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Abstract

We consider signaling and learning dynamics in a Cournot oligopoly where firms have private

information about their production costs and only observe the market price, which is subject

to unobservable demand shocks. An equilibrium is Markov if it depends on the history of

play only through the firms’ beliefs about costs and calendar time. We characterize symmetric

linear Markov equilibria as solutions to a boundary value problem. In every such equilibrium,

given a long enough horizon, play converges to the static complete information outcome for the

realized costs, but each firm only learns its competitors’ average cost. The weights assigned to

private and public information under the equilibrium strategies are non-monotone over time.

We explain this by decomposing incentives into signaling and learning, and discuss implications

for prices, quantities, and profits.

1 Introduction

Despite the role of asymmetric information in explaining specific anti-competitive practices such as

limit pricing (Milgrom and Roberts, 1982b) or price rigidity in cartels (Athey and Bagwell, 2008),

the question of learning and information aggregation in product markets under incomplete infor-

mation has received little theoretical attention. Motivated by the recent interest in the industrial

organization of such markets (see, e.g., Fershtman and Pakes, 2012; Doraszelski, Lewis, and Pakes,

2014), we provide a theoretical analysis of “Markov perfect oligopolistic competition” in a new

market where firms have incomplete information about their rivals’ production costs.

More specifically, we study a dynamic Cournot oligopoly where each firm has private information

about its cost and only observes the market price, which is subject to unobservable demand shocks.

The presence of asymmetric information introduces the possibility of signaling with the resulting

dynamics capturing the jockeying for position among oligopolists before the market reaches its

long-run equilibrium. We are interested in the allocative and welfare implications of the firms’

∗We thank Johannes Hörner, Greg Pavlov, Andy Skrzypacz, Philipp Strack, and Alexander Wolitzky for useful
discussions, and the seminar audiences at Northwestern, Stanford, Cowles, and Warwick for comments. Bonatti:
Sloan School of Management, MIT, 100 Main Street, Cambridge MA 02142, bonatti@mit.edu. Cisternas: Sloan
School of Management, MIT, 100 Main Street, Cambridge MA 02142, gcistern@mit.edu. Toikka: Department of
Economics, MIT, 77 Massachusetts Avenue, Cambridge MA 02139, toikka@mit.edu.
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attempts to signal their costs. For example, how does signaling impact the distribution of market

shares, the total industry profits and the consumer surplus over time?

The main challenge in analyzing such settings is keeping track of the firms’ beliefs. We therefore

consider a linear Gaussian environment, casting the analysis in continuous time. That is, the

market demand function and the firms’ cost functions are assumed linear in quantities, the constant

marginal costs are drawn once and for all from a symmetric normal prior, and the noise in the

market price is given by the increments of a Brownian motion. Restricting attention to equilibria

in strategies that are linear in the history, we can derive the firms’ beliefs using the Kalman filter.

When costs are private information, a natural way to impose a Markov restriction on behavior

is to allow current outputs to depend on the history only through the firms’ beliefs about the costs.

But when outputs are unobservable, these beliefs are also private information: not observing its

output, a firm’s rivals cannot tell what inference the firm made from the price. Thus, if the firm

plays as a function of its belief—that is, if the belief is part of its “state”—then its rivals have to

entertain (private) beliefs about this belief, and so on, making the problem seemingly intractable.1

However, building on Foster and Viswanathan’s (1996) analysis of a multi-agent version of Kyle’s

(1985) insider trading model, we show that under symmetric linear strategies each firm’s belief can

be written as the weighted sum of its own cost and the public posterior expectation about the

average industry cost conditional on past prices. In particular, own cost and the public belief are

sufficient statistics for the firm’s beliefs despite there being a non-trivial hierarchy of beliefs. The

same is true even if the firm unilaterally deviates from the symmetric linear strategy profile once

we appropriately augment these statistics to account for the resulting bias in the public belief.

The representation of beliefs allows representing all symmetric linear Markov strategies as affine,

time-dependent functions of the firm’s own cost and the public belief. We consider equilibria in

such strategies, and show that they are characterized by solutions to a boundary value problem,

which is the key to our analysis.

The boundary value problem characterizing Markov equilibria consists of a system of differential

equations for the coefficients of the equilibrium strategy and the posterior variance of the public

belief. As is well known, there is no general existence theory for such problems. Indeed, the biggest

technical challenge in our analysis is establishing the existence of a solution to the boundary value

problem, or, equivalently, the existence of a symmetric linear Markov equilibrium. We provide a

sufficient condition for existence in terms of the model’s parameters, which amounts to requiring

that the incentive to signal not be too strong. The condition is not tight but not redundant either:

a Markov equilibrium may fail to exist if the signaling incentive is sufficiently strong. On the other

hand, we can say surprisingly much analytically about the properties of Markov equilibria.

Regarding learning and long-run behavior, we show that in every symmetric linear Markov equi-

librium, play converges to the static complete information outcome for the realized costs provided

that the horizon is taken to be long enough. However, the firms only learn the average cost of

their rivals because of the identification problem caused by the ex ante symmetry of firms and the

1This is the “forecasting the forecasts of others problem” of Townsend (1983).
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one-dimensional market price.

The equilibrium strategy assigns weights to the firm’s own cost and the public information

that are non-monotone in time. We show that after an appropriate regrouping of terms, this

can be understood as arising from learning and signaling. Roughly, equilibrium coefficients under

myopic play, which only reflects learning, are monotone over time. Similarly, the coefficients that

correspond to the signaling component of a forward-looking player’s best response are monotone

over time, but in the opposite direction than under myopic play. It is these two opposite monotone

effects that sum up to the non-monotone coefficients of the equilibrium strategy.

Signaling results in the expected total quantity being above the corresponding static complete

information level, which in turn implies that the expected market price is depressed below its static

complete information level. Moreover, at any point in time, consumers only observing historical

prices expect prices to increase in the future. This suggests industry profits improve over time.

Because firms assign non-monotone weights to their own costs, however, the difference in any two

firms’ outputs is non-monotone over time conditional on their realized costs. This has implications

for productive efficiency. In particular, this may lead the expected profitability of the market to be

the highest in the medium run.

Related Literature The early literature on the effects of asymmetric information on dynamic

oligopolistic competition mostly considers two period models, often with one-sided private informa-

tion, focusing on issues such as limit pricing and predation that are complementary to our analysis

of learning and signaling over a long horizon. See, e.g., Milgrom and Roberts (1982a), Riordan

(1985), Fudenberg and Tirole (1986), or the dynamic analysis of reputation by Milgrom and Roberts

(1982b). More related are Mailath (1989) and Mester (1992), who construct separating equilibria

in two and three-period oligopoly games with private costs and observable actions, and Mirman,

Samuelson, and Urbano (1993), who provide a theory of signal-jamming in a duopoly with common

demand uncertainty. Our model has elements of both as noisy signaling eventually leads to the play

converging to the complete information outcome, but in the meantime the equilibrium strategies

exhibit signal-jamming.

More recently, Athey and Bagwell (2008) study collusion among patient firms in a repeated

Bertrand oligopoly with fully persistent private costs as in our model. Their main interest is in

identifying conditions under which the best collusive equilibrium features rigid pricing at the cost

of productive efficiency. In such equilibria, all cost types pool at the same price and there is no

learning. In contrast, we consider a Cournot oligopoly with a fixed discount rate, and focus on

Markov equilibria where firms actively signal their costs and learning is central to the analysis.2

Fershtman and Pakes (2012) consider the steady state of a learning-inspired adjustment process

2The focus on Markov equilibria and the use of continuous time methods also distinguishes our work from the
literature on repeated Bayesian games with fully or partially persistent types, which has almost exclusively restricted
attention to patient players, typically focusing on cooperative equilibria See, e.g., Aumann and Maschler (1995),
Hörner and Lovo (2009), Escobar and Toikka (2013), Peski (2014), or Hörner, Takahashi, and Vieille (forthcoming)).
There is also a literature on learning in repeated games of incomplete information under myopic play, see, e.g., Nyarko
(1997).
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in a dynamic oligopoly with privately observed states in an effort to incorporate incomplete infor-

mation into the analysis of Markov-perfect industry dynamics (Cabral and Riordan, 1994, Ericson

and Pakes, 1995, Weintraub, Benkard, and Van Roy, 2008, Doraszelski and Satterthwaite, 2010).

Their approach is entirely computation-oriented, whereas we apply a standard solution concept

and focus on analytical results.3

Our analysis is also related to the literature on information sharing in oligopoly, beginning with

Vives (1984) and Gal-Or (1985), and generalized by Raith (1996). More recent contributions to

static oligopolistic competition with asymmetric information include, among others, the analysis

of supply-function equilibria by Vives (2011) and Bernhardt and Taub (2015).

A large literature studies strategic use of information and its aggregation through prices in

financial markets following the seminal analysis by Kyle (1985). Most closely related to our work

is the multiagent version of Kyle’s model developed by Foster and Viswanathan (1996) mentioned

above, and its continuous-time analog studied by Back, Cao, and Willard (2000). We share their fo-

cus on linear equilibria in a Gaussian environment. However, strategic trading in a financial market

with common values differs starkly from product market competition under strategic substitutes

and private values. In the former, the players limit their trades in order to retain their informa-

tional advantage, whereas in the latter, they engage in excess production in an effort to signal their

costs and to discourage their rivals, leading to qualitatively different equilibrium behavior. The

differences between the games also result in the analysis being technically substantially different.

Finally, Cisternas (2015) develops methods for continuous-time games where learning is common

in equilibrium but private beliefs arise after deviations. In contrast, our firms start with private

costs and have private beliefs even on the equilibrium path.

Outline The rest of the paper is organized as follows. We setup the model in the next section, and

consider the firms’ beliefs under linear strategies in Section 3. We then turn to Markov strategies

and Markov equilibria in Section 4, and discuss properties of such equilibria in Section 5. We

conclude in Section 6 with a discussion of the modeling assumptions and possible extensions. All

proofs are in the Appendix.

2 Model

We consider a Cournot game with privately known costs and imperfect monitoring, played in

continuous time over the compact interval [0, T ]. There are n ≥ 2 firms, each with a privately

known (marginal) cost Ci (i = 1, . . . , n). The firms’ common prior is that the costs are i.i.d.

normal random variables with mean π0 and variance g0.
4

At each time t ∈ [0, T ], each firm i supplies a quantity Qit ∈ R. The firms do not observe each

3Nevertheless, finding a solution to our system numerically is trivial. Thus, in contrast to the discrete dynamic
oligopoly models our problem is computationally much simpler.

4We discuss the role of assumptions such as finite horizon, symmetry, and independence in Section 6.
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others’ quantities, but observe the revenue process

dYt = (p̄−
∑
i

Qit)dt+ σdZt, (1)

where p̄ > 0 is the demand intercept, σ2 > 0 is the variance, and Z is a standard Brownian motion

that is independent of the firms’ costs. The current market price is given by the increment of the

controlled process Y . The resulting flow payoff to firm i is Qit(dYt−Cidt), which the firm discounts

at rate r ≥ 0 common to all firms.

A pure strategy for a firm determines current output as a function of the firm’s cost, past prices,

and own past outputs. However, because of the noise in the market price, no firm can ever observe

that another firm has deviated from a given strategy.5 For the analysis of equilibrium outcomes it

therefore suffices to know the quantities each firm’s strategy specifies at histories that are consistent

with the strategy being followed, i.e., on the path play. Thus, abusing terminology, we define a

strategy to be only a function of the firm’s cost and prices, leaving off-path behavior unspecified.

This notion of strategy can be viewed as extending public strategies studied in repeated games with

imperfect public monitoring to a setting with private costs.

Formally, a (pure) strategy for firm i is a process Qi that is progressively measurable with

respect to the filtration generated by (Ci, Y ).6 A strategy profile (Q1, . . . , Qn) is admissible if (i)

for each i, E[
´ T
0 (Qit)

2dt] < ∞, in which case we write Qi ∈ L2[0, T ], and (ii) equation (1) has a

unique solution Y ∈ L2[0, T ]. The expected payoff of firm i under an admissible strategy profile is

well defined and given by

E
[ˆ T

0
e−rtQitdYt − Ci

ˆ T

0
e−rtQitdt

]
= E

[ˆ T

0
e−rt(p̄−

∑
j

Qjt − Ci)Qitdt
]
. (2)

Payoff from all other strategy profiles is set to −∞. In what follows, a strategy profile is always

understood to mean an admissible one unless noted otherwise.

A Nash equilibrium is a strategy profile (Q1, . . . , Qn) from which no firm has a profitable devia-

tion.7 We focus on equilibria in strategies that are linear in histories to facilitate tractable updating

of beliefs, but we allow firms to contemplate deviations to arbitrary strategies. Formally, firm i’s

strategy Qi is linear if there exist (Borel measurable) functions α, δ : [0, T ]→ R and f : [0, T ]2 → R
5As the firms’ quantities only affect the drift of Y , the monitoring structure has full support in the sense that any

two (admissible) strategy profiles induce equivalent measures over the space of sample paths of Y .
6More precisely, let Bi be the sigma-algebra on R generated by Ci, and let F = {Ft} be the filtration on C[0, T ],

the space of continuous functions on [0, T ], where each Ft is generated by sets {f ∈ C[0, T ] : fs ∈ Γ}, where s ≤ t and
Γ is a Borel set in R. (Heuristically, F corresponds to observing the past of the process Y .) A strategy is a process
Qi that is progressively measurable with respect to F̄ i := {F̄ i

t}, where F̄ i
t := Bi ⊗Ft.

7The best-response problem against a profile Q−i of other players’ strategies can be viewed as a stochastic control
problem with a partially observable state (see, e.g., Davis and Varaiya, 1973, or the general formulation in Davis,

1979). In particular, any admissible strategy profile (Qi, Q−i) induces a probability measure P(Qi,Q−i) such that (1)

holds. A deviation to any strategy Q̂i such that (Q̂i, Q−i) is admissible amounts to changing the measure to P(Q̂i,Q−i)

(cf. Sannikov, 2007); payoff from other deviations is −∞.
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such that8

Qit = αtC
i +

ˆ t

0
f tsdYs + δt, t ∈ [0, T ]. (3)

A profile of linear strategies is symmetric if the functions (α, f, δ) are the same for all firms. Our

interest is in Nash equilibria in symmetric linear strategies that condition on the history only

through its effect on the firms’ beliefs about the cost vector (C1, . . . , Cn) and calendar time. Such

equilibria, which we define formally below, are a natural extension of Markov perfect equilibrium

to our model.

3 Beliefs under Linear Strategies

As a step towards Markov equilibria, we derive sufficient statistics for the firms’ beliefs about costs

under symmetric linear strategies and unilateral deviations from them.

Fix firm i, and suppose the other firms are playing symmetric linear strategies so that Qjt =

αtC
j +Bt(Y

t) for j 6= i, where Bt(Y
t) :=

´ t
0 f

t
sdYs + δt. Regardless of its own strategy, firm i can

always subtract the effect of its own quantity and that of the public component Bt(Y
t) of the other

firms’ quantities on the price, and hence the relevant signal for firm i about Cj , j 6= i, is

dY i
t := −αt

∑
j 6=i

Cjdt+ σdZt = dYt −
(
p̄−Qit − (n− 1)Bt(Y

t)
)
dt. (4)

Therefore, firm i’s belief about the other firms’ costs can be derived by applying the Kalman filter

with Y i as the signal and C−i as the unknown vector. Moreover, since the other firms are ex ante

symmetric and play symmetric strategies, firm i can only ever hope to filter the sum of their costs.

The following lemma formalizes these observations.

Lemma 1. Under any symmetric linear strategy profile and any strategy of firm i, firm i’s posterior

at t ∈ [0, T ] is that Cj, j 6= i, are jointly normal, each with mean M i
t := 1

n−1E
[∑

j 6=iC
j
∣∣FY i

t

]
,

and with a symmetric covariance matrix Γt = Γ(γMt ), where the function Γ : R → R2(n−1) is

independent of t, and

γMt := E
[(∑

j 6=i
Cj − (n− 1)M i

t

)2∣∣∣FY i

t

]
=

(n− 1)g0

1 + (n− 1)g0
´ t
0 (αs

σ )2ds

is a deterministic nonincreasing function of t.

The upshot of Lemma 1 is that firm i’s belief is summarized by the pair (M i
t , γ

M
t ). The

expectation about the other firms’ average cost, M i
t , is firm i’s private information as the other

firms do not observe i’s quantity and hence do not know what inference it made. (Formally, Qi

8A necessary and sufficient condition for a linear strategy profile to be admissible is that all the functions α, δ,
and f be square-integrable over their respective domains (Kallianpur, 1980, Theorem 9.4.2). Note that in discrete
time, any affine function of own cost and past prices takes the form qit = αtci +

∑
s<t f

t
s(ys − ys−1) + δt. Equation

(3) can be viewed as a limit of such strategies.
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enters Y i.) The posterior variance γMt is a deterministic function of time because the function α

in the other firms’ strategy is taken as given.

By Lemma 1, asking symmetric linear strategies to condition on history only through beliefs

amounts to requiring each firm i’s output at time t to only depend on Ci, M i
t , and t. From the

perspective of the normal form of the game, this is simply a measurability requirement on the

firms’ strategies, and causes no immediate problems. However, showing the existence of a Nash

equilibrium in strategies of this form requires verifying the optimality of the strategies to each

firm, and for this it is essentially necessary to use dynamic optimization. But formulating firm i’s

best-response problem as a dynamic optimization problem, we then have M j , j 6= i, appearing as

unobservable states in firm i’s problem, and we thus need to consider i’s second-order beliefs about

them. Indeed, it could even be the case that firm i’s best response then has to explicitly condition

on these second-order beliefs, requiring them to be added to the state, and so on, leading to an

infinite regress problem.

It turns out, however, that for linear Gaussian models there is an elegant solution, first applied

to a strategic setting by Foster and Viswanathan (1996). The key observation is that each firm’s

private belief can be expressed as a weighted sum of its own cost and the public belief about the

average cost conditional on past prices. Thus, even when the other firms’ behavior conditions

on their beliefs, firm i only needs to have a belief about their costs as the public belief is public

information. Firm i’s belief in turn is just a function of its cost and the public belief.

More specifically, consider the posterior expectation about the average firm cost conditional on

the revenue process Y under a symmetric linear strategy profile. This public belief is defined as

Πt := 1
nE
[∑

j C
j
∣∣FYt ], with corresponding posterior variance γt := E

[(∑
j C

j − nΠt

)2∣∣FYt ].9 It

can be computed using the Kalman filter with Y as the signal and the sum
∑

j C
j as the unknown

parameter (see Lemma A.1 in the Appendix), and it corresponds to the belief of an outsider who

knows the strategy, but only observes the prices (cf. market makers in Foster and Viswanathan,

1996). We note for future reference that the posterior variance of the public belief is a deterministic

function of time given by

γt =
ng0

1 + ng0
´ t
0 (αs

σ )2ds
, t ∈ [0, T ]. (5)

The public belief can be used to express private beliefs as follows.

Lemma 2. Under any symmetric linear strategy profile, for each firm i,

M i
t = ztΠt + (1− zt)Ci, t ∈ [0, T ],

where

zt :=
n

n− 1

γMt
γt

=
n2g0

n(n− 1)g0 + γt
∈
[
1,

n

n− 1

]
(6)

is a deterministic nondecreasing function of t.

9We use the posterior variance of nΠt for notational convenience.
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That is, on the path of play of a symmetric linear strategy profile, each firm’s private belief

M i
t is a weighted average of the public belief Πt and its cost Ci, with the weight zt a deterministic

function of time. Heuristically, Ci captures the firm’s private information about both its cost and

its past outputs (whose private part equals αsC
i at time s), and hence it is the only additional

information the firm has compared to an outsider observing prices. The functional form comes

from the properties of normal distributions, since under linear strategies the system is Gaussian.

Moreover, since γMt is also only a function of time by Lemma 1, the tuple (Ci, Πt, t) is a sufficient

statistic for firm i’s posterior belief at time t.10

If firm i unilaterally deviates, then the formula in Lemma 2 does not apply to its belief because

the public belief Πt assumes that all firms play the same linear strategy. (The formula still holds

for the other firms, because they do not observe the deviation.) At such off path histories, it is

convenient to represent firm i’s belief in terms of a counterfactual public belief, which corrects for

the difference in firm i’s quantities, and which coincides with Πt if i has not deviated.

Lemma 3. Under any symmetric linear strategy profile and any strategy of firm i,

M i
t = ztΠ̂

i
t + (1− zt)Ci, t ∈ [0, T ],

where zt is as in Lemma 2, and the process Π̂ i is defined by

dΠ̂ i
t = λtαt

(
1 + (n− 1)(1− zt)

)
(Π̂ i

t − Ci)dt+ λtσdZ
i
t , Π̂ i

0 = π0,

where

λt := −αtγt
nσ2

, and dZit :=
dY i

t + (n− 1)αt
(
ztΠ̂

i
t + (1− zt)Ci

)
dt

σ

is a standard Brownian motion (with respect to FY i
) called firm i’s innovation process. Moreover,

if firm i plays on [0, t) the same strategy as the other firms, then Π̂ i
t = Πt.

The counterfactual public belief Π̂ i evolves independently of firm i’s strategy by construction.

However, it is defined in terms of the process Y i defined in (4), and hence its computation requires

knowledge of firm i’s past quantities. Thus Π̂ i
t is in general firm i’s private information. Neverthe-

less, if firm i plays the same strategy as the other firms, then the counterfactual and actual public

beliefs coincide (i.e., Π̂ i
t = Πt) and we obtain Lemma 2 as a special case. In general, however, firm

i’s posterior at time t is captured by (Ci, Π̂ i, t).11

10In fact, each firm i’s entire time-t hierarchy of beliefs is captured by (Ci, Πt, t). For example, firm i’s first-order
belief about firm j’s cost Cj is normal with mean ztΠt + (1 − zt)Ci and variance a function of γM

t , where zt and
γM
t are only functions of t. Thus to find, say, firm k’s second-order belief about firm i’s first-order belief about Cj ,

we only need k’s first-order belief about Ci because (Πt, t) are public. But k simply believes that Ci is normal with
mean ztΠt + (1− zt)Ck and variance a function of γM

t . And so on.
11If firm i has deviated from the symmetric linear strategy profile, then its time-t hierarchy of beliefs is captured

by (Ci, Πt, Π̂
i
t , t): its first-order belief uses Π̂i

t instead of Πt, but since each firm j 6= i still forms its (now biased)
beliefs using (Cj , Πt, t), Πt is needed for the computation of higher order beliefs.
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4 Markov Equilibria

In games of complete information, a Markov (perfect) equilibrium requires behavior to only depend

on the payoff-relevant part of history. In our model, only the costs and calendar time are directly

payoff relevant, but because the firms do not know each others’ costs, it is in general necessary

to let behavior to depend on the history through its effect on the firms’ beliefs about costs. Our

Markov restriction is to not allow any more history dependence than that.

With this motivation, we say that a strategy profile is Markov if each firm’s strategy depends

on the history only through calendar time and the firm’s belief about the cost vector (C1, . . . , Cn).

Based on our analysis in Section 3, we have the following characterization of symmetric linear

Markov strategies.

Lemma 4. A symmetric linear strategy profile is Markov if and only if there exist functions α, β, δ :

[0, T ]→ R, called the coefficients, such that for each firm i,

Qit = αtC
i + βtΠt + δt, t ∈ [0, T ].

That a strategy of this form only conditions on calendar time and firm i’s belief about costs

(including its own) is immediate from the fact that i’s belief is summarized by (Ci, Πt, t). The

other direction combines this representation of beliefs with the observation that Πt is itself a linear

function of history, and hence for a strategy conditioning on it to be linear in the sense of (3), it

has to take the above form.12

We then define our notion of Markov equilibrium as follows.

Definition 1. A symmetric linear Markov equilibrium is a Nash equilibrium in symmetric linear

strategies such that (i) the strategy profile is Markov, and (ii) the coefficients (α, β, δ) of the

equilibrium strategy are continuously differentiable.

We identify a symmetric linear Markov equilibrium with the coefficients (α, β, δ) of the equi-

librium strategy. Their differentiability is included in the above definition to avoid having to keep

repeating it as a qualifier in what follows.

We do not require perfection in the definition of Markov equilibria, since given the full support of

the revenue process Y , the only off-path histories at which a firm can find itself are those that follow

its own deviations. Thus, requiring perfection would not restrict the set of equilibrium outcomes.

Nevertheless, we obtain a partial description of optimal off-path behavior in our best-response

analysis, which we turn to next.

12Since our strategies only prescribe behavior on the path of play, the observation in footnote 10 implies that
Lemma 4 continues to hold verbatim if “firm’s belief” is replaced with “firm’s hierarchy of beliefs” in the definition
of a Markov strategy profile.
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4.1 Best-Response Problem

In order to characterize existence and properties of Markov equilibria, we now explicitly formulate

firm i’s best-response problem to a symmetric linear Markov strategy profile as a dynamic stochastic

optimization problem.

To this end, fix firm i, and suppose the other firms play a symmetric linear Markov strategy

profile (α, β, δ) with differentiable coefficients. We observe first that the tuple (Ci, Πt, Π̂
i
t , t) is the

relevant state for firm i’s problem. To see this, note that the integrand in the expected payoff (2)

is linear in the other firms’ outputs, and hence firm i’s flow payoff at time t depends only on the

other firms’ expected output conditional on i’s information. By Lemmas 1 and 4, this is given by

(n− 1)(αtM
i
t + βtΠt + δt), where the private belief satisfies M i

t = ztΠ̂
i
t + (1− zt)Ci by Lemma 3.

Furthermore, the coefficients (α, β, δ) and the weight z are deterministic functions of time (as are

γ and λ that appear in the laws of motion for Π and Π̂ i). Thus (Ci, Πt, Π̂
i
t , t) fully summarizes

the state of the system.

Using the state (Ci, Πt, Π̂
i
t , t), the normal form of firm i’s best-response problem can be written

as

sup
Qi∈L2[0,T ]

E
[ ˆ T

0
e−rt

[
p̄−Qit − (n− 1)(αtM

i
t + βtΠt + δt)− Ci

]
Qitdt

]
subject to

dΠt = λt[(αt + βt)Πt + δt −Qit + (n− 1)αt(Πt −M i
t )]dt+ λtσdZ

i
t , Π0 = π0,

dΠ̂ i
t = λt[αt(Π̂

i
t − Ci) + (n− 1)αt(Π̂

i
t −M i

t )]dt+ λtσdZ
i
t , Π̂ i

0 = π0,

M i
t = ztΠ̂

i
t + (1− zt)Ci.

The only sources of randomness in the problem are the initial draw of Ci and firm i’s innovation

process Zi defined in Lemma 3, which is a standard Brownian motion.

The law of motion of the public belief Π is simply the dynamic from Lemma A.1 written from

firm i’s perspective.13 Conditional on prices, Π is a martingale, but from i’s perspective it has a

drift, which consist of two components. The first component, (αt + βt)Πt + δt − Qit, captures the

difference between the public expectation of firm i’s output and firm i’s actual output. The second,

(n − 1)αt(Πt −M i
t ), captures the difference between the public’s and firm i’s expectations about

the other firms’ outputs due to firm i’s superior information about their costs. Since Qi enters the

drift, firm i controls the public belief Π. This allows the firm to (noisily) signal its cost and makes

the problem dynamic.

The other stochastically evolving state variable, the counterfactual public belief Π̂ i, evolves

13Noting that under Markov strategies, Bt(Y
t) = βtΠt + δt, we have by Lemma A.1 and equation (4),

dΠt = λt

[
dYt −

(
p̄− αtnΠt − nBt(Y

t)
)
dt
]

= λt

[
dY i

t + (αtnΠt + βtΠt + δt −Qi
t)dt

]
= λt

[
σdZi

t +
(
αtnΠt + βtΠt + δt −Qi

t − αt(n− 1)M i
t

)
dt
]
,

where the last step is by definition of the innovation process dZi := σ−1[dY i + (n− 1)αtM
i
tdt] in Lemma 3.
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exogenously. (Its law of motion is given in Lemma 3.) The interpretation of its drift is the

same as that of Π, except that Π̂ i is calculated assuming that firm i plays the strategy (α, β, δ)

and hence the difference in its expected and realized quantity is just αt(Π̂
i
t − Ci). Note that

d(Πt− Π̂ i
t) = λt[αtn(Πt− Π̂ i

t) +αtC
i+βtΠt+ δt−Qit]dt, from which it is immediate that Πt = Π̂ i

t

if firm i has indeed played according to (α, β, δ) in the past.

Firm i’s best-response problem can be formulated recursively as the Hamilton-Jacobi-Bellman

(HJB) equation

rV (c, π, π̂, t) = sup
q∈R

{[
p̄− q − (n− 1)

(
αt(ztπ̂ + (1− zt)c) + βtπ + δt

)
− c
]
q

+ µt(q)
∂V

∂π
+ µ̂t

∂V

∂π̂
+
∂V

∂t
+
λ2tσ

2

2

(∂2V
∂π2

+ 2
∂2V

∂π∂π̂
+
∂2V

∂π̂2

)}
, (7)

where the drifts of Π and Π̂ i are, as above,

µt(q) := λt
[
(αt + βt)π + δt − q + (n− 1)αt

(
π − (ztπ̂ + (1− zt)c)

)]
,

µ̂t := λtαt
[
1 + (n− 1)(1− zt)

]
(π̂ − c),

written here using Lemma 3 to express firm i’s belief as ztπ̂ + (1− zt)c.
The objective function in the maximization problem on the right-hand side of (7) is linear-

quadratic in q with −q2 the only quadratic term, and thus it is strictly concave. Therefore, there

is a unique maximizer q∗(c, π, π̂, t) given by the first-order condition

q∗(c, π, π̂, t) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2
− λt

2

∂V

∂π
, (8)

where the first term is the myopic best response, and the second term captures the dynamic incentive

to signal.

It is worth noting that here continuous time greatly simplifies the analysis. The same arguments

can be used in discrete time to derive a Bellman equation analogous to (7). The public belief still

enters the flow payoff linearly, so the value function is convex in π. However, the quantity q then

affects the level of π linearly, which means that the optimization problem in the Bellman equation

has a convex term in q. Moreover, this term involves the value function—an endogenous object—

which makes it hard to establish the existence and uniqueness of an optimal quantity. In contrast,

in continuous time q only affects the drift of π, which in turn affects the value of the problem

linearly. This renders the HJB equation strictly concave in q by inspection.

4.2 Characterization

We can view any symmetric linear Markov equilibrium as a solution to the HJB equation (7)

satisfying the fixed point requirement that the optimal policy coincide with the strategy to which

the firm is best responding. This leads to a boundary value problem characterization of such

11



equilibria, which is the key to our analysis.

More specifically, we proceed as follows. We show first that if (α, β, δ) is a symmetric linear

Markov equilibrium, then the solution to the HJB equation (7) is a (continuation) value function

of the form

V (c, π, π̂, t) = v0(t) + v1(t)π + v2(t)π̂ + v3(t)c+ v4(t)ππ̂

+ v5(t)πc+ v6(t)π̂c+ v7(t)c
2 + v8(t)π

2 + v9(t)π̂
2 (9)

for some differentiable vk : R → R, k = 0, . . . , 9, and a linear optimal policy exists on and off the

path of play.14 Substituting for ∂V/∂π in the first-order condition (8) using (9), we see that the

best response to the equilibrium strategy can be written as

q∗(c, π, π̂, t) = α∗t c+ β∗t π + δ∗t + ξ∗t (π̂ − π).

The fixed point requirement is thus simply that (α∗, β∗, δ∗) = (α, β, δ).

The off-path coefficient ξ∗ is a free variable given our focus on Nash equilibria, but this argument

shows that optimal off-path behavior is necessarily linear, and that a best response exists on and

off the path of play.

After imposing the fixed point, the HJB equation (7) reduces to a system of ordinary differential

equations (ODEs) for the coefficients vk of the value function V and the posterior variance γ.

However, it turns out to be more convenient to consider an equivalent system of ODEs for γ

and the coefficients (α, β, δ, ξ) of the optimal policy along with the relevant boundary conditions.

This identifies symmetric linear Markov equilibria with solutions to a boundary value problem. A

verification argument establishes the converse.

For a formal statement, define the functions αm, βm, δm, ξm : R→ R by

αm(x) := − (n− 1)ng0 + x

(n− 1)ng0 + (n+ 1)x
, δm(x) :=

p̄

n+ 1
,

βm(x) :=
(n− 1)n2g0

(n+ 1)[(n− 1)ng0 + (n+ 1)x]
, ξm(x) :=

(n− 1)n2g0
2[(n− 1)ng0 + (n+ 1)x]

.

(10)

In the proof of the following result, we show that these are the myopic equilibrium coefficients given

posterior variance x. In particular, firm i’s time-T output under the equilibrium best-response

policy is QiT = αm(γT )Ci + βm(γT )ΠT + δm(γT ) + ξm(γT )(Π̂ i
T −ΠT ).

Recalling from (6) that zt is only a function of the current γt, we have the following character-

ization of equilibria.

14The proof uses the fact that the best-response problem is a stochastic linear-quadratic regulator (see, e.g., Yong
and Zhou, 1999, Chapter 6). Note that the posterior variance γt depends non-linearly on the coefficient α, and so
do the weight zt and the sensitivity of the public belief to the price, λt = −αtγt/(nσ

2). Hence, even though the
best-response problem is linear-quadratic because it takes α as given, our game is not a linear-quadratic game in the
sense of the literature on differential games (see, e.g., Friedman, 1971).
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Theorem 1. (α, β, δ) is a symmetric linear Markov equilibrium with posterior variance γ if and

only if δ = −p̄(α+ β) and there exists ξ such that (α, β, ξ, γ) is a solution to

α̇t = r(αt − αm(γt))
αt

αm(γt)
− α2

tβtγt[(n− 1)nαt (zt − 1) + 1]

nσ2
, (11)

β̇t = r(βt − βm(γt))
αt

αm(γt)

+
αtβtγt

[
nαt(n+ 1− (n− 1)zt − (n2 − 1)βt(zt − 1)) + (n− 1)βt

]
n(n+ 1)σ2

, (12)

ξ̇t = r(ξt − ξm(γt))
αt

αm(γt)

+
αtγtξt
nσ2

[
ξt − (nαt((n− 1)βt(zt − 1)− 1) + βt)

]
− (n− 1)α2

tβtγtzt
2σ2

, (13)

γ̇t = −α
2
t γ

2
t

σ2
, (14)

with boundary conditions αT = αm(γT ), βT = βm(γT ), ξT = ξm(γT ), and γ0 = ng0.

In particular, such an equilibrium exists if and only if the above boundary value problem has a

solution. A sufficient condition for existence is

g0
σ2

< max

{
r

κ(n)
,

1

3nT

}
, (15)

where the function κ : N→ R++ defined in (A.10) satisfies κ(n) ≤ n− 2 + 1
n for all n.

The derivation of the boundary value problem for (α, β, ξ, γ) proceeds along the lines sketched

above. This is the standard argument for characterizing solutions to HJB equations, save for the

facts that (i) here we are simultaneously looking for a fixed point, and hence also the flow payoff

is determined endogenously as it depends on the strategy played by the other firms, and (ii) we

derive a system of differential equations for the optimal policy rather than for the value function.

The identity δ = −p̄(α+ β) provides a surprising, but very welcome, simplification for equilib-

rium analysis, and allows us to eliminate δ from the boundary value problem. A similar relationship

holds in a static Cournot oligopoly with complete information and asymmetric costs.15 We estab-

lish the result by direct substitution into the ODE for δ. Since this is an equilibrium relationship,

it does not seem possible to establish it by only considering the best-response problem even in a

static model.

The hard part in the proof of Theorem 1 is establishing existence. This requires showing the

existence of a solution to the nonlinear boundary value problem defined by equations (11)–(14)

and the relevant boundary conditions. As is well known, there is no general existence theory

for such problems. We thus have to use ad hoc arguments, which require detailed study of the

system’s behavior. On the upside, we obtain as a by-product a relatively complete description of

equilibrium behavior, which we discuss in the next section. However, due to the complexity of the

15For example, given n = 2 and demand p = p̄−q1−q2, if we define π = (c1 +c2)/2, then the equilibrium quantities
are qi = aci + bπ + d (i = 1, 2), where a = −1, b = 2/3, and d = p̄/3, and hence d = −p̄(a+ b).
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system, we have not been able to prove or disprove uniqueness, even though numerical analysis

strongly suggests that a symmetric linear Markov equilibrium is unique whenever it exists. (All

the results to follow apply to every such equilibrium.)

Our existence proof can be sketched as follows. As ξ only enters equation (13), it is convenient

to first omit it from the system and establish existence for the other three equations. For this we

use the so-called shooting method. That is, we choose a time-T value for γ, denoted γF (mnemonic

for final). This determines the time-T values of α and β by αT = αm(γF ) and βT = βm(γF ). We

then follow equations (11), (12), and (14) backwards in time from T to 0. This gives some γ0,

provided that none of the three equations diverges before time 0. Thus we need to show that γF

can be chosen such that there exists a global solution to (11), (12), and (14) on [0, T ], and the

resulting γ0 satisfies γ0 = ng0. For the latter, note that we have γ0 ≥ γF since γ̇ ≤ 0. Furthermore,

setting γF = 0 yields γ0 = 0. As the system is continuous in the terminal value γF , this implies

that the boundary condition for γ0 is met for some γF ∈ (0, ng0]. The sufficient condition given in

the theorem ensures that α and β remain bounded as we vary γF in this range.

The proof is completed by showing that there exists a solution on [0, T ] to equation (13), viewed

as a quadratic first-order ODE in ξ with time-varying coefficients given by the solution (α, β, γ)

to the other three equations. We use a novel approach where we first establish the existence of ξ,

and hence of equilibria, for g0 sufficiently small, in which case the system resembles the complete

information case. We then observe that if ξ is the first to diverge as g0 approaches some ḡ0 from

below, then some of the coefficients of the equilibrium value function V in (9) diverge. This allows us

to construct a non-local deviation that is profitable for g0 close enough to ḡ0 and hence contradicts

the existence of an equilibrium for all g0 < ḡ0.

The sufficient condition (15) for existence in Theorem 1 is not tight. Numerical analysis sug-

gests that equilibria exist for parameters in a somewhat larger range. However, the condition is

not redundant either. For example, it is possible to prove that, given any values for the other

parameters, if r = 0, then there exists a sufficiently large but finite T̄ such that a symmetric linear

Markov equilibrium fails to exist for T > T̄ . In terms of the decomposition of the firms’ equilibrium

incentives provided in the next section, lack of existence appears to be due to the signaling incen-

tive becoming too strong. Consistent with this interpretation, the condition given in Theorem 1

becomes harder to satisfy if r or σ2 decreases, or if g0 or T increases.

5 Equilibrium Properties

We then turn to the properties of equilibrium strategies and implications for prices, quantities, and

profits. We first summarize properties of the equilibrium coefficients.
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Proposition 1. Let (α, β, δ) be a symmetric linear Markov equilibrium. Then

1. (−αt, βt, δt) ≥ (−αm(γt), β
m(γt), δ

m(γt)) > 0 for all t.

2. α is initially decreasing and if T is sufficiently large, it is eventually increasing.16

3. β is initially increasing and if T is sufficiently large, it is eventually decreasing.

4. δ is eventually decreasing.

5. If r = 0, then α is quasiconvex, β is quasiconcave, and δ is decreasing.

αt

βt

δt

1 2 3 4 5
t

-1

1

2

3

αt ,βt ,δt

Figure 1: Equilibrium Coefficients, (r, σ, n, p̄, T, g0, ) = (0.1, 1, 2, 5, 5, 2).

The first part of Proposition 1 shows that the equilibrium coefficients are everywhere larger in

absolute value than the myopic equilibrium coefficients (for the current beliefs) defined in (10). As

the latter are signed and bounded away from zero, so are the former. In particular, each firm’s

output is decreasing in cost and increasing in the public belief.

The second and third part of the proposition imply that the equilibrium coefficients on private

information, α, and on public information, β, are necessarily nonmonotone for T sufficiently large.

As we discuss below, this seemingly surprising pattern is a natural consequence of learning and sig-

naling. In contrast, the myopic equilibrium coefficients, which only reflect learning, are monotone:

αm(γt) is decreasing, βm(γt) is increasing, and δm(γt) is constant in t by inspection of (10).

The last part of Proposition 1 completes the qualitative description of equilibrium coefficients

for r = 0, in which case −α and β are single peaked and δ is decreasing. In fact, numerical analysis

suggests that these properties always hold even for r > 0, but we are not aware of a proof. Figure

1 illustrates a typical equilibrium.

16A function [0, T ] → R satisfies a property initially if it satisfies it in an open neighborhood of 0. Similarly, the
function satisfies a property eventually if it satisfies it in an open neighborhood of T .
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As an immediate corollary to Proposition 1, we obtain a characterization of long-run behavior.

To see this, note that α is bounded away from zero, since αt ≤ αm(γt) ≤ −1/2 for all t, where the

second inequality is by definition of αm in (10). By inspection of (14), this implies that learning

will never stop. Moreover, since the bound on α is independent of the length of the horizon, the

rate of convergence is uniform across T , in the following sense.

Corollary 1. For all ε > 0, there exists tε < ∞ such that for all T ≥ t ≥ tε, every symmetric

linear Markov equilibrium of the T -horizon game satisfies γt < ε.

This implies that the public belief converges to the true average cost, and hence each firm

learns its rivals’ average cost, asymptotically as we send the horizon T to infinity. Because of the

identification problem arising from a one-dimensional signal and symmetric strategies, the firms

cannot learn the cost of any given rival when there are more than two firms. However, with

linear demand and constant marginal costs, knowing the average is sufficient for the firms to play

their complete information best responses even in this case. Thus, under Markov strategies, play

converges asymptotically to the static complete information Nash equilibrium for the realized costs.

Formally, let Qt := (Q1
t , . . . , Q

n
t ), and let qN : Rn → Rn be the Nash equilibrium map of costs

to quantities in the static, complete information version of our model.

Corollary 2. Suppose rσ2 > g0κ(n). Then for all ε > 0, there exists tε < ∞ such that for all

T ≥ t ≥ tε, every symmetric linear Markov equilibrium of the T -horizon game satisfies P[‖Qt −
qN (C)‖ < ε] > 1− ε.17

The key to the proof is the fact that under the sufficient condition for existence, the equilibrium

coefficients can be shown to converge over time to the static complete information values at a rate

bounded from below uniformly in T . Corollary 2 then follows by noting that the public belief

converges to the true average cost in distribution at a similarly uniform rate by Corollary 1. In

particular, tε being independent of T suggests that it is the Markov restriction rather than the

finite horizon that is driving the convergence to the static complete information Nash outcome,

and, indeed, our other results. We confirm this in Section 6 by showing that as T → ∞, our

equilibria converge to an equilibrium of the infinite horizon version of the model.

5.1 Signaling and Learning

In order to explain the qualitative properties of equilibrium strategies, we consider here how signal-

ing and learning affect the firms’ incentives. For the deterministic part of the equilibrium strategy, δ,

the intuition is well understood in terms of signal-jamming in a game with strategic substitutes.18

Indeed, compared to the myopic equilibrium where δm is constant, the equilibrium δ results in

higher output with the difference (eventually) decreasing over time.

17Here, P denotes the joint law of (C,Qt) under the equilibrium strategies in the game with horizon T . Even
without the condition on r, the result continues to hold for all t sufficiently close to T .

18See, e.g., Riordan (1985), Fudenberg and Tirole (1986), or Mirman, Samuelson, and Urbano (1993).
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For the weights on the own cost and the public belief, i.e., α and β, the intuition seems less

clear at first. From firm i’s perspective, the public belief is not just the average cost of its rivals,

but also includes its own cost. Furthermore, conditioning on Ci serves two purposes: it accounts

both for firm i’s cost of production as well as its belief about the other firms’ average cost as

M i
t = ztΠt + (1− zt)Ci.

To separate these effects, we proceed as follows. Rewrite firm i’s strategy as conditioning

explicitly on its cost Ci and its belief M i
t . That is, fix a symmetric linear Markov equilibrium

(α, β, δ), and define α̂t := αt−βt(1−zt)/zt and β̂t := βt/zt. Then, by Lemma 2, firm i’s equilibrium

quantity on the path of play is given by

Qit = αtC
i + βtΠt + δt = α̂tC

i + β̂tM
i
t + δt, t ∈ [0, T ].

By inspection of the first-order condition (8), there are two drivers of firm i’s output: myopic

flow profits, and the value of signaling. The myopic time-t best response to the equilibrium strategy

is found by setting the second term ∂V/∂π ≡ 0 in (8). Expressed in terms of Ci and M i
t as above,

this gives Qbrt = α̂brt C
i + β̂brt M

i
t + δbrt , where

α̂brt = −(n− 1)βt(zt − 1)

2zt
− 1

2
, β̂brt = −(n− 1)(βt + αtzt)

2zt
, δbrt =

p̄− (n− 1)δt
2

.

The difference between the equilibrium strategy and the myopic best response, or

Qit −Qbrt = (α̂t − α̂brt )Ci + (β̂t − β̂brt )M i
t + (δt − δbrt ), (16)

which corresponds to the second term in (8), is then by construction only due to signaling. Ac-

cordingly, we refer to the coefficients on the right as signaling components.

Proposition 2. In every symmetric linear Markov equilibrium, the signaling components satisfy

1. α̂t − α̂brt < 0, β̂t − β̂brt > 0, and δt − δbrt > 0 for all 0 ≤ t < T , and we have α̂T − α̂brT =

β̂T − β̂brT = δT − δbrT = 0.

2. If r = 0, then |α̂t − α̂brt |, |β̂t − β̂brt |, and |δt − δbrt | are decreasing in t.19

Armed with Proposition 2, we are now in a position to explain equilibrium signaling and the

nonmonotonicity of the equilibrium coefficients. Note first that the ex ante expected signaling

quantity is given by

E[Qit −Qbrt ] = (α̂t − α̂brt )π0 + (β̂t − β̂brt )π0 + (δt − δbrt ) = (δt − δbrt )
(

1− π0
p̄

)
,

where we have used δt = −p̄(α̂t + β̂t) and δbrt = −p̄(α̂brt + β̂brt ). Thus in the relevant range where

π0 < p̄, the expected signaling quantity is positive as the firms are engaging in excess production

19As with some of our other results for r = 0, numerical analysis strongly suggests that this result holds for all
r > 0, but proving it appears difficult without the tractability gained by assuming r = 0.
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in an effort to convince their rivals to scale back production. Moreover, when r = 0, the expected

excess production is monotonically decreasing over time, reflecting the shorter time left to benefit

from any induced reduction in the rivals’ output, and the fact that beliefs are less sensitive to

output when the firms already have a fairly precise estimate of their rivals’ average cost.

The costs and benefits of signaling depend on firm i’s own cost and its belief about the other

firms’ average cost. In particular, a lower cost first makes it cheaper to produce additional out-

put and then results in higher additional profits from the expansion of market share when other

firms scale back their outputs in response. This is captured by the signaling component α̂t − α̂brt
multiplying Ci in (16) being negative. If r = 0, it is decreasing in absolute value over time for the

same reasons why the expected signaling quantity discussed above is decreasing and vanishing at

the end.

The existence of the strictly positive signaling component β̂t − β̂brt multiplying firm i’s belief

M i
t in (16) is due to the belief being private. That is, firm i produces more when it believes that

its rivals’ costs are high both because it expects them to not produce much today (captured by

β̂brt > 0), and because by producing more, it signals to its rivals that it thinks that their costs are

high and that it will hence be producing aggressively in the future. Again, this signaling component

is monotone decreasing over time when r = 0.

β

β
br

α
αbr

β -β
br

α -αbr

1 2 3 4
t
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-0.5
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Figure 2: Learning and Signaling Incentives, (r, σ, n, p̄, T, g0) = (0, 1, 2, 1, 4.1, 2).

Turning to the non-monotonicity of the equilibrium coefficients, consider Figure 2, which il-

lustrates the equilibrium coefficients α̂ < 0 and β̂ > 0, the coefficients α̂br < 0 and β̂br > 0 of

the myopic best response to the equilibrium strategy, the signaling components α̂ − α̂br ≤ 0 and

β̂ − β̂br ≥ 0, and the implied coefficients on Ci and M i
t under the myopic equilibrium coefficients

in (10) (dashed).

The myopic equilibrium (dashed) reflects only the effect of learning. There, the weights on

own cost and belief are increasing in absolute value. This is best understood by analogy with

a static Cournot game of incomplete information, where each of two firms privately observes an
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unbiased signal about its opponent’s cost.20 In this setting, a higher-cost firm knows that its rival

will observe, on average, a higher signal. As the private signals become more precise, firms assign

greater weight to their beliefs about their rival’s cost. In a setting with strategic substitutes, each

firm then consequently also assigns greater weight to its own cost in response, i.e., a high-cost

firm scales back production further when signals are more precise as it expects its rival to be more

aggressive. This explains why also in the myopic equilibrium of our game, the weights on Ci and

M i
t are increasing in absolute value over time as the firms’ information becomes more precise (i.e.,

as γ decreases).

The myopic best reply to the equilibrium strategy reflects these forces, but it is also affected

by the shape of the equilibrium coefficients. As the equilibrium β (and β̂) is initially much larger

than the corresponding weight in the myopic equilibrium, the myopic best reply initially places a

correspondingly higher weight α̂br on the firm’s own cost, and hence lies below the lower of the

dashed curves. Proposition 1 shows that β is eventually decreasing (for T large enough), which

explains why α̂br is eventually slightly increasing in Figure 2. Similarly, as the equilibrium α (and

α̂) is larger than the weight on the cost in the myopic equilibrium, the price is a more informative

signal, and hence β̂br lies above the corresponding dashed curve. As the equilibrium α is eventually

increasing by Proposition 1, the opponents’ output becomes eventually less sensitive to their cost,

and the myopic best response then places a smaller weight on the belief about their cost. This is

why β̂br is eventually slightly decreasing in Figure 2.

Finally, the difference between the equilibrium coefficients and those of the myopic best reply

is given by the signaling components α̂ − α̂br and β̂ − β̂br, which are decreasing in absolute value

by Proposition 2.

Therefore, we see that α̂ and β̂ is the sum of a monotone signaling component, and of an almost

monotone myopic component reflecting learning. Since α̂ and β̂ simply amount to a decomposition

of the equilibrium coefficients α and β, these two effects are responsible for the non-monotonicity

of the latter as well.

The properties of the equilibrium coefficients have immediate implications for several outcome

variables, which we turn to next.

5.2 Prices and Quantities

The relationship δ = −p̄(α+β) between the coefficients of the equilibrium strategy from Theorem 1

yields a simple expression for the expected total quantity in the market conditional on past prices:

for any t and s ≥ t, we have

E
[∑

i

Qis | FYt
]

= n(αsΠt + βsΠt + δs) = nδs

(
1− Πt

p̄

)
.

Thus the total expected output inherits the properties of the coefficient δ when Πt ≤ p̄. (For t = 0

the condition can be satisfied simply by assuming that π0 ≤ p̄; for t > 0 it can be made to hold

20A similar game is studied in the literature on ex ante information sharing in oligopoly, see Raith (1996).

19



with arbitrarily high probability by a judicious choice of parameters.) Proposition 1 then implies

that the total expected output is eventually decreasing in s, and lies everywhere above its terminal

value (p̄−Πt)n/(n+ 1), which is the complete information Nash total output for an industry with

average cost Πt. That is, if Πt ≤ p̄ (respectively, Πt > p̄), then the expected current market

supply conditional on public information is higher (lower) than the market supply in a complete

information Cournot market with average cost Πt.

In order to describe the behavior of prices, we average out the demand shocks by defining for

any t and s ≥ t the expected price

Et[Ps] := p̄− E
[∑

i

Qis | FYt
]

= p̄− nδs
(

1− Πt

p̄

)
,

which is just the expected time-s drift of the process Y conditional on its past up to time t.

The above properties of the expected total market quantity then carry over to the expected price

with obvious sign reversals. We record these in the following proposition, which summarizes some

properties of equilibrium outputs and prices.

Proposition 3. The following hold for every symmetric linear Markov equilibrium:

1. If Πt ≤ p̄ (respectively, Πt > p̄), then for all s ≥ t, the expected price Et[Ps] is lower

(respectively, higher) than the complete information equilibrium price in a Cournot market

with average cost Πt. As s → T , the expected price converges to the complete information

equilibrium price given average cost Πt. If r = 0, then convergence is monotone. If in addition

Πt < p̄, then Et[Ps] is increasing in s.

2. The difference between any two firms’ output levels conditional on their costs, Qit − Qjt =

αt(C
i − Cj), is deterministic and, for T sufficiently large, nonmonotone.

Qt
2

dYt

Qt
1

0 1 2 3 4 5
t

1.5

2.0

2.5

3.0

3.5

4.0

4.5

dYt ,Qt
i

Figure 3: Price and Output Paths, (r, σ, n, p̄, T, g0, π0) = (0.75, 0.75, 2, 10, 5, 2, 0).
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The first part of Proposition 3 implies that as long as the public belief about the average cost

lies below the demand intercept, then conditional on past prices, future prices are expected to

increase, monotonically so if r = 0. In particular, this is true of the time-0 expectation as long as

π0 ≤ p̄. The finding is illustrated in Figure 3, which shows simulated price and output paths for

two firms with costs (C1, C2) = (1/2, 1/5).

The second part follows simply by definition of Markov strategies and the nonmonotonicity of

α for T large. As we discuss further below, it has implications for productive efficiency and hence

for market profitability.

5.3 Expected Profits

We conclude our discussion of equilibrium properties by considering the implications of learning

and signaling on the firms’ profits and on consumer surplus. In particular, we are interested in the

ex ante profits accruing to each firm over time, and in their magnitude relative to the expectation

of complete-information profits.

Using the symmetry of the cost distribution, we define each firm’s ex-ante expected time-t profit

level and the corresponding expected consumer surplus as

Wt := E
[(
p̄− Ci −

∑
j

Qjt
)
Qit
]
, and CSt := E

[1
2

(∑
j

Qjt
)2]

.

We compare these ex ante flows to the expected flow profit and consumer surplus under complete

information, which are given by

W co :=
(p̄− π0)2 + g0(n

2 + n− 1)

(n+ 1)2
, and CSco :=

n2(p̄− π0)2 + ng0
2(n+ 1)2

.

Proposition 4. In every symmetric linear Markov equilibrium,

1. Wt < W co for t = 0 and t = T .

2. Assume g−10 rσ2 ≤ (n+1)−1(n−1)2 and let π0 be sufficiently close to p̄. Then, for T sufficiently

large, there exists t < T such that Wt > W co.

3. CSt ≥ CSco for all t ∈ [0, T ].

Figure 4 compares the expected profit levels under complete and incomplete information. The

left and right panel contrast markets with a low and high mean of the cost distribution.

To obtain some intuition, we note the two main forces at play. On one hand, as seen above,

signal-jamming adds to the expected total output over myopic players, which drives down profits.

This wasteful spending is (eventually) declining over time by Proposition 2. On the other hand,

learning about costs improves productive efficiency, and the firms’ active signaling (i.e., α being

above its myopic value) increases the speed at which this happens.
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Figure 4: π0 = 0 (left), π0 = p̄ (right), and (r, σ, n, p̄, T, g0) = (0.2, 1, 2, 5, 15.44, 2).

At first sight, it seems that both of the above forces would simply result in the expected flow

profit being increasing over time as in the left panel of Figure 4. But recall from Proposition 3

that the difference in output between any two firms i and j conditional on their costs is given by

αt(C
i − Cj), which is nonmonotone for T sufficiently large, because the sensitivity of output to

cost, α, is then nonmonotone. This effect, driven by signaling, enhances productive efficiency in the

medium run and can lead the expected flow profit Wt to surpass the expected complete information

profit W co at some interior t as in the right panel of Figure 4.

From an ex ante perspective, the enhanced productive efficiency corresponds to firms “taking

turns” being the market leader, instead of the more even split of the market under complete infor-

mation. The conditions in the second part of Proposition 4 ensure (i) that each firm is sufficiently

patient, so that the value of signaling is sufficiently large,21 and (ii) that the “average profitability

of the market” is not too high relative to the variance of output, so that this effect is important

enough to outweigh the “price level” effect.

Thus, after the initial phase of high output levels, the overall effect of firms “jockeying for

position” can improve industry profits.22 Finally, it is not hard to see that the expected consumer

surplus always lies above the complete-information level. Indeed, expected prices are everywhere

below the complete-information level and any variation in the price (conditional on the realized

costs) is only beneficial to consumers who can adjust their demands. Therefore, the effects of

signaling and signal-jamming incentives described in Proposition 2 can lead to an increase in total

surplus as well.

21It can be verified that the upper bound on r in Proposition 4 is compatible with the lower bound on r in the
first case of the sufficient condition for existence in Theorem 1 for some parameter values. For example, if g0/σ

2 = 1,
then this is the case for any n = 2, . . . , 10 (see the proof of Proposition 4).

22In the static literature on ex ante information sharing in oligopoly (see, e.g., Raith, 1996), output is most sensitive
to costs under complete information, while the expected total quantity is constant in the precision of the information
revealed. As a result, sharing full information about costs is beneficial in Cournot models. Instead, in our dynamic
model with forward-looking firms, total expected quantity is decreasing, but output is most sensitive to cost for some
intermediate time, leading to the richer picture outlined above.
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6 Concluding Remarks

Our analysis makes use of a number of simplifying assumptions. The restriction to a Gaussian

information structure and to equilibria in linear strategies—and hence to quadratic payoffs and

unbounded, potentially negative outputs—is essential for the analysis as it allows us to use the

Kalman filter to derive the firms’ posterior beliefs. Similarly, the representation of each firm’s

private belief as a weighted sum of the public belief and the firm’s cost relies crucially on the

properties of normal distributions.

Below we discuss the other main assumptions of our model.

6.1 Infinite Horizon

We have assumed a finite horizon throughout. However, Corollaries 1 and 2 show that as t → ∞,

beliefs and equilibrium behavior converge to the static complete information Nash outcome at a rate

bounded uniformly in the horizon T . This suggests that our results are due to the Markov restriction

rather than the finite horizon. To confirm this, we now show under a slight strengthening of the

sufficient condition for existence (15) that symmetric linear Markov equilibria converge (along a

subsequence) to an equilibrium of the infinite-horizon game as T →∞. This result is of independent

interest as it provides a method of approximating equilibria of the infinite-horizon game by using

our boundary value problem.

For the formal statement, it is convenient to use Theorem 1 to identify Markov equilibria of

the T -horizon game with the tuple (αT , βT , δT , ξT , γT ). Moreover, we extend the functions to

all of [0,∞) by setting (αTt , β
T
t , δ

T
t , ξ

T
t , γ

T
t ) = (αTT , β

T
T , δ

T
T , ξ

T
T , γ

T
T ) for t > T . We then define a

sequence of symmetric linear Markov equilibria to be any sequence of such tuples indexed by a

strictly increasing, unbounded sequence of horizons. By the infinite-horizon game we mean the

game obtained by setting T =∞ in Section 2. (Note that the first time we use T <∞ in the above

analysis is when we impose boundary values on the equilibrium coefficients in Section 4.2.)

Proposition 5. Suppose g0/σ
2 < 4r/(27n). Then any sequence of symmetric linear Markov equi-

libria contains a subsequence that converges uniformly to a symmetric linear Markov equilibrium

(α∗, β∗, δ∗, ξ∗, γ∗) of the infinite-horizon game.23 Moreover, δ∗ = −p̄(α∗ + β∗) and (α∗, β∗, ξ∗, γ∗)

is a solution to the system (11)–(13) on [0,∞) with limt→∞ α
∗
t = αm(0), limt→∞ β

∗
t = βm(0),

limt→∞ ξ
∗
t = ξm(0), and γ∗0 = ng0.

The condition on g0, σ
2, r, and n strengthens (15) to ensure that all the functions are bounded

uniformly in T , facilitating the convergent argument. In particular, under (15), (αT , βT , δT , γT ) are

uniformly bounded and have well-defined limits (along a subsequence), but the stronger condition

allows us to also bound ξT and ultimately establish that the limit is an equilibrium of the infinite-

horizon game.

23There is no reason to allow Markov strategies to condition on calendar time in the infinite-horizon game. However,
allowing for it is innocuous because αT is bounded away from zero uniformly in T , and hence the limit function γ∗

is strictly decreasing, implying that conditioning on t is redundant.
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As each δT lies everywhere above the complete information level, so does δ∗. This implies

that our predictions for expected outputs and prices carry over to the infinite-horizon model.

Furthermore, depending on the parameters, the coefficient α∗ is either non-monotone or everywhere

decreasing, implying that the possibility of non-monotone market shares and expected profits carries

over as well.

6.2 Asymmetric, Correlated, and Interdependent Costs

Symmetry of the prior distribution and of the equilibrium strategies is important for tractability.

The asymmetric case presents no new conceptual issues, but the public belief Π and variance γ

become vector-valued, and the analysis of the resulting boundary value problem seems a daunting

task (see Lambert, Ostrovsky, and Panov (2014) for an extension of the static Kyle (1989) model

to the asymmetric case).

In contrast, the assumption about independent costs can be easily relaxed. Correlated costs

bring qualitatively no new insights, and the analysis under independence extends to this setting.

In particular, every continuation equilibrium in our model corresponds to an equilibrium of a game

played over the residual horizon with negatively correlated costs. Conversely, all our equilibria are

continuation equilibria of longer games where the costs are positively correlated.

Similarly, we can introduce interdependent values, modeled as firm i’s cost being the sum

Ci + k
∑

j 6=iC
j for some 0 < k ≤ 1. Cost interdependence reduces the incentive to signal, since

any given firm having a lower cost implies that the costs of the other firms are lower as well, and

hence induces them to produce more. In the extreme case of pure common values (k = 1), the

firms initially scale back production, with the burst of production toward the end resembling the

aggressive behavior at the end of the horizon in models of insider trading in financial markets.

The special case of pure common values can alternatively be interpreted as a setting where

costs are known and uncertainty is about the intercept p̄ of the demand function, of which each

firm has received an initial private signal. A more general model would have both cost and demand

uncertainty similar to Sadzik and Woolnough (2014) who generalize the model of Kyle (1985) by

endowing the insider with private information about both the fundamental value and the amount

of noise traders.

Finally, our model with fixed costs captures in a stylized way a new market where firms even-

tually converge to a static equilibrium. It is also of interest to consider settings where costs vary

over time as in Fershtman and Pakes (2012) or the second model in Athey and Bagwell (2008). We

pursue this in ongoing work.
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Appendix

A.1 Preliminary Lemma

Under symmetric linear strategies, dYt =
(
p̄ − αt

∑
iC

i − nBt(Y
t)
)
dt + σdZt, with Bt(Y

t) :=´ t
0 f

t
sdYs + δt. The following result is standard (Liptser and Shiryaev, 1977).

Lemma A.1. Under any symmetric linear strategy profile, Πt := 1
nE
[∑

j C
j
∣∣FYt ] and γt :=

E
[(∑

j C
j − nΠt

)2∣∣FYt ] are given by the unique solution to the system

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y t)

)
dt
]
, Π0 = π0,

γ̇t = −
(αtγt

σ

)2
, γ0 = ng0.

In particular, the solution to the second equation is given by (5).

A.2 Proofs of Lemmas 1 to 4

Proof of Lemma 1. Let e := (1, . . . , 1)′ ∈ Rn−1 be a column vector of ones, and let I denote the

(n−1)×(n−1) identity matrix. The argument in the text before the Lemma shows that firm i’s belief

can be found by filtering the (column) vector C−i := (C1, . . . , Ci−1, Ci+1, . . . , Cn)′ ∼ N (π0e, g0I)

from the one-dimensional process

dY i = −αte′C−idt+ σdZt.

By standard formulas for the Kalman filter (see, e.g., Liptser and Shiryaev, 1977, Theorem 10.2), the

posterior mean M−it := E[C−i|FY i

t ] and the posterior covariance matrix Γt := E[(C−i−M−it )(C−i−
M−it )′|FY i

t ] are the unique solutions to the system

dM−it = −αt
σ

Γte
dY −i − αte′M−it dt

σ
, M−i0 = π0e, (A.1)

Γ̇t = −α
2
t

σ2
Γtee

′Γt, Γ0 = g0I, (A.2)

where for Γt uniqueness is in the class of symmetric nonnegative definite matrices.

We first guess and verify the form of the solution for Γt. Let At := Γtee
′Γt. It is easy to see

that its (i, j)-th component satisfies

Aijt =

n−1∑
k=1

Γikt

n−1∑
`=1

Γ`jt .

Thus we guess that the solution takes the form Γii = γ1t , Γijt = γ2t , i 6= j, for some functions γ1 and
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γ2. The matrix equation (A.2) then reduces to the system

γ̇1t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )2, γ10 = g0,

γ̇2t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )2, γ20 = 0.

Consequently, γMt := (n− 1)[γ1t + (n− 2)γ2t ] satisfies

γ̇Mt = −
(αtγMt

σ

)2
, γM0 = (n− 1)g0,

whose solution is

γMt =
(n− 1)g0

1 + (n− 1)g0
´ t
0
α2
s
σ2 ds

.

We can then solve for γ1 and γ2 by noting that γ̇it = γ̇Mt /(n−1)2 for i = 1, 2, and hence integration

yields

Γiit = γ1t =
γMt

(n− 1)2
+

(n− 2)g0
n− 1

and Γijt = γ2t =
γMt

(n− 1)2
− g0
n− 1

, i 6= j.

It remains to verify that Γt so obtained is nonnegative definite. To this end, note that γ1t = γ2t +g0,

and hence Γt = g0I+γ2tE, where E is a (n−1)× (n−1) matrix of ones. Therefore, for any nonzero

(column) vector x ∈ R(n−1) we have

x′Γtx = g0 ‖x‖22 + γ2t ‖x‖
2
1 ≥ ‖x‖

2
1

( g0
n− 1

+ γ2t

)
= ‖x‖21

γMt
(n− 1)2

> 0,

where the first inequality follows from
√
n− 1 ‖x‖2 ≥ ‖x‖1 and the second inequality from γMt > 0.

We conclude that Γt is nonnegative definite, and hence it is indeed our covariance matrix. By

inspection, it is of the form Γt = Γ(γMt ) as desired.

In order to establish the form of the posterior mean, note that (Γte)
i = γMt /(n−1). Thus (A.1)

implies that M−it = M i
te, where M i

t evolves according to

dM i
t = −αt

σ

γMt
n− 1

dY i + αt(n− 1)M i
tdt

σ
, (A.3)

and where

dZit :=
dY i + (n− 1)αtM

i
tdt

σ

is a standard Brownian motion (with respect to FY i
) known as firm i’s innovation process. It is

readily verified that ((n− 1)M i
t , γ

M
t ) are the posterior mean and variance for the problem

dY i
t = −αtνdt+ σdZt, ν ∼ N ((n− 1)π0, (n− 1)g0),
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which amounts to filtering the other firms’ total cost. Thus M i
t is the posterior expectation about

the other firms’ average cost as desired.

Proof of Lemma 2. The result is a special case of Lemma 3. (The formula for zt follows by direct

calculation from the formulas for γMt and γt given in Lemma 1 and equation (5), respectively.)

Proof of Lemma 3. Fix a symmetric linear strategy profile, and let

λt := −αtγt
nσ2

and λMt := − αtγ
M
t

(n− 1)σ2
, t ∈ [0, T ].

Note that zt := nγMt /[(n − 1)γt] = λMt /λt. Recall the law of motion of the private belief M i in

(A.3), and define the process Π̂ i by

Π̂ i
t := exp

(
n

ˆ t

0
λuαudu

)
π0

+

ˆ t

0
exp

(
n

ˆ t

s
λuαudu

)
λs

[
− αs

(
Ci + (n− 1)M i

s

)
ds+

dM i
s

λMt

]
.

The process Π̂ i is in firm i’s information set because it is a function of its belief M i and cost Ci.

We prove the first part of the Lemma by showing that

M i
t − Ci = zt(Π̂

i
t − Ci), t ∈ [0, T ]. (A.4)

To this end, note that the law of motion of Π̂ i is given by

dΠ̂ i
t = λtαt[Π̂

i
t − Ci + (n− 1)(Π̂ i

t −M i
t )]dt+

λt

λMt
dM i

t , Π̂ i
0 = π0. (A.5)

Let Wt := zt(Π̂
i
t − Ci). Applying Ito’s rule and using that ztλt = λMt gives24

dWt = λMt αt[(n− 1)zt − n](Π̂t − Ci)dt+ λMt αt[Π̂t − Ci + (n− 1)(Π̂t −M i
t )]dt+ dM i

t

= (n− 1)λMt αt
[
zt(Π̂t − Ci)− (M i

t − Ci)
]
dt+ dM i

t

= (n− 1)λMt αt
[
Wt − (M i

t − Ci)
]
dt+ dM i

t .

Therefore, we have

d[Wt − (M i
t − Ci)] = (n− 1)λMt αt[Wt − (M i

t − Ci)]dt,
24Observe that

żt =
n

n− 1

γ̇M
t γt − γM

t γ̇t
γ2
t

= − n

n− 1

α2
t (γM

t )2

σ2γt
+ zt

α2
tγt
σ2

= (n− 1)λM
t αtzt − nλM

t αt,

where we have used that γ̇t = −(αtγt/σ)2 and γ̇M
t = −(αtγ

M
t /σ)2.
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which admits as its unique solution

Wt − (M i
t − Ci) = [W0 − (M i

0 − Ci)] exp
(

(n− 1)

ˆ t

0
λMs αsds

)
.

But W0−(M i
0−Ci) = z0(Π̂

i
0−Ci)−(M i

0−Ci) = 0, since z0 = 1 and Π̂ i
0 = M i

0 = π0. Consequently,

Wt − (M i
t − Ci) ≡ 0, which establishes (A.4).

The law of motion for Π̂ i given in the Lemma now follows from (A.5) by using (A.4) to substitute

for M i
t , and by using (A.3) to substitute for dM i

t .

It remains to show that Π̂ i
s = Πs if firm i plays the same strategy on [0, s) as the other firms.

Note that then by (4), we have from the perspective of firm i

dYt − (p̄− nBt(Y ))dt = dY i
t − αtCidt = −αt[Ci + (n− 1)M i

t ]dt+
dM i

t

λMt
, t ∈ [0, s),

where the second equality follows by (A.3). Therefore, the law of motion of Π in Lemma A.1 is

from firm i’s perpective given on [0, s) by

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y )

)
dt
]

= λtαt[nΠt − Ci − (n− 1)M i
t ]dt+

λt

λMt
dMt

= λtαt[Πt − Ci + (n− 1)(Πt −Mt)]dt+
λt

λMt
dMt,

with initial condition Π0 = π0. By inspection of (A.5) we thus have Πt = Π̂ i
t for all t ≤ s. (This

also shows that if firm i has ever unilaterally deviated from the symmetric linear strategy profile

in the past, then Π̂ i
t equals the counterfactual value of the public belief that would have obtained

had firm i not deviated.)

Proof of Lemma 4. Lemmas 1 and 2 imply that if all firms play a symmetric linear strategy

profile, then there is a one-to-one correspondence between (Ci, Πt, t) and firm i’s time-t belief about

(C1, . . . , Cn) and calendar time. Thus, if Qit = αtC
i + βtΠt + δt, t ∈ [0, T ], then firm i’s quantity

is only a function of its belief and calendar time. Using the law of motion from Lemma A.1, it

is straightforward to verify that the public belief is of the form Πt =
´ t
0 k

t
sdYs + constantt. Thus

conditioning on it agrees with our definition of a linear strategy in (3).

Conversely, suppose that a symmetric linear strategy profile (α, f, δ) is only a function of beliefs

and calendar time. Given the one-to-one correspondence noted above, we then have for each firm

i and all t,

Qit = ψt(C
i, Πt)

for some function ψt : R2 → R. Let supp(α) denote the essential support of α on [0, T ], and let

τ := min supp(α). Then private and public beliefs about firms j 6= i are simply given by the prior

at all 0 ≤ t ≤ τ (i.e., Πt = π0, zt = 1, and thus M i
t = π0), and hence the strategy can only
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condition on firm i’s (belief about its) own cost and on calendar time on [0, τ ]. Thus, by linearity

of the strategy, we have ψt(C
i, Πt) = αtC

i + δt for t ≤ τ , which shows that the strategy takes the

desired form on this (possibly empty) subinterval. Note then that for any t > τ , we have

Qit = αtC
i +

ˆ t

0
f tsdYs + δt = ψt(C

i, Πt) = ψt

(
Ci,

ˆ t

0
ktsdYs + constantt

)
,

where the argument of ψt can take on any value in R2 given the distribution of Ci and the form of

the noise in the price process Y . Thus, for the equality to hold, ψt must be an affine function, i.e.,

ψt(C
i, Πt) = atC

i + btΠt + dt for some constants (at, bt, dt), establishing the result.

A.3 Proof of Theorem 1

The proof proceeds as a series of lemmas.

Lemma A.2. If (α, β, δ) is a symmetric linear Markov equilibrium with posterior variance γ,

then (i) (α, β, ξ, γ) with ξ defined by (13) is a solution to the boundary value problem, and (ii)

δ = −p̄(α+ β).

Proof. Fix such an equilibrium (α, β, δ) with variance γ, and fix some firm i. By inspection, the

best-response problem in Section 4.1 is a stochastic linear-quadratic regulator (see, e.g., Yong and

Zhou, 1999, Chapter 6). Moreover, (α, β, δ) is an optimal policy (a.s.) on the path of play, i.e., at

states where Πt = Π̂ i
t .

We argue first that the value function takes the form given in (9). Along the way, we also estab-

lish the existence of an optimal policy at off-path states (Ci, Πt, Π̂
i
t , t) where Πt 6= Π̂ i

t . Introducing

the shorthand St for the state, we can follow Yong and Zhou (1999, Chapter 6.4) and write the

best-response problem at any state St as an optimization problem in a Hilbert space where the

choice variable is a square-integrable output process Qi on [t, T ] and the objective function takes

the form
1

2

[
〈L1

tQ
i, Qi〉+ 2〈L2

t (St), Q
i〉+ L3

t (St)
]

for certain linear functionals Lit, i = 1, 2, 3.25 Since an equilibrium exists, the value of the problem

at St is finite, and hence L1
t ≤ 0 by Theorem 4.2 of Yong and Zhou (1999, p. 308). By the same

theorem, if L1
t < 0, then there exists a unique optimal policy, which is linear in St, and the value

function is of the form (9). This leaves the case L1
t = 0. In that case the objective function is linear

in Qi on the vector space of square-integrable processes, and hence its supremum is unbounded,

which contradicts the existence of an equilibrium, unless L2
t = 0. But if L1

t = L2
t = 0, then any

policy is optimal, which is clearly impossible as, for example, Qi ≡ 0 yields a zero payoff whereas the

expected payoff from myopically maximizing the flow payoff is strictly positive. We thus conclude

that L1 < 0 and there exists a unique optimal policy.

25Cf. display (4.17) on page 307 in Yong and Zhou (1999).

29



We note then that the value function V is continuously differentiable in t and twice continuously

differentiable in (c, π, π̂).26 Thus it satisfies the HJB equation (7). This implies that the linear

optimal policy q = αtc + βtπ + δt + ξt(π̂ − π), where (αt, βt, δt) are the equilibrium coefficients,

satisfies the first-order condition (8). This gives

αtc+ βtπ + δt + ξt(π̂ − π) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2

− λt
v1(t) + v4(t)π̂ + v5(t)c+ 2v8(t)π

2
,

where we have written out ∂V/∂π using (9). As this equality holds for all (c, π, π̂) ∈ R3, we can

match the coefficients of c, π, π̂, and constants on both sides to obtain the system

αt = −(n− 1)αt(1− zt) + 1

2
+
αtγt
2nσ2

v5(t),

βt − ξt = −(n− 1)βt
2

+
αtγt
nσ2

v8(t),

δt =
p̄− (n− 1)δt

2
+
αtγt
2nσ2

v1(t),

ξt = −(n− 1)αtzt
2

+
αtγt
2nσ2

v4(t),

(A.6)

where we have used λt = −αtγt/(nσ2).
We can now show that (α, β, ξ, γ) satisfy the boundary conditions given in the theorem. Note

that vk(T ) = 0, k = 1, . . . , 9. Thus we obtain (αT , βT , δT , ξT ) from (A.6) by solving the system with

(v1(T ), v4(T ), v5(T ), v8(T )) = (0, . . . , 0). Recalling the expression for zT in terms of γT from (6),

a straightforward calculation yields αT = αm(γT ), βT = βm(γT ), δT = δm(γT ), and ξT = ξm(γT ),

where the functions (αm, βm, δm, ξm) are defined in (10). The condition γ0 = ng0 is immediate

from (5).

As γ satisfies (14) by construction, it remains to show that (α, β, ξ, γ) satisfy equations (11)–(13)

and that δ = −p̄(α+ β). Applying the envelope theorem to the HJB equation (7) we have

r
∂V

∂π
= −(n− 1)βtq

∗(c, π, π̂, t) + µt
∂2V

∂π2
+
∂µt
∂π

∂V

∂π
+ µ̂t

∂2V

∂π∂π̂
+
∂2V

∂π∂t
, (A.7)

where we omit third-derivative terms as V is quadratic. By inspection of (9), the only coefficients

of V that enter this equation are v1(t), v4(t), v5(t), and v8(t) as well as their derivatives v̇1(t),

v̇4(t), v̇5(t), and v̇8(t). Therefore, we first solve (A.6) for (v1(t), v4(t), v5(t), v8(t)) in terms of

(αt, βt, δt, ξt, γt), and then differentiate the resulting expressions to obtain (v̇1(t), v̇4(t), v̇5(t), v̇8(t))

in terms of (αt, βt, δt, ξt, γt) and (α̇t, β̇t, δ̇t, ξ̇t, γ̇t). (Note that (A.6) holds for all t and (α, β, δ) are

differentiable by assumption; differentiability of ξ follows by (A.6).) Substituting into (A.7) then

26Differentiability of each vi in (9) can be verified using the fact that V is the value under the unique optimal
policy (α, β, δ, ξ), where (α, β, δ) are differentiable by assumption and ξ, which only enters V through an intergral, is
continuous.
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yields an equation for (αt, βt, δt, ξt, γt) and (α̇t, β̇t, δ̇t, ξ̇t, γ̇t) in terms of (c, π, π̂) and the parameters of

the model. Moreover, as this equation holds for all (c, π, π̂) ∈ R3, we can again match coefficients to

obtain a system of four equations that are linear in (α̇t, β̇t, δ̇t, ξ̇t). A very tedious but straightforward

calculation shows that these equations, solved for (α̇t, β̇t, δ̇t, ξ̇t), are equations (11)–(13) and

δ̇t = rαt
δt − δm(γt)

αm(γt)
+

(n− 1)αtβtγt
n(n+ 1)σ2

[
δt − nαt(zt − 1)((n+ 1)δt − p̄)

]
. (A.8)

The identity δ = −p̄(α+ β) can be verified by substituting into (A.8) and using (11) and (12), and

noting that the boundary conditions satisfy it by inspection of (10).

Lemma A.3. If (α, β, ξ, γ) is a solution to the boundary value problem, then (α, β, δ) with δ =

−p̄(α+ β) is a symmetric linear Markov equilibrium with posterior variance γ.

Proof. Suppose that (α, β, ξ, γ) is a solution to the boundary value problem and let δ = −p̄(α+β).

Then (α, β, δ) are bounded functions on [0, T ], and hence they define an admissible symmetric

linear Markov strategy (see footnote 8 on page 6). Moreover, (5) is the unique solution to (14) with

γ0 = ng0, and hence γ is the corresponding posterior variance of the public belief.

To prove the claim, we assume that the other firms play according to (α, β, δ), and we construct

a solution V to firm i’s HJB equation (7) such that V takes the form (9) and the optimal policy is

q∗(c, π, π̂, t) = αtc+ βtπ + δt + ξt(π̂ − π). We then use a verification theorem to conclude that this

indeed constitutes a solution to firm i’s best response problem.

We construct V as follows. By Proposition 1, (α, β, δ, ξ) are bounded away from 0, and so

is γ because T is finite.27 We can thus define (v1, v4, v5, v8) by (A.6). Then, by construction,

q∗(c, π, π̂, t) = αtc+βtπ+δt+ξt(π̂−π) satisfies the first-order condition (8), which is sufficient for op-

timality by concavity of the objective function in (7). The remaining functions (v0, v2, v3, v6, v7, v9)

can be obtained from (7) by substituting the optimal policy q∗(c, π, π̂, t) for q on the right-hand side

and matching the coefficients of (c, π̂, cπ̂, c2, π̂2) and the constants on both sides of the equation so

obtained. This defines a system of six linear first-order ODEs (with time-varying coefficients) for

(v0, v2, v3, v6, v7, v9).

27For ξ, this follows from ξt ≥ ξmt := ξm(γt) > 0. The second inequality is by (10). To see the first, notice that ξ̇t
is decreasing in βt. Therefore, bounding βt with βm

t by Proposition 1, we obtain

(βt, ξt) = (βm
t , ξ

m
t )⇒ ξ̇t − ξ̇mt = − g20(n− 1)3n3αt(2αt − 1)γt

4(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)2
≤ 0,

because αt < αm
t ≤ −1/2 for all t by Proposition 1. This implies that ξ can only cross its myopic value from above,

which occurs at time t = T .
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This system is stated here for future reference:

v̇0(t) = rv0(t)− δt(p̄− nδt)−
α2
t γ

2
t

n2σ2
v9(t)−

αtγt(nβt + βt + 2ξt) + 2(n− 1)α2
t γtzt

2n
,

v̇2(t) = (n− 1)αtzt (p̄− nδt) +
nrσ2 + α2

t γt (n (1− zt) + zt)

nσ2
v2(t),

v̇3(t) = (n− 1)αt(zt − 1)(nδt − p̄) + rv3(t) + δt +
α2
t γt((n− 1)zt − n)

nσ2
v2(t),

v̇6(t) =
nrσ2 + α2

t γt(n(1− zt) + zt)

nσ2
v6(t) +

2α2
t γt((n− 1)zt − n)

nσ2
v9(t) (A.9)

+ αt
(
−2nξt − (n− 1)zt(2nαt − 2ξt + 1) + 2(n− 1)2αtz

2
t

)
,

v̇7(t) = rv7(t) + αt(n− 1)(zt − 1)− α2
t (n(1− zt) + zt)

2 +
α2
t γt((n− 1)zt − n)

nσ2
v6(t),

v̇9(t) =
nrσ2 + 2α2

t γt(n(1− zt) + zt)

nσ2
v9(t)− ((n− 1)αtzt + ξt)

2.

By linearity, the system has a unique solution on [0, T ] that satisfies the boundary condition

(v0(T ), v2(T ), v3(T ), v6(T ), v7(T ), v9(T )) = (0, . . . , 0). Defining V by (9) with the functions vk,

k = 1, . . . , 9, defined above then solves the HJB equation (7) by construction.

Finally, because V is linear-quadratic in (c, π, π̂) and the functions vk are uniformly bounded, V

satisfies the quadratic growth condition in Theorem 3.5.2 of Pham (2009). Therefore, V is indeed

firm i’s value function and (α, β, δ, ξ) is an optimal policy. Moreover, on-path behavior is given by

(α, β, δ) as desired.

We then turn to existence. As discussed in the text following the theorem, we use the shooting

method, omitting first equation (13) from the system.

Define the backward system as the initial value problem defined by (11), (12), and (14) with γT =

γF , αT = αm(γF ), and βT = βm(γF ) for some γF ∈ R+. By inspection, the backward system is lo-

cally Lipschitz continuous (note that g0 > 0 by definition). For γF = 0, its unique solution on [0, T ]

is given by αt = αm(0), βt = βm(0), and γt = 0 for all t. By continuity, it thus has a solution on [0, T ]

for all γF in some interval [0, γ̃F ) with γ̃F > 0. LetG := [0, γ̄F ) be the maximal such interval with re-

spect to set inclusion. (I.e., γ̄F = sup {γ̃F ∈ R+ : backward system has a solution for all γF ∈ [0, γ̃F )}.)
Finally, define the function κ : N→ R++ by

κ(n) := inf
a∈(−∞,−1]

{
−

(n− 1)2
√
a5(a+ 1)n(2an+ n+ 1)(a(n− 1)n− 1)

(a+ an+ 1)2

+
a2(a(n(a− (3a+ 2)n) + 1) + 1)

(a+ an+ 1)2

}
. (A.10)

Lemma A.4. Suppose (15) holds, i.e., g0/σ
2 < max{r/κ(n), 1/(3nT )}. Then there exists γF ∈ G

such that the solution to the backward system satisfies γ0 = ng0.

Proof. Suppose g0/σ
2 < max{r/κ(n), 1/(3nT )}. The backward system is continuous in γF , and

γF = 0 results in γ0 = 0. Thus it suffices to show that γ0 ≥ ng0 for some γF ∈ G. Suppose,
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in negation, that the solution to the backward system has γ0 < ng0 for all γF ∈ G. Since γ is

monotone by inspection of (14), we then have γF = γT ≤ γ0 < ng0 for all γF ∈ G, and thus

γ̄F ≤ ng0 < ∞. We will show that this implies that the solutions (α, β, γ) are bounded uniformly

in γF on G, which contradicts the fact that, by definition of G, one of them diverges at some

t ∈ [0, T ) when γF = γ̄F .

To this end, let γF ∈ G, and let (α, β, γ) be the solution to the backward system.

By monotonicity of γ, we have 0 ≤ γt ≤ γ0 < ng0 for all t, and hence γ is bounded uniformly

across γF in G as desired.

Note then that, by the arguments in the proof of the first part of Proposition 1 below, we have

(−α, β, δ) ≥ 0. The identity −p̄(α + β) = δ then implies α ≤ −β ≤ 0. Therefore, to bound α and

β, it suffices to bound α from below.

We first derive a lower bound for α when ρ := ng0/σ
2 < 1/(3T ). Consider

ẋt = ρx4t , xT = −1. (A.11)

By (10), we have xT ≤ αm(γF ) = αT for all γF ≥ 0. Furthermore, recalling that γt ≤ ng0,

zt ∈ [1, n/(n − 1)], and −αt ≥ βt ≥ 0 for all t, we can verify using equation (11) that ρα4
t ≥ α̇t

for all αt ≤ −1. Working backwards from T , this implies xt ≤ αt for all t at which xt exists.

Furthermore, the function x is by definition independent of γF , so to bound α it suffices to show

that (A.11) has a solution on [0, T ]. This follows, since the unique solution to (A.11) is

xt =
1

3
√

3ρ(T − t)− 1
, (A.12)

which exists on all of [0, T ], because 3ρ(T − t)− 1 ≤ 3ρT − 1 < 0 by assumption.

We then consider the case g0/σ
2 < r/κ(n). We show that there exists a constant ā < −1 such

that α ≥ ā. In particular, denoting the right-hand side of α̇ in (11) by f(αt, βt, γt), we show that

there exists ā < −1 such that f(ā, b, g) ≤ 0 for all b ∈ [0,−ā] and g ∈ [0, ng0]. Since 0 ≤ β ≤ −α
and 0 ≤ γ ≤ ng0, this implies that following (11) backwards from any αT > −1 yields a function

bounded from below by ā on [0, T ].

For a ≤ −1 and r > 0, let

D(a, r) :=
(
ā2g0(n− 1)(an+ 1)− rσ2(a(1 + n) + 1)

)2
− 4a2(a+ 1)g0(n− 1)rσ2(a(n− 1)n− 1).

We claim that there exists ā ≤ −1 such that D(ā, r) < 0. Indeed, D(a, r) is quadratic and

convex in r. It is therefore negative if r ∈ [r1, r2], where r1 = r1(a) and r2 = r2(a) are the

two roots of D(a, r) = 0. One can verify that for any a ≤ −1, D(a, r) = 0 admits two real

roots r1 = r1(a) ≤ r2 = r2(a), with strict inequality if a < −1, which are both continuous

functions of a that grow without bound as a → −∞. Thus, there exists ā such that D(ā, r) < 0

if r > infa∈(−∞,−1) r1(a). But, by definition, the objective function in the extremum problem in
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(A.10) is (σ2/g0)r1(a), and hence the existence of ā follows from r > κ(n)g0/σ
2. We fix some such

ā for the rest of the proof.

Consider any g ∈ [0, ng0]. Let z := n2g0/[n(n−1)g0 +g]. By inspection of (11), if (n−1)nā(z−
1) + 1 ≥ 0, then f(ā, b, g) ≤ 0 for all b ∈ [0,−ā], since ā ≤ −1 ≤ αm(g), which implies that the

r-term is negative. On the other hand, if (n− 1)nā(z − 1) + 1 < 0, then f(ā, b, g) ≤ f(ā,−ā, g) for

all b ∈ [0,−ā]. Thus it suffices to show f(ā,−ā, g) ≤ 0.

Note that

f(ā,−ā, g) =
ā
(
g(n− 1)ng0ā

2 (nā+ 1)− g2ā2 ((n− 1)nā− 1)
)

nσ2 (g0(n− 1)n+ g)

+
rσ2ā

(
g0(−(n− 1))n2 (ā+ 1)− gn ((n+ 1)ā+ 1)

)
nσ2 (g0(n− 1)n+ g)

.

The numerator on the right-hand side is quadratic and concave in g, while the denominator is

strictly positive. Thus, if there exists no real root g to the numerator, f(ā,−ā, g) is negative. In

particular, the equation f(ā,−ā, g) = 0 admits no real root g if the discriminant is negative. But

this discriminant is exactly D(ā, r), which is negative by definition of ā.

Lemma A.4 shows that there exists a solution (α, β, γ) to equations (11), (12), and (14) satisfying

boundary conditions αT = αm(γT ), βT = βm(γT ), and γ0 = ng0 when (15) holds. Therefore, it

only remains to establish the following:

Lemma A.5. Suppose (15) holds, and let (α, β, γ) be a solution to equations (11), (12), and (14)

with αT = αm(γT ), βT = βm(γT ), and γ0 = ng0. Then there exists a solution ξ to equation (13)

on [0, T ] with ξT = ξm(γT ).

Proof. Let g0 < max{rσ2/κ(n), σ2/(3nT )} and let (α, β, γ) be as given in the lemma. We first

establish the result for all g0 > 0 sufficiently small.

Recall that for any g0 < σ2/(3nT ) we can bound α from below by x given in (A.12). In

particular, for g0 ≤ 7σ2/(24nT ), we have

0 ≥ αt ≥ xt =
1

3

√
3ng0
σ2 (T − t)− 1

≥ 1

3

√
3ng0T
σ2 − 1

≥ −2.

Combining this with 0 ≤ γt ≤ γ0 = ng0, we see that the coefficient on ξ2t in (13), αtγt/(nσ
2), is

bounded in absolute value by 2g0/σ
2. Thus for any g0 small enough, (13) is approximately linear

in ξt and hence it has a solution on [0, T ].

Define now ḡ0 as the supremum over g̃0 such that a solution to the boundary value problem

exists for all g0 ∈ (0, g̃0). By the previous argument, ḡ0 > 0. We complete the proof of the lemma

by showing that ḡ0 ≥ max{rσ2/κ(n), σ2/(3nT )}.
Suppose towards contradiction that ḡ0 < max{rσ2/κ(n), σ2/(3nT )}. Then for g0 = ḡ0 there

exists a solution (α, β, γ) to (11), (12), and (14) satisfying the boundary conditions by Lemma A.4,

but following equation (13) backwards from ξT = ξm(γT ) yields a function ξ that diverges to ∞ at
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some τ ∈ [0, T ). We assume τ > 0 without loss of generality, since if limt↓0 ξt =∞, then ξt can be

taken to be arbitrarily large for t > 0 small enough, which is all that is needed in what follows.

Since the boundary value problem has a solution for all g0 < ḡ0, a symmetric linear Markov

equilibrium exists for all g0 < ḡ0. So fix any such g0 and any firm i. The firm’s equilibrium

continuation payoff at time s < τ given state (Ci, Πs, Π̂
i
s, s) = (0, 0, 0, s) is V (0, 0, 0, s) = v0(s).

Total equilibrium profits are bounded from above by the (finite) profit of an omniscient planner

operating all the firms, and hence v0(s) is bounded from above by the expectation of the planner’s

profit conditional on Ci = Πs = Π̂ i
s = 0 and γs. The expectation depends in general on g0 (through

γs and zs), but we obtain a uniform bound by taking the supremum over g0 ≤ ḡ0. Denote this

bound by B.

Let ∆ > 0, and suppose firm i deviates and produces Qit = βtΠt + δt −∆ for all t ∈ [s, τ), and

then reverts back to the equilibrium strategy at τ . Then d(Πt− Π̂ i
t) = λt[αtn(Πt− Π̂ i

t) + ∆]dt (see

Section 4.1), and hence

Πτ − Π̂ i
τ = ∆

ˆ τ

s
exp

(
−
ˆ t

τ
λuαundu

)
dt > 0. (A.13)

Since Π and Qi still have linear dynamics on [s, τ), their expectation and variance are bounded,

and hence so is firm i’s expected payoff from this interval. Moreover, since (α, β, γ) (and hence also

δ = −p̄(α + β)) exist and are continuous in g0 at ḡ0, the supremum of this expected payoff over

g0 ≤ ḡ0 is then also finite.

Firm i’s continuation payoff from reverting back to the equilibrium best-response policy (α, β, δ, ξ)

at time τ is given by

V (0, π, π̂, τ) = v0(τ) + v1(τ)π + v2(τ)π̂ + v4(τ)ππ̂ + v8(τ)π2 + v9(τ)π̂2 ≥ 0,

where the inequality follows, since the firm can always guarantee zero profits by producing nothing.

By inspection of (A.6) and (A.9), we observe that

(i) v4(τ) ∝ −ξτ and v8(τ) ∝ ξτ ;

(ii) v1(τ) and v2(τ) are independent of ξ;

(iii) v9(τ) depends on ξ, but is either finite or tends to ∞ as ξ grows without bound;

(iv) v0(τ) = V (0, 0, 0, τ) ≥ 0.

Therefore, letting g0 → ḡ0 and hence ξτ →∞, we have for all π > 0 ≥ π̂,

V (0, π, π̂, τ)→∞.

Moreover, such pairs (π, π̂) have strictly positive probability under the deviation by (A.13), because

Π̂ i is an exogenous Gaussian process. Together with the lower bound V (0, π, π̂, τ) ≥ 0 for all (π, π̂)

this implies that the time-s expectation of the deviation payoff tends to infinity as g0 → ḡ0, and
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hence it dominates B for g0 close enough to ḡ0. But this contradicts the fact that a symmetric

linear Markov equilibrium exist for all g0 < ḡ0.

A.4 Proofs for Section 5

We start with a lemma that is used in the proof of Corollary 2, and later in the proof of Proposition

5. Let g0/σ
2 < r/κ(n) so that a symmetric linear equilibrium exists for all T , and select for

each T some such equilibrium fT := (αT , βT , δT , γT ), where γT is the corresponding posterior

variance. Extend each fT to all of [0,∞) by setting fT (t) = fT (T ) for t > T . We continue to use

fT to denote the function so extended. Denote the sup-norm by ‖fT ‖∞ := supt ‖fT (t)‖, where

‖fT (t)‖ := maxi |fTi (t)|.
Since g0/σ

2 < r/κ(n), each αT is bounded in absolute value uniformly in T by some ā < ∞
(see the proof of Lemma A.4). Thus, 0 < βT ≤ −αT < ā and 0 < δT = −p̄(αT + βT ) < p̄ā for all

T > 0. This implies, in particular, that the “non-r term” on the right-hand side of ḟTi is bounded

in absolute value by γTt K for some K <∞ independent of i and T .

Lemma A.6. For all ε > 0, there exists tε < ∞ such that for all T ≥ t ≥ tε, ‖fT (t) −
(αm(0), βm(0), δm(0), 0)‖ < ε.

Proof. For γ, the claim follows by Corollary 1. We prove the claim for α; the same argument can

be applied to β and δ. By Corollary 1, for any η > 0, there exists tη such that 0 ≤ γTt < η for all

T ≥ t ≥ tη. Furthermore, by taking tη to be large enough, we also have |αm(γTt ) + 1| < η for all

T ≥ t ≥ tη by continuity of αm. This implies, in particular, that αTt ≤ αm(γTt ) < −1 + η for all

T ≥ t ≥ tη, establishing an upper bound on αT uniformly in T .

To find a lower bound, fix T > tη. Define b : [tη, T ] → R as the unique solution to ḃt =

r(bt + 1) + ηK with bT = −1, where K is the constant from the remark just before Lemma A.6.

Then, by construction, −1− ηK/r ≤ bt ≤ −1 for all t in [tη, T ]. Furthermore, we have αT > b on

[tη, T ]. To see this, note that αTT = αm(γTT ) > −1 = bT , and if for some t in [tη, T ) we have αTt = bt,

then

α̇Tt ≤ r
αTt

αm(γTt )
(αTt − αm(γTt )) + γTt K

= r
αTt

αm(γTt )
(αTt + 1)− r αTt

αm(γTt )
(αm(γTt ) + 1) + γTt K

< r
αTt

αm(γTt )
(αTt + 1) + ηK

≤ r(αTt + 1) + ηK = ḃt,

where the first inequality is by definition of K, the second uses αm(γTt ) ≥ −1 and t ≥ tη, and

the third follows from αTt = bt ≤ −1 ≤ αm(γTt ). Thus, at any point of intersection, αT crosses

b from above, and hence the existence of an intersection contradicts αTT > bT . We conclude that
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αTt > bt ≥ −1− ηK/r for all T ≥ t ≥ tη. Note that even though b depends on T , the lower bound

is uniform in T .

To conclude the proof, fix ε > 0, and put η = min{ε, rε/K}. Then, by the above arguments,

there exists tε = tη such that αTt ∈ (−1− ε,−1 + ε) for all T ≥ t ≥ tε.
Proof of Corollary 2. Corollary 1 and Lemma A.1 imply that for every η > 0, there exists tη <∞
such that for all T > tη, every symmetric linear Markov equilibrium satisfies P[|Πt − n−1

∑
iC

i| <
η] > 1− η for all t > tη. Furthermore, we have

∣∣Qit − qNi (C)
∣∣ ≤ |αt − αm(0)|

∣∣Ci∣∣+ |βt − βm(0)| |Πt|+ βm(0)
∣∣∣Πt −

∑
iC

i

n

∣∣∣+ |δt − δm(0)| .

By the above observation about Π and Lemma A.6, each term on the right converges in distribution

to zero as t→∞ (uniformly in T ). Since zero is a constant, this implies that the entire right-hand

side converges to zero in distribution. In particular, if we denote the right-hand side by Xt, then

for any ε > 0, there exists tε such that for every T ≥ t ≥ tε, we have P[|Xt| < ε] ≥ 1 − ε. But

{|Xt| < ε} ⊂
{∣∣Qit − qNi (C)

∣∣ < ε
}

, and hence P[|Qit − qNi (C)| < ε] > 1− ε.
Proof of Proposition 1. (1.) Consider a symmetric linear Markov equilibrium (α, β, δ) with

posterior variance γ. Denote the myopic equilibrium values by

(αmt , β
m
t , δ

m
t ) :=

(
αm(γt), β

m(γt), δ
m(γt)

)
.

By Theorem 1, (α, β) are a part of a solution to the boundary value problem, and hence δ satisfies

(A.8). The boundary conditions require that αT = αmT < 0 and βT = βmT > 0. We first show that

α ≤ 0 for all t. This is immediate, since αT < 0 and α̇t = 0 if αt = 0. Next, we show that δt

lies everywhere above its (constant) myopic value δmt . To establish this, notice that δT = δmT , and

δ̇T < 0 by (A.8). Furthermore

δt = δmt ⇒ δ̇t − δ̇mt =
(n− 1)pαtβtγt
n(n+ 1)2σ2

≤ 0.

Now suppose towards a contradiction that βt crosses βmt from below at some t < T . Then evaluate

β̇t at the crossing point and obtain

βt = βmt ⇒ β̇t − β̇mt = − g20(n− 1)3n3αtγt((n+ 1)αt − 1)

(n+ 1)3σ2(g0(n− 1)n+ (n+ 1)γt)2
< 0,

a contradiction. Therefore βt ≥ βmt .

The results shown above (αt ≤ 0, δt/p̄ = −αt − βt ≥ 1/(n+ 1), and βt ≥ βmt ) imply that, if for

some t, αt = αmt , then also βt = βmt , since −αmt − βmt = 1/(n + 1). Using this we evaluate α̇t at

αt = αmt to obtain

(αt, βt) = (αmt , β
m
t )⇒ α̇t − α̇mt =

g0(n− 1)2nγt(g0(n− 1)n+ γt)
3

(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)4
> 0,
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which establishes αt ≤ αmt for all t.

(2.–3.) The boundary conditions imply γ0 = ng0. Substituting into α̇t gives

α̇0 = −r(2α0 + 1)α0 −
g0α

2
0β0
σ2

< 0,

since both terms are negative as by part (1.), −α0 ≤ −αm0 = 1/2. Similarly, we have

β̇0 =
rα0 (n− 1− 2(n+ 1)β0)

n+ 1
+
g0α0β0 (2nα0 + (n− 1)β0)

(n+ 1)σ2
> 0,

since n ≥ 2, αt + βt < 0, and βt > βmt . Boundary conditions (αT , βT ) = (αmT , β
m
T ) imply

α̇T =
(n− 1)γT zT

(
(n2 − 1)zT − n2 − 1

)
n(n+ 1)σ2 (n+ 1− zT (n− 1))4

,

β̇T =
(n− 1)γT zT

(
(n− 1)3z2T − (n+ 1)(n(n+ 4)− 1)(n− 1)zT + n(n+ 1)3

)
n(n+ 1)3σ2 (n+ 1− zT (n− 1))4

.

Note that as γT → 0 and hence zT → n
n−1 , we have α̇T → (n−1)γT

(n+1)σ2 > 0 and β̇T → −
n(n2+n−2)γT

(n+1)3σ2 < 0.

Finally, because |αt| is bounded away from zero at all t, we have γT → 0 as T →∞, and hence the

derivatives have the desired signs for T large enough.

(4.) That δ is eventually decreasing follows by evaluating (A.8) at t = T using the boundary

condition δT = δmT and signing the terms using part (1.).

(5.) If r = 0, (A.8) simplifies to

δ̇t =
(n− 1)αtβtγt (δt − nαt (zt − 1) ((n+ 1)δt − p̄))

n(n+ 1)σ2
< 0,

since αt < 0 and (n+ 1)δt ≥ p̄ = (n+ 1)δmt by part (1.).

Now consider the second time derivative α̈t, and evaluate it at a critical point of αt. Solving

α̇t = 0 for g0 and substituting into the second derivative, we obtain

α̈t = −α
3
tβtγ

2
t (nαt + 1) ((n− 1)nαt − 1)

n3σ4
> 0,

since n ≥ 2 and αt ≤ −1/2.

Finally, we evaluate β̈ at a critical point of β. To this end, note that for r = 0,

β̇t =
αtβtγt

n(n+ 1)σ2
[
nαt
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ (n− 1)βt

]
.

At a critical point, the term in parentheses is nil. Since αt < 0, the second derivative β̈t is then

proportional to

−α̇t
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ αtżt

(
n− 1 + (n2 − 1)βt

)
.
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We know zt is strictly increasing, αt < 0, and the last term in parentheses is positive. Furthermore,

β̇t = 0 implies
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
> 0. Finally, δt = −p̄(αt+βt) from Theorem

1 implies that αt is strictly increasing at a critical point of βt. Therefore, both terms in β̈t are

negative establishing quasiconcavity.

Proof of Proposition 2. (1.) The signaling components obviously vanish at T as then also the

equilibrium play is myopic. Evaluate the slope of α̂ and α̂br at t = T . We obtain

˙̂αT − ˙̂αbrT = − γT (n− 1)2zT ((n− 1)zT − 2n)

2n(n+ 1)2σ2 (−(n− 1)zT + n+ 1)3
> 0,

since zT ≤ n/(n − 1) implies both that the numerator is negative and that the denominator is

positive. Because α̂T = α̂brT , the signaling component α̂t − α̂brt is thus negative in a neighborhood

of T . Now solve α̂t = α̂brt for zt and substitute the resulting expression into ˙̂αt − ˙̂αbrt . We obtain,

α̂t = α̂brt ⇒ ˙̂αt − ˙̂αbrt =
(n− 1)αtβtγt ((n− 1)αt − 1)

2n(n+ 1)σ2
> 0.

Thus, if α̂t − α̂brt = 0 for some t < T , then the signaling component crosses zero from below at t,

contradicting the fact that it is negative for all t close enough to T . We conclude that α̂t− α̂brt > 0

for all t < T .

Now evaluate the slope of β̂ and β̂br at t = T . We obtain

˙̂
βT − ˙̂

βbrT = − γT (n− 1)3zT
2n(n+ 1)2σ2 (n (−zT ) + n+ zT + 1) 3

< 0.

Because β̂T = β̂brT , the signaling component β̂t − β̂brt is positive in a neighborhood of T . Solve

β̂t = β̂brt for zt and substitute the resulting expression into
˙̂
βt − ˙̂

βbrt . We obtain,

β̂t = β̂brt ⇒
˙̂
βt − ˙̂

βbrt = −(n− 1)2α2
tβtγt

2n(n+ 1)σ2
< 0.

Thus, if the signaling component β̂t− β̂brt ever crosses zero it does so from above, contradicting the

fact that it is positive at t = T .

Direct calculation yields δt − δbrt = 1
2((n + 1)δt − p̄) ≥ 0, where the inequality follows since

δt ≥ δm(γt) = p̄/(n + 1) by Proposition 1.1 and (10). Furthermore, by inspection of (A.8), δ̇t < 0

if δt = δm(γt), and thus δt > p̄/(n+ 1) for all t < T .

(2.) Consider α̂t − α̂brt , and suppose there exists a time t for which the signaling component has a

slope of zero. Impose r = 0, solve ˙̂αt − ˙̂αbrt = 0 for βt, and substitute into α̂t − α̂brt . We obtain

α̂t − α̂brt =
(n− 1)αt − 1

2n(n+ 1)αt (zt − 1)− 2
> 0,

contradicting our finding that α̂t ≤ α̂brt for all t.

Likewise, we know the signaling component β̂t− β̂brt is decreasing at t = T . Now impose r = 0,
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and consider the slope
˙̂
βt − ˙̂

βbrt at an arbitrary t. We obtain

˙̂
βt − ˙̂

βbrt = −(n− 1)αtβtγt (nαt (zt − 1) ((n+ 1)βt + (n− 1)αtzt)− βt)
2nσ2zt

.

If the slope of the signaling component satisfies
˙̂
βt ≥ ˙̂

βbrt , then it must be that (n+1)βt+(n−1)αtzt ≤
0. However, the level of the signaling component is given by

β̂t − β̂brt =
(n+ 1)βt + (n− 1)αtzt

2zt
.

Consider the largest t for which the signaling component has a slope of zero. Then the signaling

component must be negative at that point. This contradicts our earlier finding that the signaling

component is positive and decreasing in a neighborhood of T . Therefore,
˙̂
βt <

˙̂
βbrt for all t.

Since δt − δbrt = 1
2((n+ 1)δt − p̄), the claim follows by Proposition 1.4.

Proof of Proposition 3. (1.) The result follows from the properties of the expected total output

established in the text before the proposition.

(2.) Firm i’s output on the equilibrium path is given by Qit = αtC
i + βtΠt + δt. Therefore, for any

i and j 6= i, we have Qit − Q
j
t = αt(C

i − Cj). Proposition 1 shows that α is nonmonotone for T

sufficiently large.

Proof of Proposition 4. We begin by constructing the distribution of Πt under the true data-

generating process. Substituting the equilibrium strategies into the law of motion for Πt in Lemma

A.1, we obtain dΠt = λtαt(nΠt −
∑

iC
i)dt+ λtσdZt, or

Πt = π0 exp
( ˆ t

0
nλtαsds

)
−
∑
i

Ci
ˆ t

0
λsαs exp

(ˆ t

s
nλuαudu

)
ds

+ σ

ˆ t

0
λs exp

(ˆ t

s
nλuαudu

)
dZs.

We conclude that conditional on C, Πt is normally distributed with mean

E[Πt | C] = π0 exp
(ˆ t

0
nλtαsds

)
−
∑
i

Ci
ˆ t

0
λsαs exp

(ˆ t

s
nλuαudu

)
ds,

and variance

Var[Πt | C] = σ2
ˆ t

0
λ2s exp

(
2

ˆ t

s
nλuαudu

)
ds.

Recall also that nαtλt = γ̇t/γt, and hence exp(
´ t
s nλuαudu) = γt/γs. We thus have

E[Πt | C] = π0
γt
γ0
−
∑
i

Ci
1

n

ˆ t

0

γ̇s
γs

γt
γs
ds = π0

γt
γ0
− 1

n

∑
i

Ciγt

(
1

γ0
− 1

γt

)
,
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and

Var[Πt | C] = − 1

n2

ˆ t

0
γ̇s
γ2t
γ2s
ds =

1

n2
γ2t

(
1

γt
− 1

γ0

)
.

Thus, conditional on the realized costs, firm i’s expected time-t flow profit is given by

(
p̄− Ci − αt

n∑
j=1

Cj − βtnE[Πt | C]− δtn
) (
αtC

i + βtE[Πt | C] + δt
)
− β2t nVar[Πt | C].

Taking an expectation with respect to C, we obtain its ex ante expected time-t profit

Wt :=
βtγt((2αt + βt)n+ 1)− g0n

(
n(αt + (αt + βt)

2) + βt
)

n2

− (p̄− π0)2(αt + βt)(n(αt + βt) + 1).

(1.) Recalling that γ0 = ng0, we have

W0 −W co = −g0
[
n2 + n− 1

(n+ 1)2
+ αt(αt + 1)

]
+ (p− π0)2

[
− (αt + βt)(n(αt + βt) + 1)− 1

(n+ 1)2

]
.

Because n ≥ 2 and αt ≤ 1/2, the coefficient on g0 is negative. The coefficient on p̄−π0 is negative as

well because αt+βt ≤ 1/(n+1). Similarly, using the terminal values of the equilibrium coefficients,

we have

WT −W co = −
g0(n− 1)nγT

[
g0n(2n2 + n− 3) + (n+ 1)(n+ 3)γT

]
[g0n(n2 − 1) + (n+ 1)2γT ]2

,

which is negative because the coefficient on g0 inside the brackets is positive for n ≥ 2.

(2.) Since α is bounded away from zero, γ is a strictly decreasing function. We can thus use the

standard change-of-variables formula to write the equilibrium coefficients and expected profits as a

function of γ instead of t. Letting π0 = p̄ and ∆W (γ) := W (γ)−W co, this gives

∆W (γ) = −g0n2
[
α(γ)(α(γ) + 1) +

n2 + n− 1

(n+ 1)2

]
− (g0n− γ)β(γ) (2nα(γ) + 1 + nβ(γ)) .

To prove the claim, we show that ∆W (γ) > 0 for some γ under the conditions stated in the

proposition. Indexing equilibria by the terminal value of γ, we show first that for every γT > 0

sufficiently small (and thus every T large enough), there exists γ∗ > γT such that αγT (γ∗) = −1.

Moreover, γ∗ → 0 as γT → 0. To this end, note that each function αγT satisfies the differential

equation

α′(γ) =
β(γ)(γ + (n− 1)nα(γ)(g0n− γ) + g0(n− 1)n)

γn(γ + g0(n− 1)n)

+
nrσ2(γ + α(γ)(γ + n(γ + g0(n− 1))) + g0(n− 1)n)

γ2nα(γ)(γ + g0(n− 1)n)
,

(A.14)
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with boundary condition α(γT ) = αm(γT ). The coefficient of β(γ) is negative for γ = γT sufficiently

small, and it can cross zero only once. Hence we can obtain an upper bound on α(γ) for γ small by

replacing β(γ) with its myopic value βm(γ) defined in (10) and considering the resulting differential

equation

α̂′(γ) =
βm(γ)(γ + (n− 1)nα̂(γ)(g0n− γ) + g0(n− 1)n)

γn(γ + g0(n− 1)n)

+
nrσ2(γ + α̂(γ)(γ + n(γ + g0(n− 1))) + g0(n− 1)n)

γ2nα̂(γ)(γ + g0(n− 1)n)

with α̂(γT ) = αm(γT ). Since βm(γ) ≤ β(γ) for all γ ≥ 0, we then have α̂(γ) > α(γ) for all γ such

that

(γ + (n− 1)nα(γ)(g0n− γ) + g0(n− 1)n) < 0. (A.15)

Now consider the derivative α̂′(γ) and substitute in the value α̂(γ) = −1. The resulting expres-

sion is positive if and only if

γ ≥ γ̄ :=
g0
(
g0(n− 1)3n− n

(
n2 − 1

)
rσ2
)

g0(n− 1)((n− 1)n+ 1) + (n+ 1)2rσ2
.

The threshold γ̄ is strictly positive if and only if

rσ2

g0
<

(n− 1)2

n+ 1
. (A.16)

Moreover, then for every γ̂ ∈ (0, γ̄), there exists γ̂T > 0 such that α̂γ̂T (γ̂) = −1. To see this,

note that we can simply follow the ODE for α̂ to the left from the initial value α̂(γ̂) = −1. As

αm(γ̂) > −1, the solution lies below the continuous function αm at γ̂. Moreover, it lies strictly

above −1 at all γ < γ̂. Since αm(0) = −1, there thus exists some γ ∈ (0, γ̂) at which α̂(γ) = αm(γ),

which is our desired γ̂T . Finally, since the function α̂γ̂T is decreasing at γ̂, the left-hand side of

(A.15) is negative at γ̂, which implies that α̂γ̂T bounds the corresponding αγ̂T from above on [γ̂T , γ̂],

and thus

−1 = α̂γ̂T (γ̂) > αγ̂T (γ̂) for all γ̂ < γ̄.

But αγ̂T (γ̂T ) > −1, so by the intermediate value theorem, there exists some γ∗ ∈ (γ̂T , γ̂) such that

αγ̂T (γ) = −1. Moreover, since α̂γT are solutions to the same ODE with different initial conditions,

their paths cannot cross, which implies that γ̂ is a monotone function of γ̂T . Letting γ̂ → 0 then

implies that γ∗ → 0 as γ̂T → 0 as desired.

Now consider the difference ∆W (γ). Because ∆W (γ) is increasing in β, we use βm(γ) to bound

β(γ). We then substitute the value α(γ) = −1 into ∆W (γ). By the above argument, we can take

the corresponding γ > 0 to be arbitrarily small by choosing T large enough if (A.16) holds. But
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evaluating the difference ∆W (γ) at γ = 0, we obtain

∆W (0) =
g0(n− 1)3n

(
n2 + n− 1

)
(n2 − 1)2

> 0,

so the result follows by continuity of W (γ) in γ.

Finally, in the table below, we report the values of the upper bound r̄ defined by condition

(A.16) and of the lower bound r defined by the sufficient condition for existence, g0/σ
2 < r/κ(n),

when g0/σ
2 = 1. By inspection, r < r̄ for all 1 ≤ n ≤ 10, confirming that the conditions in the

proposition are compatible with our sufficient condition for existence.

n 2 3 4 5 6 7 8 9 10

r 0.32 0.87 1.48 2.10 2.74 3.38 4.02 4.66 5.31

r̄ 0.33 1.00 1.80 2.66 3.57 4.50 5.44 6.40 7.36

(3.) A calculation analogous to the one for ∆W yields the difference between ex-ante expected

consumer surplus and its complete-information level

∆CS :=
1

2

[
g0n(αt + βt)

2 − g0n

(n+ 1)2
− βtγt(2αt + βt)

]
+

1

2
(p̄− π0)2

[
n2(αt + βt)

2 − n2

(n+ 1)2

]
.

Because α + β ≤ −1/(n + 1), the coefficient on the term p̄ − π0 is positive. Furthermore, we can

use δt = −p̄(αt + βt) and δt ≥ 1/(n + 1) to bound βt from above by −αt − 1/(n + 1) to obtain

∆CS ≥ 1
2γt
[
α2
t − (n+ 1)−2

]
> 0.

A.5 Proofs for Section 6

We prove Proposition 5 in two main steps. First, we show that finite-horizon equilibria converge

along a subsequence to a strategy profile of the infinite horizon game that is a solution to the

corresponding HJB equation. Second, we show that the value under this limit strategy profile

satisfies a transversality condition and hence constitutes a solution to each player’s best response

problem.

As a preliminary observation, we note that g0/σ
2 < 4r/(27n) strengthens the first case in (15)

and hence αT , βT , δT , and γT are bounded uniformly in T (see beginning of Section A.4). Moreover,

then −nα ≥ ξ ≥ 0, and hence ξT is uniformly bounded as well. To see the last claim, note that

nαm + ξm = 0. Therefore, for all T , we have −nαT = ξT . Now consider the sum nα̇t + ξ̇t and

evaluate it at nαt + ξt = 0. We obtain

nα̇t + ξ̇t = − nαt
2σ2 (g0(n− 1)n+ γt)

(
g0(n− 1)n

(
rσ2 + αtβtγt

)
+ 2rσ2γt

)
.

Because the fraction is positive, we can bound γt in the term in parentheses with ng0 and 0

respectively to bound the right-hand side from below. Thus, if ng0αtβt + rσ2 > 0, then the
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function −nα crosses ξ from above only, and then −nαT = ξT implies that ξ < −nα for all t.

Because β < −α, this clearly holds if α > a for some a > −3/2. The existence of such a constant

a can be shown by first verifying that α is bounded from below by the solution to

ẏt = −ryt(yt + 1) +
ng0
σ2

y4t , yT = −1,

and then verifying that yt > −3/2 when g0/σ
2 < 4r/(27n). We omit the details.

We adopt the notation introduced in the beginning of Section A.4, but redefine fT := (αT , βT , δT , ξT , γT )

to include ξT . Note that Lemma A.6 continues to hold for fT so redefined. Finally, note that each

fT satisfies ḟT (t) = F (fT (t)) at every t < T , where F : [−B,B]5 → R5 is the continuous function

on the right-hand side of our boundary value problem (written here including δ). By continuity, F

is bounded on its compact domain implying that the functions {fT } are equi-Lipschitz.

Lemma A.7. Any sequence {fT } of symmetric linear Markov equilibria contains a subsequence

{fTn} that converges uniformly to a continuously differentiable f : [0,∞) → R5 that satisfies

ḟ = F (f) and limt→∞ f(t) = (αm(0), βm(0), δm(0), ξm(0), 0).

Proof. The family {fT } is uniformly bounded and equi-Lipscitz and hence of locally bounded

variation uniformly in T . Thus, Helly’s selection theorem implies that there exists a subsequence

of horizons {Tn}n∈N with Tn →∞ such that fT converges pointwise to some function f as T →∞
along the subsequence. We show that this convergence is in fact uniform.

Suppose to the contrary that there exists ε > 0 and a collection of times {Tk, tk}k∈N such that

{Tk} is a subsequence of {Tn} and ‖fTk(tk) − f(tk)‖ > ε for every k. By Lemma 2, there exists

tε < ∞ such that for all Tn ≥ t ≥ tε, we have ‖fTn(t) − (x∗, 0)‖ < ε/2. Since fTn(t) → f(t) as

n → ∞, we then have ‖fTn(t) − f(t)‖ < ε for all Tn ≥ t ≥ tε. This implies that tk belongs to

the compact interval [0, tε] for all sufficiently large k, which in turn implies that no subsequence of

{fTk} converges uniformly on [0, tε]. But {fTk} are uniformly bounded and equi-Lipschitz (and thus

equicontinuous) and [0, tε] is compact, so this contradicts the Arzela-Ascoli theorem. We therefore

conclude that {fTn} converges uniformly to f .

For differentiability of f , note first that uniform convergence of fTn to f implies that ḟTn =

F (fTn)→ F (f) uniformly on every interval [0, t], since F is continuous on a compact domain and

hence uniformly continuous. Define h : R+ → R5 by

hi(t) := fi(0) +

ˆ t

0
Fi(f(s))ds, i = 1, . . . , 5.

We conclude the proof by showing that h = f . As fTn → f , it suffices to show that fTn → h

pointwise. For t = 0 this follows by definition of h, so fix t > 0 and ε > 0. Choose N such that for

all n > N , we have ‖fTn(0)− h(0)‖ < ε/2 and sups∈[0,t] ‖ḟTn(s)− F (f(s))‖ < ε/(2t). Then for all

n > N ,

‖fTn(t)− h(t)‖ ≤ ‖fTn(0)− h(0)‖+ ‖
ˆ t

0
ḟTn(s)ds−

ˆ t

0
F (f(s))ds‖ < ε

2
+
ε

2
= ε.
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Thus f = h and ḟ = ḣ = F (f). The limit of f as t→∞ follows by Lemma A.6.

Since the limit function f = (α, β, δ, ξ, γ) satisfies the boundary value problem, we may construct

a value function V of the form (9) as in the proof of Lemma A.3. Then the policy (α, β, δ, ξ) satisfies

the first-order condition (8) by construction and thus achieves the maximum on the right-hand side

of (7). Hence, it remains to show that the transversality condition holds. In what follows, we use

the fact that in the infinite-horizon game, a strategy Q is feasible if (i) E
[ ´ t

0 Q
2
sds
]
< ∞ for all

t ≥ 0, and (ii) the firm obtains a finite expected payoff. We need the following two lemmas.

Lemma A.8. For any feasible strategy Q,

lim
t→∞

e−rtv(t)E[ΠQ
t ] = lim

t→∞
e−rtv(t)E[Π̂t] = lim

t→∞
e−rtv(t)E[Π̂2

t ] = 0

for any function v of polynomial growth. Also, lim sup
t→∞

e−rtE[(ΠQ
t )2] <∞.

Proof. Regarding Π̂, suppose that (Π0, Π̂0) = (π, π̂). Then, it is easy to see that

Π̂t = π̂R̂t,0 + c(1− R̂t,0) +

ˆ t

0
R̂t,sσλsdZs.

where R̂t,s := exp(
´ t
s λuαu[1 + (n − 1)(1 − zu)]du), s < t, is a discount factor (i.e., λuαu[1 + (n −

1)(1− zu)] < 0). In particular,

E[Π̂t] = π̂R̂t,0 + c(1− R̂t,0) < max{c, π̂}.

Also, by uniform boundedness,

E
[( ˆ t

0
R̂t,sσλsdZs

)2]
= E

[ ˆ t

0
R̂2
t,sσ

2λ2sds
]
≤ K1t

for some K1 > 0. Hence, E[Π̂2
t ] ≤ K0 +K1t. The limits for Π̂ follow directly.

Regarding (ΠQ
t )t≥0, letting R̃t,s := exp(

´ t
s λu[nαu + βu]du), we have that

ΠQ
t = πR̃t,0 +

ˆ t

0
R̃t,sλs[δs − (n− 1)αs(zΠ̂s + (1− zs)c)]ds+

ˆ t

0
R̃t,sλsQsds+

ˆ t

0
R̃t,sλsσdZs.

Defining E[I1t ] :=
´ t
0 R̃t,sλsE[Qs]ds, Cauchy-Schwarz inequality implies

E[I1t ] ≤
(ˆ t

0
R̃2
t,sλ

2
sds
)1/2( ˆ t

0
E[Qs]

2ds
)1/2

< Kt
(
E
[ˆ t

0
Q2
sds

])1/2
.

Hence,

e−rtE[I1t ] < e−rt/2Kt
(
e−rtE

[ ˆ t

0
Q2
sds
])1/2

< e−rt/2Kt
(
E
[ ˆ ∞

0
e−rsQ2

sds
])1/2

,
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where the last term is finite by feasibility of Q. Hence, e−rtE[I1t ] → 0. It is easy to verify that all

other terms also converge to zero once discounted, and this also occurs when they are accompanied

by v of polynomial growth. Thus, e−rtv(t)E[ΠQ
t ]→ 0.

To conclude, in studying e−rtE[(ΠQ
t )2] the only non-trivial terms are

At :=
(ˆ t

0
R̃t,sλsQsds

)2
and Bt :=

ˆ t

0
R̃t,sλsQsds

ˆ t

0
R̃t,sλsσdZs.

(For the others the limit exists and takes value zero.) Observe first that there is ε > 0 such that

R̃t,s < e−ε
´ t
s λudu for all 0 ≤ t <∞; this follows from nα+ β < 0 and lim

t→∞
nα+ β < 0. Thus, from

Cauchy-Schwarz and the fact that λ < C, some C > 0,

At ≤
( ˆ t

0
R̃2
t,sλsds

)(ˆ t

0
λsQ

2
sds
)
≤ C2

(ˆ t

0
e−2ε

´ t
s λuduλsds

)(ˆ t

0
Q2
sds
)

= C
1− e−2ε

´ t
0 λudu

2ε

(ˆ t

0
Q2
sds
)
< C̃

(ˆ t

0
Q2
sds
)
.

Consequently, e−rtE[At] ≤ C̃E
[
e−rt
´ t
0 Q

2
sds
]
≤ C̃E

[ ´∞
0 e−rsQ2

sds
]
< ∞, by feasibility. We con-

clude that lim sup e−rtE[At] <∞.

Regarding Bt, by applying Cauchy-Schwarz again, we have

E[Bt] ≤ E
[( ˆ t

0
R̃t,sλsQsds

)2]1/2
E
[( ˆ t

0
R̃t,sλsσdZs

)2]1/2
,

where the second term is bounded by some (L0 +L1t)
1/2. Using the previous argument for At gives

e−rtE[At]
1/2 ≤ e−rt/2v(t)C̃1/2E

[
e−rt
ˆ t

0
Q2
sds
]1/2
≤ e−rt/2C̃1/2E

[ ˆ ∞
0

e−rsQ2
sds
]1/2

,

where the last term is finite by feasibility. Thus, e−rtE[Bt] ≤ e−rtE[At]
1/2(L0 + L1t)

1/2 → 0. It is

easy to show that the rest of the terms in E[(ΠQ
t )2] converge to zero using similar (and simpler)

arguments. Hence, lim sup e−rtE[(ΠQ
t )2] <∞.

Lemma A.9. Under the limit strategy (α, β, δ, ξ), the system (A.9) admits on [0,+∞) a bounded

solution for which lim
t→∞

vi(t) exists for each i, and the system (A.6) defines vk (k = 1, 4, 5, 8) that

have at most linear growth.

Proof. Let θ := r + [2α2γ(n(1− z) + z)]/nσ2. Notice that because z ≤ n/(n− 1), θt > r > 0. It

is easy to see that for s > t,

v9(s)e
−
´ s
0 θudu − v9(t)e−

´ t
0 θudu = −

ˆ s

t
e−
´ u
0 θvdv[(n− 1)αuzu + ξu]2du.
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We look for a solution such that v9(s) exp(−
´ s
0 θudu)→ 0 as s→∞. If it exists, then

v9(t) =

ˆ ∞
t

e−
´ s
t θvdv[(n− 1)αszs + ξs]

2ds.

Because (n− 1)αszs + ξs is uniformly bounded and θ > r > 0, the right-hand side exists, and it is

uniformly bounded. Hence, it corresponds to our desired solution. Moreover, the limit value of v9

is, by L’Hopital’s rule

lim v9(t) = lim
[(n− 1)αszs + ξs]

2

θt
=

[−n+ n/2]2

r
=
n2

4r
.

The other equations in (A.9) have similar solutions (i.e., taking the form of a net present value,

with a finite limit value), and they can be found in an iterative fashion.

Solving vk(t)αtλt (k = 1, 4, 5, 8) as a function of the limit coefficients from (A.6) and using

limt→∞ f(t) from Lemma A.7, we see that vk(t)αtλt → 0. Because αt → −1, γt ∈ O(1/(a + bt)),

and λt ∝ αtγt, this implies that vk(t) grows at most linearly.

We are now ready to show that the transversality condition holds (see, e.g., Pham, 2009,

Theorem 3.5.3).

Lemma A.10. Under any feasible strategy Q, lim supt→∞ e
−rtE[V (C,ΠQ

t , Π̂t, t)] ≥ 0. Moreover,

under the limit strategy (α, β, δ, ξ), the limit exists and it takes value zero.

Proof. It obviously suffices to show the result conditional on any realized c. We first check the

lim sup. Terms involving vi, i = 0, 1, 2, 3, 5, 6, 7, 9 in V converge to zero by the last two lemmas.

For the v4 term, Cauchy-Schwarz implies

e−rtv4(t)E[ΠQ
t Π̂t] ≤ e−rt/2v4(t)E[Π̂2

t ]1/2e−rt/2E[(ΠQ
t )2]1/2,

where e−rt/2v4(t)E[Π̂2
t ]1/2 → 0 as v4 is at most O(t) and E[Π̂2

t ] is linear. By Lemma A.8,

lim sup e−rtE[(ΠQ
t )2] < ∞. Thus e−rtv4(t)E[ΠQ

t Π̂t] → 0 as t ≥ 0. We deduce that the lim sup

is non-negative by noticing that e−rtv8(t)E[(ΠQ
t )2] ≥ 0 as v8 ≥ 0.

Since all terms except for e−rtv8(t)E[(ΠQ
t )2] converge to zero under any feasible strategy, it

remains to show that, under the limit strategy Q∗, e−rtv8(t)E[(ΠQ∗

t )2] → 0. However, this is

straightforward once we observe that

ΠQ∗

t = πRt − cRt
ˆ t

0
Rt,sλsαs[1 + (n− 1)(1− zs)]ds

+

ˆ t

0
Rt,sλsσdZs +

ˆ t

0
Rt,sλs[ξs + (n− 1)αszs]Π̂sds.

Indeed, because (i) E
[( ´ t

0 Rt,sλsσdZs
)2]

and E[Π̂2
t ] grow at most linearly, (ii) the functions (α, β, ξ, z, λ)

are all uniformly bounded, and (iii) Rt,s is a discount rate, it is easy to verify that all terms in

E[(ΠQ∗

t )2] decay to zero once discounted by e−rt.
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