Granularity and (Downside) Risk in Equity Markets

Eric Ghysels Hanwei Liu Steve Raymond University of North Carolina at Chapel Hill

Derivatives and Volatility 2017: The State of the Art NYU Stern School of Business, April 27-28, 2017

New York Times, April 16, 2017 - Vanguard Versus Everybody Else

In the last three calendar years, investors sank \$823 billion into Vanguard funds ... The scale of that inflow becomes clear when it is compared with the rest of the mutual fund industry - more than 4,000 firms in total. All of them combined took in just a net \$97 billion during that period ... Vanguard, in other words, scooped up about 8.5 times as much money as all of its competitors.

Vanguard's AUM have skyrocketed to \$4.2 trillion from \$1 trillion seven years ago ... \$3 trillion of this is invested in passive index-based strategies, with the rest in funds that rely on an active approach to picking stocks and bonds.

Annecdotal Evidence

- Drop in liquidity of stocks held by hedge funds that had brokerage relations with Lehman
- A glitch in an untested trading program led to 4 million order executions in 148 stocks and losses of \$440 million to Knight Capital
- Sudden departure of co-founder Bill Gross caused unprecedented large withdrawals from Pimco and massive fire sales.

Annecdotal Evidence

- Drop in liquidity of stocks held by hedge funds that had brokerage relations with Lehman
- A glitch in an untested trading program led to 4 million order executions in 148 stocks and losses of \$440 million to Knight Capital
- Sudden departure of co-founder Bill Gross caused unprecedented large withdrawals from Pimco and massive fire sales.

Are shocks to a large asset manager (LAM) not as diversifiable as shocks to collection of smaller managers \Rightarrow does granularity matter?

Top Institutional Investors Shares (13-F filings)

Some Literature

- Gabaix (2011): idiosyncratic movements in the production of the largest 100 firms explain about one third of the variations in output
- Ben-David et al. (2015): large institutional investors increase volatility of prices – act through large trades, different effect than random set of smaller independent entities aggregated
- Massa et al. (2016): negative effect on returns, liquidity, and volatility for stocks that had increase in ownership concentration due to BlackRock-Barclays merger

Data

- Quarterly/daily returns and quarterly accounting data from CRSP and COMPUSTAT from 1Q1980-4Q2014 (140 quarters)
- Institutional ownership data from quarterly 13-F SEC filings - Asset managers with over \$100MM equity assets have to provide long positions
- Options data from 1Q1996-4Q2013 from OptionMetrics

Measuring LAM Concentration - Aggregate Level

 We start with the Herfindahl-Hirschman Index (HHI), at the aggregate level, defined as:

$$HHI_t = \sum_{i=1}^{N_t} s_{it}^2,$$

where s_{it} is the \$ share of institution i in total of 13-F filings, and N_t is the quarter t number of institutional investors.

- $\blacktriangleright \ {\sf High/low} \ {\sf HHI} \rightarrow {\sf high/low} \ {\sf concentration}$
- $\blacktriangleright \ 1 \geq \textit{HHI}_t \geq 0, \ \forall \ t$

Aggregate Quarterly HHI

Measuring LAM Concentration - Individual Stock Level

 For each listed security e, we catalog the investment managers that are long in the stock and compute:

$$HHI_t^e = \sum_{i=1}^{N_t^e} [s_{it}^e]^2, \qquad e = 1, \dots, E_t$$

where s_{it}^{e} is the share of institution i for stock e, and N_{t}^{e} the total number holding e in quarter t, E_{t} , the total of equities in quarter t.

 HHI of a stock is equal to 1 if it is held by only one investment manager at the time of the 13-F filings.

Portfolio Sorts on HHI

 Construct HHI at the stock-level and form portfolios using sorted quintiles. Define portfolio HHI as the average across its constituents:

$$\overline{HHI}_{i,t} = rac{1}{N_{i,t}^p} \sum_{j=1}^{N_{i,t}^p} HHI_{j,t}^e, \quad i=1,...,5$$

where $N_{i,t}^{p}$ is the number of stocks in portfolio i at quarter t.

► Re-balance quarterly

Portfolio HHI Summary Statistics

Portfolio	1	2	3	4	5
Mean	0.9617	0.6228	0.2830	0.1241	0.0465
Median	1	0.6699	0.2748	0.1171	0.0471
Std. Dev.	0.0510	0.1512	0.0535	0.0261	0.0067
Max	1	0.8536	0.4188	0.2007	0.0610
Min	0.8299	0.3900	0.2130	0.0915	0.0351
AC(1)	0.9769	0.9732	0.9450	0.9425	0.9603

Mean	Median	Std. Dev.	Skew	Kurt.	25 %	75 %
5.57	7.76	11.04	-5.99	57.33	-0.75	14.25

Mear	n Median	Std. D	ev. S	kew l	Kurt.	25 %	75 %
5.57	7.76	11.0	4 -!	5.99 5	57.33	-0.75	14.25
_		1		<u> </u>	4		
	Portfolio	T	2	3	4	5	
_	Mean	-2.50	-2.33	-1.31	. 0.35	3.07	7
	Median	-2.48	-1.68	-1.08	8 1.15	4.69)
	Std. Dev.	12.69	8.19	8.04	8.01	7.08	}
	Skewness	2.88	-0.51	-0.51	-0.53	3 -0.6	1
	Kurtosis	24.79	4.22	4.17	4.15	3.78	3

Mean	n Median	Std. D	ev. S	kew K	Kurt.	25 %	75 %
5.57	7.76	11.0	4 -5	5.99 5	7.33	-0.75	14.25
	Portfolio	1	2	3	4	5	
	Mean	-2.50	-2.33	-1.31	0.35	3.07	,
	Median	-2.48	-1.68	-1.08	1.15	4.69)
	Std. Dev.	12.69	8.19	8.04	8.01	7.08	}
	Skewness	2.88	-0.51	-0.51	-0.53	-0.6	1
	Kurtosis	24.79	4.22	4.17	4.15	3.78	}

Mean	n Median	Std. D	ev. S	kew K	urt. 2	25 %	75 %
5.57	7.76	11.0	4 -5	5.99 5	7.33 ·	-0.75	14.25
_			•		4		
	Portfolio	1	2	3	4	5	
_	Mean	-2.50	-2.33	-1.31	0.35	3.07	7
	Median	-2.48	-1.68	-1.08	1.15	4.69)
	Std. Dev.	12.69	8.19	8.04	8.01	7.08	}
	Skewness	2.88	-0.51	-0.51	-0.53	-0.6	1
	Kurtosis	24.79	4.22	4.17	4.15	3.78	3

Double-Sorted Portfolios - Annualized Mean Returns

	Book-to-Market Market Cap.			et Cap.
HHI	Low	High	Low	High
High	-0.97	2.12	-1.26	3.39
Low	3.80	1.85	1.50	3.63
LMH	4.77	-0.27	2.75	0.23
tstat	2.46	-0.13	1.37	0.18
	Short	Interest	Amihud	Illiquidity
ННІ	Short Low	Interest High	Amihud Low	Illiquidity High
HHI High	Short Low 2.29	Interest High -4.70	Amihud Low 1.16	Illiquidity High -3.20
HHI High Low	Short Low 2.29 3.20	Interest High -4.70 2.71	Amihud Low 1.16 3.00	Illiquidity High -3.20 2.47
HHI High Low LMH	Short Low 2.29 3.20 0.91	Interest High -4.70 2.71 7.40	Amihud Low 1.16 3.00 1.84	Illiquidity High -3.20 2.47 5.68

Double-Sorted Portfolios - Annualized Mean Returns

	lnst. 5%	6 Thresh.	In S&P Index?		
HHI	Below	Above	No	Yes	
High	1.49	-1.47	1.00	-0.17	
Low	2.49	2.82	2.43	3.23	
LMH	1.01	4.30	1.43	3.40	
tstat	0.79	2.56	1.36	2.14	

Linear Factor Models

- FF3+liquidity linear factor models using Fama-Macbeth and GMM approach
- Using GRS or GMM over-identification test models rejected

HHI	Rm-Rf		SMB		HML	LIQ		
				Beta	5			
1 (High)	0.226	***	0.459	***	0.190	*	0.113	
	(0.086)		(0.127)		(0.108)		(0.129)	
5 (Low)	0.363	***	0.155	***	0.047	***	0.012	*
	(0.006)		(0.013)		(0.011)		(0.007)	
Price	0.044	***	-0.049	**	-0.046	**	0.134	
of Risk	(0.011)		(0.024)		(0.021)		(0.085)	
J-pval	0.00			GRS	0.00			

FF3+Liquidity

Conditional Volatility

Estimate GJR-GARCH(1,1) for High-HHI and Low-HHI portfolios:

$$\begin{aligned} r_{i,t} &= \mu_i + \sigma_{i,t} \epsilon_{i,t} \\ \sigma_{i,t}^2 &= a_{i,0} + a_{i,1} \sigma_{i,t-1}^2 + b_{i,1} \epsilon_{i,t-1}^2 + c_{i,1} I(\epsilon_{i,t-1} < 0) \epsilon_{i,t-1}^2 \end{aligned}$$

Conditional Quantiles

Figure: 5% Conditional Quantile - High- vs. Low-HHI Portfolio

Conditional Quantiles–Regression Models

 $\hat{q}_{i,t+1}(.05) = b_{i,0} + b_{i,1}\overline{HHI}_{i,t} + b_{i,2}LIQ_t + b_{i,3}SMB_t + v_{i,t+1}$ where i = 1 (high HHI) and 5 (low HHI)

HHI	HHI	LIQ	SMB	R^2
1 (high)	-0.1678	0.0060	0.0361	0.2138
	(0.0279)	(0.0217)	(0.0279)	
5 (low)	0.1183	-0.0236	0.0032	0.0064
	(0.2800)	(0.0288)	(0.0371)	

Downside Risk by Top Players

$$HHI_{t}^{e} = \sum_{i=1}^{N_{t}^{e}} [s_{it}^{e}]^{2} = \sum_{i=1}^{k} [s_{it}^{e}]^{2} + \sum_{i=k+1}^{N_{t}^{e}} [s_{it}^{e}]^{2}$$
$$= HHI(k)_{e,t} + HHI(-k)_{e,t}$$

HHI attributed to the Top k investors (k = 3, 5, 10)

k = 3	\overline{HHI}_k		\overline{HHI}_{-k}		LIQ	SMB	R^2
High HHI	-0.1421	**	-0.0980	***	-0.0244	0.0261	0.3547
	(0.0468)		(0.0081)		(0.0251)	(0.0321)	
Low HHI	1.3010	**	-0.1837	***	-0.0161	-0.0074	0.0823
	(0.4185)		(0.0389)		(0.0215)	(0.0276)	
k = 5							
High HHI	-0.1368	**	-0.0978	***	-0.0243	0.0251	0.3547
	(0.0421)		(0.0081)		(0.0251)	(0.0322)	
Low HHI	1.6493	**	-0.2291	***	-0.0109	-0.0054	0.1145
	(0.3776)		(0.0406)		(0.0211)	(0.0270)	

Firm-Level Analysis of Downside Risk

- Robustness check of portfolio results at the firm level - individual stock panel (quantile) regressions
- Impact of decomposed investor concentration on downside risk at the firm-level
- We do this for quantiles, downside variance, risk-neutral variance

Asset Pricing Model with endogenous HHI

- **Goal:** develop model that can rationalize and capture empirical findings
- Adopt the Koijen and Yogo (2016) framework reduced form model that is equivalent to traditional portfolio choice problem
- Heterogeneous investor asset demands are functions of prices and asset characteristics

Summary of Empirical Findings

- Institutional investor concentration is significant factor in the cross-section of returns
- Existing factor models don't capture return spread in investor concentration sorted portfolio
- ► Stocks with high investor concentration:
 - Lower excess returns
 - Higher conditional volatility
 - Greater downside risk across broad set of measures
- Stronger impact of investor concentration of "top players" on increasing downside risk