
Macroeconomic Patterns in System-Wide
Liquidity Regimes

Mark D. Flood
Office of Financial Research

Washington, DC

John C. Liechty
Pennsylvania State U.

State College, PA, and
Office of Financial Research

Washington, DC

Thomas Piontek
Office of Financial Research

Washington, DC

November 2, 2014

VERY PRELIMINARY. PLEASE DO NOT QUOTE WITHOUT
PERMISSION.

The authors thank Tobias Adrian, Greg Feldberg, Pete Kyle, and workshop participants
at Goethe University, Massachusetts Institute of Technology, the Federal Reserve Bank of
New York, and the Open Financial Data Group, for numerous helpful comments and
suggestions. Any remaining errors are the responsibility of the authors alone.

Views and opinions expressed are those of the authors and do not necessarily
represent official OFR or Treasury positions or policy, nor of any of the
authors’ affiliates or employers.



Abstract

This research seeks statistical commonalities in market liquidity across a range of

corporate equities and bond markets and commodity futures markets, with an aim to

better understanding system-level patterns in aggregate or funding liquidity that arise

from broad patterns in market liquidity. We present a Bayesian estimation of hidden

Markov chain (HMC) models to measure the latent structure of liquidity. Starting

with granular measures of market liquidity for equity, bond, and futures markets, we

use Markov chain Monte Carlo (MCMC) analysis to estimate the latent structure

governing liquidity at the system-wide level. Our input measures of market liquidity

take advantage of recent work by Kyle and Obizhaeva [2014], who propose “invariant”

price-impact measures of responses to order flow that are readily comparable across

a broad range of financial markets and conditions. We find that three latent liquidity

regimes—corresponding to high, medium, and low price-impact—are adequate to

describe all of the markets we consider. In a more focused examination of the equities

markets alone, we test the ability of several macroeconomic time series to recover the

estimated liquidity dynamics. This exercise has significant explanatory power and

allows for an economically meaningful attribution of the estimated latent liquidity

states.
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1 Introduction

We present a new approach to the study of liquidity that exploits daily data to identify

broad-based and relatively high-frequency patterns for individual markets to help explain

aggregate, system-wide liquidity conditions. Although “funding liquidity” in the wholesale

markets for institutional funding is the most immediate concern for system-wide conditions,

there are vastly many more individual markets for financial assets than for intermediaries’

liabilities. It is an empirical question whether there is additional information in the asset

markets that might help to explain liquidity conditions in the funding markets. Previous

studies of “commonalities in liquidity” (e.g., Chordia et al. [2000] and Karolyi et al. [2012])

find that there are indeed significant patterns in the detailed data. We extend the com-

monalities approach by analyzing a range of asset classes, including equities, bonds, and

financial futures.1 We also extend the commonalities approach with a novel methodology

for connecting aggregate liquidity patterns to a panel of macroeconomic time series.

To extract aggregate patterns from the detailed data, we apply Bayesian estimation

of hidden Markov chain (HMC) models in order to measure the structure of liquidity in

the financial system. Starting with granular measures of market liquidity, we use Markov

chain Monte Carlo (MCMC) methods to estimate the latent structure of liquidity at the

aggregate, system-wide level. Our primary input measures of market liquidity come from

applying recent work by Kyle and Obizhaeva [2014], who propose an “invariant” price-

impact measure of responses to order flow that are readily comparable across a broad

range of financial markets and conditions. We begin by exploring daily market data from

a range of financial markets to create a collection of daily price impact measures. In

our initial implementation, we consider volatility index futures, oil futures, and various

1Prior studies of commonality have focused on equities markets alone. An exception is the recent
working paper by Marra [2013] which pairs individual equities with their matching credit default swaps
(CDS); her emphasis, however, is on firm-level interactions between the securities rather than system-wide
liquidity.
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portfolios of equities and corporate bonds. We assume that the dynamics of each of these

daily price impact measures (33 in all) are determined by an underlying variable that

alternates between one of several liquidity states and that switches between these states

drives sudden changes in the observed levels of price impact. These underlying states

are “latent”—i.e., not directly observable—but inferred from the dynamics of daily price

impact measurements. In our initial analysis, although we estimate each price impact series

independently – assuming no coordination between the dynamics of the latent liquidity

states across markets – we find surprising consistency in the dynamics of market liquidity

across all of these markets. First, we find that just three liquidity regimes are adequate to

describe each market: high, intermediate, and low. Second, we find that the low liquidity

regime afflicts all of the markets during the financial crisis of 2008.

As a point of comparison, we also look at the dynamics of two more traditional measures

of liquidity, the daily average bid-ask spread and daily turnover, for a limited subset of these

markets. While these alternative measures capture general patterns in liquidity dynamics

similar to the patterns from the price-impact analysis, they are subject to clear structural

changes which reflect the broad changes in the market intermediation infrastructure.

Returning to the price-impact analysis, despite these common features in the price-

impact liquidity dynamics, we also find interesting differences across the various markets

in the lead-up to the recent crisis and in its aftermath. We build on our initial findings

and on earlier studies of liquidity commonalities by using a model that links a collection of

latent liquidity states (from multiple markets) together using a multinomial Probit model

that is driven by a collection of macro variables. This provides a framework that allows

us to assess the usefulness of macro variables as potential indicators of financial stress (at

least in terms of market liquidity). Although we restrict our focus in this phase of the

analysis to liquidity in the U.S. equities markets for reasons of data consistency, the model

reveals that a number of macro variables, such as the Dow Jones Real Estate Index, the
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Treasury-Eurodollar (TED) spread, the VIX R© and the S&P 500 price-to-book (P/B) ratio

are statistically significant in explaining when these markets experience different levels of

liquidity.

The remainder of the paper is structured as follows. First, in the remainder of Section

1 we discuss the general issue of liquidity measurement, and provide a rationale for our

approach. In Section 2, we describe the models and sampling strategies used in the MCMC

analysis for both the univariate models (i.e., one market at a time) and the hierarchical

model (multiple markets at a time). Section 3 describes the data and specific formulas for

measuring price impact. Section 4 reports our findings from aggregating both the market

specific analyses and the multiple market analysis. We conclude with a discussion of

potential future work, limitations of the current approach, and ways that these limitations

might be overcome to allow these tools to be used to expand our ability to forecast liquidity.

1.1 The Challenges of Liquidity Measurement

Conceptually, “liquidity” is the ease with which participants in the financial system can

convert their claims to cash. The settlement obligations of the vast majority of financial

contracts are stated in terms of cash: payors must deliver cash, and payees must accept it.

As a result, the ability of market participants to “get to cash” has important implications

for the overall functioning of the system. Liquidity is particularly important for the study

of financial stability, as sudden shifts in liquidity have historically been one of the defining

characteristics of financial crises.2

For a financial asset, liquidity arises because there are agents who stand ready to

2Kindleberger [1993, ch. 15], for example, recounts the history of crises in Western economies, with
a special focus on the lender of last resort as a provider of backstop liquidity to the system. Reinhart
and Rogoff [2009], and Schularick and Taylor [2012] consider a similar sample, with the latter focusing on
the role of “credit booms gone wrong” as a precursor to crisis events. Because aggregate credit growth is
typically facilitated by expanding bank balance sheets, there is an important empirical connection linking
credit cycles, leverage cycles, and liquidity cycles.
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purchase the instrument. In efficient markets, arbitrage implies that there is money to be

made by those with the robust valuation models and accurate information to feed them, so

that counterparties should be easy to find for a modest price concession. That is, liquidity

providers will step in opportunistically if the asset is offered at an acceptable discount,

but have little incentive to pay more than the current market price. The practical upshot

for liquidity measurement is that we measure the extent of illiquidity in the system as

one-sided deviations from an ideal benchmark of “perfect” liquidity.3

Ideally, measures of liquidity to support financial stability monitoring would be both

timely (available at high frequency to track developments in near real time) and forward-

looking (possessing some forecasting power to serve as an early warning signal). These goals

are often defeated in practice by certain fundamental challenges. In particular, liquidity

exhibits three interrelated characteristics that present special complications to measure-

ment: latency, nonlinearity, and endogeneity. Each of these challenges has ramifications

for both funding liquidity and market liquidity.

1.1.1 Latency

Latency means that much of the most interesting liquidity behavior is ex-ante unobservable.

At the microstructural level, we typically most wish to know not merely the prices of recent

trades or the current best bid and offer, but how deep or resilient the market will be. Many

trading mechanisms designed to attract liquidity providers (i.e., buyers and sellers) do so

by restricting information availability, for example, with closed limit-order books, hidden

or “iceberg” orders, anonymous brokerage to conceal trader identities, and limited-access

3It is important to consider what constitutes a “reasonable” price in this context. Most financial
instruments have limited liability, so there is typically some nonnegative price at which buyers come
forward; however, a market is not liquid if buyers only appear for fire-sale offers. The techniques of
financial engineering mean that plausible mark-to-model valuations are usually available even for contracts
that trade infrequently. The recent Presidential Address to the Econometric Society by Holmström [2012]
emphasizes the lengths markets will endure to achieve liquidity by forcing assets to be “informationally
insensitive.” See also Dang et al. [2012].
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“upstairs” trading venues for large trades. Moreover, traders are never under compulsion to

reveal their intentions by actually issuing (or canceling) a limit order prior to the moment

of truth; some version of a market order is typically available. Conversely, private visibility

into their own customers’ positions and order flow can be a valuable information source

for dealers.

To hedge against these and other liquidity surprises, firms frequently arrange for con-

tingent liquidity in the form of lines of credit or derivative contracts. However, hedgers

must still worry about the wrong-way risk that their supposed guarantors will themselves

fail under the precisely the event being insured against. Liquidity is never purely localized

to a single transaction or market. At the broadest levels, global liquidity depends in part

on the responses of firms (and policy makers) to situations they may have not have planned

for explicitly. For example, it is difficult to know in advance whether an initial deleveraging

event will generate enough selling pressure to create a fire-sale feedback loop. Geanakoplos

[2003], for example, emphasizes that collateral margins are likely to bind in a crisis, unex-

pectedly depriving participants of flexibility at the crucial moment. Similarly, the repeated

clearing crises of the nineteenth century (see Calomiris and Gorton [1991]) were invisible

to bankers in the system until it was too late. In general, liquidity measurement is “more

honored in the breach,” in the sense that it is easier to assess the depth or resilience of the

market when conditions are stressful enough to violate the “perfectly liquid” ideal.

We address the challenge of latency by adopting a MCMC approach to estimate the la-

tent regime structure governing the observed price impact series. The maintained assump-

tion is that, while the markets’ liquidity behavior is indeed largely latent, these hidden

patterns will reveal themselves in a broad cross-section of markets observed at relatively

high-frequency (daily). In the results below, we are indeed able to identify three meaning-

ful latent liquidity states (high, medium, and low price-impact) that seem to govern the

observed liquidity behavior.
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1.1.2 Nonlinearity

Nonlinearity in the response of liquidity to significant market changes compounds the prob-

lem of unobserved behavior. Numerous studies have documented the empirical regularity

that price response to order flow tends to be concave function of the transaction size. In-

tuitively, order flow can move the price significantly before additional liquidity providers

arrive to dampen the effect.4 For example, limit orders (and other contingent liquidity)

may crowd behind the best posted quote, so that an order flow impulse large enough to

work through this initial phalanx may expose gaps in the book, provoking an abrupt shift

in prices. Such unevenness in market depth may be an important source of fat-tailed

returns distributions. Duffie [2010] suggests that for some relatively illiquid markets, it

may be weeks before support arrives in the form of additional order flow. Nonlinearity is

a challenge for liquidity measurement because it hampers our ability to extrapolate from

small-scale, localized effects to the larger, out-of-sample effects that are often of greatest

concern.

Nonlinearity in liquidity is an even greater worry for systemic stability, where the

stakes are correspondingly higher. At this level, interactions among nodes in the system

can conspire to produce self-amplifying feedback loops. Tirole [2011] provides a tour of

the catalog of systemic pathologies related to illiquidity, including contagion, fire sales,

and market freezes. He underscores the central fact that one of the basic services provided

by the banking (and shadow banking) sector—namely maturity transformation—render it

especially vulnerable to runs and other liquidity surprises. Brunnermeier [2009] provides a

good overview of how these forces played out in practice, at least through the early (and

most severe) phases of the recent crisis. He highlights four specific channels: (a) delever-

4Much of the literature identifies a “square-root rule” that posits price impact to be proportional to the
square root of the transaction size; see for example, Gabaix et al. [2006], Bouchaud et al. [2008], Hasbrouck
and Seppi [2001], and Toth et al. [2011]. In contrast, recent work by Kyle and Obizhaeva [2011a,b] argues
for a cube-root rule, and provides a theoretical justification for why this regularity should emerge.
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aging spirals driven by erosion in capital levels and increases in lending standards and

margins; (b) a credit crunch motivated by funding concerns; (c) outright runs, exemplified

by Bear Stearns and Lehman Brothers; and (d) netting failures due to real or perceived

counterparty credit risks. All of these modalities involve liquidity. Adrian and Shin [2010]

emphasize the role played by institutional leverage in both the expansion and contraction

of the system. Figure 1, adapted from similar illustrations in Adrian et al. [2013a], illus-

trates clearly that institutional leverage expands and contracts via adjustments to assets

and liabilities—not equity—suggesting that increases in leverage correspond to increases

in overall liquidity, since bank deposits and other liabilities are a key component of liquid

assets for other participants in the system. Leverage is strongly procyclical; by increasing

global liquidity, aggregate balance sheet expansion encourages investment spending and

tends to ease margin constraints. Figure 1 also indicates a correlation between bank lever-

age and market volatility, at least through the course of the most recent business cycle:

periods of low volatility (green and yellow markers) tend to correspond to increases in bank

leverage, and episodes of high volatility (orange and red) tend to match decreases in lever-

age. Unfortunately, the volatility-leverage-liquidity spiral works in reverse as well, leading

to debt overhangs as the system contracts, with associated increases in institutional risk

aversion and liquidity hoarding.

We address the challenge of non-linearity by agnostically allowing the data determine

the “correct” number of liquidity states for each time series. Notably, for all 33 of our

univariate series, three liquidity states are adequate to explain the observed variation in

the price-impact statistics. Because the expected price impact is allowed to vary idiosyn-

cratically for each of the three regimes (high, medium, and low price-impact), this model

naturally captures non-linearities in price impact.
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Figure 1: The Leverage-Liquidity CycleSources: Bloomberg, OFR Analysis

1.1.3 Endogeneity

Endogeneity means that liquidity is partly a network effect that emerges through the inter-

actions of many market participants. Thus, active markets should have less need for iden-

tified liquidity providers who convert investments to cash by purchasing or rediscounting

others’ financial assets. Endogenous liquidity creates a straightforward network externality

in the sense of Pagano [1989] and Economides [1996]: investors are naturally more willing

to enter markets where there are already many other traders and large transaction vol-

umes, because this provides an implicit assurance that counterparties will be easy to find

when needed. A familiar example of this phenomenon is the contrast between trading for

on-the-run and off-the-run Treasuries (see Barclay et al. [2006]). Similarly, Bessembinder

et al. [2006] find that liquidity externalities are consistent with the significantly reduced

trade execution costs that followed the introduction of the TRACE feed, which increased

transparency in the corporate bond market. Liquidity externalities are also often touted

as a benefit of high-frequency trading.
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Liquidity externalities operate at the level of the system as well.5 They have long been

a central concern of financial stability supervisors. Elliott et al. [2013], for example, doc-

ument this multi-dimensional regulatory history for the U.S. One of the core functions of

central banking is to provide a lender of last resort in a crisis, an idea first flirted with as

an expedient in London’s Panic of 1825, “codified” in Bagehot [1873], and institutionalized

in the U.S. with the creation of the Federal Reserve in 1913. Recourse to a potentially

unlimited source of liquid cash from outside the network of banks and financial firms is

important in a crisis, when information asymmetries and other constraints prevent firms

from liquidating their assets to meet withdrawals. On the other hand, some have ar-

gued that this explicit promise of effectively unlimited contingent liquidity creates a moral

hazard—that too-big-to-fail banks undertake excessive leverage and maturity transforma-

tion, comfortable that the Fed’s emergency backstop provides them with a free liquidity

put.6 Moreover, in spite of discount-window access, Cornett et al. [2011] find that banks

in the recent crisis were forced onto a more defensive liquidity posture, in part because

Lehman Brothers’ failure diverted commercial paper borrowers to draw on banks’ liquid

assets via backup lines of credit, and partly because wholesale funding sources suddenly

shrank. A net result was a restriction in commercial lending. In the wake of the crisis,

macroprudential supervisors have focused renewed attention on liquidity buffers, including

the new Basel III requirements for banks’ to maintain net stable funding and liquidity

coverage ratios.7

We address endogeneity by estimating a hierarchical model that searches for common

5There are many discussion of this endogenous systemic externality. See, for example, Morris and Shin
[2004], Dang et al. [2010], and Adrian and Shin [2010] and the references therein.

6Goodhart [2008] and Farhi and Tirole [2009] have made this argument. The term “liquidity put”
is a metaphor for a commonly used recourse covenant that allows investors in a partially debt-funded
structured investment vehicle (SIV) to put back their shares in the SIV to the sponsoring bank if the SIV
is unable to roll over its short-term debt; see, for example, Entwistle and Beemer [2008]. However, during
at least one episode—the Y2K millennium date change—the Fed literally sold liquidity put options; see
Sundaresan and Wang [2006].

7The new liquidity framework for banks is discussed in Basel Committee on Banking Supervision [2013,
2010], Adrian et al. [2013b], and Bank of England [2011].
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liquidity structure throughout the cross-section of observed price-impact series. Although

this work is in preliminary stages, and is currently limited to the cross-section of equity

markets, we are able to identify significant patterns and attribute them statistically to

particular macroeconomic time series, providing some economic interpretation for the es-

timation.

1.2 Liquidity Measurement in Practice

Research contributions generally focus either on liquidity in the narrow context of a par-

ticular financial market—so-called “market” or “microstructural” liquidity—or at the ag-

gregate level of the financial system as a whole—so-called “global” or “funding” liquidity.

How one measures liquidity depends in part on the portion of the financial system under

examination. Brunnermeier and Pedersen [2009] connect these two strands of the litera-

ture, using bank balance sheets as an organizing device, as depicted in Figure 2. In this

framework, the distinction between “market liquidity” and “funding liquidity” is based es-

sentially on which side of a financial firm’s balance sheet is involved. Market liquidity refers

to the ease with which financial institutions can convert securities or loans from their asset

portfolio to cash.8 Financial institutions can participate as both suppliers and demanders

of liquidity in these markets, as indicated by the bidirectional arrows on the left side of

Figure 2. Funding liquidity refers to the ease with which institutions can obtain cash by

borrowing in funding markets. Figure 2 underscores that one of the central functions of

banks and similar intermediaries is to convert relatively long-maturity, low-liquidity com-

mitments on the asset side to relatively short-maturity, high-liquidity obligations on the

8Harking back to Moulton [1918], Mehrling [2010] refers to this sort of liquidity as the “shiftability”
of bank or dealer assets—i.e., the ability to shift them into cash. It is worth noting that the asset side
of Figure 2 represents a primary point of contact between the financial system and the real economy.
Commitments like corporate debt or mortgage loans typically translate directly into real activity such
as workforce expansions and home improvements investments. Cornett et al. [2011] analyze market and
funding liquidity empirically, along with their net effect on overall credit supply.
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Figure 2: Liquidity Transformation via Financial IntermediationSource: OFR Analysis

liability side of intermediaries’ balance sheets. Official liquidity represents the range of

short-term cash resources available in a financial crisis—that is, when the wholesale fund-

ing markets fail—from central banks and other agencies, enterprises, and programs with

explicit or implicit taxpayer backing.9 Because these liquidity resources typically come

into play only in unusual but important occasions, they appear as dashed arrows in the

figure, which flow in only one direction.

1.2.1 Aggregate Liquidity Measures

An institution’s market liquidity needs are typically handled by drawing on its own cash

reserves or by selling assets for cash. If the ordinary give and take of trading in the asset

markets does not net out, the firm can turn to the funding markets to borrow or lend the

difference. Wholesale funding markets thus aggregate much of the endogenous net supply

and demand of liquidity overall, and prices in these markets provide a bellwether for the

9In the U.S., these resources include deposit insurance, the Fed’s discount window, Federal Home
Loan Bank advances, as well as the numerous emergency facilities created as expedients in the recent
crisis. Official liquidity is sometimes called “outside” liquidity, meaning it comes from outside the markets
themselves. For a definition and model of inside and outside liquidity, see Holmström and Tirole [2013].
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state of system. Figure 3 depicts several commonly used measures of aggregate liquid-

ity conditions derived from prices in wholesale funding markets. Following Brunnermeier

[2009], Boudt et al. [2013], and Boyson et al. [2010], we proxy the Treasury-Eurodollar

(TED) spread as the difference between 3-month T-bill yields and 3-month LIBOR.10 A

frequently cited alternate spread measure for funding liquidity conditions is the LIBOR-

OIS (London interbank offered rate vs. overnight index swap) spread; see Gefang et al.

[2011], Michaud and Upper [2008], and Taylor and Williams [2009]. Both spreads capture

deviations of borrowing conditions in the interbank markets from “pure” credit-risk-free

borrowing, and thus reflect a variety of sources of reticence to lend to banks, including

credit risk and aggregate liquidity anomalies. The VIX R© is a traded index of market

volatility. Its gradual downward drift during the pre-crisis period (roughly 2002 to 2007) is

symptomatic of the so-called “volatility paradox”: market risk as measured by price volatil-

ity was dropping while overall risk exposures were simultaneously (and not coincidentally)

building across the system (Brunnermeier and Sannikov [2012]).

The first major foreshock of the crisis came in August 2007, triggered by an absence

of liquidity that prevented BNP-Paribas from marking to market several of its investment

funds backed by subprime mortgages. The surprise provokes a sharp but very temporary

drop in the 3-month repo rate and a simultaneous more permanent jump in both the TED

and LIBOR-OIS spreads. Market turmoil persists through the failure of Bear Stearns

in March 2008, until the failure of Lehman Brothers in September 2008 raises liquidity

problems to a new level. Interest rate spreads provide a high-frequency glimpse into ag-

gregate liquidity conditions, but price moves can only hint at the underlying changes in

cash holdings. As financial firms withdrew, the aggregate endogenous liquidity supply in

the wholesale funding markets became inadequate to satisfy current cash obligations, and

10Futures traders at the Chicago Mercantile Exchange first noted the TED spread in the early 1980s,
where they tracked the pricing differential between the 3-month T-bill futures and 3-month Eurodollar
futures contracts, which traded in neighboring pits McCauley [2001].

13



Figure 3: Bellwether Liquidity Measures from Wholesale Funding MarketsSource: Bloomberg

official liquidity providers were forced to step in. The Federal Home Loan Banks (FHLBs),

provided a first line of defense, via advance funding to member institutions, which include

most large commercial banks (Ashcraft et al. [2010]. Over the first few months after Au-

gust 2007, FHLB advance funding increased by more than $200 billion. Although this

recourse to official liquidity was modest compared to what was to come, it was a signif-

icant departure from business as usual at the time. The full-blown crisis emerges with

the Lehman failure in September 2008. Wholesale markets collapsed, and financial firms

proceeded en masse to the Fed’s backstop liquidity programs.11 Surprisingly, the Fed’s sig-

nature lender-of-last-resort facility, the discount window, plays a miniscule role throughout

11The Bear Stearns failure necessitated recourse to the Fed, including the creation of two brand new
liquidity vehicles, the Primary Dealer Credit Facility (PDCF) and the Term Securities Lending Facility
(TSLF). Following the Lehman failure, the brunt of the wave of new funding demands was borne initially
by the Fed’s swaps facility, along with FHLB advances, the PDCF and TSLF again, and the newly
created ABCP MMMF liquidity facility (AMLF). Much of this funding subsequently transitioned to other
programs, including the Treasury’s new Troubled Asset Relief Program (TARP), created in October 2008.
For an analysis of the Fed’s various large-scale asset purchase programs, see Chen et al. [2012a], D’Amico
and King [2012], and D’Amico et al. [2012].
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Figure 4: Bank Reserve Balances and Short-term Interest Rates
Source: St. Louis Federal Reserve Economic Data

the episode.

The sharp shift in supply and demand for wholesale liquidity also shows up in the

management of banks’ cash reserves, as depicted in Figure 4. Prior to the Lehman shock,

aggregate bank reserve balances (which paid no interest prior to July 2013) hovered near

zero; banks continued to rely on wholesale funding markets to meet short-run cash con-

tingencies. After the Lehman failure, banks begin to hold precautionary reserve balances

in significant quantities; this practice of reserving has continued essentially unabated. At

the same time, the Federal Reserve has flooded markets with liquidity, driving yields on

overnight Fed funds and T-bills to near zero. The persistence of the short-term riskless

rate near the zero lower bound while loanable funds pool up—potential lenders always have

the alternative of holding cash instead of accepting a negative return—suggests a market

failure.

1.2.2 Granular Liquidity Measurement

At the aggregate level of funding liquidity, a primary concern is whether the financial sys-

tem has the internal flexibility to satisfy all of its immediate funding needs. Economic
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equilibrium means that every borrower in the wholesale funding markets should be able to

find a willing lender, but the long and painful history of systemic crises demonstrates that

this equilibrium is not reliable. This is the purview of central banking, macroprudential

regulation, and systemic supervision. At the other extreme, market liquidity focuses on the

intricacies of specific markets. The availability of granular, high-frequency data on trans-

action prices, bid-ask quotes, trading volumes and customer order flows facilitates detailed

modeling of the behavior of market participants. Market liquidity is typically measured by

the price concession required to unload (or acquire) a given investment position in a very

short time interval.

By design, liquidity measures based on prices and volumes in the wholesale funding

markets aggregate information from across the financial system. There are only a relative

handful of funding products traded in these markets, which in turn are dominated by a

relatively small set of very large institutions. Yet the issue of liquidity also applies to

the many thousands of markets for equities, bonds, indexes, commodities, and derivatives.

Although these smaller markets are not as immediately connected to system-level stability,

they are much more numerous than the interbank funding markets. Liquidity in these

markets may therefore carry additional information about overall liquidity that is lost in

the aggregation to the wholesale level. In particular, asset markets offer a smorgasbord

of different industries, product types, geographic concentrations, maturity habitats and

credit grades that is not available in the short-term, interbank funding markets. It is an

empirical question whether this diversity generates measurable cross-sectional patterns in

liquidity, and whether this cross-sectional information is helpful in understanding systemic

behavior.

This work builds on earlier studies that look for aggregate liquidity patterns. Chordia

et al. [2000] was the first in a series of papers to search for “commonalities in liquidity”

in the cross-section of equity markets. They perform time-series regressions of liquidity,
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measured as market depth and bid-ask spreads, for individual stocks on cross-sectional

average measures of liquidity. The data are noisy (R2s are low), but there is strong evidence

of contemporaneous correlation between individual stocks and the aggregate. Karolyi et al.

[2012] extend the analysis to an international comparison of thousands of stocks in 40

countries. Again, commonalities in liquidity exist, and unsurprisingly differ significantly

across countries and over time.12 Recent research by Chen et al. [2012b] combines price

information from financial markets with quarterly quantity information from the Flow of

Funds data in an effort to distinguish the differential impact of shifts in liquidity demand

versus liquidity supply. They distinguish between “core” and “noncore” liquidity, with the

primary difference arising from the inclusion in noncore of financial firms’ liabilities held

by other financial institutions.

Our contribution differs in scope from these earlier studies. The goal is to exploit fine-

grained information—such as daily data on prices and volumes—from a wide range of asset

markets, including equities, bonds, and commodities. By casting a wide net across many

diverse instrument types, the approach should have a better chance of detecting emerging

liquidity anomalies and identifying key liquidity indicators and important patterns among

the markets being monitored. We exploit recent work by Kyle and Obizhaeva [2014] on

generalized “price impact” measures of market liquidity. Price impact refers to the change

in market prices caused by a one-directional order flow (buy or sell) of a given size.13 For

example, it is always a challenge for an investor or dealer to sell a large block of stock, but

especially so in stressful market conditions when crowded trades can conspire to generate

fire-sale price drops. By design, price impact measures reveal the non-linearity of market

12Karolyi et al. [2012] define commonality by the R2 of each stock’s daily price-impact measure, per Ami-
hud [2002], on the average price impact for all other stocks in the country. Individual stock commonality
measures are averaged to get a country-level commonality index. Karolyi et al. [2012, p. 99] attribute the
time-series variation to both supply- and demand-side proxies in funding markets via regression analysis,
noting that “demand-side explanations are more reliably significant.”

13While a number of alternative metrics exist (e.g. big ask spreads, price impact measures, trading
volumes), these tools are typically restricted or customized to a single market.
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depth in the face of transaction pressure. Kyle and Obizhaeva [2014] posit a scaling of

trading activity by “business time” that allows for the construction of price impact mea-

sures that are invariant to both the institutional details of diverse market microstructures

as well as the pace of trading activity. This invariant approach facilitates a systematic

analysis by allowing the repeated application of the same calculation methodology across

a range of markets.

2 Model Description

A central goal of this research is to identify broad patterns or commonalities in market

liquidity that might offer clues to system-wide liquidity. A practical implication is the need

for measures of liquidity that are consistent and comparable across a broad spectrum of

financial markets. Ideally, such measures would be available at daily (or higher) frequencies

to support market monitoring and decision making. The price-impact measure of Kyle and

Obizhaeva [2014], described in the next subsection, is well suited to these requirements.

While plausible, the usefulness of such an approach is ultimately an empirical question.

In particular, for system-wide market liquidity monitoring, a successful measure should be

responsive to changes in local liquidity conditions (which can shift abruptly) at a daily

frequency, should demonstrate a reliable statistical connection to the aggregate liquidity

conditions, and should enable attribution of systemic liquidity disruptions to specific mar-

ket sectors to help focus attention for subsequent analysis. As a robustness check, we also

consider several alternative daily measures of market liquidity.

The primary assumption underlying our analysis is that the liquidity in a specific fi-

nancial market (as defined by a portfolio of publicly traded securities) switches between

distinct states, jumping from one state to another (e.g., low to high liquidity) and then

staying that new state for a random period of time. The subsequent observed level of liq-
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uidity is a random deviation from the level related to the average liquidity for the current

state. While the observed liquidity sometimes falls between the average liquidity for two

different states, ultimately it is the persistence of the observed liquidity that identifies an

underlying state. When liquidity from multiple financial markets is considered, we aug-

ment the liquidity models for each individual market with an “add-on” hierarchical model

which can explain, in part, periods of coordination where a large subset of the financial

markets exhibit similar liquidity patterns. The hierarchical portion of the model, which

links individual liquidity models together, can be considered an “add on” because it does

not feedback into the individual level liquidity models. Instead it allows us to determine

whether macro variables based on economic summaries of the broader financial markets

and economy are related to liquidity states across multiple markets. Uncovering such a

relationship offers a framework for understanding and potentially predicting (by predicting

the underlying dynamics of the macro variables) when system-wide liquidity stress might

occur.

2.1 Market Liquidity Measures

We consider several alternative measures of market liquidity. The “microstructure-invariant”

measure of Kyle and Obizhaeva [2014] is particularly well suited to our goals of cross-

sectional applicability and daily availability.14 In addition, we consider several more tra-

ditional market liquidity measures, including proportional bid-ask spreads and market

turnover to confirm the robustness of our results and our focus on the microstructure-

invariant approach.

The basic intuition of the microstructure-invariant measure is that market illiquidity

is revealed by a market’s resilience (or lack thereof) to net speculative order flow. Such

14Kyle and Obizhaeva [2014] is a combination and refinement of two earlier papers, Kyle and Obizhaeva
[2011b,a]. In addition, they have applied their approach to a historical study of large liquidity events Kyle
and Obizhaeva [2012].
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speculative “bets” tend to arrive at different rates in different markets, creating a phe-

nomenon of market-specific “business time” defined by the pace of speculative trading. In

equilibrium, liquidity provision will adapt to the bet-arrival intensity in each market, so

that an appropriate normalization of measured price-impact can place diverse markets on

a comparable (microstructure-invariant) scale. Kyle and Obizhaeva [2014, equations (70)

and (71)] are able to reduce their theoretical approach to a closed-form liquidity measure,

which they calibrate empirically under both a linear and a square-root specification for the

shape of the price-impact response. Defining σ as the expected daily volatility of returns,

V as expected daily trading volume (in shares or analogous units), X as a “typical” order

size for a specific market, and W as the level of betting activity (measured as price times

expected volatility times expected volume), their linear calibration is:

C(X) =
σ

0.02

[
8.21

104

(
W

(0.02)(40)(106)

)−1/3

+
2.50

104

(
W

(0.02)(40)(106)

)1/3
X

(0.01)V

]
(1)

and the square-root calibration is:

C(X) =
σ

0.02

[
2.08

104

(
W

(0.02)(40)(106)

)−1/3

+
12.08

104

(
X

(0.01)V

)1/2
]

(2)

In practice, their is no unambiguously “right” way to set the typical order size, X. An

important consideration is to normalize X by trading activity in each market, to measure

price-impact responses on a comparable scale across markets. A corollary requirement is

to calibrate equations (1) and (2) to be consistent with the definition of X. The particular

calibrations in (1) and (2) assume that order size is a constant fraction of average daily

volume. This implies, for example, that the dollar size of the order should move in the

same direction as dollar volume. A plausible alternate is to hold the dollar size of an order

constant over time, so that the relative size of the order (as a fraction of volume) moves

inversely with volume. As a robustness check, without re-estimating the parameters in (1)
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and (2), we recalibrated order size as a constant dollar value. The price-impact results

were similar in magnitude, but noisier than for the calibration of X as a constant fraction

of daily volume; the results presented below use the constant-fraction specification.15 We

follow Kyle and Obizhaeva [2014] in using the average trading volume over the preceding

month (20 trading days) as a proxy for expected volume in (1) and (2). Similarly, we use

the average realized volatility of daily returns over the preceding month as a proxy for

expected volatility.16

Our primary motivation for using the microstructure-invariant metric is to measure

liquidity in a comparable way across a wide spectrum of markets, covering a range of

different asset classes. For example, if one cannot assert ex ante where liquidity issues

will first emerge during an episode of financial instability, one should monitor liquidity

conditions as broadly as possible. However, there are numerous other metrics available in

the literature. As a robustness check, we consider two other measures of market liquidity,

turnover and bid-ask spreads, that are widely used and available at a daily frequency.17

Turnover (sometimes called velocity) is defined as the simple average of instrument-level

15Another possibility is to allow the size of the orders to adjust to market liquidity changes, in a manner
more rigorously consistent with the equilibrium arguments in Kyle and Obizhaeva [2014]. For example,
speculative order flow should be directly proportional to both overall liquidity and to the cube root of
expected dollar volume, per Kyle and Obizhaeva [2014, equation (8)], so that order size should increase
with liquidity, while decreasing as a fraction of daily volume. We are grateful to Pete Kyle for a helpful
clarifying conversation around this issue. Because we are interested here in applying rather than testing
or extending the Kyle and Obizhaeva [2014] model, we restrict attention to the calibrations in equations
(1) and (2), together with a fixed dollar size for the order impulse, X.

16There are obviously more sophisticated ways to estimate conditional expected volatility. However,
Kyle and Obizhaeva [2014, p. 31] note that using a more exacting ARIMA model in log volatilities
produces quantitatively similar results. Again, because we are interested in applying rather than refining
their model, we apply the simpler specification.

17See Hameed et al. [2010] or Cumming et al. [2011] for examples of these measures in practice. See
Gabrielsen et al. [2011] for a brief survey of a number of alternatives. We also considered the index
of Martin [1975], for the simple reason that it is easy to calculate. This index is based on a simple
Brownian motion model in which the rate of variation of price changes is assumed proportional to business
time as defined by trading volume, ∆Pt ∼ N

(
0, σ2∆t

)
= N

(
0, σ2V

)
. The index value is given by

Mt = 1
Ni

∑
j∈Ji

[
ln(Pjt/Pjt−1)

2

Vjt

]
, where Pjt is the closing price of asset j on day t, and Vjt is the number

of units transacted. The index is dominated by noise in our data, and we do not report the results.
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turnover ratios across a portfolio, Ji containing Ni positions:

Tit =
1

Ni

∑
j∈Ji

Vjt
Λjt

where Vjt is daily trading volume and Λjt is the number of shares (or analogous units)

outstanding. The quantity outstanding is not well defined for futures markets, so the

application of this measure has natural limitations in a system-wide analysis. The bid-ask

spread is the cross-sectional average (across the portfolio Ji) of percentage spreads:

Sit =
2

Ni

∑
j∈Ji

Ajt −Bjt

Ajt +Bjt

where Bjt and Ajt are the bid and ask prices, respectively, for instrument j at time t;

(Ajt +Bjt)/2 is the spread midpoint.

2.2 Univariate Models of Latent Structure

We begin the analysis of latent structure by proposing a univariate, hidden Markov chain

model for each financial market where liquidity is a random deviation from a latent value

associated with each state of the hidden Markov chain. We consider two variations of

random deviations, independent deviations around an average level and deviations around

a value that mean reverts around an average level. Initially we assume that the dynamics of

these models are unrelated, then we propose a hierarchical (multiple market) model where

macro variables are used to explain the states identified by the collection of univariate

hidden Markov models.

Liquidity measurement over T periods, yi = (yi1, ..., yiT )T , for market i are assumed to

be a random normal deviation around a dynamic, latent level of liquidity θi = (θi1, ..., θiT ),
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or

yi = θi + εi,

where

εi ∼ N(0, σ2
i IT )

and IT is a T dimensional identity matrix. For the first version of the model, the hidden

Markov chain (HMC) only version, the latent level θi is one of K levels, each of which

represents a different level of liquidity or state for each market specific, discrete-time hidden

Markov chain Di, or

θi = Fiθ̄i,

where θ̄i is a K × 1 vector and each element represents the average level of liquidity for

the kth state of Di, or

Fi(t, k) = I{Dit = k}

and I{} is an indicator function equaling either 0 or 1.

Typically the HMC version is sufficient to identify structural shifts in liquidity patterns,

however, there are some markets where the local variation in the level of liquidity supports

an overly large number of hidden states. In these cases, we use a mean reverting version of

the hidden Markov chain model. For the second version of the model, the Mean Revert-

ing, hidden Markov chain (MRHMC) version, the latent level θi mean reverts around the
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average level associated with the state of Di, or for t = 2, ..., T ,

∆θi = γi((θi)−T − (Fiθ̄i)−1) + (ξi)−1, (3)

where ()−1 indicates that the first element and ()−T indicates that the last element of the

vector () has been removed, and

∆θit = θit − θit−1.

For t = 1 we let

γiθi1 = γiθ̄i1 + ξi1,

where

ξi ∼ N(0, wiIT ).

We require 0 < γi ≤ 1, which ensures that θi is stationary and increases the variance of θi1,

allowing the starting value of θi to be relatively vague. Alternatively, (3) can be rewritten

as,

Liθi = γiF θ̄i + ξi, (4)

where Li is a sparse T ×T matrix with zeros except for the following elements, Li(j, j) = 1

and Li(j, j − 1) = γi − 1 for j > 1 and Li(1, 1) = γi.

For both versions of the model, the dynamics of Di are given by an initial probability

density νi, a K× 1 vector, and a transition probability density Pi, a K×K matrix. Given
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a realization of Di, its density is given by

f(Di) = ν(Di0)
T∏
t=1

Pi(Dit−1, Dit).

We assume conjugate priors for σ2
i and wi (inverted Gamma), νi and each row of Pi

(Dirichlet) and θ̄i and γi (truncated Normal). In addition, we use subjective priors based

on initial conditional maximum likelihood estimates of summaries of the data, in order to

ensure that the filtered hidden Markov chain model is able to clearly define between the

dynamics of the hidden Markov chain and the dynamics of the latent value θi.

Full Conditional Distributions HMC Model

We use Markov chain Monte Carlo (MCMC) analysis to infer parameter values for both

of these univariate models and multivariate model built on these univariate models. For a

description of MCMC methods see Brooks, Gelman, Jones and Meng (2011) and Gelman,

Carlin, Stern and Rubin (2000). The full conditional densities used in the MCMC analysis

for the HMC model are as follows:

θ̄i|− ∼ N

( 1

σ2
i

F T
i Fi +

1

τ 2
θ̄i

IK

)−1(
1

σ2
i

F T
i yi +

µθ̄i
τ 2
θ̄i

¯̄θi

)
,

(
1

σ2
i

F T
i Fi +

1

τθ̄i
IK

)−1
 I{θ̄i1 < ... < θ̄iK};

were − represents everything else remaining in the model and

1

σ2
i

|− ∼ Gamma

(
shapeσ2

i
+
T

2
, scaleσ2

i
+

1

2
(yi − Fiθ̄i)T (yi − Fiθ̄i)

)
.

Realizations of the hidden Markov chain Di, conditional on the remaining parameters

and Data, are generated following the Filter Forward, Sample Backwards approach com-

monly used with discrete-time Hidden Markov chains, see Bahm, Petrie, Soules and Weiss

(1970) and described in a more general continuous-time framework in Cappe, Moulines
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and Ryden (2005). For completeness the filter forward equations for the HMC model are

given below,

f (yit|−,Fit−1) =
K∑
k=1

f (yit|Dit = k,−,Fit−1) f (Dit = k|−,Fit−1) , (5)

were Fit = {Yi1, ..., Yit} and by

f (Dit = k|−,Fit) =
f (yit|Dit = k,−,Fit−1) f (Dit = k|−,Fit−1)

f (yit|−,Fit−1)
. (6)

Specifying a vague initial state probability, e.g.,

f(Di0 = k|−,Fi0) =
1

K
,

completes the forward recursion. The key equation for the backward sampling is given by

the density of the hidden Markov chain, conditional on all of the data, or

f (DiT−t = k|−,FiT ) =

∑K
j=1

f(DiT−t+1=j|DiT−t=k,−,FiT−t)f(DiT−t=k|−,FiT−t)

f(DiT−t+1=j|−,FiT−t)
f (DiT−t+1 = j|−,FiT−t+1) .

(7)

Given these formula, generating a realization is straightforward: i) calculate the forward

filter; ii) generate a sample for DiT from (6), with t = T ; and iii) recursively calculate

f (DiT−t = k|−,FiT ), conditional on all of the draws (DiT , ..., DiT−t+1) using (7) and use

this to generate a sample for DiT−t. Given a realization of Di the full conditional distri-

bution for each row of the transition probability is given by

Pi(j, :)|− ∼ Dirichlet (αi1 + nij1, ..., αiK + nijK) ,
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where αijk is the prior associated with Di jumping from state j to k and nijk is the actual

number of times that the current realization of Di jumps from state j to state k. A similar

full conditional density exists for νi, but this is inconsequential as the backwards recursion

dominates the a priori initial state. It is important to note that the MRHMC model is

disentangling two dynamics, the dynamics ofDi and θi. In practice we found that the model

required a strong priors on the dynamics of Di in order to obtain a meaningful distinctions

between these two dynamics. Setting αikk to a sufficiently large value, suggesting a priori

that the hidden chain is persistent results in a clean separation of these two competing

dynamics.

Full Conditional Distributions MRHMC Model

There are similarities between some of the full conditional densities of the MRHMC

model and the HMC model. The full conditional density for Pi is unchanged, while the

full conditional density for θ̄i is obtained by replacing yi with 1
γi
Liθi and σ2

i with wi

γ2i
. The

full conditional density for 1
σ2
i

is obtained by replacing Fiθ̄i with θi and the full conditional

density for Di is obtained by replacing the likelihood f (yit|Dit = k,−,Fit−1) used in (5)

and (6) with f (θit|Dit = k,−, θit−1, ..., θi1). The remaining full conditional densities for the

MRHMC model are as follows:

1

wi
|− ∼ Gamma

(
shapewi

+
T

2
, scalewi

+
1

2
(Liθi − γiFiθ̄i)T (Liθi − γiFiθ̄i)

)
;

γi|− ∼ N

(
Σi

(
1

wi
ATi ∆θi +

µγi
τ 2
γi

)
,Σi

)
I{0 < γi ≤ 1};
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where

Σi =

(
1

wi

(
ATi Ai + (θi1 − θ̄iDi1

)2
)

+
1

τ 2
γi

)−1

and Ai =
(
(θi)−T − (Fiθ̄i)−1

)
,

and

θi|− ∼ N

((
1

wi
Bi +

1

σ2
i

IK

)−1(
γi
wi
Bi

(
L−1
i Fiθ̄i

)
+

1

σ2
i

yi

)
,

(
1

wi
Bi +

1

σ2
i

IK

)−1
)
,

where Bi is a T × T matrix given by

Bi =
(
L−1
i (L−1

i )T
)−1

.

An alternate approach for sampling θi and γi, conditional on Di, is to treat them as a

discrete-time, dynamic linear model and use a filter forward sample, backwards strategy

like the Kalman Filter, see Kalman (1960) for the original reference and Carter and Kohn

(1994) and DeJong and Shephard (1995) for MCMC based inference approaches. Although

we explored a filter forward, backwards sample approach, we found that this approach was

not as stable as the regression based approach detailed above. Obviously one disadvantage

of the regression approach is the need to calculate Bi, which requires the inversion of a

T ×T matrix, something that can become computationally prohibitive as T becomes large.

Fortunately, the form of Li results in a banded matrix for Bi where every element, except

for the diagonal and the rows just next to the diagonal, are zeros. In addition, the non-zero

elements are functions of γi; to be explicit

Bi(j, j) =

 1, if j = T

1
2

+ 2
(

1
2
− γi

)2
, otherwise
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and

Bi(j, j − 1) = Bi(j − 1, j) = γi − 1.

2.3 Hierarchical Model

The hierarchical “add on” model runs a collection of HMC or MRHMC models in parallel,

one for each of the N markets under consideration. Each sweep of the MCMC algorithm

generates a realization of the latent hidden Markov chain for each market, resulting in a

collection of realizations (D1), ..., (DN). For each realization every individual time point

can be viewed as a draw from a multinomial distribution that is driven by a set of time-

varying covariates xt – the macro variables. Conditional on a current realization of the

hidden Markov chain, the “add on” portion of the model is a multinomial Probit model,

where

f (Dit = k) = f (z̃itk > z̃itl, l 6= k) ,

and z̃it is multivariate normal or

z̃it ∼ N
(
β̃xt, Σ̃

)
.

We follow McCulloch and Rossi’s (1994) approach, which builds on Albert and Chib (1993),

for dealing with the identification issues that arise in using a Bayesian approach for the

multinomial Probit model. A related, alternative approach is discussed in McCulloch,

Polson and Rossi (1998). The additive identification is overcome by forcing the latent

value for state 1 to always be zero. This is done by defining zit as follows,

zitk = z̃itk − z̃it1,
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which results in (8) becoming

f (Dit = k) =

 f (0 > zitll 6= k) , if k = 1

f (zitk > max(0, zitl), l 6= k, l > 1) , if k > 1

where

zit ∼ N (βxt,Σ) .

and β is a (K − 1) × p matrix, where p is the number of macro variables, including an

intercept. The scale identification is overcome by restricting

Σ1,1 = 1.

We assume conjugate priors for β and Σ. Following McCulloch and Rossi (1994) we sample

β and Σ from the unconstrained full conditional densities using Gibb Samplers and then

rescale by dividing these draws by Σ1,1, which enforces the above constraint.

The hierarchical portion of the model is considered to be an “add on” to the model

because the distribution of the hidden Markov chains (D)1, ..., (D)N does not depend on

the multinomial Probit probabilities or, more to the point, they do not depend on the

macro variables. In order for the distribution of the hidden Markov chains to depend on

the macro variables, we would need to model the transition between the latent liquidity

states (as opposed to modeling the states themselves) as multinomial random variables

conditional on the macro variables, which is a task that we leave for future research.

Instead, the “add on” model summarizes the relationship between latent states and the

macro variables, acting as a supplemental analysis that gives us insights into how the latent

liquidity states related to the macro variables, but makes no assumption about nor gives
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any insights into how the macro variables impact the dynamics of the latent states. A

less sophisticated approach to getting the same insights would be to save a realization of

each hidden Markov chain from the MCMC analysis, and then calibrate a multinomial

Probit model for this collection of realizations. Repeat this multiple times, each time with

a different set of realizations obtained by stopping the MCMC analysis at a random time,

which would result in a set of multinomial Probit parameter estimates, one for each set

of realizations, and then average the parameters estimates from all of these analysis. Our

approach is more elegant as it updates the parameters of the multinomial Probit model

with each sweep of the MCMC analysis. The basis of the relationship between the hidden

states and the macro variables is determined by the portions of the hidden Markov chains

which are relatively stable (i.e., have a high probability of being in one of the states),

which holds for large portions of time over each of the markets that we are considering.

Portions of the hidden Markov chain that tend to switch states (have a probability that

is distributed between two or more states) have less impact as the hidden Markov chains

alternate between these competing states during the analysis and require estimates of β,

which can reasonably accommodate this oscillation.

The fact that the state of a hidden Markov chain can switch states during the analysis

presents a technical challenge. When the hidden chain changes state, the latent values from

the multinomial Probit model, the zit have to change to match their likelihood function

(e.g., assume that chain i at time t changes from state 2 to state 3, then zit3 must become

positive and zit2 must be less than zit3). From a practical standpoint, we found that when

a hidden Markov chain changes state, we can sample from the truncated, full conditional

density of each latent variables in order to impose the new ordering, but doing this once

is typically not sufficient to provide a stability for the estimate of β and Σ. This stability

issues can be overcome by drawing a small number (on the order of a few dozen) samples

of all of the related latent variables (e.g., draw repeatedly from zit when a new ordering
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constraint imposed by the change in state).

3 Data

We measure market liquidity on a daily basis across 33 “markets,” covering thousands of

individual securities in four different asset classes. One important goal of casting a wide net

across a diverse sample is to improve the chances of identifying emerging risks in liquidity,

since it is difficult to assert a priori which market sector(s) will be affected first in an episode

of illiquidity. Similarly, a broad panel should help in discerning significant patterns among

the markets being monitored, as we map between local markets and system-level conditions.

Finally, we hope that our mixing of several distinct asset classes in this analysis serves as

an example of how to further expand the scope of the sample in subsequent research.

Specifically, our initial dataset includes the following instruments:

• All U.S. equities, Jan. 1986 – Mar. 2014, from the Center for Research in Security

Prices (CRSP), which provides comprehensive coverage of security price, return, and

volume data for the NYSE, AMEX, and NASDAQ stock markets; CRSP also includes

Standard Industry Classification (SIC) for each security,

• All U.S. corporate bonds, Jul. 2002 – Mar. 2014, from the Trade Reporting and

Compliance Engine (TRACE), which is the Financial Industry Regulatory Author-

ity’s (FINRA) real-time price dissemination service for the over-the-counter bond

market, providing transaction data for all eligible corporate bonds, which include

investment grade and high yield debt; we use the public TRACE database in this

analysis,18

18We apply the heuristics of Dick-Nielsen [2009] to scrub the TRACE data. There is a separate “en-
hanced” version of the TRACE database, FINRA [2009], which does not truncate large trades, but which
FINRA publishes only with a lag. We map TRACE bond identifiers (6-digit CUSIP codes) to the issuing
firm’s SIC code, derived from CRSP, Mergent, or Bloobmerg; approximately 2% of the bonds in sample
could not be mapped, and were dropped from the analysis.
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• West Texas Intermediate (WTI) light sweet crude oil futures, Jan. 1986 – Mar.

2014, from the New York Mercantile Exchange, which is the world’s largest-volume

futures contract traded on a physical commodity; we collected data for contracts with

expirations from one-month to six-months from Bloomberg, and

• S&P 500 market volatility index (VIX R©) futures, Apr. 2004 – Mar. 2014, from the

Chicago Board Options Exchange, which is a pure play contract on implied volatility

designed to reflect investors’ view of future (30-day) expected stock market volatility;

we collected data for contracts with expirations from one-month to nine-months from

Bloomberg.

Our primary analysis of the liquidity measures starts in 2004, when all series are avail-

able. We also provide some secondary comparisons of the longer-term performance of

price-impact measures for equities and WTI futures, extending back to 1986. We grouped

both the CRSP equities and TRACE corporate bonds data into portfolios based on one-

digit SIC codes. For both bonds and equities the SIC portfolios cover SIC codes 0 through

8.19 This clustering into portfolios reduces the dimensionality of the analysis and presenta-

tion of results. In the case of corporate bonds, the combination into portfolios is a practical

necessity for the calculation of returns and returns, because the trading of individual issues

in this market is far too thin.20

We track the VIX R© and WTI futures at the level of their relative maturity date, starting

with the front-month contract. Actual calendar maturities follow a sawtooth pattern, as

expiry dates gradually approach and abruptly transition to the next contract as expiration

occurs. For both VIX R© and WTI, and for the futures market generally, the near-dated

19The miscellaneous category (SIC 9, government establishments) is very lightly populated for both
TRACE and CRSP, and did not provide sufficient observations for reliable analysis.

20Even with grouping into portfolios, there are numerous missing values in the time series of corporate
bond activity. For calculating returns and volatility, we require that the most recent lagged observation
be no older than a week (5 trading days). We experimented with higher and lower thresholds, out to 20
trading days, without a significant qualitative impact on the results.
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contracts are usually more actively traded than the longer-maturity futures. There is no

“official” longest maturity, but many possible long-dated contracts that simply never trade.

For the VIX R© futures, we draw the line at nine different securities from the front month

out to nine months forward. For the WTI futures, we use six different securities from the

front month out to six months forward.

4 Liquidity Regimes

In our initial analysis we estimated each price impact series independently, using both the

hidden Markov chain (HMC) and the mean reverting hidden Markov chain (MRHMC)

models. Although there is no coordination between the dynamics of the latent liquidity

states across markets for this initial analysis, we find surprising consistency in the dynamics

of market liquidity across all of these markets. Despite these common features, we also

find interesting differences across the various markets in the lead-up to the recent crisis

and in its aftermath. We formally explore these difference using the hierarchical model,

which allows us to link the latent liquidity states (from multiple markets) together with a

collection of macro variables. This provides a framework that allows us to asses the value

of macro variables.

4.1 Individual Market Liquidity

We start by considering the performance of the two competing univariate models and

provide evidence for our finding that there are essentially three different liquidity regimes

across these different markets; then we report aggregate summaries based on these models.

General Findings

One of the benefits of analyzing detailed, high-frequency data is that it allows for a vi-
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Figure 5: Examples of market liquidity measures, Jan. 1986 – Mar. 2014,
Sources: CRSP, Bloomberg, Mergent, WRDS, St. Louis Federal Reserve Economic Data, OFR Analysis

sual identification of basic cross-sectional liquidity patterns. This is valuable in developing

research hypotheses, e.g., for the hierarchical model, or for general situational awareness

in a policy context. Figure 5 shows a relatively long view (nearly 30 years, 1986-2014)

for a variety of liquidity metrics. The turnover and bid-ask spread series are for our SIC6

equities portfolio (financial stocks); Kyle-Obizhaeva price impacts are shown for both SIC6

equities and the front-month WTI contract; the TED spread is a funding liquidity mea-

sure. Although Figure 5 is just a sampler, this picture is broadly consistent across all of

the portfolios.

Several key facts are immediately apparent. Most importantly, all of the measures surge

during the financial crisis, and especially after the failure of Lehman Brothers in September

2008, offering some face validity for all of them. Turnover, however, is plagued by occasional

spikes in trading volume, which introduce significant noise in the form of large, transient
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outliers. The bid-ask spread appears to have undergone a significant structural shift, most

likely attributable to institutional changes such as NASDAQ’s introduction of decimal

quotes in April 2001 and the large expansion of high-frequency trading in equities during

the 2000s. The TED spread is a more stable series, but it is an aggregate measure and

cannot support granular attribution of liquidity dynamics to specific sectors or markets.

For example, illiquidity (as measured by price impact) surges in the oil futures market

during the first Gulf war in 1991, but this effect is much less pronounced in the other

liquidity series.

This overview of the metrics provides some initial validity for our focus on the Kyle-

Obizhaeva price impact metric. It is available at a daily frequency and granular resolution

for any market with published price and volume data. Moreover, it is statistically stable

over time and comparable across markets, facilitating cross-sectional attribution and the

search for system-wide patterns such as those described below.

Performance of Models

We found that both the HMC and MRHMC models could identify interesting liquidity

regimes within the Kyle-Obizhaeva price-impact data over the range of different markets

that we considered, but that their relative performance varied depending on the amount

of ‘local variability’ of the liquidity in each state. The simpler HMC model can readily

identify the three liquidity regimes, see Figure 6, for all of the equity markets. In some

cases, such as the front month of the WTI contract we found that the MRHMC model

performed slightly better than the HMC model using standard Bayesian model choice tools,

see Figure 7.

We felt that it was important to have a parsimonious model, with respect to the number

of states, and as a result adopted a prior on the model space, based on the number of hidden

states, which gave a high penalty for increased complexity and resulted in three states being
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(a) Price-impact measure & level of attraction (b) HMC state probabilities

Figure 6: Equities, SIC6, Kyle-Obizhaeva Measure and HMC Estimates
Sources: CRSP, WRDS, OFR Analysis

(a) Price-impact measure, mean-reversion level, &
level of attraction

(b) HMC state probabilities

Figure 7: WTI futures, front month contract, Kyle-Obizhaeva Measure and MRHMC
Estimates
Sources: Bloomberg, OFR Analysis
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preferred for most markets. Alternative priors, which did not have as high of a penalty for

complexity would support a high number of latent states (typically in excess of 10 to 15),

where a visual inspection of these higher state models indicated that increasing the number

of states essentially broke up the mid-liquidity state into a large number of sub-states.

Although the summary of the price-impact offers some insight, we find that in practice

there is enough variation in these measure across the markets that a direct comparison of

the levels from each market is helpful. The estimated states, however, of the hidden Markov

chains from the univariate MRHMC model, is invariant to differences in the price levels

across markets and can clearly identify varying levels of liquidity. We labeled these states

the: (1) low, (2) intermediate, and (3) high price-impact states for each series, where high

price impact means low liquidity, and vice versa. This analysis resulted in a daily estimate

of the probability that each market was in each of these three unobserved states. Figure 8

presents the cross-sectional averages across the 33 series of these three probabilities, which

must add up to one. Red indicates the likelihood of high price impact, and blue indicates

low price impact; yellow is the intermediate state.

While there was diversity in market liquidity for these 33 series, there were also periods

of common behavior. For example, in August 2011, the downgrade of U.S. Treasury debt

by Standard & Poors coincided with ongoing fiscal weakness in several Eurozone countries

and the initiation of the Occupy Wall Street movement to produce a sharp, but ultimately

transient, spike in the probability of the low-liquidity (high price-impact) state. Similarly,

the liquidity crisis after the failure of Lehman Brothers is plainly visible as the deep and

more persistent spike in September 2008, preceded by a series of pronounced foreshocks

over the course of the year.

Figure 10 shows stacked “ribbons” of daily data, using the same (red, blue and yellow)

color to indicate relative levels (with black for missing data), where series are grouped

vertically by instrument type. Figures 10 and 9 illustrate that the equity markets and VIX R©
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Figure 8: Probabilities of price-impact states, averaged across 33 markets, Apr. 2004 –
Mar. 2014
Sources: CRSP, Bloomberg, Mergent, WRDS, FINRA, OFR Analysis

Figure 9: Daily Price-Impact Probabilities for Select Markets,
Top to bottom: Equities SIC6, Bonds SIC6, WTI futures, VIX R© futures
Sources: CRSP, Bloomberg, Mergent, WRDS, FINRA, OFR Analysis
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index responded strongly and immediately to the run on the repo, but WTI futures did

not. Through the crisis, VIX R© liquidity remained relatively, but in contrast the liquidity

of the equity market largely recovered with the exception of the financial and service

sectors. Consistent with the increased uncertainty about the stocks in the financial sector,

throughout late 2007 and 2008, remained depressed as we would expect, prior to the crisis

liquidity in financial stocks remained depressed. Two other key insights from this analysis

are that the liquidity implications of the Lehman Brothers failure were felt broadly for an

extended period and that hints of illiquidity foreshocks existed in some markets, including

financial stocks (SIC 6) and certain bond sectors, that may ultimately help in crafting

liquidity forecasts.
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Figure 10: Daily Price-Impact Probabilities across all 33 Markets,
Top to bottom: Equities SIC0-8, Bonds SIC0-8, WTI futures, VIX R© futures
Sources: CRSP, Bloomberg, Mergent, WRDS, FINRA, OFR Analysis
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4.2 Explaining Liquidity Regimes

There appear to be strong relationships between changes in the level of liquidity and a

number of macro variables, and while it is helpful to explore these relationships graphically

the hierarchical model allows us to determine whether these relationships are statistically

significant, particularly in the presence of other competing macro variables. We restrict

our analysis of liquidity dynamics across multiple markets to the US Equity markets. We

did this in part because of data consistency issues (there was no missing price-impact data

for the U.S. Equity markets over the period of interest) and because these markets exhibit

somewhat consistent behavior, see Figure 10. After visually exploring a range of potential

macro variables, we selected the 11 macro variables describe in Table 1.

[Insert Table 1 about here]

We test the ability of the macro variables to recover the liquidity dynamics across these

markets in two ways. First we calculate a hit rate, which is the proportion of the time

that the Probit model, based solely on the macro variables, accurately predicts the state

identified by each of the underlying univariate models (or we count the proportion of time

that we accurately predict the state of Dit for each i and t using the current estimate of β,

Σ and the macro data xit). The naive hit rate is 33%, assuming random guessing, and the

posterior average of Probit model’s hit rate was 66% indicating that the macro variables

are explaining a substantial portion of the liquidity dynamics. Second, we plotted the

predicted probability of being in each state for each time point, using the Probit model,

against the average probability of being in each state for each time point, see Figure 11.

The way the predicted probabilities closely tracks the average probabilities confirm, again,

the ability of the macro variables to explain the liquidity dynamics.

We standardized the macro variables (mean centered and divided by the standard

deviation), to compare the parameter estimates from the Probit portion of the hierarchical
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Figure 11: Average State Probabilities vs. Probit Predicted Probabilities
Sources: CRSP, WRDS, Bloomberg, OFR Analysis

model, seen in Table 2, directly with respect to their size. Because we force the latent

value for state 1 to always be zero, to address the additive identification restriction, we get

only get parameter estimates for states 2 and 3 (which are really the difference between the

unrestricted parameters of each of these states relative to state 1). The negative intercepts

indicate that state 1, the low price-impact or high-liquidity state, is the most prevalent

state and the fact that the intercept for state 3 is more negative than for state 2 indicates

that state 3, the low-liquidity state, is the least likely state.

[Insert Table 2 about here]

All but one of the macro variables are statistically significant (only the U.S. 5-year

Break-even Inflation is not significant in distinguishing the high-liquidity state from the

mid-liquidity state). Within these results, there are some interesting patterns to note.

First, there is a natural grouping among the macro variable with regards to the pattern

of the signs for the state 2 and 3 parameter estimates. As might be expected, VIX R©

has a positive-positive pattern indicating that higher levels of VIX R© are associated with
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a higher probability of entering states with low liquidity. The persistence of high levels

of VIX R© after the crisis makes VIX R© more strongly related to the middle liquidity state

as opposed to the crisis state. Another group of five macro variables (WTI, 3m Repo

Rate, S&P 500 P/B Ratio, TED Spread and Yield Curve (10y–2y)) exhibit a positive-

negative pattern indicating that elevated levels of these macro variables lead to a high

probability of being in the middle liquidity state. Although this pattern may seem counter

intuitive, we observe that market movements, government actions and actions by central

banks distorts and lowers these macro variables during times of crisis, which corresponds

to times of low liquidity (i.e. state 3). The next set of macro variables (Dow Jones Real

Estate Index, Moody’s Baa Index, and LIBOR-OIS Spread) exhibit a negative-positive

pattern which identifies them as measurements which have persistently high levels during

times of low liquidity and then “bounce back” sufficiently during the moderate times of low

liquidity to have the extremes associated with the crisis. Finally, the DXY Dollar Index

shows a significant negative-negative pattern, indicating that higher levels of the dollar

are associated with higher probability of entering a high-liquidity state. This is consistent

with a flight to quality, in which capital flows into the U.S. during episodes of stress, such

as the crisis, simultaneously pushing up the value of the dollar and flooding the domestic

market with liquidity.

To assist in our understanding of these parameter estimates, we can compare the time-

series plot for individual macro variables versus the Probit-predicted probability for each

state. For example, Figure 12 presents this comparison for the TED spread. The spread

remains low until mid-2007 and returns to persistent low levels in 2010. The early episode

corresponds to consistently high probabilities for the high-liquidity state (i.e., state 1),

consistent with the TED spread’s role as a bellwether for funding liquidity. Between

August 2007 and September 2008, when the TED spread begins to widen, the probability

of state 2 jumps, supporting the positive coefficient in Table 2. After September 2008,
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Figure 12: TED Spread and Average Probit Probabilities
Sources: CRSP, WRDS, Bloomberg, OFR Analysis

the TED spread recedes relatively quickly from its peak, compared with the probability of

being in state 3, which remains elevated for the next year. This deviation is consistent with

the negative coefficient on state 3 in Table 2. In contrast, the VIX R© index has positive

coefficients on both states 2 and 3 in Table 2. The VIX R© is more persistently high after

the 2008 shock, consistent with the positive coefficient on state 3 in Table 2. Moreover,

it remains moderately elevated for much of the post-crisis period after 2009, when the

Probit-predicted probability for state 2 is also raised.

The next four (Moody’s Baa Index, VIX R©, LIBOR and WTI) have a negative, positive

pattern and are clear predictors of periods of low-liquidity. The VIX R© has the strongest

parameter estimate in absolute value and when the VIX R© is high, the probability of being

in state 2 drops and the probability of being in state 3 rises dramatically as indicated by

plotting VIX R© against the predicted probabilities in Figure 13.

The final macro variable (S&P 500 P/B Ratio) has a positive, positive pattern (although

only the parameter for state 3 is statistically significant). This gives us the insight that

as the price of equities becomes large relative to the underlying book value of the firms,
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Figure 13: VIX R© and Average Probit Probabilities
Sources: CRSP, WRDS, Bloomberg, OFR Analysis

we tend to be in state 3, the low-liquidity state. One possible explanation for this is that

a high price to book ratio reflects a potential asset bubble, which could lead investors to

engage in herd behavior (e.g., piling into different individual stocks and driving up returns

then pulling out suddenly causing large price drops), which could cause not only increased

volatility but also larger price-impacts.

Clearly the hierarchical model allows us to obtain interesting insights into how macro

variables relate to liquidity dynamics and offers a valuable tool for further investigating

and understanding the drivers of liquidity across a wide range of markets.

5 Conclusion

Liquidity is an elusive, yet essential component of the modern financial system. It is elusive

because conceptually it is hard to define, and empirically it is hard to measure and predict.

More specifically, we attribute the challenges in liquidity measurement to three fundamental

aspects of the phenomenon. Liquidity is latent, in the sense that the episodes of illiquidity
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we seek to understand are rare, and often emerge with little apparent warning. Liquidity

is non-linear, in the sense that price impact does not respond proportionately to additional

order flow, making it difficult to extrapolate from “ordinary” markets to the behavior of

those markets under stress. Liquidty is endogenous, in the sense that it often emerges as a

positive externality in very active markets, making those busy venues attractive to others

who seek the assurance that counterparties will be available when needed.

We address the challenges of latency, non-linearity and endogeneity statistically with

a Bayesian estimation of a hidden Markov chain individually for 33 separate time series

covering the CRSP and TRACE universes of U.S. equities and corporate bonds, plus

multiple expiries of two key futures contracts, the VIX R© volatility contract and the WTI

oil contract. Three latent states (high, medium, and low price impact) are adequate to

capture the observed liquidity structure of all 33 univariate series.

We also look for cross-sectional structure in the data by estimating a hierarchical

Bayesian model, and testing the ability of several macroeconomic time series to recover the

estimated aggregate liquidity dynamics. This exercise also permits an attribution of those

estimated aggregate dynamics to meaningful economic interpretations. For reasons of data

consistency, we have limited our initial efforts in this area to the U.S. equities markets.

Our results at this stage are very preliminary, but also very promising. In addition to

testing for robustness and sensitivity, we see several immediate avenues for future research,

including expanding the cross section of asset markets in the scope of analysis, comparing

in more detail the liquidity behavior of wholesale funding markets, and experimenting wth

alternative portfolio formation rules.
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Table 2: Posterior Parameter Estimates Probit Portion of Hierarchical Model (Sources:
CRSP, WRDS, Bloomberg, OFR Analysis)

Posterior Mean Posterior StDev t-Stat

Macro Variable State 2 State 3 State 2 State 3 State 2 State 3
Intercept -0.64** -1.01** 0.02 0.01 -40.27 -102.11

VIX R© 0.62** 0.26** 0.03 0.02 23.77 15.67
WTI 0.83** -0.23** 0.03 0.01 30.65 -16.53

3m Repo Rate 0.68** -0.41** 0.02 0.01 38.28 -49.12
TED Spread 0.49** -0.09** 0.03 0.01 18.53 -10.98

Yield Curve (10y–2y) 0.19** -0.38** 0.02 0.04 9.66 -56.07
S&P 500 P/B Ratio 0.68** -0.13** 0.03 0.01 23.85 -9.86

Dow Jones Real Estate Index -1.17** 0.13** 0.02 0.01 -64.48 11.69
Moody’s Baa Index -0.67** 0.47** 0.02 0.01 -43.57 60.83
LIBOR–OIS Spread -0.64** 0.13** 0.05 0.02 -13.07 7.38

DXY Dollar Index -0.39** -0.37** 0.04 0.01 -10.67 -41.05
U.S. 5y Breakeven Inflation -0.03 0.00 0.02 0.01 -1.43 0.36

** Significant at a 99% confidence level

57


