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The role of accounting in a dynamic model of
CEO pay and turnover

Abstract

In its current state, this paper develops a dynamic model where a firm chooses
compensation schemes to motivate CEO effort and chooses when to replace CEOs.
The contract depends on the observed streams of cash flows and accrual-based earn-
ings. In this context, accounting contributes to contracting effi ciency to the extent to
which shocks to accrual-based earnings negate transitory shocks to cash flows. The
optimal turnover choice depends on economizing the net costs of termination and
the costs of incentivizing the CEO. In future work, we will structurally estimate the
model’s parameters to evaluate its descriptive power and to quantify the effects of
the information environment on contracting effi ciency.



1 Introduction

This paper develops a model that is a step to a broader project in which we will

quantify the effects of accounting information on CEO pay and turnover.The model

extends (DeMarzo and Sannikov 2017) in two ways. First, (DeMarzo and Sannikov

2017) examine a single employment relationship that ultimately yields terminal pay-

offs when the relationship and the firm are dissolved. In our model, the firm hires a

new CEO at each termination period. Second, (DeMarzo and Sannikov 2017) model

only a cash flow process, whereas we introduce an additional earnings process that

incorporates key features of accrual-based earnings such as matching to cash flows

over time. This allows us to disentangle the effects of information quality from the

effects of cash flow volatility.

In the model, the firm hires a CEO and is uncertain of his or her ability. The firm

and the CEO share the same prior beliefs about that ability, and the ability varies

over time. The firm designs a compensation contract to discourage shirking, and to

ensure that the CEO does not leave the firm prematurely. The firm faces costs to

replace the CEO, and will terminate the CEO when its beliefs about CEO ability

become suffi ciently low.

The addition of recurring employment relationships significantly alters the firm’s

preferred termination policy. With a single employment spell, when there are no

agency costs the firm prefers a surplus-maximizing termination policy that has the

same form as in standard real options problems. With recurring employment rela-

tionships, the surplus-maximizing policy reflects the incentive to economize the net

cost of replacing agents, which is the difference between the firm’s costs of replacing

the CEO versus the value of the CEO’s outside opportunities. When there is no net
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cost of replacing the CEO, the surplus-maximizing policy matches the myopic policy,

whereas the surplus-maximizing policy in standard real options problems terminates

at strictly lower values than the myopic policy.

When the firm faces no agency costs and must only meet CEOs reservation utility,

it prefers a strictly lower termination threshold than the surplus-maximizing thresh-

old. The reason for this is that the firm wishes to economize on its cost of hiring a

new CEO, and does not consider the value of the CEO’s outside opportunities. By

delaying termination, the firm reduces overall surplus, but also reduces the value that

it must share with the CEO.

Currently, we derive the optimal termination policy within the class of contracts

with a constant termination threshold. Given such a contract, the effect of information

quality on firm value and CEO turnover hinges on whether the CEO has a relatively

high reservation utility. When the reservation utility is low, firm value is everywhere

increasing in information quality, and higher information quality leads to shorter CEO

tenure. When the reservation utility is high, greater information quality leads to a

lower termination threshold. This occurs because a high reservation utility implies

a relatively high cost of hiring a new CEO. The lower termination threshold then

implies longer CEO tenure with higher information quality.

In future work, we will further develop the model by deriving the fully optimal

contract, without restricting the termination policy. We will also structurally estimate

the model’s parameters to evaluate the model’s fit to data and quantify the effect of

accounting information on firm value and CEO turnover.
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2 Model

2.1 Setup

Our model extends DeMarzo and Sannikov (2017) by including a CEO turnover de-

cision, an earnings process, and multiple firms. There are N firms in the economy.

Each firm n ∈ {1, 2, . . . , N} has a CEO and sets compensation to optimize its net

cash flows. We denote the firm’s time t cumulative cash flows by xnt, and its time

t flow compensation to the agent by ct.The firm’s cash flows depend on an unob-

servable industry-wide component µ0t and the CEO’s ability µnt. Both of these are

unobservable so that firm value from the principal’s perspective depends on estimates

µ̂0t = Et[µ0t] and µ̂nt = Et[µnt]. The firm incurs a cost k when replacing the CEO, at

which time it hires a replacement CEO with ability normalized to zero. We denote

the current CEO’s continuation value by wt.

We can write the firm’s value bt = b (µ̂0t, µ̂nt, wt) as follows where τ i denotes the

ith stopping time to replace the CEO and the discount rate is r:

b (µ̂0t, µ̂nt, wt) = Et

[∫ τ1
t

e−r(s−t) (dxns − csds) +
∑∞

i=1

(∫ τ i+1
τ i

e−r(s−t) (dxns − csds)− e−r(τ i−t)k
)]

= Et

[∫ τ1
t

e−r(s−t) (dxns − csds) + e−r(τ1−t)
(
b
(
µ̂0τ1 , 0, wτ1

)
− k
)]
.

(1)

The second line incorporates the recursive nature of the firm’s payoff.

The firm’s cash flows depend on random shocks, the CEO’s effort, the CEO’s

ability, and CEO turnover decisions. Each firm n has cumulative cash flows xnt at

time t that evolve as follows:

dxnt = (µ0t + µnt − ant) dt+ σx (βdz0xt + dznxt) , xn0 = 0, (2)
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where ant ≥ 0 is the CEO’s unobservable ‘bad’ action (e.g., shirking), µ0t is the

unobservable industry profitability, µnt is the CEO’s unobservable ability, and z0xt

and znxt are independent standard Brownian motions that represent shocks to the

respective common and idiosyncratic portions of cash flows. The parameter σx scales

volatility and β scales the common versus idiosyncratic portions of volatility. The

profitability processes evolve as follows:

dµ0t = βσµdz0µt, dµnt = σµdznµt, (3)

where σµ is a parameter and z0µt and znµt are independent standard Brownian mo-

tions that represent shocks to the respective industry and CEO-specific portions of

profitability. The term µ0t includes any correlated aspects of CEO ability so that µnt

is purely idiosyncratic.

The firm also has a cumulative earnings processes ent that evolves as follows:

dent = θ (xnt − ent) dt+ σe (βdz0et + dznet) , en0 = 0, (4)

where the parameter θ governs how quickly accruals reverse in the sense of cumulative

earnings converging to cumulative cash flows, σe is a volatility parameter, and z0et

and znet are independent standard Brownian motions that represent shocks to the

respective common and idiosyncratic portions of cash flows.

We assume that investors also directly observe the industry-level components of

cash flows and earnings, x0t and e0t, with:

dx0t = µ0tdt+ βσxdz0xt, de0t = θ (x0t − e0t) dt+ βσedz0et. (5)

Directly observing the industry-level cash flows and earnings is equivalent to observ-

ing the vector of all firms’ cash flows and earnings where the number of firms N

approaches infinity. This simplification allows for tractable solutions to the filtering
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problem to infer the firm- and industry-level profitability.

The agent obtains a benefit λat from shirking, where λ ∈ (0, ν
ν+r

)so that the

action is socially wasteful.1 In addition, if the contract calls for shirking of at and

the agent engages in shirking ât 6= at, then this distorts the principal’s process for

learning the CEO ability µnt. In this case, the agent’s beliefs µ̂
a
nt do not equal the

principal’s beliefs µ̂nt. If the agent leaves the firm when the agent’s and principal’s

beliefs are µ̂ant and µ̂nt, respectively, then the present value of his future payoffs is

R̂(µ̂t, µ̂
a
t ). Denoting by τ the stopping time at which the agent leaves the firm, the

agent’s continuation value is then the following where Ea
t [·] denotes expectation with

respect to the agent’s beliefs:

wat = Ea
t

[∫ τ

t

e−r(s−t)(λas + cs)ds+ e−r(τ−t)R̂(µ̂t, µ̂
a
t )

]
. (6)

2.2 The filtering problem

The following presents the steady-state beliefs µ̂0t and µ̂nt for the case where the

agent takes action at ≥ 0. We later show that at = 0 in equilibrium. The appendix

presents the derivations. We assume that all parties share the following priors where

µNt = {µ1t, µ2t, . . . , µNt}, 1 denotes a vector of ones, 0 denotes a vector of zeros, and

I denotes the identity matrix:

( µ00
µN0 ) ∼ N

((
µ̂00
0
,
(
γ̂0 0′

0 γ̂nI

)))
. (7)

In other words, all correlated profitability comes via the µ0t term and the µnt terms

are purely firm-specific.

1DeMarzo and Sannikov (2017) place the weaker restriction λ ∈ (0, 1). We require the more strin-
gent upper bound on λ because λ > ν

ν+r will cause the principal’s payoff to decrease in profitability
for suffi ciently high levels of profitability due to the costs of compensating the agent.
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We denote the shock correlations as follows:

ρµx = 1
dt

E [dz0µtdz0xt] = 1
dt

E [dznµtdznxt] ,

ρµe = 1
dt

E [dz0µtdz0et] = 1
dt

E [dznµtdznet] ,

ρxe = 1
dt

E [dz0xtdz0et] = 1
dt

E [dznxtdznet] .

(8)

The steady-state variances are:

γ̂n = limt→∞ vart (µnt) = σµσx

(√(
1− ρ2µe

)
(1− ρ2xe)−

(
ρµx − ρµeρxe

))
= σµσx

√(
1− ρ2µe

)
(1− ρ2xe)︸ ︷︷ ︸

std(zµ|ze)std(zx|ze)

(
1− ρµx−ρµeρxe√

(1−ρ2µe)(1−ρ2xe)

)
︸ ︷︷ ︸

1−corr(zµ,zx|ze)

> 0,

γ̂0 = limt→∞ vart (µ0t) = β2γ̂n.

(9)

The belief processes evolve as:

dµ̂0t = βσµdẑ0µt,

dµ̂nt = σµdẑnµt,
(10)

where:

dẑ0µt = ν σx
σµ

1
βσx

(dx0t − µ̂0tdt)︸ ︷︷ ︸
dẑ0xt

+
ρµeσµ−νρxeσx

σµ
1
βσe

(de0t − θ (x0t − e0t))︸ ︷︷ ︸
dz0et

dẑnµt = ν σx
σµ

1
σx

(dxnt − (µ̂0t + µ̂nt − ant) dt− βσxdẑ0xt)︸ ︷︷ ︸
dẑnxt

+
ρµeσµ−νρxeσx

σµ
1
σe

(dent − θ (xnt − ent) dt− βσedz0et)︸ ︷︷ ︸
dznet

,

(11)

where ν = σµ
σx

√
1−ρ2µe
1−ρ2xe

. On the equilibrium path dẑ0µt, dẑnµt, dẑ0xt, dẑ0xt are Brownian

motions and we can express the dynamics of cash flows in terms of observables:

dx0t = µ̂0tdt+ βσxdẑ0xt, dxnt = (µ̂0t + µ̂nt) dt+ σx (βdẑ0xt + dẑnxt) . (12)

If the agent deviates from the equilibrium action ant by taking action ânt, then

the principal’s beliefs µ̂nt continue to follow (10), while the agent’s beliefs µ̂
a
nt follow:
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dµ̂ant = σµ

(√
1−ρ2µe
1−ρ2xe

1
σx

(dxnt − (µ̂0t + µ̂ant − ânt) dt− (dx0t − µ̂0tdt))

+

(
ρµe − ρxe

√
1−ρ2µe
1−ρ2xe

)
dznet

)
= dµ̂nt + ν (ânt − ant − (µ̂ant − µ̂nt)) dt.

(13)

The above dynamics imply the belief divergence αt = µ̂ant − µ̂t is:

αt = ν

∫ t

0

e−ν(t−s) (âns − ans) ds, dαt = ν (ât − αt) dt. (14)

The term ν is the rate of decay of the agent’s information advantage. In DeMarzo and

Sannikov (2017), ν = σµ
σx
. In our setting, the introduction of earnings can increase or

decrease ν from that benchmark. For example, if earnings shocks are highly correlated

with shocks to the profitability process (high ρµe), but not with the cash flow shocks

(low ρxe), then earnings will be highly informative about profitability but relatively

less useful for controlling agency costs (low γ̂n and ν <
σµ
σx
).

For convenience, we express the dynamics in terms of the information generated

by the shock dẑnµt to beliefs about µnt and the portion of the earnings shock dznet

that is orthogonal to dẑnµt, which we denote by dz̃net = 1√
1−ρ2µe

(
dznet − ρµedẑnµt

)
.

The filtration generated by {dẑnµt, dz̃net} is informationally equivalent to the filtration

generated by {dẑnxt, dznet}.

2.3 Contracting and the first-best solution

The firm pays flow compensation ct to the CEO, which must satisfy ct ≥ c ≥ 0. We

follow DeMarzo and Sannikov (2017) and use a linear form for the CEO’s termination

payoff:

R̂(µ̂t, µ̂
a
t ) = R0 +Rµµ̂nt︸ ︷︷ ︸

R(µ̂t)

+λ−ψ
r

(µ̂ant − µ̂nt), (15)
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where the term λ−ψ
r

(µ̂ant−µ̂nt) reflects that the CEO can earn λ−ψ from the deviation

µ̂ant−µ̂nt given in (14) in perpetuity, and the parameter ψ ∈ [0, λ] represents the extent

to which the agent’s information rents are firm-specific. Because R0 and Rµ are fixed,

this specification omits the possibility that the CEO’s outside opportunities change

during the contract period. In other words, the firm can anticipate any ‘poaching’of

the CEO. Furthermore, principals do not choose R0 and Rµ, so that we do not treat

the CEO’s termination value as being paid by the firm. As in DeMarzo and Sannikov

(2017), we assume that Rµ ∈ [0, λ
(
1
ν

+ 1
r

)
− ψ

r
) or, equivalently, λ > ν

ν+r
(rRµ + ψ)

so that λ ∈
(

ν
ν+r

(rRµ + ψ) , ν
ν+r

)
.

With no agency costs (at = 0), the firm-specific portion of the total surplus is the

following:

vn (µ̂nt) = Et

[∫ τ
t

e−r(s−t)µ̂nsds+ e−r(τ−t) (vn (0) +R (µ̂nτ )− k)
]

= 1
r
µ̂nt + Et

[
e−r(τ−t)

(
vn (0)− 1

r
µ̂nτ +R (µ̂nτ )− k

)] (16)

and the total surplus is 1
r
µ̂0t + vn (µ̂nt). The myopic policy compares keeping the

current CEO in perpetuity for a value of 1
r
µ̂nt to terminating the CEO for the net

benefit of R (µ̂nτ ) − k and hiring a new CEO with ability normalized to zero. This

gives the myopic termination threshold:

1
r
µ
o

= R(µ
o
)− k ⇒ µ

o
= − k−R0

1
r
−Rµ

. (17)

Optimal termination policies consider the value of the termination option and have

lower thresholds.

The contract is a (x0t, e0t, xnt, ent) measurable pair (ct, τ) where ct denotes cash

payments, and the stopping time τ denotes the time of contract termination. Given

the filtering process described in expressions (10) through (12), we can write the firm’s
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payoff as follows where w0 is the CEO’s initial expected value of working for the firm:

b (µ̂0t, µ̂nt, wt) = 1
r
µ̂0t + Et

[∫ τ

t

e−r(s−t) (µ̂ns − as − cs) ds+ e−r(τ−t) (bn (0, w0)− k)

]
︸ ︷︷ ︸

bn(µ̂nt,wt)

.

(18)

At each termination date τ i, the firm selects a compensation process ct, an action

process at, and a termination policy τ i+1 to optimize the above payoff subject to the

following participation and incentive compatibility constraints:

w0 ≤ E

[∫ τ i+1

τ i

e−r(s−τ i)(λas + cs)ds+ e−r(τ i+1−τ i)R(µ̂nτ i+1)

]
︸ ︷︷ ︸

w0

, (19a)

wt = E

[∫ τ i+1

t

e−r(s−t)(λas + cs)ds+ e−r(τ i+1−t)R(µ̂nτ i+1)

]
≥ R (µ̂nt) , (19b)

wτ i ≥ E

[∫ τ i+1

τ i

e−r(s−τ i)(λâs + cs)ds+ e−r(τ i+1−τ i)R̂(µ̂nτ i+1 , µ̂
a
nτ i+1

)

]
, ∀ât.(19c)

We further restrict lump-sum payments to be nonnegative. The constraint (19a) is

a participation constraint requiring that the new agents expect value of at least w0

to accept the contract. The constraint (19b) avoids the agent leaving early under

the prescribed actions at and termination policy. The constraint (19c) implements

the required actions at. DeMarzo and Sannikov (2017) show that the (19c) can be

written as of the initial date and need not include the choice to terminate early.

With at = 0, the firm-specific portion of the principal’s surplus is:

bn(µ̂nt, wt) = Et

[∫ τ
t

e−r(s−t) (µ̂ns − cs) ds+ e−r(τ−t) (bn(0, w0)− k)
]

= Et

[∫ τ
t

e−r(s−t)µ̂nsds+ e−r(τ−t) (bn(0, w0) +R(µ̂τ )− k)
]
− wt

= 1
r
µ̂nt + Et

[
e−r(τ−t)

(
bn(0, w0)− 1

r
µ̂nτ +R(µ̂τ )− k

)]
− wt

(20)

The following proposition summarizes the termination rule µ
fb
that maximizes the

surplus vn, and the firm’s preferred termination policy µp that maximizes the firm’s
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payoff bn when only the participation constraint must be considered.

Proposition 1. 1. The surplus-maximizing termination policy is:

µ
fb

= µ
o
− σµ√

2r

(
1 + ω

(
−e

√
2r
σµ

(
µ
o
−
σµ√
2r

)))
< µ

o
, (21)

where ω(•) denotes Lambert’s W function, and ω(•) increases from −1 at k = R

to zero as k−R→∞. The value function under the surplus-maximizing policy

is:

vn(µ̂nt;µfb) = 1
r
µ̂nt + σµ√

2r
e
−
√
2r(µ̂nt−µfb)/σµ

(
1
r
−Rµ

)
, (22)

where e
−
√
2r(µ̂nt−µfb)/σµ = Et

[
e−r(τ−t)

]
reflects the discounted stopping time.

2. The firm’s preferred termination policyµ
p
(including only the participation con-

straint) is:

µ
p

= µ
o
− 1

1
r
−Rµ

w0 −
σµ√
2r

1 + ω

−e

√
2r
σµ

µ
o
− 1
1
r
−Rµ

w0−
σµ√
2r


 < µ

fb
. (23)

The value of firm-specific profits is:

bn(µ̂nt, w0;µp) = 1
r
µ̂nt + σµ√

2r
e
−
√
2r(µ̂nt−µp)/σµ

(
1
r
−Rµ

)
− w0. (24)

This value can be implemented with a contract that pays the agent ct = rw0 at

all dates t < τ and a lump sum of w0 −R(µ
p
) at contract termination.

3. The value of firm-specific profits is positive if and only if w0 < w̄ =
(
1
r
−Rµ

) σµ√
2r

e−(1−
√
2rµ

o
/σµ).

If w0 < w̄, then µ
o
− σµ√

2r
< µ

p
< µ

fb
< µ

o
.

In standard termination problems, the optimal threshold is µ
o
− σµ√

2r
≤ µ

fb
. Here,

the threshold µ
fb
reflects the ability to economize on the net cost k − R0 of firing.

When k = R0, a zero threshold maximizes surplus because it is costless to immediately
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fire the CEO given the slightest evidence that his ability µ̂nt falls short of the average

of zero. As the cost of firing k−R0 becomes large, the surplus-maximizing threshold

approaches µ
o
− σµ√

2r
as in standard termination problems without replacement. The

value function in the first-best case does not depend on information quality. It is not

until we introduce the potential for moral hazard (at > 0) that information quality

plays a role in payoffs.

The firm prefers a lower threshold than the surplus-maximizing threshold. This

differs from prior studies where both the firm and the agent have the same horizon

and the firm prefers the surplus-maximizing threshold when there are no agency costs.

If each agent is held to his reservation value of w0, then the first-best threshold µfb

yields the following expected surplus to the firm at each hiring date:

σµ√
2r

e
√
2rµ

fb
/σµ
(
1
r
−Rµ

)︸ ︷︷ ︸
Total surplus

− 1

1−e
√
2rµ

fb
/σµ
w0︸ ︷︷ ︸

Present value
of payments

. (25)

The firm’s preferred policy µ
p
< µ

fb
incurs the cost of a lower surplus in order to

reduce the present value of payments to agents, which can be seen by the absence

of a 1

1−e
√
2rµ/σµ

term multiplying w0 in (24). In our setting, the firm faces costs from

future agents that it cannot mitigate by contracting with the current agent. The firm

prefers to delay these costs, and the firm’s preferred threshold µ
p
equals the surplus-

maximizing threshold µ
fb
only if the agent has a zero reservation value (w0 = 0). In

DeMarzo and Sannikov (2017), the firm deals with only one generation of agents and

the firm will prefer the surplus-maximizing termination threshold in the absence of

moral hazard.
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3 Constant termination contracts

We consider contracts that have a constant termination threshold µ throughout the

contract’s life. When the minimum payments c are suffi ciently low relative to the

agent’s termination value R(µ), it is possible to construct contract where the incen-

tive compatibility constraints are everywhere binding. The resulting contract sets

the agent’s continuation value to the minimum level required to maintain incentive

compatibility.

Proposition 2. The following hold for contracts with a fixed termination threshold

µ:

1. If w0 < w(0, µ), then the agent’s participation constraint does not bind.

2. If 1
r
c > R(µ)− σµ√

2r
λ
r
, then the incentive compatibility constraints are not binding

for some µ̂nt.

3. If 1
r
c ≤ R(µ)− σµ√

2r

ψ
r
, then the unique incentive compatible contract with threshold

µ has payments:

ct = rR(µ)− ψ σµ√
2r

+ λν+r
ν

(
µ̂nt − µ

)
≥ c, (26)

that yields the following continuation value:

w(µ̂nt, µ) = R(µ) + λ
(
1
ν

+ 1
r

) (
µ̂nt − µ

)
− ψ

r

σµ√
2r

(
1− e−

√
2r(µ̂nt−µ)/σµ

)
. (27)

The fastest possible payments include a lump-sum of max{0, w0−w(µ̂nt, µ)} at

contract initiation to satisfy the CEO’s participation constraint. The value of
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firm-specific cash flows to the principal is:

bn(µ̂nt) = 1
r
µ̂nt+

e−
√
2r(µ̂nt−µ)/σµ

1−e
√
2rµ/σµ

((
1
r
−Rµ

) (
µ
o
− µ

)
−max{w(0, µ), w0}

)
−w(µ̂nt, µ).

(28)

and at the initiation of each CEO:

bn(0)−max{0, w0−w(µ̂nt, µ)} = e
√
2rµ/σµ

1−e
√
2rµ/σµ

(
1
r
−Rµ

) (
µ
o
− µ

)
︸ ︷︷ ︸

Total surplus

− 1

1−e
√
2rµ/σµ

max{w(0, µ), w0}︸ ︷︷ ︸
Value of payments

.

(29)

4. The smooth-pasting condition b′n(µ) = 0 yields the optimal termination threshold

µ
c
, and yields the firm-specific cash flows:

bn(µ̂nt;µc) = 1
r
µ̂nt+e−

√
2r(µ̂nt−µc)/σµ σµ√

2r

(
1
r
− λ

(
1
ν

+ 1
r

)
+ ψ

r

)
−w(µ̂nt, µc). (30)

The periodic compensation is:

e
√
2rµ/σµ

1−e
√
2rµ/σµ

(
1
r
−Rµ

) (
µ
o
− µ

)
− e

√
2rµ/σµ

1−e
√
2rµ/σµ

max{w(0, µ), w0} − e
√
2rµ/σµ

1−e
√
2rµ/σµ

w(0, µ) (31)

∫ t+1
t

csds = rR(µ)− ψ σµ√
2r

+ λν+r
ν

(∫ t+1
t

µ̂nsds− µ
)
,

Et

[∫ t+1
t

csds
]

= rR(µ)− ψ σµ√
2r

+ λν+r
ν

(
µ̂nt − µ

)
,

(32)

Earnings impacts the compensation via ν = σµ
σx

√
1−ρ2µe
1−ρ2xe

. The more correlated earnings

is with fundamentals (higher ρ2µe), the lower is ν and the greater is the incentive pay.

A higher correlation with cash flows (higher ρ2xe) increases ν and lowers incentive pay.

Both of these effects obtain because the purpose of incentive pay in the model is to

discourage the CEO from shirking. From (11) and (14), we see that ν reflects the

impact of cash flows, and the effect of shirking on cash flows, on beliefs µ̂nt. When

ρ2µe is high, earnings receive relatively high weight when forming beliefs, and cash

flows have relatively low weight. The firm must accordingly make incentives very

13



sensitive to beliefs to make pay suffi ciently sensitive to shirking. When ρ2xe is high,

cash flows receive relatively high weight when forming beliefs because earnings are

somewhat redundant. Because beliefs are very sensitive to cash flows, lower incentives

are needed to make pay sensitive to shirking.

Part 4 of Proposition 2 implies the following corollary:

Corollary 2.1. If the firm chooses an optimal constant termination threshold, then

the value bn(µ̂nt) is an increasing, convex function of beliefs µ̂nt and beliefs can be

expressed as an increasing, concave function of bn.

Corollary 2.1 is useful because it provides a means to use observable market values

to estimate unobservable beliefs about CEO ability.

Corollary 2.1 also implies that compensation will be a concave function of market

values, which differs from the typical intuition that compensation is a convex function

of market value. The reason is that compensation is linear in beliefs about CEO

ability, and the termination option renders market values a convex function of beliefs

about CEO ability. The model includes no opposing forces such as risk aversion or

adverse selection that might lead to convex contracts (See, e.g., Hemmer et al. 1999;

Beyer et al. 2014).

Proposition 2 also implies the following effects of ν on the termination threshold

and information quality:

Corollary 2.2. If the firm chooses an optimal constant termination threshold, then:

1. If the reservation value is suffi ciently low (w0 < w(0, µ)), then firm value

bn(µ̂nt;µc) is increasing in ν for all µ̂nt and the termination threshold µc is

increasing in ν.
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2. If the reservation value is suffi ciently high (w0 > w(0, µ)), then firm value

bn(µ̂nt;µc) is increasing (decreasing) in ν for high (low) µ̂nt and the termination

threshold µ
c
is decreasing in ν.

Corollary 2.2 implies that higher information quality, in the sense of higher ν, is

associated with shorter CEO tenure when CEOs have low reservation utilities, and

vice versa when CEOs have high reservation utilities. Specifically, the density of the

time-to termination τ is:2

f
(
s,

µ̂nt−µ
σµ

)
=

µ̂nt−µ
σµ

µ̂nt−µ√
2π(s−t)3

e
−
(
µ̂nt−µ
σµ

)2
/2(s−t)

, (33)

which implies that the probability of termination by some time T > t in the future

is the following where Φ(·) denotes the standard normal distribution:

Pt (τ ≤ T ) = 2Φ
(
− µ̂nt−µ
σµ
√
T−t

)
. (34)

This probability is increasing in µ for all T . When the CEO reservation utility is high,

firms must make upfront payments when hiring a new CEO, which creates incentives

to delay termination.

The effects of information quality ν on the termination threshold µ
c
arise because

of the role played in overall compensation to the CEO. Over the life of the contract,

the firm and the new CEO expect pay valued at the greater of the reservation wage

w0 or the value of payments from the firm w(0, µ). The value of w(0, µ) is decreasing

in ν, making it relatively less expensive to hire a new CEO. This effect swamps the

lower cash compensation that a higher ν allows the firm to pay the current CEO.

When the reservation wage w0 is high, a higher ν has no marginal impact on the

cost of obtaining a new CEO, so that the only effect of ν is to make it less expensive
2This is a somewhat standard result that one can derive applying a reverse Laplace transform to

Et
[
e−r(τ−t)

]
= e−

√
2r(µ̂nt−µ)/σµ .
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to compensate the current CEO. This leads to a lower termination threshold when

CEOs have a high reservation utility.

While it may seem counterintuitive that higher information quality ν can reduce

firm value, as in Part 2 of Corollary 2.2, the reason is straightforward given the effect

of ν on the termination threshold. The value bn of firm-specific cash flows reach their

lowest point as µ̂nt approaches the termination threshold. A higher ν reduces the

termination threshold, which means that the firm will allow the value to drift lower

before terminating the CEO. This naturally implies that a higher ν will reduce bn

for small values of µ̂nt. As µ̂nt increases, the effect of ν on reducing agency costs

dominates and higher ν increases firm value.

4 Generating discrete data

To estimate the model, we will use data observed at discrete intervals. In this sec-

tion, we derive the behavior of discrete observations of data from our continuous

time model. The dynamics of the industry-level processes imply that we can express

discrete changes as follows for a time increment of size δ:

µ0t = µ0,t−δ + δ0µt,

x0t = x0,t−δ + δµ0,t−δ + δ0xt,

e0t = δ
(

1− 1−e−θδ
θδ

)
µ0,t−δ +

(
1− e−θδ

)
x0,t−δ + e−θδe0,t−δ + δ0et,

µ̂0t =
(
1− e−νδ

)
µ0,t−δ + e−νδµ̂0,t−δ + δ0µ̂t,

(35)
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where:

δ0µt = βσµ
∫ t
t−δ dz0µs,

δ0xt = β
∫ t
t−δ ((t− s)σµdz0µs + σxdz0xs) ,

δ0et = δ0xt − 1
θ
δ0µt + βση

∫ t
t−δ e−θ(t−s)dz0ηs,

δ0µ̂t = β
( ∫ t

t−δ
(
1− e−ν(t−s)

)
σµdz0µs

+
∫ t
t−δ e−ν(t−s)

(
νσxdz0xs +

(
ρµeσµ − νρxeσx

)
dz0es

) )
,

(36)

and the accrual shocks are:

dz0ηt = 1
ση

(
σedz0et − σxdz0xt + 1

θ
σµdz0µt

)
,

ση =
√
σ2e + σ2x + 1

θ2
σ2µ + 2

(
1
θ

(
ρµeσe − ρµxσx

)
σµ − ρxeσxσe

)
.

(37)

When firm-specific profitability µ̂nt hits the threshold µn < 0, the CEO is replaced,

resulting in a new draw of µ̃nt from a normal distribution with mean 0 and variance

γ̂n. The firm-level processes imply the following:

µnt = 1µ̂n,t−δ>µnµn,t−δ + 1µ̂n,t−δ≤µnµ̃n,t−δ + δnµt,

xnt = xn,t−δ + δ
(
µ0,t−δ + 1µ̂n,t−δ>µnµn,t−δ + 1µ̂n,t−δ≤µnµ̃n,t−δ

)
+ δ0xt + δnxt,

ent = δ
(

1− 1−e−θδ
θδ

)(
µ0,t−δ + 1µ̂n,t−δ>µnµn,t−δ + 1µ̂n,t−δ≤µnµ̃n,t−δ

)
+
(
1− e−θδ

)
xn,t−δ + e−θδen,t−δ + δ0et + δnet,

µ̂nt =
(
1− e−νδ

) (
1µ̂n,t−δ>µnµn,t−δ + 1µ̂n,t−δ≤µnµ̃n,t−δ

)
+e−νδ1µ̂n,t−δ>µnµ̂n,t−δ + δnµ̂t,

µ̃nt = δnµ̃t,

(38)

where δnµ̃t is a draw from a normal distribution with mean 0 and variance γ̂n, and:
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δnµt = σµ
∫ t
t−δ dznµs,

δnxt =
∫ t
t−δ ((t− s)σµdznµs + σxdznxs) ,

δnet = δnxt − 1
θ
δnµt + ση

∫ t
t−δ e−θ(t−s)dznηs,

δnµ̂t =
∫ t
t−δ
(
1− e−ν(t−s)

)
σµdznµs

+
∫ t
t−δ e−ν(t−s)

(
νσxdznxs +

(
ρµeσµ − νρxeσx

)
dznes

)
.

(39)

We can write the system of processes as follows where y′nt = {µnt, xnt, ent, µ̂nt, µ̃nt},

y′t = {y′1t,y′2t, . . . ,y′Nt}, δ′nt = {δnµt, δnxt, δnet, δnµ̂t, δnµ̃t}, and δ′t = {δ′1t, δ′2t, . . . , δ′Nt}:

( y0tyt ) =
(

A00 1′N⊗04×5
1N⊗AN0 IN⊗ANN

) ( y0,t−δ
yt−δ

)
+
(

I4 1′N⊗04×5
1N⊗D0N IN⊗I5

) (
δ0t
δt

)
,

(40)

where:

A00 =

 1 0 0 0
δ 1 0 0

δ

(
1−1−e

−θδ

θδ

)
1−e−θδ e−θδ 0

1−e−νδ 0 0 e−νδ

 ,

AN0 =

 0 0 0 0
δ 0 0 0

δ

(
1−1−e

−θδ

θδ

)
0 0 0

0 0 0 0
0 0 0 0

 ,

ANN =


1µ̂n,t−δ>µn

0 0 0 1µ̂n,t−δ≤µn
1µ̂n,t−δ>µn

δ 1 0 0 1µ̂n,t−δ≤µn
δ

1µ̂n,t−δ>µn
δ

(
1−1−e

−θδ

θδ

)
1−e−θδ e−θδ 0 1µ̂n,t−δ≤µn

δ

(
1−1−e

−θδ

θδ

)
1µ̂n,t−δ>µn(1−e−νδ) 0 0 1µ̂n,t−δ>µn

e−νδ 1µ̂n,t−δ≤µn(1−e−νδ)
0 0 0 0 0

 ,

D0N =

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
.

(41)

To generate the shock vector {δ0t, δ′t} from independent normal random variables,

it can be written as: (
δ0t
δt

)
= Cδbt, (42)

where bt is a 4(N + 1) vector of standard normal random variables and Cδ is from
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the Cholesky decomposition of the covariance matrix of the shock vector:

CδC
′
δ = E

[(
δ0t
δt

)
( δ0t δ′t )

]
=

(
β2Σnn 1′N⊗04×5

1N⊗05×4 IN⊗
(
Σnn 04
0′4 γ̂n

))
,

Σnn = E [δntδ
′
nt] =

( σµµ σµx σµe σµµ̂
σµx σxx σxe σµ̂x
σµe σxe σee σµ̂e
σµµ̂ σµ̂x σµ̂e σµ̂µ̂

)
.

(43)

The elements of Σnn are:

σµµ = δσ2µ,

σxx = δ
(
σ2x + δρµxσµσx + δ

3
σµµ
)
,

σee = σxx + 1
θ2
σµµ − 21

θ
σµx

+δ
(
1−e−2θδ
2θδ

σ2η + 2
(
1−e−θδ
θδ

ρxησx − e−θδ

θ
ρµησµ

)
ση

)
,

σµ̂µ̂ = σµµ

(
1− (1−e−νδ)

2

νδ

(
1− ρµµ̂

))
,

σµx = δ
(
1
2
σµµ + ρµxσµσx

)
,

σµe = σµx − 1
θ
σµµ + δ 1−e

−θδ

θδ
ρµησµση,

σµµ̂ = σµµ

(
1− 1−e−νδ

νδ

(
1− ρµµ̂

))
,

σxe = σxx − 1
θ
σµx + δ

(
1
θ

(
1−e−θδ
θδ
− e−θδ

)
ρµησµση + 1−e−θδ

θδ
ρxησxση

)
,

σµ̂x = δ
(
1
2
σµµ + e−νδρµ̂xσµσx +

(
1− e−νδ

)
ρµxσµσx

)
,

σµ̂e = σµ̂x − 1
θ
σµµ̂ + δ

(
1−e−θδ
θδ

ρµη + 1−e−(θ+ν)δ
(θ+ν)δ

(
ρµ̂η − ρµη

))
σµση,

(44)

where:

ρµη = 1
ση

(
ρµeσe − ρµxσx + 1

θ
σµ
)

ρxη = 1
ση

(
ρxeσe − σx + 1

θ
ρµxσµ

)
ρeη = 1

ση

(
σe − ρxeσx + 1

θ
ρµeσµ

)
ρµµ̂ = ρ2µe +

(
ρµx − ρµeρxe

)√1−ρ2µe
1−ρ2xe

,

ρµ̂x =
√(

1− ρ2µe
)

(1− ρ2xe) + ρµeρxe,

ρµ̂η = 1
ση

(
ρµeσe − ρµ̂xσx + 1

θ
ρµµ̂σµ

)
.

(45)

In future work, we will use the above processes to simulate data and estimate the

model using simulated method of moments.
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5 Conclusion and future work

This paper develops a continuous-time, dynamic contracting model that we will use

to quantify the effects of accounting on CEO turnover and firm value. Within the

context of our model, accounting quality depends solely on the ability to use earnings

to filter out transitory shocks to cash flows. Filtering out these shocks reduces the

cost of inducing CEO effort.

The repeated termination and hiring in our model introduces issues and complexi-

ties that are absent in models where there is only one employment period. Specifically,

the firm will never prefer the surplus-maximizing contract even if there are no agency

conflicts. The reason for this is that the firm always has an incentive to reduce the

overall surplus in order to reduce the value it must share with current and future

agents —a problem that it cannot resolve with a contract with the current agent.

In future work, we will derive the fully optimal contract without restricting to

constant termination policies, and will structurally estimate the model’s parameters.
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Appendix

The filtering problem (Section 2.2)

The filtering problem uses the Kalman-Bucy filter (Liptser and Shiryaev 2001, The-

orem 10.3). To set up the dynamics for the filtering problem, first note that the

ability to directly observe industry-level cash flows and earnings eliminates the need

for a given firm n to utilize the observables from other firms. The filtering problem

then reduces to using the industry-level and firm-specific cash flows and earnings to

infer industry-level and firm-specific profitability. Denote the vector of profitabilities

by µ′t = {µ0t, µnt} and denote the vector of observables by y′t = {x0t, e0t, xnt, ent}.

Denote the vector of agent actions by at = {0, 0, a1t, 0, a2t, 0, . . . , aNt, 0}. Denote the

vector of shocks to profitability by z′µt = {z0µt, znµt} and the shocks to observables

by z′yt = {z0xt, z0et, znxt, znet}. We can express the shocks in terms of the vector zt of

six independent Brownian motions as:(
dzµt
dzyt

)
= Czdzt. (A1)

The matrix Cz is from the Cholesky decomposition of the covariance matrix of dzµt

and dzyt:

CzC
′
z = 1

dt
E
[(

dzµt
dzyt

)
( dz′µt dz′yt )

]
=
(

I2 I2⊗r′µy
I2⊗rµy I2⊗Rxe

)
, (A2)

where r′µy = {ρµx, ρµe} and:

Rxe =
(

1 ρxe
ρxe 1

)
. (A3)

The restriction that the covariance matrix is positive semi-definite requires that:

ρµx, ρµe, ρxe ∈ [−1, 1], ρxe ∈ ρµeρµx ±
√(

1− ρ2µe
) (

1− ρ2µx
)
⊆ [−1, 1].
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When the agent’s action ant = 0, we can then express the dynamics of the unob-

servable profitability and observable cash flows and earnings as:

dµt = (Σµ 02×4 )Cz︸ ︷︷ ︸
Bµ

dzt

dyt = (( 1 01 1 )⊗ ( 10 ))︸ ︷︷ ︸
Aµ

µtdt− atdt+ (I2 ⊗ ( 0 0
θ −θ ))︸ ︷︷ ︸

Ay

ytdt+ ( 04×2 Cy⊗Σxe )Cz︸ ︷︷ ︸
By

dzt,

(A4)

where:

Cy =
(
β 0
β 1

)
, Σxe =

(
σx 0
0 σe

)
. (A5)

The filtering problem gives profitability estimates µ̂′t = {µ̂0t, µ̂nt} with covariance

matrix Γ̂ t = vart (µt) and the following dynamics:

dµ̂t = Ktdnt,

dnt = dyt − (Aµµ̂t − atdt+Ayyt) dt,

Kt =
(
BµB

′
y + Γ̂ tA

′
µ

) (
ByB

′
y

)−1
,

dΓ̂ t =
(
BµB

′
µ −Kt

(
ByB

′
µ +AµΓ̂ t

))
dt.

(A6)

In a steady state, dΓ̂ t = 04×4, which implies steady state posteriors of:3

γ̂n = var∞ (µnt) = σµσx

(√(
1− ρ2µe

)
(1− ρ2xe)−

(
ρµx − ρµeρxe

))
,

γ̂0 = var∞ (µ0t) = β2γ̂n.
(A7)

The corresponding gain matrix is the following where ν = σµ
σx

√
1−ρ2µe
1−ρ2xe

:

K∞ = ( 1 0
−1 1 )⊗

(
ν
ρµeσµ−νρxeσx

σe

)
, (A8)

which gives expressions (10) and (11). The vector of observable Brownian motions

3The other solutions to the steady state either imply negative variances or that the posterior
covariance cov∞ (µ0t, µnt) has a nonzero imaginary component.
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{dẑ0µt, dẑ0xt, dz0et, dẑnµt, dẑnxt, dznet} has the correlation matrix:

I2 ⊗
(

1 ρµ̂x ρµe
ρµ̂x 1 ρxe
ρµe ρxe 1

)
, (A9)

where:

ρµ̂x = 1
dt

E [dẑnµtdẑnxt] = 1
dt

E [dẑnµtdznxt] = ρµeρxe +
√(

1− ρ2µe
)

(1− ρ2xe). (A10)

�

Supporting results

Lemmas A1 and A2 are similar to results in DeMarzo and Sannikov (2017), and we

show that they hold in our setting.

Lemma A1. In an optimal, incentive-compatible contract, at = 0 and it is unnec-

essary to include the possibility of early termination. Specifically, for any incentive-

compatible contract (ct, τ) with actions at, there exists another incentive-compatible

contract (c̃t, τ̃) with actions ãt = 0 that gives the same payoff to the agent and a

weakly higher payoff to the principal.

Proof. Denote by Ft the filtration generated by the observed cash flow and earnings

processes (xt, et). Now take an adjusted process x̃t = xt −
∫ t
0
asds and denote the

filtration F̃t as the one generated by (x̃t, et). The original contract has payoff ct(Ft)

and stopping time τ(Ft). Now consider a new contract:

c̃t = ct(F̃t) + λat, τ̃ = τ(F̃t). (A11)

Denote by ãt the diversion under the new contract. Then dx̃t = dxt − atdt = (µ̂t −

at − ãt)dt+ σxdẑxt so that ct(F̃t) equals the payoff flow that the agent would obtain

by taking action at + ãt under the original contract, and the extra payoff λat under
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the new contract is the same as the agent’s diversion payoff from taking action at

under the original contract. Also, the stopping time τ̃ under action at is the same as

taking action at + ãt under the original contract. Condition (19c) then implies that

ãt = 0.

The the firm-specific portion of the principal’s payoff under the new contract is:

Et

[∫ τ̃

t

e−r(s−t) (µ̂ns − ãs − c̃s) ds+ e−r(τ̃−t) (bn (0, w0)− k)

]
= Et

[∫ τ

t

e−r(s−t) (µ̂ns − λas − cs) ds+ e−r(τ−t) (bn (0, w0)− k)

]
≥ Et

[∫ τ

t

e−r(s−t) (µ̂ns − as − cs) ds+ e−r(τ−t) (bn (0, w0)− k)

]
(A12)

so that the principal is better off. This shows that at = 0 in the optimal contract. �

Lemma A2. The following hold for any incentive-compatible contract (ct, τ):

1. The agent’s continuation value wt has the representation:

dwt = (rwt − ct) dt+ βµtdµ̂nt + βetdẽnt, (A13)

where dẽnt =

√
1−ρ2µe
ρµe

σµdz̃net.

2. The information rent has the representation:

ξt = Et

[∫ τ

t

e−(r+ν)(s−t)ν
(
βµs − βes

)
ds+ e−(r+ν)(τ−t) λ−ψ

r

]
, (A14)

with the following dynamics for some process
(
χµt, χet

)
:

dξt =
(
(r + ν) ξt − ν

(
βµt − βet

))
dt+ χµtdẑnµt + χetdz̃net. (A15)

3. The IC constraint βµt ≥ λ
ν

+ ξt + βet is necessary for the optimality of at = 0.

4. The following lower bound for information rent holds with equality if IC con-
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straint is binding at all future dates:

ξt ≥ ζt = 1
r

(
λ− ψEt

[
e−r(τ−t)

])
. (A16)

Proof. We can write the dynamics of the observed firm-level cash flows and earnings

under the equilibrium strategy at = 0 as follows:

(
dxnt
dent

)
=
(

µ̂0t+µ̂nt
θ(xnt−ent)

)
dt+

(
βσxdẑ0xt
βσedz0et

)
+ C̃dz̃t, (A17)

where z̃t is a two-dimensional standard Brownian motion with:

(
σxdẑnxt
σedznet

)
=

(
ρµ̂xσx

ρxe√
1−ρ2xe

(
ρµ̂x−

ρµe
ρxe

)
σx

ρµeσe σe
√
1−ρ2µe

)
︸ ︷︷ ︸

C̃

(
dẑnµt
dz̃net

)︸ ︷︷ ︸
dz̃nt

. (A18)

The vector z̃nt is a standard, two-dimensional Brownian motion with respect to the

beliefs P generated by the equilibrium actions at = 0. Given a deviation ât 6= 0, the

dynamics of {xnt, ent} are as follows where αt = µ̂ant − µ̂nt:(
dxnt
dent

)
=
(
µ̂0t+µ̂nt+αt−ât
θ(xnt−ent)

)
dt+

(
βσxdẑ0xt
βσedz0et

)
+ C̃dz̃ant, (A19)

and:

dz̃ant =
(
dẑanµt
dz̃anet

)
=

(
dẑnµt+

ν
σµ
(ânt−αt)dt

1√
1−ρ2µe

(dznet−ρµedẑanµt)

)
. (A20)

The process z̃ant is a Brownian motion with respect to the beliefs P̂ generated by the

actions ât, with dαt = ν (ât − αt) dt from (14).

Any deviation ât 6= 0 must result in beliefs that are absolutely continuous with

respect to the beliefs generated by at = 0 because, otherwise, the principal could enact

severe punishments for states that have zero probability under at = 0 (Williams 2011;

DeMarzo and Sannikov 2017). We therefore apply Girsanov’s theorem to obtain a

relative density process for the change from the principal’s beliefs P to the agent’s P̂

26



(e.g., Øksendal 2003, Theorem 8.6.6). In other words, dP̂t = φtdPt and the agent’s

payoff can be written as:

EP̂

[∫ τ

0

e−rt (λât + ct) dt+ e−rτR

]
= EP

[∫ τ

0

φte
−rt (λât + ct) dt+ φτe

−rτR

]
. (A21)

The process φt satisfies:

φt = exp

{
−
∫ t

0

u′sdz̃ns − 1
2

∫ t

0

u′susds

}
, dφt = −φtu′tdz̃nt, (A22)

with EP [φt] = φ0 = 1, where the process ut solves:

C̃ut =
(

µ̂nt
θ(xnt−ent)

)
−
(

µ̂ant−ât
θ(xnt−ent)

)
= −

(
αt−ât
0

)
⇒ ut = −C̃−1

(
αt−ât
0

)
= ν(αt−ât)

σµ

( −1
ρµe√
1−ρ2µe

)
.

(A23)

The problem is solved using a stochastic version of Pontryagin’s maximum principle

(e.g., Yong and Zhou 1999, Theorem 3.3). Denote the states by yt = (φt, αt), with

the following dynamics:

(
dφt
dαt

)︸ ︷︷ ︸
dyt

=
(

0
ν(ât−αt)

)︸ ︷︷ ︸
byt

dt+ φt
ν(αt−ât)

σµ

(
1 − ρµe√

1−ρ2µe
0 0

)
︸ ︷︷ ︸

Σyt

dznt. (A24)

Denote the costate variables on the drifts by pt = (pφt, pαt), and their diffusion

coeffi cients by the matrix Qt = (
qφµt qφet
qαµt qαet ) (i.e., the diffusion term of dpt is Qtdz̃nt).
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The (current value) Hamiltonian is then:

H(t,yt, ât,pt, qt) = φt (λât + ct) + pαtν (ât − αt)︸ ︷︷ ︸
b′ytpt

+

(
qφµt − qφet

ρµe√
1−ρ2µe

)
φt

ν(αt−ât)
σµ︸ ︷︷ ︸

tr(Q′tΣyt)

,

(A25)

where pφt does not appear because φt has zero drift and the Qt terms that correspond

to αt do not appear because αt has zero volatility. Differentiating with respect to ât

gives:

∂H
∂ât

= φtλ+ pαtν − ν
σµ

(
qφµt − qφet

ρµe√
1−ρ2µe

)
φt, (A26)

which must be weakly negative in order for ât = 0 to be optimal, given the restriction

ât ≥ 0. The costate variables on the drifts evolve as follows, where the rpt term

accounts for discounting, and ât = 0 for all t implies the second equality with αt = 0,

φt = 1, and dz̃nt = dz̃ant:(
dpφt
dpαt

)
︸ ︷︷ ︸
dpt

=
(
rpt − DyH|αt=ât=0

)
dt+Qtdz̃t

=

(
rpφt−ct

(r+ν)pαt−
ν
σµ

(
qφµt−qφet

ρµe√
1−ρ2µe

))
dt+Qtdz̃nt. (A27)

The boundary conditions are:

pφτ = ∂
∂φ
φτR

∣∣∣
âτ=0

= R(µ̂nτ ),

pατ = ∂
∂α
φτR

∣∣
ατ=0

= λ−ψ
r
.

(A28)

The process pφt is given by the agent’s expected payoff from continuing wt. To see

this, conjecture that:

pφt = wt = Et

[∫ τ

t

e−r(s−t)csds+ e−r(τ−t)R(µ̂nτ )

]
, (A29)
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and put:

p̂φt = Et

[∫ τ

0

e−r(s−t)csds+ e−r(τ−t)R(µ̂nτ )

]
=

∫ t

0

e−rscsds+ e−rtpφt. (A30)

Because p̂φt is a martingale, we have:

0 = e−rt (E[dpφt]− (rpφt − ct) dt)︸ ︷︷ ︸
E[dp̂φt]

, (A31)

which matches the drift in (A27). We can then write the dynamics of the agent’s

continuation value as in (A13) where βµt = 1
σµ
qφµt, βet = 1

σµ

ρµe√
1−ρ2µe

qφet, and dẽnt =
√
1−ρ2µe
ρµe

σµdz̃net.

The process pαt is the change in payoffwith respect to the belief discrepancy αt, so

it is the agent’s information rent ξt. Can write dynamics of pαt as follows when φt = 1:

dpαt =
(
(r + ν) pαt − ν

(
βµt − βet

))
dt+ qαµtdẑnµt + qαetdz̃net. (A32)

Conjecture that pαt equals ξt in expression (A14). The process:

ξ̂t = EPt

[∫ τ

0

e−(r+ν)sν
(
βµs − βes

)
ds+ e−(r+ν)τ λ−ψ

r

]
=

∫ t

0

e−(r+ν)sν
(
βµs − βes

)
ds+e−(r+ν)tξt,

(A33)

is a martingale, implying:

0 = −e−(r+ν)t
((

(r + ν)ξt − ν
(
βµt − βet

))
dt− E [dξt]

)︸ ︷︷ ︸
E[dξ̂t]

, (A34)

29



so that the drift matches (A32). We can write the dynamics of the information rent

process as in (A15) where χµt = qαµt and χet = qαet. With φt = 1 and pαt = ξt, the

incentive compatibility constraint (A26) can be written as βµt ≥ λ
ν

+ ξt + βet.

If the IC constraint binds everywhere, then:

dξt = (rξt − λ) dt+ χµtdẑnµt + χetdz̃net, (A35)

and:

ξt = EPt

[∫ τ

t

e−r(s−t)λds+ e−r(τ−t) λ−ψ
r

]
= 1

r

(
λ− ψEPt

[
e−r(τ−t)

])
. (A36)

To see this, put:

ξ̂t = EPt

[∫ τ

0

e−rsλds+ e−rτ λ−ψ
r

]
=

∫ t

0

e−rsλds+ e−rtξt, (A37)

which is a martingale so that:

0 = −e−rt ((rξt − λ) dt− E[dξt])︸ ︷︷ ︸
E[dξ̂t]

, (A38)

and the drift matches the dynamics (A35).

If the constraint does not bind everywhere, then there is a nonnegative process εt

such that βµt = λ
ν

+ ξt + βet + εt, dξt = (rξt − λ− νεt) dt+ χµtdẑnµt + χetdz̃net and:

ξt = EPt

[∫ τ

t

e−r(s−t)(λ+ νεs)ds+ e−r(τ−t) λ−ψ
r

]
= ζt + νEPt

[∫ τ

t

e−r(s−t)εsds

]
≥ ζt, (A39)
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giving 4. �

The following result is used in deriving optimal thresholds:

Claim A3. The solution z∗ to the equation:

0 = k0 − 1
1−ez (k1 − z), (A40)

is z∗ = k1−k0−ω
(
−ek1−k0k0

)
, subject to the condition −ek1−k0k0 ≥ −e−1. If k1 < 0,

then the right-hand-side of (A40) is increasing in z and dz
dk1

> 0, dz
dk0

< 0.

Proof. Expression (A40) can be rearranged as:

−ek1−k0k0 = (k1 − k0 − z)ek1−k0−z︸ ︷︷ ︸
ω−1(k1−k0−z)

, (A41)

immediately implying the result. The condition −ek1−k0k0 > −e−1 is required because

Lambert’s W function is valid for arguments that weakly exceed −e−1. The function

g(z) = k0 − 1
1−ez (k1 − z) has g′(z) = ez

(1−ez)2 (z + e−z − 1− k1), where z + e−z − 1 > 0

for all z < 0 so that k1 < 0 guarantees g′(z) > 0 and gives dz
dk1

> 0, dz
dk0

< 0. �

Proof of Proposition 1

Part 1

Assume a termination threshold µ so that τ = inf{t : µ̂nt ≤ µ}. The value

function satisfies the following Hamilton-Jacobi-Bellman (HJB) equation away from

the threshold µ:

vn (µ̂nt) = 1
r
µ̂nt +

σ2µ
2r
v′′n (µ̂nt) ⇒ vn (µ̂nt) = 1

r
µ̂nt + c1e

√
2rµ̂nt/σµ + c2e

−
√
2rµ̂nt/σµ ,

(A42)
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for some constants c1 and c2. The boundary condition that the firm does not terminate

as manager ability becomes unbounded (vn (µ̂nt) → 1
r
µ̂nt as µ̂nt → ∞) implies that

c1 = 0. Continuity at the threshold µ gives c2:

1
r
µ+ c2e

−
√
2rµ/σµ︸ ︷︷ ︸

vn(µ)

= c2︸︷︷︸
vn(0)

+R(µ)−k ⇒ vn (µ̂nt) = 1
r
µ̂nt+

e−
√
2r(µ̂nt−µ)/σµ

1−e
√
2rµ/σµ

(
1
r
−Rµ

) (
µ
o
− µ

)
.

Smooth pasting
(
v′n
(
µ
)

= Rµ

)
gives the condition following condition that yields the

surplus-maximizing threshold µ
fb
:4

0 = 1− 1

1−e
√
2rµ/σµ

√
2r
σµ

(
µ
o
− µ

)
. (A43)

The solution (21) follows from Claim A3, putting z =
√
2r
σµ
µ
fb
, k0 = 1, and k1 =

√
2r
σµ
µ
o
.

Because c2 is increasing for all µ < µ
fb
and decreasing for all µ ∈ (µ

fb
, 0), this is the

unique optimum. Solving the optimality condition for µ
o
− µ

fb
and substituting into

vn gives expression (22).

To show Et

[
e−r(τ−t)

]
= e

−
√
2r
(
µ̂nt−µfb

)
/σµ , the process Et

[
e−r(τ−t)

]
is a martingale,

which we conjecture to be of the form e−rtf (µ̂nt). Ito’s lemma then gives:

d Et

[
e−r(τ−t)

]
= −re−rtf (µ̂nt) dt+ e−rtf ′ (µ̂nt)σµdẑnµt︸ ︷︷ ︸

dµ̂nt

+1
2
e−rtf ′′ (µ̂nt) σ

2
µdt︸︷︷︸

(dµ̂nt)
2

. (A44)

Because Et

[
e−r(τ−t)

]
is a martingale, it has zero drift so that the portion of it

that depends on µ̂nt solves an equation similar to (A42). The boundary condi-

tions limµ̂nt→∞ Et

[
e−r(τ−t)

]
= 0 and limµ̂nt→µfb

Et

[
e−r(τ−t)

]
= 1 give Et

[
e−r(τ−t)

]
=

e
−
√
2r
(
µ̂nt−µfb

)
/σµ.

Part 2

If the firm faces only the participation constraint, then the agent payoff can be

4This condition is also equivalent to maximizing vn with respect to µ, which is equivalent to
maximizing c2.
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structured so that the CEO’s expected value exactly meets the reservation value w0.

This gives the following payoff to the principal at each contracting date τ i:

bτ i(0, w0) = Eτ i

[∫ τ i+1
τ i

e−r(s−τ i) (µ̂ns − cs) ds+ e−r(τ i+1−τ i)
(
bτ i+1(0, w0)− k

)]
= Eτ i

[
e−r(τ i+1−τ i)

(
bτ i+1(0, w0) + 1

r

(
µ
o
− µ̂nτ i+1

))]
− w0

= vn (0) + Eτ i

[
e−r(τ i+1−τ i)

(
bτ i+1(0, w0)− vn (0)

)]
− w0

= e
√
2rµ/σµ

(
bτ i+1(0, w0) +

(
1
r
−Rµ

) (
µ
o
− µ

))
− w0.

(A45)

The first-order condition implies the optimal threshold µ∗∗ = µ
o
− σµ√

2r
+
bτi+1 (0,w0)

1
r
−Rµ

, and

the second-order condition is satisfied at any µ that solves the first-order condition.

Substituting back into the objective function gives:

bτ i(0, w0) = e
√
2rµ/σµ σµ√

2r

(
1
r
−Rµ

)
− w0. (A46)

Because bτ i+1(0, w0) = bτ i(0, w0), the threshold µp satisfies:

µ
p

= µ
o
− σµ√

2r
+

bτi+1 (0,w0)
1
r
−Rµ

= µ
o
− σµ√

2r

(
1− e

√
2rµ

p
/σµ
)
− 1

1
r
−Rµ

w0

⇒ 0 = 1− 1

1−e
√
2rµ

p
/σµ

√
2r
σµ

(
µ
o
− 1

1
r
−Rµ

w0 − µp
)
, (A47)

which has a similar solution to the surplus-maximizing threshold µ
fb
with µ

o
−

1
1
r
−Rµ

w0 appearing in the equality rather than µo. Both µfb and µp have the form

σµ√
2r
m(x) where m(x) = x − ω (−ex) and x =

√
2r
σµ

(
µ
o
− σµ√

2r

)
for µ

fb
and x =

√
2r
σµ

(
µ
o
− σµ√

2r
− 1

1
r
−Rµ

w0

)
for µ

p
. Because m′(x) = 1

1+ω(−ex) and the function ω(x) >

−1, m is increasing so that µ
p
< µ

fb
.

To obtain the function for intermediate times, set compensation equal to rw0 with

terminal lump sum of w0 −R(µ
p
) . The CEO expects:

E

[∫ τ

t

e−r(s−t)rw0ds+ e−r(τ−t)
(
R(µ̂nτ ) + w0 −R(µ

p
)
)]

= w0. (A48)
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More generally, if the principal sets the agent’s compensation equal to rw0 with a

lump sum of w0 − R(µ) at termination, then the principal’s payoff satisfies the HJB

equation, and the payoff is maximized at µ = µ
p
. This contract gives (24), which can

be derived from direct computations using substitutions from (A47).

Part 3

Solving bn(0, w0;µp) > 0 yields the following inequality after substituting from

(A47):

bn(0, w0;µp) > 0 ⇔ µ
p
> µ

o
− σµ√

2r
. (A49)

The condition (A47) implies that µ
p
is strictly decreasing in w0, which implies that

µ
p
> µ

o
− σµ√

2r
if and only if w0 > w̄. �

Proof of Proposition 2

Part 1: To implement a contract that terminates when µ̂nt hits µ, it is necessary to

set β ẽt = 0. Otherwise, wt may cross R(µ), leading to termination, even though µ̂nt

has not crossed µ. With a fixed termination contract, Et[e
−r(τ−t)] = e−

√
2r(µ̂nt−µ)/σµ.

Incentive compatibility then gives:

dwt
dµ̂nt

= βµt ≥ λ
ν

+ ξt ≥ λ
ν

+ ζt = λ
(
1
ν

+ 1
r

)
− ψ

r
e−
√
2r(µ̂nt−µ)/σµ . (A50)
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Taking the agent’s continuation value as a function of µ̂nt, we have:

wt = R(µ)︸ ︷︷ ︸
Value of
leaving

at µ̂nt = µ

+

∫ µ̂nt

µ

dws
dµ̂ns

dµ̂ns︸ ︷︷ ︸
Value of
pay until
µ̂nt=µ

≥ R(µ) + λ
(
1
ν

+ 1
r

) (
µ̂nt − µ

)
− ψ

r

∫ µ̂nt

µ

e−
√
2r(µ̂ns−µ)/σµdµ̂ns (A51)

= R(µ) + λ
(
1
ν

+ 1
r

) (
µ̂nt − µ

)
− ψ

r

σµ√
2r

(
1− e−

√
2r(µ̂nt−µ)/σµ

)
︸ ︷︷ ︸

w(µ̂nt,µ)

.

If the agent’s continuation value wt < w(µ̂nt, µ), then incentive compatible contracts

have paths that can lead to termination prior to µ̂nt crossing µ. Therefore, the

contract sets the initial reservation value to at least w(0, µ), and the participation

constraint does not bind for agents with w0 ≤ w(0, µ).

Part 3: From Lemma A2, if the participation constraint binds everywhere and βet = 0,

then:

βµt = λ
(
1
ν

+ 1
r

)
− ψ

r
e−
√
2r(µ̂nt−µ)/σµ︸ ︷︷ ︸
Et[e−r(τ−t)]

. (A52)

In this case, wt = w(µ̂nt, µ), which implies:

dwt = (rwt − ct) dt+ βµtdµ̂nt, (A53)

where ct is given by (26). To have ct ≥ c for all µ̂nt ≥ µ, it must be that R(µ) −

σµ√
2r

ψ
r
≥ 1

r
c. Otherwise, the payments must be higher, which implies that the incentive

compatibility constraints must not be binding for some µ̂nt.

To establish global incentive compatibility, we show that if the CEO has fol-

lowed the policy at = 0 up to some time t0, then the agent will not profit from

any global deviation at ≥ 0 for any t > t0. Denoting the deviation in beliefs by
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αt = ν
∫ t
t0

e−ν(t−s)asds ≥ 0, the flow compensation is:

ct = rR(µ)− ψ σµ√
2r

+ λν+r
ν

(
µ̂nt − αt − µ

)
. (A54)

Because the principal’s beliefs are µ̂nt − αt ≤ µ̂nt, the termination time τa with a

deviation is weakly earlier than the termination time τ without. The agent’s payoff

with a deviation is:

wat0 = Et0

[∫ τa
t0

e−r(s−t0)(cs + λas)ds+ e−r(τa−t0)R̂(µ, µ̂nτa)
]

= Et0

[∫ τ

t0

e−r(s−t0)
(
rR(µ)− ψ σµ√

2r
+ λν+r

ν

(
µ̂ns − µ

))
ds+ e−r(τ−t0)R(µ)

]
︸ ︷︷ ︸

Continuation value wt0 with at=0 ∀t>t0

+ Et0

[∫ τa

t0

e−r(s−t0)λ
(
as − ν+r

ν
αs
)

ds+ e−r(τa−t0)R̂(µ, µ̂nτa)

]
︸ ︷︷ ︸

Incremental value from t0 to τa

−Et0

[∫ τ

τa

e−r(s−t0)
(
rR(µ)− ψ σµ√

2r
+ λν+r

ν

(
µ̂ns − µ

))
ds+ e−r(τ−t0)R(µ)

]
︸ ︷︷ ︸

Incremental value from τa to τ

(A55)

Applying the implicit function theorem gives the following using ατa = µ̂nτa − µ,

αt0 = 0, and dαt = ν(at − αt)dt:

Et0

[∫ τa

t0

e−r(s−t0)αsds

]
= −1

r
Et0

[
e−r(τa−t0)ατa −

∫ τa

t0

e−r(s−t0)ν(as − αs)ds
]

⇒ Et0

[∫ τa

t0

e−r(s−t0)αsds

]
= ν

ν+r
Et0

[∫ τa

t0

e−r(s−t0)asds

]
− 1
ν+r

Et0

[
e−r(τa−t0)

(
µ̂nτa − µ

)]
.

(A56)

The incremental value from t0 to τa is then:

Et0

[
e−r(τa−t0)

(
R(µ) +

(
λ
(
1
ν

+ 1
r

)
− ψ

r

) (
µ̂nτa − µ

))]
. (A57)

The incremental value from τa to τ is the following using µ̂nτ = µ and Eτa [e
−r(τ−τa)] =
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e−
√
2r(µ̂nτa−µ)/σµ:

Et0

[
e−r(τa−t0)

(
R(µ)− ψ

r

σµ√
2r

(
1− e−

√
2r(µ̂nτa−µ)/σµ

)
+ λ

(
1
ν

+ 1
r

) (
µ̂nτa − µ

))]
.

(A58)

Combining terms gives:

wt − wat0 = ψ
r

σµ√
2r

Et0

[
e−r(τa−t0)

(√
2r
σµ

(
µ̂nτa − µ

)
+ e−

√
2r(µ̂nτa−µ)/σµ − 1

)]
, (A59)

which is positive since the function x + e−x − 1 is increasing for all positive x and

µ̂nτa ≥ µ. This establishes global incentive compatibility.

The value of firm-specific cash flows to the principal is:

bn(µ̂nt, wt) = Et

[∫ τ

t

e−r(s−t) (µ̂ns − cs) ds+ e−r(τ−t)
(
bn
(
0,max{w(0, µ), w0}

)
− k
)]

= 1
r
µ̂nt + e−

√
2r(µ̂nt−µ)/σµ

(
bn
(
0,max{w(0, µ), w0}

)
+
(
1
r
−Rµ

) (
µ
o
− µ

))
− wt.

(A60)

Setting the parameters to their values at contract initiation and solving for bn
(
0,max{w(0, µ), w0}

)
gives (29). Substituting back into bn(µ̂nt, wt) yields (28).

Proof of part 4

The continuation value (28) satisfies the HJB equation:

rbn (µ̂nt) = µ̂nt − ct +
σ2µ
2
b′′n (µ̂nt) , (A61)

and the value matching condition:

bn
(
µ
)

= bn (0)− k −max
{

0, w0 − w(0, µ)
}
, (A62)

where ct is given by (26). Smooth pasting condition b′n
(
µ
)

= 0 gives the optimal

threshold, where the derivative equals zero since the firm’s continuation payoff does
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not depend on µ̂nt. This gives the condition:

0 = 1
r
− λ

(
1
ν

+ 1
r

)
+ ψ

r
−
√
2r
σµ

1

1−e
√
2rµ/σµ

((
1
r
−Rµ

) (
µ
o
− µ

)
−max{w(0, µ), w0}

)
.

(A63)

Substituting back into (28) then gives (30) after a substitution from (A63). Claim A3

can be used to solve expression (A63) for µ
c
by putting z =

√
2r
σµ
µ, k0 =

1
r
−λ
(
1
ν
+
1
r

)
+
ψ
r

1
r
−Rµ

∈

(0, 1), and k1 =
√
2r
σµ

(
µ
o
− 1

1
r
−Rµ

max{w(0, µ), w0}
)
< 0. �

Proof of Corollary 2.1

We can write (30) as follows after explicitly writing w(µ̂nt, µc) and combining terms:

bn(µ̂nt) = σµ√
2r

(
1
r
− λ

(
1
ν

+ 1
r

)) (√
2r
σµ

(
µ̂nt − µc

)
+ e−

√
2r(µ̂nt−µc)/σµ

)
+1
r
µ
c
+ψ

r

σµ√
2r
−R(µ

c
),

(A64)

which, because λ < ν
ν+r
, implies that bn(µ̂nt) is increasing and convex in µ̂nt. Because

bn(µ̂nt) is monotonic, we can invert it to express beliefs µ̂nt as a function of the firm-

specific portion of market value bt. Specifically, expression (A64) can be rearranged

as:
√
2r
σµ

(
µ̂nt − µc

)
+ e−

√
2r(µ̂nt−µc)/σµ =

√
2r
σµ

(
bt−

1
r
µ
c
−ψ
r

σµ√
2r
+R(µ

c
)

)
1
r
−λ
(
1
ν
+
1
r

) , (A65)

The function z + e−z = k has the solution z = k + ω
(
−e−k

)
, giving:

µ̂nt =
bt−λ

(
1
ν
+
1
r

)
µ−ψ

r

σµ√
2r
+R(µ)

1
r
−λ
(
1
ν
+
1
r

) + σµ√
2r
ω

− exp

−
√
2r
σµ

(
bt−

1
r
µ−ψ

r

σµ√
2r
+R(µ)

)
1
r
−λ
(
1
ν
+
1
r

)

 . (A66)

Because bn(µ̂nt) is increasing and convex, µ̂nt(bnt) is increasing and concave. �
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.0.1 Proof of Corollary 2.2

Define the equation on the right-hand-side of (A63) by g(µ). Direct computations

give:

∂g
∂ν

= λ
ν2

(
1 + 1w(0,µ)>w0

1

1−e
√
2rµ/σµ

√
2r
σµ
µ
)
,

∂g
∂µ

=
√
2r
σµ

(
1
r
− λ

(
1
ν

+ 1
r

))
+ 1w(0,µ)<w0

√
2r
σµ

1

1−e
√
2rµ/σµ

(
λ
(
1
ν

+ 1
r

)
− ψ

r
e
√
2rµ/σµ −Rµ

)
.

(A67)

The parameter restrictions Rµ < λ
(
1
ν

+ 1
r

)
− ψ

r
and λ < ν

ν+r
imply that ∂g

∂µ
> 0. The

function 1 + z
1−ez is negative for all z < 0, which implies that ∂g

∂ν
< 0 if and only

if w(0, µ) > w0. The implicit function theorem then gives
dµ

dν
= − ∂g/∂ν

∂g/∂µ
, which is

positive if and only if w(0, µ) > w0.

For the effect of ν on bn, we have:

dbn(µ̂nt)
dν

= ∂bn(µ̂nt)
∂ν︸ ︷︷ ︸
>0

+ ∂bn(µ̂nt)
∂µ︸ ︷︷ ︸
>0

dµ

dν
. (A68)

Whenw(0, µ) > w0,
dµ

dν
> 0 and dbn(µ̂nt)

dν
> 0. Whenw(0, µ) < w0, direct computations

give:

dbn(µ̂nt)
dν

= σµ√
2r

λ
ν2

(√
2r
σµ

(
µ̂nt − µ

)
−

λ
(
1
ν
+
1
r

)
−Rµ

1
r
−λ
(
1
ν
+
1
r

)
)
, (A69)

which, because λ
(
1
ν

+ 1
r

)
− Rµ > 0, will be negative for µ̂nt suffi ciently small and

positive for µ̂nt suffi ciently large. �
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