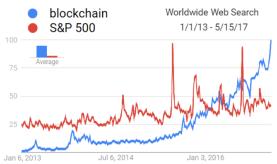


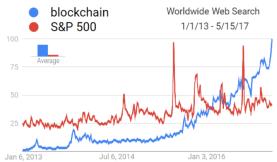
Blockchain Disruption and Smart Contracts


Lin William Cong

University of Chicago Booth School of Business

Oct 19, 2018

Fifty Shades of Blockchain


"The Trust Machine", "Distributed Trust Network", "Bitcoin", "Ethereum", "Distributed Ledger"... Smart Contracts

Crypto Zoo: Cryptocurrencies, digital cash, bitcoins, altcoins, crypto-tokens, platform currencies, etc.

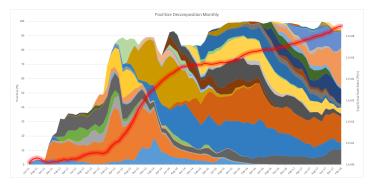
Fifty Shades of Blockchain

"The Trust Machine", "Distributed Trust Network", "Bitcoin", "Ethereum", "Distributed Ledger"... Smart Contracts

Crypto Zoo: Cryptocurrencies, digital cash, bitcoins, altcoins, crypto-tokens, platform currencies, etc.

Blockchain Disruption

- Bitcoin as an early experiment.
 - Anonymity a feature of Bitcoin.
 - Not a defining feature of blockchain.
- Decentralized Consensus
 - **1** Preventing single points of failure.
 - **2** Reducing intermediary rent/market power.


1. Blockchain Economics: Internal System

- Decentralization & incentive provision:
 - Market and games of decentralized record-keeping
 - General: Harvey (2016), Catalini & Gans (2016)
 - Protocol games: Eyal & Sirer (2014); Biais et.al. (2018); Saleh (2018), etc.
 - Market micro-structure: Easley, O'Hara & Basu (2018); Huberman et.al. (2017)
 - Centralizing versus decentralizing forces:
 - Duplication & energy: O'Dwyer & Malone (2014), etc.
 - Information distribution: Cong & He (2018).
 - Issues requiring central authority: Abadi & Brunnermeier (2018).
 - Risk-sharing & IO: Cong, He, & Li (2018)

1. Blockchain Economics: Internal System

- Decentralization & incentive provision:
 - Market and games of decentralized record-keeping
 - General: Harvey (2016), Catalini & Gans (2016)
 - Protocol games: Eyal & Sirer (2014); Biais et.al. (2018); Saleh (2018), etc.
 - Market micro-structure: Easley, O'Hara & Basu (2018); Huberman et.al. (2017)
 - Centralizing versus decentralizing forces:
 - Duplication & energy: O'Dwyer & Malone (2014), etc.
 - Information distribution: Cong & He (2018).
 - Issues requiring central authority: Abadi & Brunnermeier (2018).
 - Risk-sharing & IO: Cong, He, & Li (2018)

Centralization: the rise of mining pools

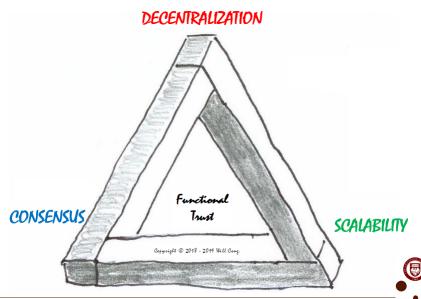
The evolution of Bitcoin mining pool size shares

Overview of results

Miners'/pools' decision makings

- Mining pools' (significant) risk-sharing benefits.
- MM: diversification *across* pools v.s. risk-sharing *within* a pool.
- "Passive miners": larger pools charge higher fees, leading to slower growth.
- Financial innovation and arms race.

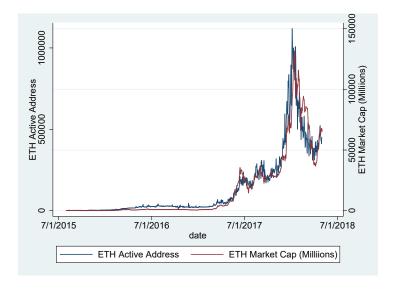
Supporting empirical evidence using Bitcoin data.


Overview of results

Miners'/pools' decision makings

- Mining pools' (significant) risk-sharing benefits.
- MM: diversification *across* pools v.s. risk-sharing *within* a pool.
- "Passive miners": larger pools charge higher fees, leading to slower growth.
- Financial innovation and arms race.

Supporting empirical evidence using Bitcoin data.


Trilemma?

2. Blockchain Economics: External Impact

- Applications and impact:
 - Corporate governance: Yermack (2017)
 - Trading & transparency: Katya & Park (2016)
 - Smart contracts: Cong & He (2018); Tinn (2018)
 - Platform growth: Gans & Halaburda (2016); this paper
 - ICOs: Li & Mann (2018); Sochin & Xiong (2018); Howell, Niessner, and Yermack (2018)
 - Monetary policy & design: Balvers & McDonald (2017); Schilling & Uhlig (2018)
 - Auditing: Cao, Cong, & Yang (2018)
 - Payment and remittance: Athey et.al. (2016)
 - Alternative asset: Hu, Parlour, & Rajan (2018)
 - Valuation: this paper; Buraschi and Pagnotta (2018)
 - International finance: Yu & Zhang (2017); Makarov & Schoar (2018), etc

Valuation and adoption dynamics: Ethereum

Tokenomics: Dynamic Adoption and Valuation

- A dynamic model of cryptocurrencies and tokens:
 - Co-evolution of token price and platform adoption.
 - Endogenous adoption by heterogeneous agents.
 - Assets with surplus/dividend flow and network effect.
- Fundamental-based valuation of tokens:
 - 1 A pricing formula.
 - Contemporaneous & Inter-temporal network externality.
 - **8** Cross section and volatility implications.
- The role of tokens on platform growth:
 - Security tokens vs utility tokens.
 - 2 Adoption acceleration.
 - **3** User base volatility reduction.

Tokenomics: Dynamic Adoption and Valuation

- A dynamic model of cryptocurrencies and tokens:
 - Co-evolution of token price and platform adoption.
 - Endogenous adoption by heterogeneous agents.
 - Assets with surplus/dividend flow and network effect.
- Fundamental-based valuation of tokens:
 - A pricing formula.
 - 2 Contemporaneous & Inter-temporal network externality.
 - **③** Cross section and volatility implications.
- The role of tokens on platform growth:
 - Security tokens vs utility tokens.
 - 2 Adoption acceleration.
 - **3** User base volatility reduction.

Tokenomics: Dynamic Adoption and Valuation

- A dynamic model of cryptocurrencies and tokens:
 - Co-evolution of token price and platform adoption.
 - Endogenous adoption by heterogeneous agents.
 - Assets with surplus/dividend flow and network effect.
- Fundamental-based valuation of tokens:
 - A pricing formula.
 - 2 Contemporaneous & Inter-temporal network externality.
 - **③** Cross section and volatility implications.
- The role of tokens on platform growth:
 - 1 Security tokens vs utility tokens.
 - **2** Adoption acceleration.
 - **3** User base volatility reduction.

Blockchain Disruption and Smart Contracts

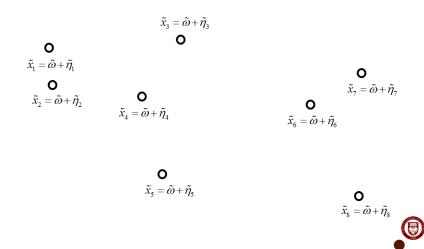
- 1 What is blockchain?
 - Decentralized consensus.
 - Tension between **decentralized consensus generation** and **information distribution**.
- 2 What are its economic impacts and implications?
 - Greater contractibility: **mitigate informational asymmetry** and pro competition.
 - Greater information distribution: easier to **sustain collusion**, anti-competition.

Blockchain Disruption and Smart Contracts

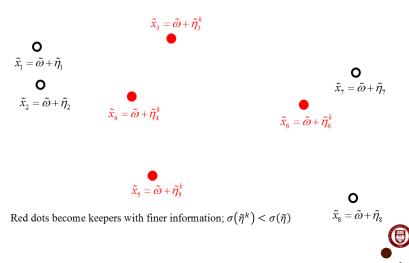
- **1** What is blockchain?
 - Decentralized consensus.
 - Tension between **decentralized consensus generation** and **information distribution**.
- What are its economic impacts and implications?
 - Greater contractibility: **mitigate informational asymmetry** and pro competition.
 - Greater information distribution: easier to **sustain collusion**, anti-competition.

Information Distribution

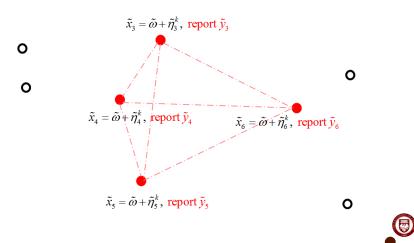
- Bank of Canada Jasper Project, Chapman et.al. (2017) "More robust data verification requires wider sharing of information. The balance required between transparency and privacy poses a fundamental question to the viability of the system for such uses once its core and defining feature is limited."
- Brazilien central bank, Burgos et. al. (2017): just encrypting sensitive data is not a viable solution because smart contracts then cannot function properly. Using trusted nodes impairs the resiliency of the system.
- "...the technology really facilitates is *Cartel management* for groups that don't trust each other but which still need to work together....", *Financial Times*, May 2015


Information Distribution

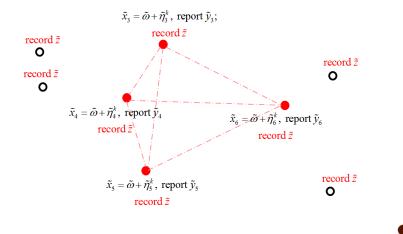
- Bank of Canada Jasper Project, Chapman et.al. (2017) "More robust data verification requires wider sharing of information. The balance required between transparency and privacy poses a fundamental question to the viability of the system for such uses once its core and defining feature is limited."
- Brazilien central bank, Burgos et. al. (2017): just encrypting sensitive data is not a viable solution because smart contracts then cannot function properly. Using trusted nodes impairs the resiliency of the system.
- "...the technology really facilitates is *Cartel management* for groups that don't trust each other but which still need to work together....", *Financial Times*, May 2015


Information Distribution

- Bank of Canada Jasper Project, Chapman et.al. (2017) "More robust data verification requires wider sharing of information. The balance required between transparency and privacy poses a fundamental question to the viability of the system for such uses once its core and defining feature is limited."
- Brazilien central bank, Burgos et. al. (2017): just encrypting sensitive data is not a viable solution because smart contracts then cannot function properly. Using trusted nodes impairs the resiliency of the system.
- "...the technology really facilitates is *Cartel management* for groups that don't trust each other but which still need to work together....", *Financial Times*, May 2015


Information and Keeper's Problem

Information and Keeper's Problem



Information and Keeper's Problem

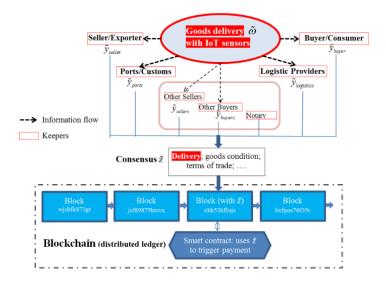
Equilibrium Consensus

Reach consensus from reports: $\tilde{z}(\tilde{y}_3, \tilde{y}_4, \tilde{y}_5, \tilde{y}_6) = \tilde{z}(\mathbf{y})$.

Smart Contracts

Smart contracts are digital contracts allowing terms contingent on decentralized consensus (ideally through automated execution).

- self-enforcing
- 2 tamper-proof


Applications of Blockchain and Smart Contracts in Finance

- Trusted Payments
 - SWIFT vs Bitcoin, Lightning Stellar
 - Ethereum, Phi, complex logic (smart contract).
 - **Ripple**, integration with existing system: permissioned blockchain, alternative consensus generation.
- Syndicated loans: led by Credit Suisse and 12 other banks, and **Symbiont**.

Applications of Blockchain and Smart Contracts in Finance

- Trade and Trade finance: **R3 CEV, IBM, Wave, HK Blockchain, DTC,** etc.
 - Flow of goods and/or money: a network of shippers, ocean carriers, ports and custom authorities, and banks.
 - In 2016, **Barclays** and **Wave**, first to complete a global trade transaction using blockchain technology.
 - Exporting US\$100K worth of cheese and butter from Ireland to Seychelles, involving a blockchain-based letter of credit.
 - Commonwealth Bank of Australia, Wells Fargo, and trading firm Brighann Cotton, 88 bales of cotton \$35K from Texas US to Qingdao China.
 - Hong Kong's banking regulator and seven banks build a blockchain trade finance **platform** in Sept 2018.

A Trade Finance Example

Blockchain Disruption

- Smart-contracting to encourage entry vs collusion.
- Blockchain helps sustain a larger set of equilibria: a double-edged sword that leads to both entry (pro-competition) and collusion (anti-competition)

Blockchain Disruption

- Smart-contracting to encourage entry vs collusion.
- Blockchain helps sustain a larger set of equilibria: a double-edged sword that leads to both entry (pro-competition) and collusion (anti-competition)

Conclusion

- Blockchain and Smart Contract
 - Decentralized consensus, low-cost, tamper-proof algorithmic execution.
 - **2** Greater contractibility: Smart Contracts.
 - **③** Consensus generation: distributing information.
- Economic impact on Industrial Organization and Competition.
 - Mitigates information asymmetry; facilitates entry and competition.
 - Ø More (perfect) monitoring; enhance collusion.
 - 8 Regulation; separation of users and keepers.

Conclusion

- Blockchain and Smart Contract
 - Decentralized consensus, low-cost, tamper-proof algorithmic execution.
 - **2** Greater contractibility: Smart Contracts.
 - **3** Consensus generation: distributing information.
- Economic impact on Industrial Organization and Competition.
 - Mitigates information asymmetry; facilitates entry and competition.
 - 2 More (perfect) monitoring; enhance collusion.
 - **3** Regulation; separation of users and keepers.