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Data Science and 
Epidemiology: more than 

forecast 



Mathematical epidemiology

“I simply wish that, in a matter which so closely 
concerns the wellbeing of the human race, no 
decision shall be made without all the knowledge 
which a little analysis and calculation can provide”
Daniel Bernoulli ~1760



• 1920 Richardson integrate 
manually equations of the 
atmosphere 

• 1950 First numerical weather 
forecast (24h computation for a 
24h forecast)

• 1955 Numerical weather 
prediction models became 
operational by the USWB

• 2000 Government and  
Commercial entities routinely 
forecast up to three weeks

Numerical Weather models
• 1930 Reed-Frost define a 

simple chain binomial model 
that they integrate with a 
“sandbox’ computer

• 1952 First Reed-Frost 
numerical implementation

• 1980-2000 progress toward the 
definition of large-scale 
individual models

• 2005 Large scale agent-based 
models early approaches

• 2015 Operational tests 

Numerical Epidemic models

MATHEMATICAL -> COMPUTATIONAL



Within school contact 
patterns 
(@Sociopatterns)

Human interactions/ 
contact networks 

Multiscale integration 
of mobility networks in 
the analysis of 
potentially pandemic 
pathogens spread.

Mobility and 
epidemic spreding  

Hubs, community, 
clustering, heavy 
tails, ...

Networks 
heterogeneity and 
complexity

SHIFTING GEAR: DATA AVAILABILITY



Passive data collectionActive data collection

Novel digital data streams 



Use surrogate signal in 
algorithm trained on 
historical data (generally 
CDC time series) to 
achieve lead time (real 
time data collection, time-
series extrapolation)

Case study on GFT and 
other non-generative 
models simple Lagged 
regression can be 90% 
“good” (Lazer et al. 
Science 2014).
Red-team - Blue team 
issues
Media hype

Google Flu Trend (paradigm)



• Salathe’; Culotta; Dredze 
etc. Etc. (since the first paper 
by Signorini et al.);

• Word selection
• Linear regression, Multiple 

linear regression; SVM 
Regresssion; EFS

• High-level geographical 
resolution

• Full natural language 
processing 

Statistical biases, 
“zombies” etc

• Well discussed in the literature
• Similarities & difference with GFT. 

Twitter, OpenTable, Wikipedia, ……..



“AI is changing how we do 
science”, “as far as it works”

etc.


Big data narrative, “fourth 
paradigm”, “end of theory” 
etc.



Potential number of pitfalls 
• Lack of microlevel understanding (Black box effect, Causal 

inference, microscopic processes, observables…) 
• Intrinsic Biases, Data incompleteness, noise  
• More data not necessarily better modeling 
• Inductive approaches to dynamical systems are dangerous 

See Hosni, Vulpiani, Philosophy &Technology (2017) MUST 
READ! 



Actionable modeling with new data 
(big, or small)
• The focus is  on understanding these data sets in 

a scientific sense and more deeply the real world 
processes which produced the data (Theory) 

• Mechanistic approach (apparent reductionism) 
• Effective equations 
• Initial conditions



WWW.GLEAMVIZ.ORG

http://WWW.GLEAMVIZ.ORG


Stochastic Inter population dynamics



Multiple schemes for the stochastic intra-population 
contagion dynamic



Reaction-diffusion on a network

Not always more details better modeling/forecast. Context got the 
questions/scale needed.


Effective equations are not simple approximations (ex.: time-scale 
separation of fast-slow degrees of freedom through a B-O scheme).

k
DA





Seasonal Influenza 

•



Generative modeling approach

Model selection

Zhang,et al. WWW2017 



Model selection
Selection

CDC Data

Information 
criterion (AIC) for 
model selection 



Time horizon and quality of predictions

1 week ahead 4 week ahead



Bonus results (I)



Bonus results (II)

Reff Gt imm 
(%)

1.50-1.74 4.0-6.1 15-40

Q. Zhang, et al.
WWW '17, 311-319 (2017)  (ACM DL).



First isolated in
Zika Forest, 

Uganda
1947

Circulated in 
Central Africa 

and South Asia
1960s/1970s

Yap Island 
Outbreak, 
Micronesia

2007

Oct 2015
Unusual increase of 

microcephaly in Brazil, 
Zika link suspected

Feb 2016
WHO 

declared Zika 
as PHEIC

2013-2017
Zika marched 

through most of 
American 
countries

French 
Polynesia
Outbreak

2013

2014-2015
??????

(Cryptic transmission)



Zika Virus (ZIKV)
• RNA virus from the Flaviviridae family, 

genus Flavivirus.

• Generally mild disease characterized by 
l o w g r a d e f e v e r, r a s h , a n d / o r 
conjunctivitis.

• Only approximately ~ 10% - 20% of 
those infected are symptomatic.

• ZIKV is spread primarily through 
infected Aedes mosquitoes.

• Plus, sexual and perinatal/vertical 
transmission are possible and the 
potential for transmission by transfusion 
is present



Spatial stochastic individual based model 
Zhang et al. PNAS 2017 ; doi:10.1073/pnas.1620161114

•Introduce explicitly the coupling of 
traveling patterns (case importation and 
colonization) on the disease progression

•Introduce seasonal drivers of Mosquito 
transmission in the epidemic dynamic.

•Introduce effect of socio-economic drivers

•Interplay of traveling pattern, outbreak 
initial conditions, disease dynamic and 
seasonal driving in defining the epidemic 
progression at the regional level.



Mosquitoes abundance 
+ local climate drivers + 
socio-economic  
indicators 

Dynamic stochastic 
model providing time 
evolution of the 
epidemic 

Explicit modeling of 
airline traffic national/
international + 
commuting patterns 
and local mobility 
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Model resolution

100 km
São Paulo

Remaining population 
low high

GECON

Aedes mosquito
distribution

Rio de Janeiro

GLEAM

GLEAM subpopulation 

25 km x 25 km within census areas in all the Americas.
A few quantities can be projected up to 1km x 1 km
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EPIDEMIC DYNAMICS
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In order to understand the future of Zika epidemiology 
one needs to understand its past

Source: Science, 2017 



Neher, Richard & Trevor Bedford et. al. www.nextstrain.org

Modeling provides posterior 
distributions for the place 
and date of introduction in 
Brazil in good agreement 
with Phylogenetic analysis

B

A

C2013 2014

2013

2014

B

A

C2013 2014

2013

2014

Worobey, Michael. "Epidemiology: Molecular mapping of Zika spread." Nature 546.7658 (2017): 355-357.

The Time Machine: Monte-Carlo estimates of ZIKAV 
introduction in the Americas 



Epidemic declining in 2017



Modeling allows estimates of births from 
infected pregnancies in each of the 5 regions in 
Brazil 



NIH & CDC +3 modeling team: 
Analysis and Predictions for Vaccination Trials


Determine areas at risk of observing Zika virus 
infections during 2017.

Coordinators/advisors: Marc 
Fischer, Kiersten Kugeler, Michael 
Johansson, Grace Chen, Dean 
Follman, Rebecca Prevots, Jennifer 
Kwan, Shelby Daniel-Wayman, Jason 
Asher, Andrew Monaghan.

Modeling team 1 (MT1): Alessandro 
Vespignani, Qian Zhang, Kaiyuan Sun, 
Ana Pastore y Piontti, Matteo Chinazzi, 
Ira Longini and M. Elizabeth Halloran. 
Modeling team 2 (MT2): Alex Perkins, 
Amir Siraj, Christopher Barker and 
Robert Reiner. 
Modeling team 3 (MT3): Justin Lessler, 
Isabel Rodriguez-Barraquer, Neil 
Ferguson and Derek Cummings. 



Data & Modeling is more than 
forecast

• situational awareness

• intervention planning 

• projections 

• epidemiological explanations

• Structured reasoning

[ MIDAS collaboration paper: Lofgren et al. Mathematical models: A key tool for outbreak 
response; PNAS 111 (51): 18095 (2014) ] 

http://www.pnas.org/content/111/51/18095.short
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CHARTING THE
NEXT PANDEMIC

CHARTING THE NEXT PANDEM
IC

Modeling Infectious Disease 
Spreading in the Data Science Age

This book provides an introduction to the computational and complex systems modeling 
of the global spreading of infectious diseases. The latest developments in the area of 
contagion processes modeling are discussed, and readers are exposed to real world 
examples of data-model integration impacting the decision-making process. Recent 
advances in computational science and the increasing availability of real-world data are 
making it possible to develop realistic scenarios and real-time forecasts of the global 
spreading of emerging health threats.

The first part of the book guides the reader through sophisticated complex systems 
modeling techniques with a non-technical and visual approach, explaining and illustrating 
the construction of the modern framework used to project the spread of pandemics 
and epidemics. Models can be used to transform data to knowledge that is intuitively 
communicated by powerful infographics and for this reason, the second part of the 
book focuses on a set of charts that illustrate possible scenarios of future pandemics. 
The visual atlas contained allows the reader to identify commonalities and patterns in 
emerging health threats, as well as explore the wide range of models and data that can 
be used by policy makers to anticipate trends, evaluate risks and eventually manage 
future events.

Charting the Next Pandemic puts the reader in the position to explore different 
pandemic scenarios and to understand the potential impact of available containment and 
prevention strategies. This book emphasizes the importance of a global perspective in 
the assessment of emerging health threats and captures the possible evolution of the 
next pandemic, while at the same time providing the intelligence needed to fight it. The 
text will appeal to a wide range of audiences with diverse technical backgrounds.
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Bruno Gonçalves
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