Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Conclusion
00000	00	00	000	00	00000	00	00

Asset Pricing for the Shortfall Averse

Paolo Guasoni^{1,2} Gur Huberman³

Boston University¹

Dublin City University²

Columbia Business School³

Five Star Conference, NYU, December 2015

Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Conclusion
0000	00	00	000	00	00000	00	00

Shortfall Aversion

•
$$e^{-\beta t} \frac{(c_t/\mathbf{h}_t^{\alpha})^{1-\gamma}}{1-\gamma}$$
; $h_t = \max\{c_s : s \leq t\}$

Maximize

$$E\left[\int_0^\infty e^{-\beta t} \frac{(c_t/h_t^\alpha)^{1-\gamma}}{1-\gamma} dt\right]; \quad h_t = \max\{c_s : s \leq t\}$$

over spending rate c_t and fraction of wealth in stocks π_t .

- At $c_t = h_t$, marginal utility for increasing consumption is strictly lower than for decreasing consumption
- Past peak consumption is a REFERENCE POINT
- The intensity of shortfall aversion is $0 \le \alpha < 1$

Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Conclusio
00000	00	00	000	00	00000	00	00

Reference point/Discontinuous Marginal utility

•
$$e^{-\beta t} \frac{(c_t/h_t^{lpha})^{1-\gamma}}{1-\gamma}$$
; $h_t = \max\{c_s : s \leq t\}$

- Inspired by Prospect Theory
- But here: Utility of consumption, and dynamic
- Choice of reference point inspired by
 - Peak-end rule
 - Business cycle dating
 - Definition of rare disaster
- Basic Premise: Fix current consumption; the higher past historical consumption, the lower the utility of current consumption
- Basic feature: As soon as consumption exceeds its past maximum, the maximum resets

With a Utility Function

•
$$e^{-eta t} \frac{(c_t/h_t^{lpha})^{1-\gamma}}{1-\gamma}$$
; $h_t = \max\{c_s : s \leq t\}$

- Either assume asset prices (i.e., processes for returns) & derive consumption/savings & portfolio choices
- Or assume a consumption process for the representative agent in an equilibrium framework & derive asset prices & their attributes, e.g., moments.

Consumption & Dividend: Correlated Geometric Brownian Motions

A:	Empirical Market Inputs				
	Average	S.D.			
Consumption Growth	1.93	2.13			
Dividend Growth	1.15	11.05			
Correlation $\rho = 0.25$					

source: Beeler & Campbell (2012), Benzoni et al (2011)

Model

•
$$\frac{dc_t}{c_t} = \mu_c dt + \sigma_c dW_t^c$$

• $\frac{dD_t}{D_t} = \mu_D dt + \sigma_D (\rho dW_t^c + \sqrt{1 - \rho^2} dW_t^D)$

Model ○○○○●	Calibration	State Variable	State-dependent attributes	lpha=0 00	Interest rates	Equity premium	Conclusion 00
			Outlin	e			

- What is shortfall aversion?
- Numerical results & the state variable
- A benchmark model & interest rate results
- The equity premium

Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Concl
00000	•0	00	000	00	00000	00	00

Calibration & Confrontation with US Data

$$e^{-eta t} rac{(c_t/\mathbf{h}_t^{\alpha})^{1-\gamma}}{1-\gamma}$$
; $h_t = \max\{c_s : s \leq t\}$

B:	Calibrated Preference	e Parameters
Discount Rate	β	0
Risk Aversion	γ	4.220
Shortfall Aversion	α	0.498

C:	Ave	rage	S.D.		
	Data	Model	Data	Model	
Equity Premium	5.47	4.72	20.17	12.43	
Price/Dividend	31.85	25.25	15.09	0.48	
3-Month Real Rate	0.56	0.55	2.89	2.25	
Long-Term Real Rate	?	4.83	0	0	

/lodel	Calibration
00000	0.

State Variable

ate-dependent attril

 $\alpha = 0$

Interest rates

Equity premium

Conclusion 00

Sharpe Ratio with US Data

$$e^{-eta t} rac{(c_t/\mathbf{h}_t^{\alpha})^{1-\gamma}}{1-\gamma}$$
; $h_t = \max\{c_s : s \leq t\}$

C:	Ave	rage	S.D.		
	Data	Model	Data	Model	
Equity Premium	5.47	4.72	20.17	12.43	
Price/Dividend	31.85	25.25	15.09	0.48	
3-Month Real Rate	0.56	0.55	2.89	2.25	
Long-Term Real Rate	?	4.83	0	0	

- If standard procedure were used to estimate Sharpe ratio of model-generated data, it would be ^{4.72}/_{12.43} = .38
- Compare with estimate from 1930-2011 data, ^{5.47}/_{20.17} = .27 or with post war-based data, .32 or FF 1947-2012 .44.

Model 00000	Calibration 00	State Variable	State-dependent attributes	$\alpha = 0$ 00	Interest rates	Equity premium	Conclusion 00		
The State Variable $x_t = \frac{c_t}{c_t}$									

h_t

Its density distribution

$$Prob(x_t \in dx) = \begin{cases} \lambda x^{\lambda-1} & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases} \quad \text{where} \quad \lambda = 2\mu_c/\sigma_c^2 - 1$$

- This distribution has mean λ/(λ + 1), variance λ/((λ + 1)²(λ + 2)), and its lower *p*-quantile is p^{1/λ}
- With $\lambda =$ 84, highly skewed

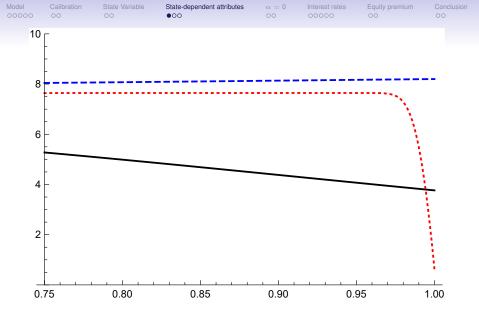
Probability	1%	5%	10%	50%
Theoretical	0.946	0.964	0.972	0.991
Empirical	0.987	0.994	0.999	1.000

Data: Q1:1952-Q1:2015

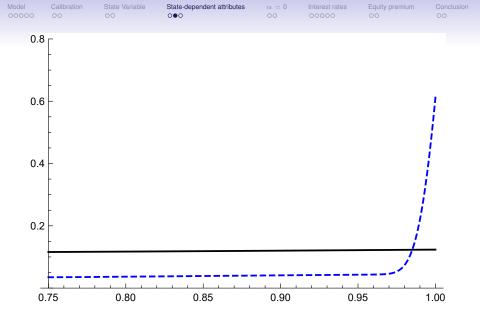
 Lowest post-war quarterly c/x: Q2'09: 98.4%; Q1, Q3 '09 were 98.8%, 98.7%; also, Q1'58 was 98.8%

When c_t is very near its historical maximum h_t ...

- Strong incentive to save rather than increase consumption
- that, plus market clearing =>
- · Higher prices for the savings instruments, i.e.,
- Lower interest rate, lower expected stock return



Dividend yield (solid), stock return (dashed), and three-month rate (dotted), in percent per annum (vertical axis) against the state variable $x_t = c_t/h_t$ (horizontal axis).



Stock return volatility (solid) and Sharpe ratio (dashed) per annum (vertical axis) against the state variable $x_t = c_t/h_t$ (horizontal axis).

- What is shortfall aversion?
- Numerical results & the state variable
- A benchmark model & interest rate results
- The equity premium

Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Conclusion
00000	00	00	000	•0	00000	00	00

A Convenient Benchmark: A Lucas (1978)-Based Model

- · Continuous time; consumption & dividends correlated but not equal
- Our model with $\alpha = 0$
- Interest rate r_0 , div yield y_0 , expected equity return e_0 all constant, at

•
$$r_0 = \beta + \gamma \mu_c - \frac{\sigma_c^2}{2} \gamma(\gamma + 1) = 7.64\%$$

•
$$y_0 = r_0 - \mu_D + \gamma \rho \sigma_c \sigma_D = 7.48\%$$

- $e_0 = r_0 + \gamma \rho \sigma_c \sigma_D = 8.63\%$
- (Numbers based on calibration to our model)
- To make equity premium ($e_0 r_0$) large, need high γ
- To make r_0 small, need small γ

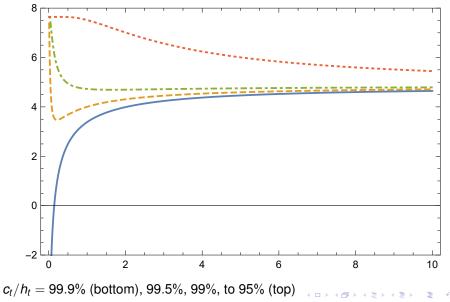
- · Continuous time; no uncertainty; no shortfall aversion
- r₀ = β + γμ_c Lower γ => Lower desire to smooth consumption
- That & $\mu_c > 0$ & equilibrium => Lower r_0
- Also, lower $\mu_c \implies$ lower int rate

イロト イポト イヨト イヨト 二日

16/24

- Int rate, div yield, exp return depend on the state & the horizon
- The unconditional long-term int rate $R^{\infty} = \beta + \gamma^{*} \mu_{c} - \frac{\sigma_{c}^{2}}{2} \gamma^{*} (\gamma^{*} + 1) \qquad \gamma^{*} = \alpha + (1 - \alpha) \gamma$
- Compare with $r_0 = \beta + \gamma \mu_c \frac{\sigma_c^2}{2} \gamma(\gamma + 1) = 7.64\%$
- γ^* is the α -weighted average of 1 & γ
- delivers *R*[∞] of 4.83%,
 - i.e., a drop of pprox 2.8%

Term Structure of Int Rate, for Different States c_t/h_t



17/24

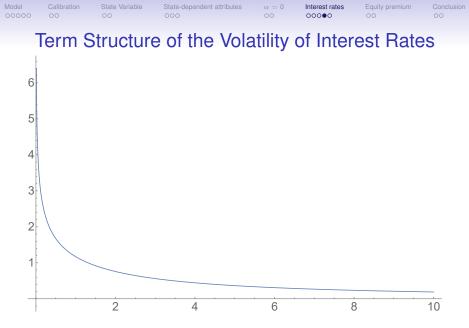
Short Maturity Debt

- Given a state $c_t/h_t < 1$ & for very very short maturities,
- Virtually impossible for the state to reach 1 during the life of the bond
- Therefore rate = $r_0 = 7.64\%$
- The average instantaneous rate

 $E[R^0] = r_0 - \alpha(\gamma - 1)(\mu_c - \sigma_c^2/2) = 4.6\%$

Caveat: Model unsuitable to produce an accurate instantaneous rate;

In contrast, the model's predicted 3-month rate is a very reasonable .55%



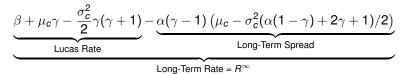
3-month rate: Model-generated: 2.25%;

- What is shortfall aversion?
- Numerical results & the state variable
- A benchmark model & interest rate results
- The equity premium



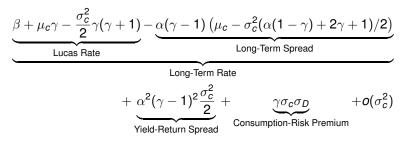
Consol is the Fixed Income Analogue of Equity, with $\mu_D = \sigma_D = 0$

• Consol's average return $\approx R^{\infty} + \alpha^2 (\gamma - 1)^2 \frac{\sigma_c^2}{2}$



Yield-Return Spread

Equity Expected Return



Or
 Consol's average return + γσ_cσ_D

Model Calibration State Variable State-dependent attributes $\alpha = 0$ Interest rates Equity premium Conclusion 00000 00 000 000 000 000 000 00 000 00 000 00

Shortfall Aversion & The Equity Premium and the Safe Rate

- Interest rate is state & maturity dependent; its average is considerably lower than than the classic
- The model delivers a real 3-month rate of .55% close to the average observed
- In bad states short-term rates are high. These states are rare and absent from post-war US data.

Model	Calibration	State Variable	State-dependent attributes	$\alpha = 0$	Interest rates	Equity premium	Conclusion
00000	00	00	000	00	00000	00	0.

Thank You!

4 ロ ト 4 回 ト 4 臣 ト 4 臣 ト 臣 9 Q Q 24/24