RECENT DEVELOPMENTS IN DYNAMIC CAPITAL STRUCTURE

Hayne Leland
(Joint work with Dirk Hackbarth)*

“Derivatives and Volatility 2017: The State of the Art”
Salomon Center at NYU Stern School of Business

April 27, 2017

* The authors thank Matt Olfat for excellent research assistance, and colleagues at Berkeley, BU, and NYU for instructive discussions
Early “barrier” structural models of debt and capital structure

1. Debt maturity is exogenously given (or infinite):
 ➢ But choice of optimal maturity is a key part of financial choice:
 affects default, optimal leverage, and the extent of agency costs

2. Debt has perfect liquidity
 ➢ But Huang & Huang (2003, 2012) noted that liquidity costs needed to explain bond spreads (but didn’t explicitly introduce; a residual)
 ➢ Agency costs may also explain spreads; costs increase with maturity

3. Dynamics: assumed both
 ➢ Full roll-over of short term debt with constant maturity; and prior debt must be fully retired if additional debt issued. Relaxed by
 - Admati et al on “The Leverage Ratchet Effect” (ADHP, 2013-16),
 - Dangl & Zechner “Debt Maturity and Dynamics of Leverage (DZ, 2016),
 - DeMarzo & He “Leverage Dynamics without Commitment” (DH, 2016)
OUR GOALS:

- Develop a model with (almost) closed form solutions that includes
 - A simple jump-diffusion process for firm value
 - Endogenous maturity choice as well as leverage
 - An illiquidity (or agency cost) premium for corporate debt
 - Extension of static model to dynamic (preliminary)

Earlier models have introduced subsets of these aspects but not all, particularly illiquidity which affects optimal maturity

- Use this model to consider
 - Optimal leverage and debt maturity choice, and their joint sensitivity to exogenous parameters
 - Debt dynamics (particularly “Ratcheting” of Admati et al.) and interaction of original maturity choice and restructuring levels
1. A simple risk-neutral jump-diffusion process for firm value

Value of after-tax unlevered cash flows follows a simple Jump-Diffusion process with "rare" disaster (e.g. Barro (2006)):

\[
dV_t = \mu V_t dt + \sigma V_t dZ_t \quad \text{if no jump at or prior to } t
\]
\[
= -kV_{t-} \quad \text{if jump at } t_- \text{ and firm defaults}
\]

- Diffusion is standard log diffusion process with constant mean, risk
- Jump occurs with constant intensity \(\lambda \) (\(\approx 0.60\% \); physical \(\approx 0.24\% \))
- Later assume \(k = 1 \) ("total disaster") to simplify math
- Implies \(\mu = (r - \delta + \lambda k) \), where payouts (interest + dividends) = \(\delta V_t \)
- Same as simplest case in Merton (1976)

We calibrate \(\lambda \) to match Moody’s default statistics 1970-2010 and recovery rates on bonds; also calibrate to 1920-2011 default rates

➢ The jump process to default is similar to a “reduced form” approach
 --but there’s also diffusion to an endogenous default barrier

Main role of jump here: short term rates, defaults don’t go to zero
2. Finite average maturity debt

We use the standard “exponentially declining” debt model (Leland (1994))

- Firm issues debt with principal P and a coupon rate C, infinite life
 - At initiation ($t = 0$), C set so debt sells at par: $D(V(0)) = P$

- A constant fraction m of outstanding debt principal is retired through time (e.g. through a sinking fund)
 - Debt extant at $t = 0$ receives cash flow $e^{-mt}(C + mP)dt$ at t
 - Average life of debt $T = 1/m$ (half-life = $0.69/m$)
 - Retired debt is fully replaced continuously, but new debt sold at then-current market value $D(V(t))$ -- Dangl-Zechner modifies

- Default occurs when $V(t)$ falls to V_B, set by $\frac{dE(V)}{dV} |_{V=V_B} = 0$
 - In default, debt receives $(1 - \alpha)V_B$
 - V_B depends both on leverage AND maturity

- A Problem: In virtually all studies, $m = 0$ optimizes firm value
 - Infinite life debt minimizes debt service, default
3. (II)liquidity of debt: The “Credit Spread Puzzle”

- Huang & Huang (2003; 2012): Historical default rates and risk premia cannot account for the size of spreads
 - Confirmed by Longstaff, Mithal, & Neis (2005) who estimate a “Non-Default Component of spread” across ratings of 50-72 bps
 - Strongly related to illiquidity measures.
 - Strong maturity effect: increases 3 bps/yr of maturity
 - Spread could also reflect agency costs: increase with debt maturity (e.g. Myers (1977), Leland & Toft (1996), Hackbarth & Mauer (2012))

- We introduce a simple additional “liquidity discount” to corporate bonds: their payouts are discounted at $r_f + h$
 - $h = h_0 + h_1 \times T$ (T = average debt maturity)
 - Higher discount rate disadvantages longer-term debt
 - Optimal maturity balances this disadvantage with lower debt service advantage (lower endogenous default barrier)
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riskfree Rate</td>
<td>5.00%</td>
<td>(HH)</td>
</tr>
<tr>
<td>Payout Rate</td>
<td>4.00%</td>
<td>(HH)</td>
</tr>
<tr>
<td>Asset Std Dev</td>
<td>24.00%</td>
<td>(FS)</td>
</tr>
<tr>
<td>Jump Risk</td>
<td>0.60% *</td>
<td></td>
</tr>
<tr>
<td>Q-Diffusion Return</td>
<td>1.60%</td>
<td></td>
</tr>
<tr>
<td>Risk Premium on Assets</td>
<td>4.00%</td>
<td>(based on 6% equity risk premium, 33% leverage)</td>
</tr>
</tbody>
</table>

*RN rate, calibrated to default. Physical = RN/2.5 (Driessen 2004) = 0.24%

Model Outputs

(Closed form solutions for debt and equity values, simple search for optimal leverage and maturity—easily implemented in Excel! Model on Conference site)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal Leverage</td>
<td>34%</td>
<td>(vs. median SF 36%; HH = 43%)</td>
</tr>
<tr>
<td>Average Maturity (T = 1/m)</td>
<td>8.3 yrs</td>
<td>Half life = 5.74 yrs ≈ 11.5 yr regular debt maturity (Choi et al. 2016)</td>
</tr>
<tr>
<td>Yield Spread</td>
<td>159 bps</td>
<td>(vs. median BBB spread SF= 148bps; HH = 158-194)</td>
</tr>
<tr>
<td>Recovery Rate</td>
<td>51%</td>
<td>(vs. HH 51.3%; SF 37%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years after Issuance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Default Probs</td>
<td>0.18%</td>
<td>0.51%</td>
<td>0.93%</td>
<td>1.95%</td>
<td>3.03%</td>
<td>4.90%</td>
<td>6.37%</td>
<td>8.85%</td>
<td>12.41%</td>
</tr>
<tr>
<td>Model Default Probs</td>
<td>0.24%</td>
<td>0.48%</td>
<td>0.76%</td>
<td>1.65%</td>
<td>2.97%</td>
<td>5.33%</td>
<td>6.93%</td>
<td>9.23%</td>
<td>12.63%</td>
</tr>
</tbody>
</table>

(See Appendix for calibration to Moody’s 1920-2011 Default rates)
COMPARATIVE STATICS: Leverage L % in blue; Maturity T yrs. in red

Growth Rate μ

Default Costs α

Asset Riskiness σ

Tax Rate τ

Liquidity/Agency Cost h_0

Jump Intensity λ
Application 1: The Capital Structure of Growth Firms

Contention: *Growth firms (high MB ratio) have less leverage, shorter maturity*

- Smith and Watts (SW, 1992): regress leverage on MB, negative relation
- Barclay & Smith (BS, 1995): regress maturity on MB, negative relation
 - But both studies consider M/B, which reflects endogenous leverage
 - Their independent variables don’t include risk σ or default costs α

...MB is not a direct input in our model--it reflects endogenous firm value M

How do we describe a “growth firm”? Any or all of the below:

- **High drift μ:** more investment opportunities, less payouts
 - Shorter maturity but higher leverage

- **High default costs (“alpha”):** lost growth opportunities (high MB)
 - Longer maturity but lower leverage
 - Could also be related to (low) asset tangibility (Rampini & Viswanawathan (2013)):
 --Leverage decreases with fewer tangible assets
- **High risk ("sigma")**
 - Longer maturity but lower leverage

- **Low effective tax rates ("tau")**
 - Shorter maturity and lower leverage

- **Large Illiquidity or agency costs ("h")**
 - Shorter maturity and lower leverage

<table>
<thead>
<tr>
<th></th>
<th>Optimal Leverage (%)</th>
<th>Average (1/m) Maturity (yrs)</th>
<th>Yield Spread</th>
<th>5-yr Default Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE CASE:</td>
<td>33.9%</td>
<td>8.3</td>
<td>159</td>
<td>1.65%</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth Rate (Mu)</td>
<td>1.00%</td>
<td>45.6%</td>
<td>7.5</td>
<td>165</td>
</tr>
<tr>
<td>Default Costs (Alpha)</td>
<td>30.00%</td>
<td>80.00%</td>
<td>16.6%</td>
<td>11.5</td>
</tr>
<tr>
<td>Asset Risk (Sigma)</td>
<td>24.00%</td>
<td>50.00%</td>
<td>15.3%</td>
<td>10.9</td>
</tr>
<tr>
<td>Effective Tax Rate (tau)</td>
<td>20.00%</td>
<td>5.00%</td>
<td>6.3%</td>
<td>3.5</td>
</tr>
<tr>
<td>Total liquidity discount (h), bps</td>
<td>65.00 => 100.00</td>
<td>29.5%</td>
<td>5.3</td>
<td>180</td>
</tr>
<tr>
<td>ALL OF THE ABOVE</td>
<td>0.00%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Application 2: The “Ratchet Effect” Admati et al. (2016)

CLAIM: After initial debt is issued to maximize total firm value,

- Equity holders will never find it advantageous to reduce leverage
 - Debt reduction decreases equity value—even when it increases firm value
 - Debt increases help equity by devaluing older debt—even with absolute priority
 - Agency problem similar to “asset substitution”, where greater volatility helps equity at expense of debtholders and firm value if no precommitment

- Leverage will therefore increase monotonically--eventually to point where tax benefits are entirely exhausted
 - Only taxes determine ultimate leverage, no default cost tradeoff
 - Generalizes a local result in Leland (1994), who also suggests that debt can be reduced only by a re-negotiation of initial-debt terms
 - Unlike Fischer, Heinkel, Zechner (1989) and Goldstein Ju Leland (2001), they do not require current debt must be fully retired before new issue
ADHP model quite simplistic:

- Jump-only process, no endogenous default, zero recovery in bankruptcy
- Nonetheless, we can examine their conclusions by using our model (v. 1) (assuming absolute priority of prior debt; no foresight)

LOOKS CONCERNING! BUT NOTE AFTER INITIAL DEBT ISSUANCE:

- New rounds create tiny increases in equity value (5.5 down to 1.5 bps); and have increasing spreads (likely to be rated lower than original debt)
- Very long maturities: calibrated to half-life, bond maturities ≈ 30-40 yrs
More realistically, limit T_{max} to 15 (regular bond maturity ≈ 20 yrs)

<table>
<thead>
<tr>
<th>ROUNDS</th>
<th>Optimal Leverage</th>
<th>% Equity Increase</th>
<th>Total Firm Value</th>
<th>Coupon</th>
<th>Principal</th>
<th>Average Maturity T</th>
<th>Total Debt Principal</th>
<th>Credit Spread (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.85</td>
<td>3.356</td>
<td>103.36</td>
<td>2.34</td>
<td>34.98</td>
<td>8.64</td>
<td>34.98</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>36.80</td>
<td>0.038</td>
<td>103.32</td>
<td>0.23</td>
<td>3.07</td>
<td>15.00</td>
<td>38.05</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>38.56</td>
<td>0.014</td>
<td>103.27</td>
<td>0.14</td>
<td>1.82</td>
<td>15.00</td>
<td>39.87</td>
<td>256</td>
</tr>
</tbody>
</table>

Perhaps more realistically, limit T to original debt T (maturity ≈ 12 yrs)

<table>
<thead>
<tr>
<th>ROUNDS</th>
<th>Optimal Leverage</th>
<th>% Equity Increase</th>
<th>Total Firm Value</th>
<th>Coupon</th>
<th>Principal</th>
<th>Average Maturity T</th>
<th>Total Debt Principal</th>
<th>Credit Spread (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.85</td>
<td>3.356</td>
<td>103.36</td>
<td>2.34</td>
<td>34.98</td>
<td>8.64</td>
<td>34.98</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>34.94</td>
<td>0.006</td>
<td>103.33</td>
<td>0.08</td>
<td>1.13</td>
<td>8.86</td>
<td>36.11</td>
<td>217</td>
</tr>
</tbody>
</table>

Even one subsequent issue yields less than 1 bp increase in equity value!

(Even less new debt if foresight of subsequent rounds)
CONCLUSIONS

Conclusions re Ratcheting: In the context of our model

- ADHP correct that firm will never want to reduce debt
 - But see Dangl-Zechner (2016), who argue short term debt precommits to debt reduction through repayment of principal
 - It may not be optimal for firm to fully roll over expiring debt

- Given miniscule equity gains (3.8 bps or less) and likely lower bond ratings, the ADHP concern of additional debt issuance seems very unlikely

More Generally

- We have developed a model that allows the joint determination of leverage and maturity
 - Leverage affects maturity, and vice-versa
 - Considering either in isolation can create misleading results
Appendix: Fitting the Model to 1920-2011 Default Data

Feldhutter & Schaefer (2016): When fitted to long-term default data, structural models don’t need jumps, liquidity discounts to match spreads. No “Credit Puzzle”!

- But calibration with Black-Cox model → \(T = \infty \). No optimization
- Need jumps to explain short term default, spreads

Our model can match 1920-2011 data with minor Input Changes

(i) Increase jump frequency: \(\lambda = 0.006 \rightarrow 0.011 \) (still “rare”)
(ii) Increase liquidity discount: \(h = 40+3*T \rightarrow h = 70+3*T \) bps
(iii) All other inputs remain same \((\sigma, \delta, \alpha)\)

- Optimal Leverage ≈ constant: 34% (Graham et al. 2012 w/preferred stock)
- Optimal Maturity falls from 8.3 years to 5.9 years (Choi et al. 2016)

Default Frequencies now match 1920-2011 data quite well

<table>
<thead>
<tr>
<th>Years after Issuance</th>
<th>Historical vs. Predicted Default Rates - Moody's 1920-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Historical Default Probs</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Historical Default Probs</td>
<td>0.29%</td>
</tr>
<tr>
<td>Model Default Probs</td>
<td>0.44%</td>
</tr>
</tbody>
</table>