A.11)

where MT is equal to (A.9) evaluated at time T . From Lemma A2 at the end of this appendix,

evaluated at t = 0, the expectation in (A.11) is equal to

E
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= ξ0S0K

−1

(
1√

2πβ2
o

e
− 1

2
(θ−αo)2

β2o

)−1
1√

2πβ2
oA

2
e
− 1

2

(θ−[αo−(1− 1
γ )β2oT])

2

β2oA
2 ,

(A.12)

where the constant A2 is given by A2 =
(
σ2 + 1

γ2
β2
oT
)
/
(
σ2 + 1

γ
β2
oT
)

. Substituting (A.12) into

(A.11) and manipulating terms yields (A.8) with

αo = m̃+

(
1− 1

γ

)
β2
oT, β2

o =

(
γ

2
ṽ2 − γ2

2T
σ2

)
+

√(
γ

2
ṽ2 − γ2

2T
σ2

)2

+
γ2

T
ṽ2σ2. (A.13)

We note that when γ = 1 the constants αo and β2
0 coincide with m̃ and ṽ2, respectively.

We now construct the representative investor in our dynamically complete market economy

to infer her implied bias in beliefs. The representative investor solves

U (DT ;λ) = max

ˆ
Θ

λ (θ) ηT (θ)
WT (θ)1−γ

1− γ
dθ, s.t.

ˆ
Θ

WT (θ) dθ = DT , (A.14)

for some strictly positive weights λ (θ) for each θ-type investor, where the collection of weights

is denoted by λ = {λ (θ)}θ∈Θ. The first order conditions of (A.14) yield

WT (θ)

WT (0)
=

(
λ (0) ηT (0)

λ (θ) ηT (θ)

)− 1
γ

,

where λ (0) and ηT (0) denote the 0-type investor’s weight and the Radon-Nikodým derivative,
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respectively. Imposing
´

Θ
WT (θ) dθ = DT yields the equilibrium horizon wealth allocations,

which after substituting into (A.14) gives the representative investor’s utility function as

U (DT ;λ) =

(ˆ
Θ

[λ (θ) ηT (θ)]
1
γ dθ

)γ
D1−γ
T

1− γ
. (A.15)

We next identify, from the second welfare theorem, the weights as λ (θ) = 1/y (θ) where y (θ)

is the θ-type investor’s Lagrange multiplier given by (A.8). By substituting these weights into

(A.15) we observe that the parenthesis term as MT in (A.7). We define the martingale Z as

the conditional expectation of Mγ
T under the true measure

Zt ≡ Et [Mγ
T ] = Mγ

t

(
βT
βt

)γ−1

, (A.16)

where the last equality above follows from Lemma A1 at the end of this appendix by taking

a = 0 and b = γ. Since equilibrium is unique up to a constant, without loss of generality we set

the constant K = (βT/βo)
1
γ
−1 in (A.8) so that when substituted into (A.16) we obtain Z0 = 1.

Applying Itô’s Lemma to (A.16) gives the dynamics of Z as

dZt
Zt

=
αt
σ
dωt. (A.17)

Therefore, we obtain the representative investor’s utility function as

U (DT ;λ) = ZT
D1−γ
T

1− γ
, (A.18)

and identify ZT as being the Radon-Nikodým derivative of the representative investor’s sub-

jective belief PR with respect to the true belief P, that is dPR/dP = ZT .33 Moreover, (A.17)

implies that αt is the time-t (stochastic) bias of the representative investor, and so is the time-t

average bias in beliefs, as denoted by mt,

mt = αt = σ
σαo + 1

γ
β2
oωt

σ2 + 1
γ
β2
o t

=

ˆ
Θ

θ

(
y (θ)−

1
γ ηt (θ)

1
γ´

Θ
y (θ)−

1
γ ηt (θ)

1
γ dθ

)
dθ. (A.19)

Substituting σωt by lnDt −
(
µ− 1

2
σ2
)
t yields the expression stated in (10).

From the last equality in (A.19) we identify the unique weights ht (θ) such that the weighted-

average of investors’ biases equals to the average bias in beliefs as

ht (θ) =
y (θ)−

1
γ ηt (θ)

1
γ´

Θ
y (θ)−

1
γ ηt (θ)

1
γ dθ

=
1√

2πβ2
t

e
− 1

2
(θ−αt)

2

β2t , (A.20)

33Alternatively, we can derive the representative investor’s utility function in (A.18) by applying Itô’s Lemma
to Mγ

t using (A.9) to obtain the dynamics dMγ
t /M

γ
t = − 1

2 (1 − 1/γ)
(
β2
t /σ

2
)
dt + (αt/σ) dωt. Since the drift

term is deterministic, we may write Mγ
t as Mγ

t = KγYtZt where Y is a deterministic process and Z is a
martingale process with dynamics as in (A.17) with initial values Y0 = Z0 = 1. The solution to Y is given by

Yt = (βt/βo)
γ−1

. Setting the constant as above K = (βT /βo)
(1/γ)−1

yields the representative investor’s utility
function as in (A.18).
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where the last equality follows from substituting ηt (θ) into (A.7) and (A.8) into (A.20) and

rearranging where αt and βt are as in (A.10).

Finally, to determine the belief dispersion, we use the definition in (9) with the average bias

in beliefs (A.19) and weights (A.20) substituted in to obtain

v2
t =

ˆ
Θ

(θ −mt)
2 ht (θ) dθ =

ˆ
Θ

(θ −mt)
2 1√

2πβ2
t

e
− 1

2
(θ−mt)

2

β2t dθ = β2
t . (A.21)

By equating the initial values αo and β2
o to m and v2 in (A.13) we obtain the (squared) dispersion

and the weights as in (10) and (12).

The condition for the property that a higher belief dispersion leads to a higher average bias

follows from the positivity of the partial derivative of (10) with respect to vt

∂

∂vt
mt =

(
lnDt −

(
m+ µ− 1

2
σ2

)
t

)
2
vt
γσ2

> 0. (A.22)

Rearranging the term in the bracket gives the desired condition Dt > exp
(
m+ µ− 1

2
σ2
)
t.

Proof of Proposition 2. By no arbitrage, the stock price in our economy is given by

St =
1

ξt
Et [ξTDT ] . (A.23)

To determine the stock price, we first compute the equilibrium state price density at time t by

using the fact that it is a martingale, ξt = Et [ξT ]. The equilibrium state price density at time

T is as in the proof of Proposition 1, given by (A.6). Hence,

ξt = Et
[
D−γT Mγ

T

]
= D−γt Mγ

t

(
vT
vt

)γ−1

e−γ(µ−
1
2
σ2)(T−t)e−γmt(T−t)e

1
2
γ2σ2 v

2
t
v2
T

(T−t)
, (A.24)

where the last equality follows from Lemma A1 by taking a = −γ and b = γ and using the

equalities mt = αt and vt = βt to express the equation in terms of model parameters.

Next, we substitute (A.6) into (A.23) and obtain the expectation Et [ξTDT ] = Et
[
D1−γ
T Mγ

T

]
.

Again employing Lemma A1 with a = 1− γ and b = γ, we obtain

Et
[
D1−γ
T Mγ

T

]
= D1−γ

t Mγ
t

(
vT
vt

)γ−1

e(1−γ)(µ− 1
2
σ2)(T−t)e(1−γ)mt(T−t)e

1
2

(1−γ)2σ2 v
2
t
v2
T

(T−t)
. (A.25)

Substituting (A.24) and (A.25) into (A.23) and manipulating yields the stock price expression

(14) in Proposition 2. To determine the benchmark economy stock price, we set m̃ = ṽ = 0,

which yields mt = vt = 0. Substituting into (14) gives the benchmark stock price.

Property (i) that the stock price is convex in cash-flow news follows once we substitute (10)

into the stock price equation (14) and differentiate with respect to Dt.

The condition for property (ii) that the stock price is increasing in belief dispersion follows
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from the partial derivative of (14) with respect to vt. This property holds when

∂

∂vt
mt >

1

2γ
(2γ − 1) (T − t) ∂

∂vt
v2
t . (A.26)

Taking the partial derivative of mt and v2
t using the expression (10) while taking account of the

dependency on v and m, yields

∂

∂vt
mt =

2

vt
(mt − m̃) ,

∂

∂vt
v2
t = 2vt, (A.27)

which after substituting into (A.26) and rearranging gives the desired condition.

Finally, property (iii) that the stock price is increasing in investors’ risk aversion for relatively

bad cash-flow states and low values of γ follows from the partial derivative of (14) with respect

to γ. This property holds when

∂

∂γ
mt > σ2 +

[
1

2γ2
v2
t +

(
1− 1

2γ

)(
∂

∂γ
v2
t

)]
(T − t) . (A.28)

In this regard, using (11), we first compute ∂v2/∂γ and ∂m/∂γ, and to simplify notation denote

them by C and D, respectively

C ≡ ∂

∂γ
v2 =

(
ṽ2

2
− γ

T
σ2

)
+

(
γ
2
ṽ2 − γ2

2T
σ2
)(

ṽ2

2
− γ

T
σ2
)

+ γ
T
ṽ2σ2√(

γ
2
ṽ2 − γ2

2T
σ2
)2

+ γ2

T
ṽ2σ2

, (A.29)

D ≡ ∂

∂γ
m =

1

γ2
v2T +

(
1− 1

γ

)
CT. (A.30)

Using the expressions in (10), we then obtain the required partial derivatives as

∂

∂γ
mt =

v2
t

v2

[
D −

(
1

γ
− C

v2

)
(mt −m)

]
,

∂

∂γ
v2
t =

v4
t

v2

(
C

v2
+

v2t

σ2γ2

)
. (A.31)

Substituting (A.31) into (A.28) and rearranging yields the condition as

mt < m+

(
1

γ
− C

v2

)−1{
D − v2

v2
t

σ2 −
[
v2

2γ2
+

(
1− 1

2γ

)(
C

v2
+

v2t

σ2γ2

)
v2
t

]
(T − t)

}
. (A.32)

For any time t, the right hand side of (A.32) is constant while its left hand side is the average

bias in beliefs, which is a normally distributed random variable, hence for sufficiently low levels

of mt (A.32) always holds.

Proof of Proposition 3. Applying Itô’s Lemma to the stock price (14) yields

dSt
St

=

[
γσ +

v2
t

σ
(T − t)− mt

σ

] [
σ +

1

γ

v2
t

σ
(T − t)

]
dt+

[
σ +

1

γ

v2
t

σ
(T − t)

]
dωt, (A.33)

where its drift term gives the equilibrium mean return as

µSt =

[
γσ +

v2
t

σ
(T − t)− mt

σ

] [
σ +

1

γ

v2
t

σ
(T − t)

]
. (A.34)
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Substituting the equality

σ +
1

γ

v2
t

σ
(T − t) = σ

v2
t

v2
T

, (A.35)

into (A.34) and manipulating gives (15). The benchmark economy mean return is obtained by

setting mt = vt = 0 in (A.34).

The condition for property that the mean return is decreasing in belief dispersion follows

from the partial derivative of (15) with respect to vt. This property holds when

∂

∂vt
µSt = 2γσ2

(
v2
t

v2
T

)
∂

∂vt

(
v2
t

v2
T

)
−mt

∂

∂vt

(
v2
t

v2
T

)
− v2

t

v2
T

∂

∂vt
mt < 0. (A.36)

Substituting the partial derivatives (A.27) into (A.36) and using the equality (A.35) and rear-

ranging gives the desired condition.

Finally, property (ii) that the mean return is decreasing in investors’ risk aversion for rela-

tively bad cash-flow news and low levels of risk aversion follows from the partial derivative of

(15) with respect to γ. This property holds when

∂

∂γ
µSt = σ2

(
v2
t

v2
T

)2

+

[
2γσ2

(
v2
t

v2
T

)
−mt

](
∂

∂γ

v2
t

v2
T

)
− v2

t

v2
T

(
∂

∂γ
mt

)
< 0. (A.37)

Substituting the partial derivatives (A.31) into (A.37) and using (A.35) yields

∂

∂γ
µSt = σ2

(
v2
t

v2
T

)2

+

[
2γσ2

(
v2
t

v2
T

)
−mt

]
E − v2

t

v2
T

v2
t

v2

[
D −

(
1

γ
− C

v2

)
(mt −m)

]
, (A.38)

where we have defined E as

E ≡ ∂

∂γ

v2
t

v2
T

= − 1

γ2

v2
t

σ2
(T − t) +

1

γ

1

σ2

v4
t

v2

(
C

v2
+

v2t

σ2γ2

)
(T − t) .

Rearranging (A.38) yields the condition as

mt <

[
v4
t

v2
T

(
1

γv2
− C

v4

)
− E

]−1{
v4
t

v2
T

[
D

v2
+

(
1

γ
− C

v2

)
m

v2

]
− σ2 v

4
t

v4
T

− 2γσ2 v
2
t

v2
T

E

}
. (A.39)

We note that, for any time t, the right hand side of (A.39) is a constant while its left hand

side is the average bias in beliefs, which is a normally distributed random variable, hence for

sufficiently low levels of mt (A.39) always holds.

Proof of Proposition 4. The volatility of the stock is given by the diffusion term of the

dynamics (A.33). The benchmark stock volatility readily is obtained by setting vt = 0 in the

diffusion term of (A.33). The property that the stock volatility is increasing in belief dispersion

is immediate from (16).

Proof of Proposition 5. To compute the trading volume measure V , we proceed by first

determining the dynamics of each θ-type investor’s equilibrium wealth-share, W (θ) /S and
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portfolio, φ (θ), the fraction of wealth invested in the stock. Then, applying the product rule

to ψ (θ) = φ (θ) (W (θ) /S), we obtain the dynamics of ψ (θ). Finally, using the definition in

(17) we obtain the trading volume measure V for the stock in closed form.

To compute each investor’s wealth share, we first consider her time-t wealth satisfying (A.1)

ξtWt (θ) = Et [ξTWT (θ)] =
K√
2πv2

e−
1
2

(θ−m)2

v2 Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
, (A.40)

where the second equality follows by substituting (A.4), (A.6) and (A.8). We also employed

the equalities αo = m, β2
o = v2 (see, proof of Proposition 1) to express (A.40) in terms of model

parameters. Using Lemma A2 with αt = mt, β
2
t = v2

t substituted in, we have

Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= ξtStK

−1

(
1√

2πv2
e−

1
2

(θ−m)2

v2

)−1
1√

2πv2
tA

2
t

e
− 1

2

(θ−[mt−(1− 1
γ )v2t (T−t)])

2

v2t A
2
t ,

(A.41)

where A2
t is as defined in (A.58) with β2

t = v2
t , and mt and vt are as in (10). Substituting (A.41)

into (A.40) and rearranging gives the wealth-share of each θ-type investor as

Wt (θ)

St
=

1√
2πv2

tA
2
t

e
− 1

2

(θ−[mt−(1− 1
γ )v2t (T−t)])

2

v2t A
2
t . (A.42)

We note that the time-t wealth-share distribution is Gaussian with mean and variance as

reported in (13) of Remark 1. We then apply Itô’s lemma to (A.42) to obtain the dynamics

d
Wt (θ)

St
= . . . dt+

Wt (θ)

St

v2
t

γσṽ2
t

(θ − m̃t) dωt. (A.43)

To obtain each θ-type investor’s optimal portfolio φ (θ) as a fraction of wealth invested in

the stock, we match the volatility term in (A.43) with the corresponding one in

d
Wt (θ)

St
= . . . dt+

Wt (θ)

St
(φt (θ)− 1)σStdωt,

which is obtained by using (1) and (7). This yields investors’ equilibrium portfolios as

φt (θ) = 1 +
v2
T

γσ2ṽ2
t

(θ − m̃t) . (A.44)

We then apply the product rule to ψ (θ) = φ (θ) (W (θ) /S) using (A.42) and (A.44) to obtain

the portfolio dynamics in terms of number of shares invested in the stock ψ (θ)

dψt (θ) = . . . dt+
Wt (θ)

St

v2
t

γσṽ2
t

[
(θ − m̃t)φt (θ)− v2

T

γσ2

]
dωt,

which after substituting (A.44) yields the portfolio volatility of each θ-type investor σψ (θ) as

σψt (θ) =
Wt (θ)

St

v2
t

γσṽ2
t

[
v2
T

γσ2

((
θ − m̃t

ṽt

)2

− 1

)
+ ṽt

(
θ − m̃t

ṽt

)]
. (A.45)
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We now compute our trading volume measure (17), obtained by summing the absolute value

of investors’ portfolio volatilities. To find this absolute value, we need to identify the types for

whom the portfolio volatility is negative at time t. From (A.45), this occurs when the square

bracket term is negative which is a quadratic in types θ. Therefore at time-t, the types for

whom the portfolio volatility σψt (θ) is negative lies between two critical types θc1 and θc2 for

which σψt (θc1) = σψt (θc2) = 0. Solving the quadratic equation yields the critical types as

θc1 = m̃t + ṽt

(
−1

2
Xt −

1

2

√
X2
t + 4

)
, θc2 = m̃t + ṽt

(
−1

2
Xt +

1

2

√
X2
t + 4

)
, (A.46)

where Xt = γσ2ṽt/v
2
T . From definition (17), the trading volume measure is

Vt≡
1

2

ˆ
Θ

|σψt (θ) |dθ=
1

2

[ˆ θc1

−∞
σψt (θ)dθ−

ˆ θc2

θc1

σψt (θ)dθ+

ˆ ∞
θc2

σψt (θ)dθ

]
=−
ˆ θc2

θc1

σψt (θ) dθ, (A.47)

where the last equality follows from the fact
´

Θ
σψt (θ) dθ = 0. Substituting (A.42) and (A.45)

into (A.47) yields

Vt = − v2
t

γσṽ2
t

ˆ θc2

θc1

[
v2
T

γσ2

((
θ − m̃t

ṽt

)2

− 1

)
+ ṽt

(
θ − m̃t

ṽt

)]
1√
2πṽ2

t

e
− 1

2
(θ−m̃t)

2

ṽ2t dθ.

Changing the variable of integration to z = θ−m̃t
ṽt

and using the facts that
ˆ (

z2 − 1
) 1√

2π
e−

1
2
z2dz = −zφ (z) + C, and

ˆ
z

1√
2π
e−

1
2
z2dz = −φ (z) + C,

where φ (.) is the standard normal density function and C is a constant, we obtain the trading

volume measure as

Vt=
v2
t

γσṽ2
t

[
v2
T

γσ2

(
θc2−m̃t

ṽt

)
+ṽt

]
φ

(
θc2−m̃t

ṽt

)
− v2

t

γσṽ2
t

[
v2
T

γσ2

(
θc1−m̃t

ṽt

)
+ṽt

]
φ

(
θc1−m̃t

ṽt

)
. (A.48)

Finally, substituting (A.46) into (A.48) and rearranging gives (18).

The condition for property that the trading volume measure is increasing in belief dispersion

follows from the partial derivative of (18) with respect to vt, or equivalently v2. To compute

this partial derivative we rewrite (18) compactly as

Vt =
1

2σ

[
Z+
t φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
+ Z−t φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)]
, (A.49)

where we defined the positive deterministic processes

Z+
t ≡

√(
σ2

X2
t

v2
t

v2
T

)2

(X2
t + 4) +

σ2

Xt

v2
t

v2
T

, Z−t ≡

√(
σ2

X2
t

v2
t

v2
T

)2

(X2
t + 4)− σ2

Xt

v2
t

v2
T

,

with 0 < Z−t < Z+
t , and

∂

∂v2
Z+
t −

∂

∂v2
Z−t = 2

∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
. (A.50)
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Substituting

∂

∂v2
φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
= −1

2

X2
t

σ2

v2
T

v2
t

Z−t φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
∂

∂v2

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
,

∂

∂v2
φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
= −1

2

X2
t

σ2

v2
T

v2
t

Z+
t φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
∂

∂v2

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
,

with

∂

∂v2

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
=

1

2

[(
X2
t

σ2

v2
T

v2
t

)
∂Z−t
∂v2

+ Z−t
∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)]
,

∂

∂v2

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
=

1

2

[(
X2
t

σ2

v2
T

v2
t

)
∂Z+

t

∂v2
+ Z+

t

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)]
,

into the partial derivative of (A.49) with respect to v2, and using (A.50) and the equality

Z+
t Z
−
t = 4

(
σ2

X2
t

v2
t

v2
T

)2

,

yields the required partial derivative

∂

∂v2
Vt =

1

2σ

[
2
∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
− Z−t

σ2

X2
t

v2
t

v2
T

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)]
φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)

+
1

2σ

[
−2

∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
− Z+

t

σ2

X2
t

v2
t

v2
T

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)]
φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
. (A.51)

However, (A.51) is always positive because

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)
< 0 and

∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
> 0,

which implies that the first square bracket term in (A.51) is positive, and if the second square

bracket terms is also positive then it is easy to see that (A.51) is positive. However, if the

second square bracket term is negative then we use the inequality

2
∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
− Z−t

σ2

X2
t

v2
t

v2
T

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)
>

∣∣∣∣−2
∂

∂v2

(
σ2

Xt

v2
t

v2
T

)
− Z+

t

σ2

X2
t

v2
t

v2
T

∂

∂v2

(
X2
t

σ2

v2
T

v2
t

)∣∣∣∣ ,
and the fact that

0 < φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z+
t

)
< φ

(
1

2

X2
t

σ2

v2
T

v2
t

Z−t

)
, (A.52)

to show that the first line in (A.51) dominates the second line, and therefore (A.51) is positive.

Property that the trading volume measure is positively related to the stock volatility follows

from the fact that an increase in belief dispersion leads to both a higher trading volume measure

and a stock volatility.

Lemma A1. Let the processes M , α and β be defined as in (A.9)–(A.10). Then for all numbers
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a and b we have

Et
[
Da
TM

b
T

]
= Da

tM
b
t

(
βT
βt

)b
ea(µ−

1
2
σ2)(T−t)e

− b
2

α2t
β2t

(
1−β

2
T
β2t

[
1− b

γ

(
1−β

2
T
β2t

)]−1
)

×
[
1− b

γ

(
1− β2

T

β2
t

)]− 1
2

e
1
2

[
1− b

γ

(
1−β

2
T
β2t

)]−1(
2abαt
γ

β2T
β2t

+a2σ2

)
(T−t)

, (A.53)

provided 1− b
γ

(
1− β2

T

β2
t

)
> 0.

Proof of Lemma A1. By (A.9), we have

MT = Mt

(
βT
βt

)
e
− 1

2

α2t
β2t

+ 1
2

α2T
β2
T , (A.54)

and (A.10) gives

α2
T

β2
T

= β2
T

(
α2
o

β4
o

+ 2
αo
β2
o

ωT
γσ

+
ω2
T

γ2σ2

)
=
α2
t

β2
t

β2
T

β2
t

+ 2
αt
γσ

β2
T

β2
t

(ωT − ωt) +
β2
T

γ2σ2
(ωT − ωt)2 . (A.55)

Substituting (A.55) into (A.54) and using the lognormality of DT , we obtain

Et
[
Da
TM

b
T

]
= Da

t e
a(µ− 1

2
σ2)(T−t)M b

t

(
βT
βt

)b
e
− b

2

α2t
β2t

(
1−β

2
T
β2t

)
Et

[
e

(
bαt
γσ

β2T
β2t

+aσ

)
(ωT−ωt)+ 1

2

bβ2T
γ2σ2

(ωT−ωt)2
]
.

(A.56)

Since conditional on time-t information ωT − ωt ∼ N (0, T − t), we have

Et

[
e

(
bαt
γσ

β2T
β2t

+aσ

)
(ωT−ωt)+ 1

2

bβ2T
γ2σ2

(ωT−ωt)2
]

=

[
1− b

γ

(
1− β2

T

β2
t

)]− 1
2

e
1
2

[
1− b

γ

(
1−β

2
T
β2t

)]−1(
bαt
γσ

β2T
β2t

+aσ

)2

(T−t)
,

which after substituting into (A.56) and rearranging gives (A.53).

Lemma A2. Let the processes η (θ) and M be as in (A.7) and (A.9), respectively. Then

Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= ξtStK

−1

(
1√

2πβ2
o

e
− 1

2
(θ−αo)2

β2o

)−1
1√

2πβ2
tA

2
t

e
− 1

2

(θ−[αt−(1− 1
γ )β2t (T−t)])

2

β2t A
2
t ,

(A.57)

where the positive deterministic process A2 is given by

A2
t =

1

γ
+

(
1− 1

γ

)
β2
T

β2
t

. (A.58)

Proof of Lemma A2. Using (A.3) and the lognormality of DT , we have

ηT (θ)
1
γ = e

− θ
γσ2

(µ− 1
2
σ2)T− 1

2γ
θ2

σ2
T
D

θ
γσ2

T .

Therefore, the required expectation becomes

Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= e

− θ
γσ2

(µ− 1
2
σ2)T− 1

2γ
θ2

σ2
TEt

[
D

1−γ+ θ
γσ2

T Mγ−1
T

]
. (A.59)
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Letting a = 1− γ + θ
γσ2 and b = γ − 1 in Lemma A1 yields

Et
[
D

1−γ+ θ
γσ2

T Mγ−1
T

]
= D

1−γ+ θ
γσ2

t Mγ−1
t

1

At

(
βT
βt

)(γ−1)

e

(
1−γ+ θ

γσ2

)
(µ− 1

2
σ2)(T−t)

e
− γ−1

2

α2t
β2t

(
1−β

2
T
β2t

1

A2
t

)

×e
αt
A2
t
(1− 1

γ )
(

1−γ+ θ
γσ2

)
β2T
β2t

(T−t)
e

1
2

1

A2
t

(
1−γ+ θ

γσ2

)2
σ2(T−t)

, (A.60)

where the deterministic positive process A2
t as in (A.58). Substituting the equality

D
θ
γσ2

t = e
θ
γσ2

(µ− 1
2
σ2)t+θ

(
αt
β2t
−αo
β2o

)
,

and (A.60) into (A.59) and rearranging leads to

Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= D1−γ

t Mγ−1
t

1

At

(
βT
βt

)(γ−1)

e(1−γ)(µ− 1
2
σ2)(T−t)

×e−
1
2
θ2

γσ2
T
e
θ

(
αt
β2t
−αo
β2o

)
e
− γ−1

2

α2t
β2t

(
1−β

2
T
β2t

1

A2
t

)

×e
αt
A2
t
(1− 1

γ )
(

1−γ+ θ
γσ2

)
β2T
β2t

(T−t)
e

1
2

1

A2
t

(
1−γ+ θ

γσ2

)2
σ2(T−t)

. (A.61)

We then substitute

ξtSt = Et
[
D1−γ
T Mγ

T

]
= D1−γ

t Mγ
t

(
βT
βt

)γ−1

e(1−γ)(µ− 1
2
σ2)(T−t)e(1−γ)αt(T−t)e

1
2

(1−γ)2σ2 β
2
t
β2
T

(T−t)
,

and the equalities

1− β2
T

β2
t

1

A2
t

=
1

A2
t

β2
T

γ2σ2
(T − t) , and

(
1− 1

γ

)
β2
T

γσ2
(T − t) = 1− A2

t ,

along with (A.9) into (A.61) to obtain

Et
[
ηT (θ)

1
γ D1−γ

T Mγ−1
T

]
= ξtStK

−1

(
1√

2πβ2
o

e
− 1

2
(θ−αo)2

β2o

)−1
1√

2πβ2
tA

2
t

×e−
1
2

(θ−αo)2

β2o e
1
2

α2o
β2o
− 1

2

α2t
β2t e(γ−1)αt(T−t)e

− 1
2

(1−γ)2σ2 β
2
t
β2
T

(T−t)
e
− 1

2
θ2

γσ2
T
e
θ

(
αt
β2t
−αo
β2o

)

×e
− γ−1

2

α2t
β2t

1

A2
t

β2T
γ2σ2

(T−t)
e
αt
A2
t

(
1−γ+ θ

γσ2

)
γσ2

β2t
(1−A2

t)
e

1
2

1

A2
t

(
1−γ+ θ

γσ2

)2
σ2(T−t)

.

We note that the last two rows in the above equation is equal to

e
− 1

2

(θ−[αt−(1− 1
γ )β2t (T−t)])

2

β2t A
2
t ,

and so we obtain (A.57).
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