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“I simply wish that, in a matter which so closely
concerns the wellbeing of the human race, no
decision shall be made without all the knowledge
which a little analysis and calculation can provide”
Daniel Bernoulli ~1760



1920 Richardson integrate
manually equations of the
atmosphere

1950 First numerical weather
forecast (24h computation for a
24h forecast)

1955 Numerical weather
prediction models became
operational by the USWB

2000 Government and
Commercial entities routinely
forecast up to three weeks

1930 Reed-Frost define a
simple chain binomial model
that they integrate with a
“sandbox’ computer

1952 First Reed-Frost
numerical implementation

1980-2000 progress toward the
definition of large-scale
individual models

2005 Large scale agent-based
models early approaches

2015 Operational tests



4th grade .\ 2

Thu, 09:00- 09:40

Within school contact
patterns
(@Sociopatterns)

Mar 19-22:16 GMT

Multiscale integration Hubs, community,
of mobility networks in clustering, heavy
the analysis of tails, ...

potentially pandemic
pathogens spread.



Novel digital data streams

Active data collection Passive data collection

INFLU
O NG,
grippenet f

flu near you M

do you have it in you?

flusurvey

FluTracking.net
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Google Flu Trend (paradigm)

% ILI

Google Flu

Google Flu + C(DC  ——— (DC

Lagged CDC

Google estimates more ,
than double CDC estimates
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Google Flu

Google Flu + CDC

Google starts estimating
Lagged CDC high 100 out of 108 we/eks\/J\\A\JM

07/01/09

07/01/10

07/01/11 07/01/12 07/01/13
Data

Use surrogate signal in
algorithm trained on
historical data (generally
CDC time series) to
achieve lead time (real
time data collection, time-
series extrapolation)

Case study on GFT and
other non-generative
models simple Lagged
regression can be 90%
“‘good” (Lazer et al.
Science 2014).

Red-team - Blue team
issues

Media hype



% ILI

Flu All Irrelevant Generated  Actual
P D O e

- Salathe’; Culotta; Dredze

>
2.5
1

etc. Etc. (since the first paper
o by Signorini et al.);
i - Word selection
i \ - Linear regression, Multiple
o linear regression; SVM
Regresssion; EFS
Statistical biases, - High-level geographical
“Zombies” etC reSOIUtion
- Well discussed in the literature - Full natural language
- Similarities & difference with GFT. processing
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Chemical shifts from tiny Regulating prodocts that Preschool gamses promote
o target gut microblomes 5 w math skills in India »
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NMR samples 5 08
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profitable customers.

30 How marketing analytics
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TRANSFORMS
SCIENCE

Big data and
the power
of prediction

Prevent crime and churn.
Create new products and experiences.
All with predictive analytics.




Potential number of pitfalls

- Lack of microlevel understanding (Black box effect, Causal
iInference, mMicroscopic processes, observables...)

- Intrinsic Biases, Data incompleteness, noise
- More data not necessarily better modeling

- Inductive approaches to dynamical systems are dangerous
See Hosni, Vulpiani, Philosophy &Technology (2017) MUST
READ!

Confirmed cases of MERS-CoV in the Republic of Korea and China
Reported to WHO as of 22 Jul 2015 (n=186)
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(big, or small)

- The focus is on understanding these data sets In
a scientific sense and more deeply the real world
processes which produced the data (Theory)

- Mechanistic approach (apparent reductionism)

- Effective equations

- Initial conditions
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GLEAM

GLOBAL EPIDEMICAND MOBILITY MODEL

WWW.GLEAMVIZ.ORG
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http://WWW.GLEAMVIZ.ORG

Stochastic Inter population dynamics

T¥MOBS LAB



Multiple schemes for the stochastic intra-population
contagion dynamic
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Reaction-diffusion on a network

Subpop i

Moblllty flows — REPEAT

o CALL RANBin(S,BI/N) and RANBin([,pu)
o S=S-RANBin(S,3I/N)
o I=I+RANBin(S,3I/N)-RANBin(I, 1)
o R=R+RANBin(/, p)
o t=t+ At
o PRINT S,I,R,t

o susceptlble — UNTIL I =0

RS S a—_—

Q infectious Subpop j

m

Not always more details better modeling/forecast. Context got the
questions/scale needed.

Effective equations are not simple approximations (ex.: time-scale
separation of fast-slow degrees of freedom through a B-O scheme).
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Seasonal Influenza

Percentage of Visits tor Influenza-like lliness (ILI) Reported by
the U.S. Outpatient Influenza-like lliness Surveillance Network (ILINet),
Weekly National Summary, 2013-14 and Selected Previous Seasons
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Generative modeling approach

" Model selection

CDC

Twitter data i ® Lo 0
. ‘ e I
STAGE 1 STAGE 2 STAGE 3

0 Extracting features of geographical
locations, languages, and key words
from Twitter data, and ILI trends from
PAHO data.

e Parameter space sampling
0 Stochastic simulations

0 Model selection and prediction

- - -
- -

¥ MOBS LAB Zhang,et al. WWW2017



Model selection

1200

1000 |

800

cases

Information
criterion (AIC) for

400 |
model selection
200 |
043 18 i 6 1
week
—— baseline o—e (D( Data

- pest estimate © confidence interval
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Time horizon and quality of predictions

PearsonCorr MAPE

season country model 1-wlp 2-wlp 3-wlp 4-wlp 1-wlp 2-wlp 3-wlp 4-wlp
13/14 USs emm 0.90 0.78 0.73 0.78 0.13 0.18 0.23 0.23
13/14 USs emmAug 0.96 0.95 0.90 0.86 0.07 0.09 0.13 0.17
17/18 USs emm 0.97 0.91 0.82 0.75 0.09 0.14 0.18 0.20
17/18 USs emmAug 0.99 0.95 0.89 0.83 0.07 0.11 0.16 0.20
y 7

6 6

1 week ahead 4 week ahead
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Bonus results (|
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Bonus results (ll)

Q. Zhang, et al.

WWW '17, 311-319 (2017) (ACM DL).

USA

Italy

Spain

1.80 [1.50, 2.20]
1.30 [1.20, 1.40]

1.50 [1.40, 1.50]
1.20 [1.10, 1.30]

2.00 [1.80, 2.20]
1.30 [1.20, 1.30]

residual
immunity

0.15 [0.05, 0.35]
0.30 [0.10, 0.40]

0.20 [0.05, 0.40]
0.25 [0.00, 0.40]

0.15 [0.00, 0.30]
0.10 [0.05, 0.35]

average
infectious
time

4.00 [2.50, 5.00]
5.00 [3.60, 5.00]

3.60 [2.80, 5.00]
3.30 [2.00, 5.00]

3.30 [2.50, 4.00]
3.30 [2.50, 4.00]
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RNA virus from the Flaviviridae family,
genus Flavivirus.

Generally mild disease characterized by
low grade fever, rash, and/or
conjunctivitis.

Only approximately ~ 10% - 20% of
those infected are symptomatic.

ZIKV is spread primarily through
infected Aedes mosquitoes.

Plus, sexual and perinatal/vertical
transmission are possible and the
potential for transmission by transfusion
IS present




Spatial stochastic individual based model

Zhang et al. PNAS 2017 ; doi:10.1073/pnas.1620161114

*Introduce explicitly the coupling of
traveling patterns (case importation and
colonization) on the disease progression

*Introduce seasonal drivers of Mosquito
transmission in the epidemic dynamic.

*Introduce effect of socio-economic drivers

*Interplay of traveling pattern, outbreak
initial conditions, disease dynamic and
seasonal driving in defining the epidemic
progression at the regional level.

< MOBS LAB



Model structure

Explicit modeling of Mosquitoes abundance
airline traffic national/ + local climate drivers +
international + socio-economic
commuting patterns indicators

and local mobility

DATA LAYERS

IR «- - - *
— )

Mosquito «—
Presence

—> renv — GECON

T¥MOBS LAB

Dynamic stochastic
model providing time
evolution of the
epidemic

HUMAN - MOSQUITO
DISEASE DYNAMIC




0.0 4.4
cell abundance
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Model structure

Explicit modeling of Mosquitoes abundance
airline traffic national/ + local climate drivers +
international + socio-economic
commuting patterns indicators

and local mobility

DATA LAYERS

IR «- - - *
— )

Mosquito «—
Presence

—> renv — GECON

T¥MOBS LAB

Dynamic stochastic
model providing time
evolution of the
epidemic

HUMAN - MOSQUITO
DISEASE DYNAMIC
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Model structure

Explicit modeling of Mosquitoes abundance
airline traffic national/ + local climate drivers +
international + socio-economic
commuting patterns indicators

and local mobility

DATA LAYERS

IR «- - - *
— )

Mosquito «—
Presence

—> renv — GECON

T¥MOBS LAB

Dynamic stochastic
model providing time
evolution of the
epidemic

HUMAN - MOSQUITO
DISEASE DYNAMIC




Model resolution

GLEAM

Aedes mosquito
distribution

*——GECON

o 4 "
Wt
Rio de Janeiro

[ZF GLEAM subpopulation

I
low hiah

|EXDOSed population




EPIDEMIC DYNAMICS

Humans

S

Hy

Humans

n
B v t e
- s b

St = S = Bin(S{', A
EE, = EF + Bin(SE ) - Bin(EE ex)
12, = 17+ Bin(Ef, en) — Bin(If , um)
Ry = R+ Bin(If,um),

Vector

Q. C @ 0
b

St = SY = Bin(S{\\) + Bin(I{', pv) + Bin(EY , pv)
Y = EY - Bin(EY ,uv) — Bin(EY ,ev) + Bin(S{, \{)
= I} + Bin(EY ,ev) — Bin(L, pv),
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In order to understand the future of Zika epidemiology
one needs to understand its past

10,000

Weekly suspected and confirmed cases

S
3

® South America

Caribbean

® Central America
* Brazil reportedits

first case in April 2015.

T¥MOBS LAB
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January July
2017 2017

Source: Science, 2017



The Time Machine: Monte-Carlo estimates of ZIKAV
introduction in the Americas
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Modeling provides posterior
distributions for the place
and date of introduction in
Brazil in good agreement
with Phylogenetic analysis
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Caribbean ;

Florida

Multiple
introductions

2013

2014

2015 2016

Worobey, Michael. "Epidemiology: Molecular mapping of Zika spread." Nature 546.7658 (2017): 355-357.



Epidemic decllnlng in 2017
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What happened in Northeast Brazil?

Researchers still don’t understand why Northeast—a political region comprising nine Brazilian states—had so many case< ~f mirrnranhahi and ralatad hirth dafacte hahusan

November 2015 and May. Across the country, roughly one-third of reported cases were confirmed as related to the Zika v  Brazil regional cumulative births with first trimester ZIKV infection
by 201611-19
1.0

® Northeast e Southeast North Central-West @ South

<
w

Northeast region

o
o

-
>

Central-West region

Monthly new births with
ZIKV infection (10,000 cases)

02- 60000
() — e N e ~-. - pae e - - . . . ! ‘g%ggé ~ll;:‘:Southeastregion
B I (1)0.000 South region
R=0.850 (p < 0.0001)
explanatory variable coefficient = p [0.025 0.975] % variance explained
log(population) 1.25 | <0.001 0.90 1.60 62.8%
fraction of days with average temperature > 20°C 297  <0.001 2.01 3.94 46.5%
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Determine areas at risk of observing Zika virus
infections during 2017.

Analysis and Predictions for Vaccination Trials
NIH & CDC +3 modeling team:;:

Coordinators/advisors: Marc
Fischer, Kiersten Kugeler, Michael
Johansson, Grace Chen, Dean
Follman, Rebecca Prevots, Jennifer
Kwan, Shelby Daniel-Wayman, Jason
Asher, Andrew Monaghan.

Modeling team 1 (MT1): Alessandro
Vespignani, Qian Zhang, Kaiyuan Sun,
Ana Pastore y Piontti, Matteo Chinazzi,
Ira Longini and M. Elizabeth Halloran. oty
Modeling team 2 (MT?2): Alex Perkins, - : E
Amir Siraj, Christopher Barker and , { acgentina £
Robert Reiner. '
Modeling team 3 (MT3): Justin Lessler,
Isabel Rodriguez-Barraquer, Neil

Ferguson and Derek Cummings. FRLMOBS L AB

Brazil

- Bolivia




situational awareness
intervention planning
projections

epidemiological explanations
Structured reasoning

[ MIDAS collaboration paper: Lofgren et al. Mathematical models: A key tool for outhreak
response; PNAS 111 (51): 18095 (2014) ]


http://www.pnas.org/content/111/51/18095.short

CHARTING THE
NEXT PANDEMIC toccmericiusviese

This book provides an introduction to the computational and complex systems modeling
of the global spreading of infectious diseases. The latest developments in the area of
contagion processes modeling are discussed, and readers are exposed to real world
examples of data-model integration impacting the decision-making process. Recent
advances in-computational science and the increasing availability of real-world data are
making it possible to develop realistic scenarios and real-time forecasts of the global
spreading of emerging health threats.

The first part of the book guides the reader through sophisticated complex systems
modeling techniques with a non-technical and visual approach, explaining and illustrating
the ‘construction of the modern framework used to project the spread of pandemics
and epidemics. Models can be used to transform data to knowledge that is intuitively
communicated by powerful infographics and for this reason, the second part of the
book focuses on a set of charts that illustrate possible scenarios of future pandemics.
The visual atlas contained allows the reader to identify commonalities and patterns in
emerging health threats, as well as explore the wide range of models and data that can
be used by policy makers to anticipate trends, evaluate risks and eventually manage
future events.

Charting the Next Pandemic puts the reader in the position to explore different
pandemic scenarios and to understand the potential impact of available containment and
prevention strategies. This book emphasizes the importance of a global perspective in
the assessment of emerging health threats and captures the possible evolution of the
next-pandemic, while at the same time providing the intelligence needed to fight it. The
text-will appeal to a wide range of audiences with diverse technical backgrounds.

ISBN 978-3-319-93289-7

911783

3191932897
» springer.com
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Ana Pastore y Piontti
Nicola Perra 4
Luca Rossi

Nicole Samay
Alessandro Vespignani.
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CHART

Modeling Infectious
Disease Spreading in the
Data Science Age
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With Contributions by
Corrado Gioannini
Marcelo FE C. Gomes
Bruno Gongalves

AB



CENTER FOR

DYNAMICS

OF INFECTIOUS DISEASES

M.Ajelli, M. Chinazzi, M.Litvinova,
D.Mistry, A. Pastore y Piontti,
K.Sun, S.Haque, N. Samay,

Q.Zhang,

(Northeastern University, USA)

M.E. Halloran

(Fred Hutchinson Cancer Research
Center, USA)

N. Dean, D. Rojas,

|.M. Longini
(University of Florida, USA)

N.Perra
(Greenwich University, UK)

INFERENCE & %%”WGI_EAM EBOLA

OLEAV CHALLENGE

S. Merler, L. Fumanelli, P. Poletti
FBK, Trento, Italy

C.Gioannini, L.Rossi, M.Quaggiotto,
M.Tizzoni, D Perrotta, D.Paolotti,

P. Milano, M.Selim, E.Ubaldi,

(Scientific Interchange Foundation, ltaly)
C.Poletto, V.Colizza
INSERM, Paris

G.Chowell C.Viboud
(Georgia State University) (Fogarty, NIH, USA)

L.Simonsen
(George Washington University, USA)

T¥MOBS LAB



