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Abstract

There are vast di¤erences in the growth patterns of �rms: high-growth, young

businesses, or �gazelles�, account for the vast majority of employment growth at

incumbent �rms. Based on a large administrative panel data set for the United

States, this paper shows that a large fraction of size heterogeneity among �rms,

at a given age, is driven by ex-ante di¤erences rather than ex-post shocks. We

reach this conclusion after documenting the autocovariance structure of �rm-level

employment and estimating a reduced-form process that captures this structure.

Next, we explore macroeconomic implications by matching a �rm dynamics model

to the empirical evidence. We show that, due to strong prevalence of ex-ante het-

erogeneity, �rm selection creates sizeable gains in aggregate productivity. Nearly

all of these gains derive from selection that takes place at the very beginning of

�rms�life cycles.
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grateful for excellent research assistance by Harry Wheeler. Any opinions and conclusions expressed
herein are those of the author(s) and do not necessarily represent the views of the U.S. Census Bureau,
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1 Introduction

There are vast di¤erences in the growth patterns of �rms. While most businesses

start small, relatively few high-growth, young businesses, sometimes called �gazelles�,

account for the vast majority of a cohort�s employment growth (see e.g., Haltiwanger

et al. (2014)), with the overwhelming majority of new and young �rms experiencing

little growth (see e.g., Hurst and Pugsley (2011)). One frequent explanation for these

growth di¤erences is that, following entry, �rms are exposed to idiosyncratic shocks to

marginal costs or to their product demand. According to this view, a �rm outgrows its

peers when it experiences a history of good shocks during its lifetime. An alternative

view is that there are ex-ante di¤erences between �rm startups, with some types poised

for growth and others destined to stay small. Under this view, heterogeneity in �rms�

growth paths are predictable, given their initial characteristics.

While it seems plausible that both views on �rm growth are �to some extent�

grounded in reality, little is known about their relative empirical relevance. However,

the nature of growth di¤erences may have important consequences for aggregate out-

comes. For example, if there are large ex-ante di¤erences in the growth potential of

�rms, then the process which selects those aspiring startups with the most potential to

become actual producers, may have a large positive e¤ect on aggregate productivity.

By contrast, if a �rms�growth paths are mostly determined by post-entry shocks, then

the gains from selection may be much smaller.

In this paper, we present direct empirical evidence on the importance of a deter-

ministic component in �rms� growth patterns, vis-à-vis post-entry shocks. We then

use this evidence to discipline a �rm dynamics model, designed to quantify the impact

of �rm selection on aggregate productivity. We �nd that the a large fraction of the

di¤erences in �rm size, conditional on age, can be attributed to ex-ante heterogeneity,

ranging from 85 percent in the year of startup and 47 percent at old age. At the macro

level, we �nd that �rm selection increases aggregate productivity by nearly one quarter

and that the bulk of this increase is driven by selection that takes at the very beginning

of �rms�life cycles, before they may have even started to produce.
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The key piece of empirical evidence we present is the autocovariance matrix of em-

ployment at the �rm (and establishment) level, up to 19 years after startup. We esti-

mate this matrix from the Longitudinal Business Dynamics (LBD) database, which con-

tains administrative information on the population of employers in the United States.

In order to summarize the information contained in the autocovariance matrix, we pro-

pose a reduced-form employment process. Based on the estimated process, we then

quantify the importance of ex-ante heterogeneity versus ex-post shocks. Moreover, we

use the reduced-form process as a guideline for the type idiosyncratic shock process to

be integrated into the structural model.

The proposed reduced-form process allows for heterogeneity in both initial and long-

run �steady-state� employment levels, as well as heterogeneity in the speed at which

this transition takes place. In addition, it allows for post-entry shocks. Moreover, the

process nests various speci�cations that are commonly used in the �rm dynamics lit-

erature to model the idiosyncratic shock process that �rms are exposed to. However,

we �nd that standard processes do not capture very well the autocovariance structure

that we observe. For example, our process nests a simpli�ed case, found in for example

Melitz (2003) among many studies, in which there are no ex-post shocks and all hetero-

geneity is modeled as a �rm-level type that is drawn ex-ante and remains constant over

the life cycle, so that �rms immediately reach their steady-state employment levels.

This implies a �at autocovariance function, regardless of the age and horizon. In the

data, however, autocovariances decline with the horizon, implying some role for ex-post

shocks. Moreover, they increase with age, indicating a role for transitional dynamics.

Another popular speci�cation for the shock process is an AR(1) with a homogeneous

constant, as found in for example Hopenhayn and Rogerson (1993). Such a process im-

plies that �rms gravitate towards the same steady-state levels and hence that ex-ante

heterogeneity ultimately dies out. Thus, the implied autocovariances decline towards

zero as the horizon is increased. In the data, however, autocovariances appear to stabi-

lize at positive levels at longer horizons, suggesting an important role for heterogeneity
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in steady-state levels.1

Not surprisingly, the generalization of the process turns out to be critical when

quantifying the importance of ex-ante versus ex-post heterogeneity. A practical disad-

vantage of our process, however, is that it contains various state variables which may

create computational di¢ culties when integrating the process into a structural model.

The most general process introduces �ve exogenous state variables, versus only one in

either Hopenhayn and Rogerson (1993) or Melitz (2003). To address this issue, we

present restrictions that reduce the number of state variables from �ve to two, while

preserving most of the dramatic improvement in �t, relative to the more standard

processes.

Our next step is to explore implications of the empirical results for the macroecon-

omy using a structural �rm dynamics model. While the nature of the idiosyncratic

process is likely to matter in many applications of �rm dynamics models, we focus

on the e¤ects of �rm selection on aggregate productivity. Many studies, including Jo-

vanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson (1993), Melitz (2003),

Foster et al. (2008) have studied the selection of �rms and have emphasized the im-

portance of selection in the determination of aggregate outcomes. Our contribution is

to demonstrate, qualitatively and quantitatively, the importance of the nature of the

�rm-level growth process in this dimension. The model we use for this purpose is an

extension of the popular framework of Melitz (2003), but with an enriched idiosyn-

cratic process which is �exible enough for the model to �t the empirical autocovariance

structure of employment with reasonable accuracy.

Before conducting any quantitative exercises, we present two simpli�ed cases which

illustrates why the nature of the �rm growth process is critical determinant of the

strength of the selection channel. First, we consider a case in which all heterogeneity

is permanent and determined ex ante, as in Melitz (2003). We show that the e¤ect

of selection on aggregate productivity depends positively on the amount of (ex-ante)

1Our process also nests speci�cations with heterogeneity in the constant, as commonly allowed for
in the econometrics literature on panel data models. However, our process is still more general, since
we allow di¤erent components of the process to have di¤erent persistence parameters. Allowing for the
the latter turns out to be important to �t the autocovariance matrix well.
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heterogeneity. Second, we illustrate a polar case in there is no ex-ante heterogeneity

and all shocks are drawn ex-post and are purely transitory. In this example, selec-

tion e¤ects are small (or even completely absent). Combining the two cases, only the

ex-ante heterogeneity matters for the selection e¤ects. Intuitively, when di¤erences

between startups are large and permanent, there are large productivity gains to be

made from selecting the best startups. By contrast, the e¤ect of transitory shocks of

�rm productivity is only short-lived and therefore have a very limited e¤ect e¤ects on

a �rm�s expected value. Hence, �rm�s exit decision, which are based on expected �rm

values, are not much a¤ected and selection e¤ects are therefore small.

Finally, we take the model to the data. Having integrated an idiosyncratic shock

process of the type proposed earlier, the model can provide a good �t of the observed

autocovariance matrix of employment, as well as the pro�les of average size and exit by

age. We then use the model to quantify the e¤ect of selection on aggregate productivity,

by comparing the model to a counterfactual version in which selection e¤ects are shut

o¤. We �nd sizeable productivity gains from selection, in the order of 20 percent in

the aggregate. This gain is almost entirely driven by selection in the very �rst period,

at a point at which �rms have observed their ex-ante parameters but have not actually

started to produce. Interestingly, this is true even though a substantial amount of

endogenous exit takes place in subsequent years. The reason why this subsequent exit

has relatively limited e¤ects on aggregate productivity, is that these �rms tend to be

close to indi¤erent between exit and continuation, whereas many of the startups who

exit immediately are on average further away from the indi¤erence point.

Relation to the literature. The importance of ex-ante conditions has been high-

lighted by Hurst and Pugsley (2011) who present survey evidence that many nascent

entrepreneurs do not expect their business to grow large. Guzman and Stern (2011)

present evidence that �rm growth is partly predictable based on observable charac-

teristics at the time of startup, e.g. whether or not the company is named after its

owner or whether it is incorporated in the state of Delaware. Abbring and Campbell

(2005) estimate an industry model with both transitory and persistent shocks, using
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data on 305 bars in Texas. They �nd that ex-ante decision account for about 40 per-

cent of the variation in ex-post outcomes. Sedláµcek and Sterk (2016) document the

presence of strong cohort e¤ects in employment data and estimate a �rm dynamics

model with ex-ante demand heterogeneity and aggregate shocks. They �nd that much

of the di¤erences across cohorts born can be attributed to the state of the economy in

the year of startup, suggesting that cohorts di¤er in their composition with respect to

ex-ante characteristics.2 In the present paper, by contrast, we quantify the importance

of ex-ante heterogeneity directly by exploiting within-cohort variation.

Our reduced-form analysis is inspired by a large empirical literature on earnings

dynamics of workers, which traditionally derives identi�cation from the autocovariance

structure of earnings, see e.g. MaCurdy (1982), Abowd and Card (1989). A common

assumption in this literature that earnings are the sum of an individual �xed e¤ect, an

age �xed e¤ect, an AR(1) process with zero mean, and an i.i.d. shock. Some authors,

however, have argued that allowing in addition for individual-speci�c trends helps to

capture the autocovariance structure of earnings, see Guvenen (2009) for a discussion

of this branch of the literature. The possible presence of such �Heterogeneous Income

Pro�les� (Guvenen (2007)), has received much attention since they may have large

implications for the extent to which income changes should be expected to transmit

to consumption, from the perspective of standard life-cycle models (see e.g. Guvenen

and Smith (2014)). Somewhat surprisingly, the literature on �rm-level employment

dynamics does not have a similar tradition of estimating reduced-form processes. To

the best of our knowledge, even the basic autocovariance structure of employment

dynamics has not been systematically documented.

Our structural model builds on a large literature which uses �rm dynamics models

to understand the determinants of aggregate productivity. Restuccia and Rogerson

(2008) and Hsieh and Klenow (2009) quantify the e¤ects of frictions that reduce ag-

gregate productivity by creating misallocation of resources, but abstract from selection

2The importance of the composition of the �rm population is also emphasized by Pugsley and Şahin
(2016), who document a strong trend in the U.S. towards older �rms, which is the result of accumulating
startup de�cits.
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e¤ects. Bartelsman et al. (2009) consider a framework but allow for both misallocation

and selection e¤ects. Importantly, they discipline their model using the observed co-

variance between �rm size and productivity. Barseghyan and Dicecio (2011) use present

a model to quantify the aggregate e¤ects of variations in entry costs observed across

countries,but abstract from post-entry shocks and restrict ex-ante heterogeneity to be

constant, as in Melitz (2003). Our analysis complements these studies by highlighting

the importance of matching the observed autocovariance matrix of employment when

quantifying selection e¤ects.

2 The nature of �rm growth: empirical evidence

2.1 Data description

We use data on establishment-level employment in the United States, taken from the

from Census Longitudinal Business Database. The data cover the population of em-

ployers over the period between 1979 and 2012. We construct a panel of employment

in the year of startup (age zero) up to age 19. Prior to the analysis, we take out a �xed

e¤ect for the birth year of the establishment and for its industry classi�cation at the

4-digit level.

2.2 The autocovariance structure of �rm-level employment

Figure 1 presents our central piece of empirical evidence: the cross-sectional autocovari-

ance structure of logged employment. In order to understand this structure more eas-

ily, we break down the autocovariances into standard deviations and autocorrelations.

Figure 1 presents this information both for a balanced panel, including establishments

surviving up to at least age 20, and an unbalanced panel, including all establishments

in our data set.

The left panel of Figure 1 shows that the cross-sectional standard deviations of log

employment, conditional on age, range between 1 and 1.1. This re�ects large size di¤er-

ences across establishments, even at young ages. The di¤erences between the balanced
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and the unbalanced panel are moderate, at least in comparison to the levels. The fact

that di¤erences are small even at young ages may strike one as somewhat surprising,

given that small establishments are known to be relatively unlikely to survive.3 An-

other pattern visible in the left panel is that standard deviations increase between age

0 and age 19. While the shape of the age pattern di¤ers across the two panels, the

magnitude overall increase is very similar. This suggests that the fanning out of �rm

size in the unbalanced panel is not purely driven by small establishments terminating

operations. Indeed, even among the survivors, size di¤erences tend to grow with age.

The right panel of Figure 1 presents the cross-sectional autocorrelations. That

is, the �gure displays the correlation between log employment at age h and age a �

h. The results for the balanced and the unbalanced panel turn out to be extremely

similar, again suggesting a moderate role for selection after entry. As expected, the

autocorrelations decline convexly with the horizon (a� h). This may happen because

establishments are hit by unanticipated shocks as they age.

Interestingly, the autocorrelations remain high even at long horizons. For example,

the correlation between at age 0 and 19 is about 0:44, while the correlation between age

9 and 19 is about 0:74. The �gure suggests that as the horizon increases towards in�nity,

the autocorrelation stabilizes at positive levels. This provides some indication for the

presence of ex-ante heterogeneity that does not die out with age. As we will show

formally below, autocorrelations would converge to zero without such heterogeneity.

Finally, we observe that autocorrelations are increasing concavely in age, given a certain

horizon. Thus, size di¤erences become less mutable as establishments mature.

2.3 Employment process

We now take a more formal approach in analyzing the autocovariance structure of

establishment-level employment. We do so by proposing and estimating a reduced-
3Exit of small �rms trims the left tail of the size distribution in the balanced panel, which in turn

lowers the amount of size heterogeneity, in comparison to the unbalanced panel. While this e¤ect is
visible in the �gure, its magnitude appears moderate. Possibly, the overal relation between size and
exit probability is not very strong. Alternatively, it might be the case that the size heterogeneity may
be dominated by the right tail of the distribution, and that the relation between size and exit among
large �rms is relatively weak.
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form stochastic process. We then use the estimated process to quantify the importance

of ex-ante versus ex-post heterogeneity.

Let ni;a be the employment level of an individual �rm of age a. We propose the

following process:

lnni;a = ui;a + vi;a + wi;a + zi;a

ui;a = �uui;a�1 + �i; ui;�1 � iid(0; �2u); �i � iid(��; �2�)

vi;a = �vvi;a�1; vi;�1 � iid(�v; �2v)

wi;a = �wwi;a + "i;a, wi;�1 = 0; "i;a � iid(0; �2")

zi;a � iid(0; �2z)

Here, ui;a and vi;a jointly capture the ex-ante component of the process, both of which

are governed by stochastic, �rm-speci�c parameters that are drawn just prior to startup,

at age a = 0. Speci�cally, ui;�1 and vi;�1 are the initial levels of, ui;a and vi;a, whereas

�i pins down the long-run steady-state level of ui;a which is given by ui;1 = �i
1��u

.

The steady-state level of vi;a, by contrast, is zero. We will therefore refer to ui;a as

the permanent part of the ex-ante component and vi;a as the transitory part. The

parameters �u and �v are common across �rms and govern the speed at which the

steady-state levels of the permanent and transitory part are reached. Further �u, ��;

�v, �" and �z denote the standard deviations of the draws, which all come from iid

distributions, which all have mean zero except for the distribution of, �i which has

mean ��.

The variables wi;a and zi;a capture the ex-post component and are governed by

shocks that take place after the �rm starts. The �rst of these, wi;a, has an autore-

gressive structure with an autocorrelation coe¢ cient given by �w and an initial level

normalized to zero. The second, zi;a, is an pure iid component, which may possibly

capture measurement error.

Note that the steady-state level of the overall process, i.e. the level that would be

reached in the absence of ex-post shocks, is given by lnni;1 = ui;1 = �i
1��u

. Thus, the
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process allows for heterogeneity in the steady-state levels. Since the process also allows

for heterogeneity in the two initial levels, ui;�1 and vi;�1, it admits rich heterogeneity

in �rm-level ex-ante growth pro�les. At the same time, the process allows for ex-post

shocks with mixed degrees of persistence, via wi;a and zi;a.

Our proposed process nests various speci�cations commonly used in the �rm dy-

namics literature to model �rm-level shocks. For example, Hopenhayn and Rogerson

(1993) assume an AR(1) for �rm-level productivity, with a common constant across

�rms and heterogeneous initial draws. In their baseline model, without �ring taxes,

the �rm-level shocks map one-for-one into employment. We obtain their speci�cation

by setting �u = �� = �z and �v = �w. By contrast, Melitz (2003) and Hsieh and

Klenow (2009) also allow for heterogeneity in steady-state levels, but abstract from ex-

post shocks and assume that steady-states are immediately reached. We obtain their

process by setting �u = �v = �" = �z = 0 and �u = 0, which implies that lnni;a = �i

at any age.

Finally, our process nests speci�cations commonly assumed in the econometrics

literature on dynamic panel data models, see for example Arellano and Bond (1991).

This literature typically assumes an autoregressive process and, like Hopenhayn and

Rogerson (1993), but allow for heterogeneity in the constant �i and thus in steady-state

levels. Commonly, however, �i is di¤erenced out and hence no estimate is provided

for ��, a key parameter in our application. Moreover, the panel data econometrics

literature commonly assumes that �u = �v = �w. In our application, it turns out that

this assumption is too restrictive to provide a good �t of the observed autocovariance

matrix. Our results thus caution against the use of standard panel data estimators

when applied to employment dynamics of young establishments.

2.4 Parameter identi�cation and variance decomposition

All parameters, except for �� and �v, can be identi�ed from the autocovaraince matrix

of logged employment. In the appendix, we show that the covariance of employment of
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a �rm at age a and at age a� j can be expressed as:

Cov (lnni;a, lnni;a�j) = �ju�
2(a�j+1)
u �2u +

h
�ju
�
1� �a�j+1u

�2
+
�
1� �ju

� �
1� �a�j+1u

�i �2�
(1� �u)2

+�jv�
2(a�j+1)
v �2v + �

j
w

1� �2(a�j+1)w

(1� �w)2
�2" + 0

j�2z:

From this equation it can be seen that the autocovariance function is a nonlinear

function of the persistence and variance parameters of the components of the underlying

process. Given that in total there are eight such parameters, we need an autocovariance

matrix with at least eight elements for identi�cation.

A key object of our interest is the amount of heterogeneity in long-run steady-state

levels, which has a cross-sectional standard deviation given by Std(lnni;1) =
��
1��u

. To

better understand how the steady-state heterogeneity identi�ed, it is useful to derive

the autocovariance between employment at age a and at in�nity. Provided that �u; �v,

and �w are all smaller than one in absolute value is given by:

Cov (lnni;1, lnni;a) =
1� �a+1u

(1� �u)2
�2�:

Note in the absence of ex-ante heterogeneity in steady-state levels, the long-horizon

autocovariances is zero. With ex-ante heterogeneity in steady-state levels, the auto-

correlation stabilizes at a positive level, as the lag-length is increased towards in�nity.

Figure 1 shows suggest that this is indeed the case.

Once the process is estimated, it can be used to decompose employment hetero-

geneity, at a given age, into the contributions of ex-ante and ex-post factors. Towards

this end, let us express the variance at age a as:

V ar (lnni;a) = �
2(a+1)
u �2u +

�
1� �a+1u

�2
(1� �u)2

�2� + �
2(a+1)
v �2v +

1� �2(a+1)w

(1� �w)2
�2" + �

2
z:

The �rst three expressions on the right-hand side capture the contribution of the ex-

ante component, whereas the last two terms capture the contribution of the ex-post

components. Thus, the equation can be used to disentangle the contributions of ex-ante
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and ex-post heterogeneity to the overall variance of employment, conditional on age.

Note further that, as we let age approach in�nity, the variance simpli�es to:

V ar (lnni;1) =
�2�

(1� �u)2
+

�2"

(1� �w)2
+ �2z:

The �rst of the three terms on the right-hand side captures the contribution of het-

erogeneity in the steady-state state levels, which are determined ex ante, and last two

terms capture the contribution of ex-post shocks.

2.5 Estimation procedure

We estimate the parameters of the process using a minimum distance procedure, as pro-

posed by Chamberlain (1984). Speci�cally, we minimize the sum of squared deviations

of the upper triangular parts of the autocovariance matrix implied by the process, from

its counterpart in the data. Because there is a very large number of observations un-

derlying each element in the empirical autocovariance matrix, we assign equal weights

to all elements in the estimation procedure.

2.6 Results

We estimate the baseline model as well as several restricted versions. The left two

panels of Figure 2 illustrate the �t of the baseline process. Both for the balanced and

unbalanced panel, the autocovariance structure is matched very well. In particular,

the process is able to match the fact that autocovariances are convexly declining in

the horizon. The left columns of Table plot associated parameter values and statistics.

For the balanced panel, the estimate for the key parameter, �2� equals 0:3637, which is

substantially above zero. The estimation also reveals a substantial di¤erence between

�u on the one hand, with an estimated value around 0:25, and �v and �w on the other

hand, with estimated values around 0:9. The parameter estimates imply a substantial

amount of heterogeneity in steady state levels. Table 1 shows that Std(ln1), i.e. the

standard deviation in long-run steady-state levels, is given by 0:76 in the balanced
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panel and 0:77 in the unbalanced panel. As made clear by Figure 1, the cross-sectional

standard deviation of employment of �rms up to age twenty ranges between 1 and 1:2.

In this light, the amount of steady-state heterogeneity is substantial.

Direct insight into the contribution of ex-ante heterogeneity to overall size het-

erogeneity can be obtained from Figure 3, which decomposes the overall variance of

employment into the contributions of ex-ante heterogeneity and ex-post shocks. The

dashed lines indicate age groups that were not used in the estimation. The �gure shows

that this contribution ranges between about 85 percent in the year of startup to 45 per-

cent at old age, for both the balanced and the unbalanced panel. The estimated process

thus reveals an important role for ex-ante heterogeneity as well as ex-post shock.

For illustrative purposes, Figure 3 also plots the decomposition for the restricted

speci�cations following Melitz (2003) and Hopenhayn and Rogerson (1993). The �gure

suggests that neither of these two processes captures very well the amount of ex-ante

heterogeneity present in the data, in particular for older �rms. In the Melitz case, 100

percent of the variance is, by construction, accounted for by the ex-ante component. In

the Hopenhayn-Rogerson speci�cation, the contribution is about 90 percent in the year

of startup, but completely dies out as with age. The latter is a direct consequence is that

the process does not allow for permanent ex-ante heterogeneity. Thus, for older �rms

the contributions under the Melitz- and the Hopenhayn and Rogerson speci�cations

are at two extremes. The baseline process is somewhere in the middle.

Figure 4 conducts the variance decomposition for employment growth between age

h and age a > h, rather than for the level of employment. The �gure reveals that ex-

ante heterogeneity contributes importantly to employment growth. Out of the growth

between age h = 0 and any age a > 0, about 40-45 percent is driven by the ex-ante

component. At older age groups (h > 0) this contribution is lower between zero and

25 percent. At high ages (i.e. high levels of h) the contribution is close to zero. This is

consistent with the idea that at some age, �rms have reached their steady-state levels

and any subsequent growth is due to ex-post shocks that make �rms �uctuate around

those steady states. Note further that at many age groups, the contribution is either
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stable or increasing in the length of the horizon (a� h).

The right panels of Figure 4 repeat the decomposition for the Hopenhayn-Rogerson

speci�cation.4 The �gure reveals a very di¤erent decomposition, with much lower

contributions of ex-ante heterogeneity for growth of young �rms. As for the baseline

process, the contribution of ex-ante heterogeneity is declining in age (h). However,

under the Hopenayn-Rogerson speci�cation the contribution of ex-ante heterogeneity

is are by and large increasing in the horizon.

The Baseline process has 5 state variables (�,u; v; w; z). This may create a substan-

tial computational burden when integrated into a quantitative structural model. We

now explore alternative ways of reducing the number of state variables (see Table 1).

Restricted model 1 sets �� = 0. This version �ts data much less well than baseline, with

a Root Mean Squared Error (RMSE) that is about 3 times as high. Restricted model

2 sets �u = �v, so u and v are no longer separate state variables. Fit worsens some-

what relative to baseline, but still much better than Restricted model 1. This versions

appears to undershoot a bit on the amount of steady-state heterogeneity (especially in

balanced panel). Restricted model 3 to sets �u = �v and �z = 0, i.e. it drops another

state variable by additionally dropping down the iid shock. Some additional worsening

of �t but still better than baseline with �� = 0, even though it has one state variable

less. Restricted 4 model is the AR(1) speci�cation Hopenhayn and Rogerson, but this

time allowing for heterogeneity in the �xed e¤ect (�� > 0). The �t as measured by the

RMSE worsens further, to a level comparable with the standard Hopenhayn-Rogerson

speci�cation with �� = 0. However, the amount of steady-state heterogeneity is more

in line our baseline process.

4Under the Melitz speci�cation there is no ex-post growth. Hence, the variance is zero, so a decom-
position is not possible.
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3 Firm growth and aggregate productivity: a structural

model

We now explore the macroeconomic implications of the nature of the �rm growth

process by evaluating how this process alters the e¤ects of �rm selection on aggre-

gate productivity. We do so by enriching a standard model of �rm dynamics with

a �rm-level shock process that entails both ex-ante and ex-post heterogeneity. We

use stylized examples to illustrate how the importance of ex-ante versus ex-post het-

erogeneity has a critical impact on aggregate productivity, vis-a-vis its e¤ect on �rm

selection. Speci�cally, we show that aggregate productivity gains from �rm selection

are particularly large in an economy in which �rm size heterogeneity is mostly driven

by ex-ante factors. By contrast, in an economy with only ex-post shocks such gains

may be completely absent.

Next, we quantify the e¤ects by matching the model to the empirical evidence

presented in the previous subsection. We �nd that �rm selection elevates aggregate

productivity by about twenty percent. Moreover, we �nd that nearly all of this produc-

tivity gain is due to selection that happens at the very beginning of �rms�life cycles,

before they may have even started to produce.

3.1 The model

The model is an extension of the closed-economy model presented in Melitz (2003),

and features heterogeneous and monopolistically competitive �rms and endogenous

entry and exit. Unlike Melitz, however, we allow not only for heterogeneity in a �xed,

ex-ante productivity parameter, but also for heterogeneity in ex-ante growth pro�les

(depending on age) and on ex-post shocks. This extension will allow the model to

match the autocovariance structure of �rm-level employment, as well as the age pro�les

of average size and exit. Additionally, we allow for stochastic �xed costs of production.

Households. The economy is populated by is an in�nitely-lived representative house-

hold who owns the �rms and supplies a �xed amount of labor in each period, denoted
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by N . Household preferences are given by
1P
t=0
�tCt, where � 2 (0; 1) is the discount

factor. Ct is a Dixit-Stiglitz basket of di¤erentiated goods given by:

Ct =

�Z
i2
t

a
1
�

i;tc
��1
�

i;t

� �
��1

;

where 
t is the measure of goods available in period t, ci;t denotes consumption of good

i, � is the elasticity of substitution between varieties, and ai;t 2 [amin;1) is a stochastic

and time-varying demand shifter speci�c to good i. We consider a stationary economy

from now on and simplify notation by dropping time subscripts.

The household�s budget constraint is given by
R
i2
 pici =WN+�, where pi denotes

the price of good i, W denotes the wage and � denotes �rm pro�ts. Utility maximiza-

tion implies a demand schedule given by ci = (pi=P )
�� aiC, where P is a price index

given P �
�R
i2
 aip

1��
i

� 1
1��
, so that total expenditure satis�es PC =

R
i2
 pici.

Incumbent �rms. There is an endogenous measure of incumbent �rms, each of

which produces a unique good. Firms are labeled by the goods they produce i 2 
.

The production technology of �rm i is given by yi + fi = ni, where yi is the output of

the �rm, ni is the amount of labor input (employment) and fi is a �rm-speci�c �xed

cost of operation, which is stochastic and drawn from an i.i.d. distribution in each

period. It follows that �rms face the following pro�t function:

�i = piyi �Wni:

Additionally, given the market structure, each �rm faces a demand constraint given by

yi = (pi=P )
�� aiC; (1)

which is the demand schedule of the household combined with anticipated clearing of

goods markets, which implies ci = yi.

At the beginning of each period, a �rm may be forced to exit exogenously with
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probability � 2 (0; 1). If this does not occur, the �rm learns its �xed cost fi and has

the opportunity to exit endogenously. If the �rm exits, it avoids paying the �xed cost,

but it is permanently shut down. If the �rm chooses to remain in businesses, it then

pays its �xed cost and learns its demand shifter ai: Given its production technology and

demand function, the �rm sets its price pi (and implicity yi; ni and �i ) to maximize

the net present value of pro�ts. The price-setting problem is static and the �rms sets

prices as a constant markup over marginal costs W :

pi =
�

� � 1W:

We let labor be the numeraire so that W = 1, and de�ne the real wage w � W=P as

the price of labor in terms of the Dixit-Stiglitz consumption basket C: Using this result,

we can express pro�ts as �i = w��C�ai � fi, where � � (��1)��1
�� , and labor demand

as ni =
�

�
��1

���
w��Cai + fi.

The demand shifter ai, for reasons that will be clear in a moment, may not be

Markov. However, we can write ai as a function of an underlying Markov state vector

si. Let V (si; fi) be the value of a �rm at the moment it chooses whether or not to exit.

At this point it has survived the exogenous exit probability � and observed its �xed

cost fi , but it has not yet observed its demand shifter a0i (s
0
i) for the current period.

The value of a �rm at the moment the exit decision is taken, denoted V , can now be

expressed as:

V (si; fi) = max
�
E
�
�
�
s0i; fi

�
+ � (1� �)V

�
s0i;; f

0
i

��� si; fi� ; 0	
In the above equation s0i denotes the value of the state after the continuation decision

is taken and new shocks are realized, and f 0i denotes the �xed cost at the beginning of

the next period. Accordingly, we can express the pro�t, output, employment and exit

policies as �i = � (s0i; fi), yi = y (s
0
i; fi), ni = n (s

0
i; fi), and xi = x (si; fi), respectively.
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Firm entry. Firm entry is endogenous and requires paying an entry cost fe, denom-

inated in units of labor. After paying the entry cost at the beginning of a period,

the �rm observes its initial level of si and fi, at which point the �rm becomes like an

incumbent. That is, the �rm may decide to exit immediately or pay fi, observe si, and

commence production. Free entry implies the following condition:

wPfe �
Z
V (s; f)G (ds)H (df)

where G is the distribution from which the initial levels of si are drawn, and H is the

distribution from which the �xed cost fi is drawn.

Aggregation and market clearing Let � (S) be the measure of �rms in S 2 S,

where is S is the Borel ��algebra generated by s. Given the exit policy, � (S) satis�es:

�
�
S0
�
=

ZZ �
(1� x (s; f))F

�
S0js

�
H (df) (� (ds) +M eG (ds))

�
whereM e denotes the measure of entrants and F (S0j s) is consistent with the transition

law for si. The total measure of active �rms is given by:


 =

Z
� (ds) :

Labor market clearing implies:

�N =

Z
y
�
s0
�
�
�
ds0
�
+

ZZ
f (1� x (s; f)) (� (ds) +M eG (ds))H (df) +M efe:

3.2 Selection and aggregate productivity in two simpli�ed cases

Before we evaluate the model quantitatively, we study two extreme cases which il-

luminate the importance of nature of the exogenous process in the determination of

aggregate productivity.
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Simple case 1: only ex-ante heterogeneity. In the �rst case, we assume that the

�rm-level fundamental is time-invariant and drawn ex-ante from a distribution. That

is, si = ai is a scalar which is drawn from the ex-ante distribution with CDF G . This

is precisely the assumption made by Melitz (2003). For simplicity, we set � = 1 in this

example, as in Melitz (2003). The equilibrium can now be characterized in a simple

way, by de�ning a cuto¤ level a� such that any �rm exits if and only if ai < a�. As

a result, the productivity distribution of active �rms is given by �(ai) =
G(ai)

1�G(a�) for

ai � a�, and �(ai) = 0 for ai < a�. The free-entry condition can now be expressed as

a relation between average pro�ts, � �
R
�(a)�(a)dG(a), and the cuto¤ a�:

� =
fe�

1�G(a�) :

Now de�ne ea (a�) � �R a��1�(a)ds� 1
1�� , i.e. a weighted average of �rm-level produc-

tivity. Given that �(a) is determined by the cuto¤ a�, ea is implicitly a function of a�.
As shown by Melitz (2003), ea (a�) coincides with aggregate productivity (CHECK),
so the cuto¤ directly pins down aggregate productivity. We can now express the exit

condition as another relation between � and a�:

� = k (a�) f;

where k (a�) �
�ea(a�)

a�

���1
� 1. The equilibrium is at the intersection of the curves

de�ned by the exit condition and the free-entry condition.

Combining, the two equations, the equilibrium must satisfy fe
f=� = (1�G(a

�)) k (a�),

which makes clear that the equilibrium cuto¤ is determined as a function of entry cost

fe, relative to the present value �xed costs to be paid, i.e.f=�. Note also that if
fe
f=� is

su¢ ciently high, the cuto¤ may be driven down to the point that it hit its minimum

i.e. amin = a�.

For simplicity, let us further assume that the ex-ante draw comes from a Pareto

distribution with scaling parameter �. In this case, it can be shown that k (a�) =�
�
��1

���1
� 1. Thus, the exit condition then pins down � independently of the level of
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a�. The slope of the free-entry condition is given by:

d�

da�
=

�fe
1�G(a�)

G0(a�)

1�G(a�) = ��:

Thus, the slope of the free-entry curve is proportional to the Pareto parameter �.

Letting � increase towards in�nity, the variance of the Pareto distribution reduces to

zero. Thus, the lower the variance of the productivity distribution (and hence the �rm

size distribution), the steeper the slope of the free-entry condition. This is illustrated

by the left and right panel of the Figure above.

The �gure also illustrates what happens after an increase in the entry cost, which

shifts up the free-entry curve.5 In equilibrium, the cuto¤ declines, which reduces ag-

gregate productivity. Thus, selection e¤ects increase aggregate productivity in this

model. Intuitively, an increase in the entry cost increases the cost of sampling from

the distribution of ex-ante draws of the fundamental. This induces �rms to sample less

often, i.e. entry decreases, which in turn has a positive e¤ect on �rm pro�ts. This,

however, makes �rms more willing to continue operation under relatively low draws of

the fundamental. That is, exit declines and the cuto¤ a� shifts down, which pushes

down �rm pro�ts. Under a Pareto distribution, the latter e¤ects completely o¤sets the

5As mentioned above, a decrease in the �xed cost f or an increase in the exogenous exit rate � as
the same e¤ect on the cuto¤ as an increase in the entry cost fe.
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increase increase in �rm pro�ts induced by the decline in entry. The decline in the

cuto¤, in turn, reduces aggregate productivity.

As illustrated by the illustration above, however, the magnitude of the decline

depends critically on the slope of the free-entry condition. In the case with a large

amount of ex-ante heterogeneity (right panel), the reduction in the cuto¤ is particularly

large. Given that average pro�ts are pinned down by the exit condition, the free-entry

condition implies that an increase in the entry cost fe must be o¤set by a proportional

decline in the probability of successful entry 1�G(a�) must adjust downwards. Under a

large amount of heterogeneity, the distribution is spread out which means that a given

change in the cuto¤ a� has a relatively small e¤ect on the probability of successful

entry. Thus, a large decline in the cuto¤ is required to push down the entry success

probability su¢ ciently in order to restore equilibrium.

Simple case 2: only ex-post heterogeneity. We now consider an opposite case

in which there is no ex-ante heterogeneity. Speci�cally, we now assume that ai is now

determined as an ex-post i.i.d. shock. Recall that, in each period, the exit decision is

made before observing the new shock. Since shocks are i.i.d, this implies that no �rm

has any speci�c information on its productivity when they make their exit decision.

It follows that in equilibrium no �rm voluntarily exits, given that new entrants pay

the entry cost plus the �xed cost and that exits do still occur for exogenous reasons.

As a result, there is no selection in the model with only i.i.d. ex-post shocks. Hence,

aggregate productivity is not a¤ected at all by �rms�exit decisions.

It is possible combine Case 1 and 2, that is, to consider a model with both per-

manent ex-ante heterogeneity and i.i.d. ex-post shocks. It is straightforward to verify

(Appendix?) that in this case only the ex-ante component of the process a¤ects �rm

selection. Hence, the strength of selection e¤ects is critically determined by the degree

to which overall heterogeneity is determined by mix of ex-ante vis-à-vis the ex-post

component. The literature typically makes ad hoc assumptions and extreme assump-

tions on this mix, like the ones we made above. Our empirical results suggest, however,

that reality is more subtle. In the next section, we quantify the strength of selection
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e¤ects taking into account a realistic mix between ex-ante and ex-post heterogeneity,

as revealed by the autocovariance structure of �rm-level employment.

3.3 Quantifying the e¤ects of selection on aggregate productivity

We now integrate a more realistic shock process into the model. In line with the

reduced-form we postulate the following process:

ln ai;t = ui;t + vi;t + wi;t + zi;t

ui;t = �uui;t�1 + �i, ui;�1 � iid(0; �u); �i � iid(��; ��)

vi;t = �vvi;t�1, vi;�1 � iid(0; �v)

wi;t = �wwi;t + "i;t, wi;�1 = 0; "i;t � iid(0; �")

zi;t � iid(0; �z)

Note that the �rm-level state is given by si;t = [ui;t; vi;t; wi;t; zi;t]: The components ui;t

and vi;t jointly capture the ex-ante component of the process, whereas wi;t and zi;t

capture the ex-post shocks. Given the parameter values, we solve for the equilibrium

using the following algorithm, which follows Hopenhayn and Rogerson (1993)

We solve the model using the following numerical method. Let us �rst normalize

W = 1. The pro�t function can then be written as � (s0; f) = �a (s0)w��Y �f . Further,

we can de�ne b� (S) � �(S)
Me , which evolves as:

b� �S0� = ZZ �(1� x (s; f))F �S0js�H (df) (b� (ds) +G (ds))�
Also, the labor market clearing condition can now be written as:

�N =M e

�
�

� � 1

���
w��Y ea+M e ef +M ece;

where ea � R
a (s0) b� (ds0) and ef �

RR
f (1� x (s; f)) (b� (ds) +G (ds))H (df). Note
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further that pi =
�
��1 and that the wage is given as

w = P�1 =
� � 1
�

(M eea) 1
��1

We solve the model using the following algorithm (following Hopenhayn and Roger-

son, 1993):

1. Solve for w��Y from the free entry condition (i.e. guess w��Y; solve for the �rm

value functions, evaluate the free-entry condition, update the guess for w��Y and

iterate until the condition holds with equality).

2. Normalize M e = 1, simulate the model and compute b� (S) ; ea and ef .
3. Solve for M e from the labor market clearing condition. Compute w, Y , and Y

N .

3.3.1 Calibration

The model period is one year. The parameter values are displayed in Table 2. The

discount factor, �; is set to imply a real interest rate of four percent. The elasticity of

substitution between goods, �, implies a markup of 11 percent over marginal costs. The

ratio of the entry cost to the �xed cost, fef is set to 0:82, following an empirical estimate

reported by Barseghyan and DiCecio (2011). Regarding the shock process, we ease the

computational burden by setting �z = 0 and assuming �v = �w. The reduced-form

evidence suggests that these restrictions are not very costly in terms of the ability to

match the empirical autocovariance.

The remaining parameters are chosen to target jointly the autocovariance matrix

of employment and the exit and average size pro�le by age. We assume that shock

innovations are drawn from normal distributions. In order to �t the exit rate pro�le

better, we introduce an iid shock to the entry cost, with mean zero and standard

deviation �f : Figure 5 shows the model �t. The model �ts very well the autocovariance

function and the pro�le of the exit rate by age. Speci�cally, the model reproduces

the fact that the exit rate initially declines convexly with age and then stabilizes. The
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model also reproduces the increasing pro�le of average size, by age, although the pro�le

predicted by the model is steeper than its empirical counterpart.6 Comparing Tables

1 and 2 reveals that, compared to the reduced-form model, the variances pertaining to

the ex-ante component (�2�; �
2
u and �

2
v) are much larger in the structural model. The

di¤erence derives from selection at the very beginning of �rms�life cycles, before have

started to produce, which curtails the distribution of �rms.

3.3.2 Results

Figure 6 plots exit rate, by age, in the data, the baseline model, and two counterfactuals:

(i) no ex-ante heterogeneity, (ii) no ex-post shocks. The �gure shows that without ex-

post shocks, the model still predicts high and steeply declining exit rates between age

0 and 5. Without ex-ante heterogeneity, this is much less the case. This suggests that

much of the "up-or-out" dynamics among young �rms are due to ex-ante factors, i.e.

by startups that are bound to have only a short life duration.

Figure 7 plots aggregate productivity as a function of the entry cost, in the baseline

model and the two counterfactual versions. In each of the three economies, output is

normalized to 1 under the baseline entry cost. Consider �rst the baseline. The �gure

shows that selection of �rms has a substantial positive e¤ect on aggregate productivity.

Under high levels of entry costs, productivity can be more than 30 percent lower than

in the baseline. Figure 8 shows that this is not driven by a change in the amount

of labor used for productive purposes. The general-equilibrium elasticity of aggregate

productivity with respect to the entry cost seems to be about 0.03 in the baseline (and

half as large without ex-ante heterogeneity). The elasticity may not seem like a very

high number, but the literature has documented be large di¤erences in entry costs

across countries. In the counterfacutal economy without ex-post shocks, the pattern in

Figure 6 is almost exactly the same as in the baseline. This indicates selection based on

ex-post shock is irrelevant in determining aggregate productivity. By contrast, ex-ante

6One possible way to improve the �t would be to allow for age-�xed e¤ects, which would introduce
additional state variables. Moreover, the age-�xed e¤ects would be common across �rms, and hence
would have no direct impact on the amount of heterogeneity across �rms at a given age.
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heterogeneity does seem important: in the counterfactual economy without ex-ante

heterogeneity, aggregate productivity is less sensitive to a change in the entry costs

than in the baseline. These patterns are consistent with the simple examples given

earlier.

4 Concluding remarks

We have documented the autocovariance structure of �rm-level employment in the

population of U.S. employers. Our results show that a large fraction of �rm size het-

erogeneity, at any given age, is due to ex-ante di¤erences in growth pro�les. We further

proposed a reduced-form employment process which generalizes popular speci�cations

in the literature, and provides a much better �t.

Using a structural �rm dynamics model following Hopenhayn (1992) and Melitz

(2003), we have explored the implications of our empirical �ndings for �rm selection

and aggregate productivity. The model is able to capture the autocovariance structure

of employment, as well as average employment and exit rates by age. The ex-ante

heterogeneity emerges as a key margin of �rm selection, and hence as a key determinant

of aggregate productivity. Most of this selection takes place before have even started to

produce. Moreover, we �nd that without such selection, aggregate productivity would

be more than 30 percent lower. By contrast, the aggregate impact of selection based

on ex-post shocks is negligible.

Our results thus imply that the entrepreneurial process of trying out business ideas

is a key contributor to aggregate productivity and welfare. Factors that inhibit this

process, related to for example �nancial frictions or government regulations, may have

large negative e¤ects on social welfare according to our model.
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5 Appendix

5.1 GMM estimation and overidenti�cation from autocovariance

Repeating from above:
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Generally, the autocovariance function for a; j � 0 is:

Cov [log nia; log nia+j ] =�2(a+1)+j�2~u +
1� �a+1u

1� �u
1� �a+1+ju

1� �u
�2� + �

2(a+1)+j
v �2~v

+
aX
k=0

�2k+jw �2" + �
2
�1j=0

=�2(a+1)+j�2~u +
1� �a+1u

1� �u
1� �a+1+ju

1� �u
�2� + �

2(a+1)+j
v �2~v

+ �jw
1� �2(a+1)
1� �2 �2" + �

2
z1j=0 (2)

5.1.1 Nonlinear GMM estimation

Let � =
�
�u; �v; �w; �

2
�; �

2
u; �

2
v; �

2
"; �

2
z

�0 be an arbitrary parameter vector in compact
parameter space P. Since we use ages 0 to A, we de�ne the A�(A+1)

2 length vector

valued function

f (ni; �) = [(log nia � E [log nia]) log nij � Cov [log nia; log nia+j ; �]]

where a = 0; : : : ; A and j = a; a + a; : : : ; A. Let �0 be the true parameter vector, so

that identi�cation follows from E [f (ni; �)] = 0 i¤� = �0. The term Cov [log nia; log nia+j ; �]

is a constant and equal to the formula from equation (2) computed for an arbitrary

parameter vector �.

De�ne the sample analog to E [f (ni; �)]

gN (�) �
1

N

X
i

f (ni; �) :

A law of large numbers implies gN (�)!p E [f (ni; �)]. De�ne the GMM estimator

~�N = argmin
�2P

gN (�)
0WgN (�)

for an arbitrary symmetric positive de�nite weighting matrix W . The asymptotic
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distribution of the estimator ~�N is:7

p
N
�
~�N � �0

�
!d N (0;�)

where

� �
�
d0Wd

��1 �
d0WVWd

� �
d0Wd

��1
d � @Ef (ni; �0)

@�0

V � E
�
f (ni; �0) f (ni; �0)

0� :
Note V is not a covariance matrix for log nia since E [f ] is the unique elements of the

covariance matrix.

Estimation To operationalize the estimator we have to estimate both V and the

means E [log ni]. De�ne

~f (ni; �) �
" 
log nia �

1

N

X
i0

log nia

!
log nij � Cov [log nia; log nia+j ; �]

#
7To see this, write gN

�
~�N
�
as

gN
�
~�N
�

� gN (�0) +
@gN (�0)

@�0

�
~�N � �0

�
:

Multiplying through by
@gN(~�N)

@�0 W so that the LHS is equal to the �rst order condition
@gN(~�N)

@�0 WgN
�
~�N
�
= 0, then

0 �
@gN

�
~�N
�

@�0
WgN (�0) +

@gN
�
~�N
�

@�0
W
@gN (�0)

@�0

�
~�N � �0

�
�
~�N � �0

�
� �

0@@gN
�
~�N
�

@�0
W
@gN (�0)

@�0

1A�1
@gN

�
~�N
�

@�0
WgN (�0) :

Letting N !1 then

p
N
�
~�N � �0

�
!d �

�
@gN (�0)

@�0
W
@gN (�0)

@�0

��1
@gN (�0)

@�0
W
p
NgN (�0)

since ~�N !p �0. And from the CLT
p
NgN (�0)!d N (0; V ).
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~gN (�) =
1

N

X
i=1

~f (ni; �) ;

where a = 0; : : : ; 10 and j = a; a + a; : : : ; 10. De�ne the A (A+ 1) =2 � A (A+ 1) =2

moment covariance matrix

~VN =
1

N

X
i=1

h
~f (ni; �) ~f (ni; �)

0
i
=
1

N

X
i=1

�
h (ni)� �h

�
h (ni)

0 :

Note that since ~f (ni; �) = h (ni)�q (�) = 0 then E
h
~fi ~fi

i
= Cov

h
~fi; ~fi

i
= Cov [h (ni) ; h (ni)].

To deal with missing data. We can create an indicator variable �iaj for whether or

not the observation is missing and then de�ne

~f (ni; �; �i) �
"
�iaj

  
log nia �

1

N

X
i0

log nia

!
log nij � Cov [log nia; log nia+j ; �]

!#

and use weighting matrix

A = ��1��1

where

� =

26666664

N00
N

N01
N

. . .

NAA
N

37777775
and Naj is the number of non missing observations for that moment. This is equivalent

to equally weighting but uses the correct number of observations when computing ~V
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Tables and Figures

A. Balanced Panel

Baseline H&R Melitz Restricted 1 Restricted 2 Restricted 3 Restricted 4

�u 0.2059 0 0 0.0000 0.4475 0.2441 0

�v 0.8415 0.9752 0 0.9776 0.9726 0.9568 0.9599

�w 0.9489 0.9752 0 0.9808 0.9726 0.9568 0.9599

�2� 0.3637 0 0.8519 0 0.0688 0.2123 0.3007

�2u 4.1864 0 0 0.7568 1.5864 6.4723 0

�2v 0.5444 0.8225 0 0.8090 0.6020 0.4507 0.5005

�2" 0.0652 0.0681 0 0.0590 0.0570 0.0723 0.0760

�2z 0.0688 0 0 0.0897 0.0834 0 0

RMSE 0.0100 0.0387 0.1575 0.0311 0.0184 0.0270 0.0380

Std( lnn1) 0.7594 0 0.9230 0 0.4747 0.6095 0.5483

# state vars. 5 1 1 4 4 3 2

B. Unbalanced Panel

Baseline H&R Melitz Restricted 1 Restricted 2 Restricted 3 Restricted 4

�u 0.2604 0 0 0.7216 0.3204 0.2383 0

�v 0.8942 0.9693 0 0.9814 0.9489 0.9176 0.9306

�w 0.9341 0.9693 0 0.9555 0.9489 0.9176 0.9306

�2� 0.3242 0 0.9228 0 0.1984 0.3326 0.4846

�2u 2.9212 0 0 0.2548 2.5225 5.9414 0

�2v 0.5472 0.9786 0 0.8319 0.5721 0.4259 0.4479

�2" 0.0830 0.0820 0 0.0841 0.0781 0.1043 0.1054

�2z 0.0800 0 0 0.0859 0.0890 0 0

RMSE 0.0131 0.0439 0.1710 0.0336 0.0158 0.0246 0.0403

Std( lnn1) 0.7699 0 0.9606 0 0.6555 0.7572 0.6962

# state vars. 5 1 1 4 4 3 2

Table 1. Parameter estimates reduced-form model.



parameter value parameter value parameter value

� 0.96 �2� 1.8578 �� -1.8714

� 10 �2u 11.0790 �u 0.4436

f 0.2949 �2v 0.7656 �v 0.9764

fe 0.2418 �2" 0.0677 �w 0.9764

� 0.0594 �2f 0.0095

Table 2. Parameters structural model.
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Figure 1: Standard deviations and autocorrelations of log employment. Balanced panel
of survivors up to age 20 and unbalanced panel.
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Figure 2: Autocovariance matrix: reduced-form model versus data.
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Figure 5: Structural �rm dynamics model versus data.
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Figure 6: Exit rates
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Figure 7: Aggregate productivity as a function of the entry cost. Results are plotted
relative to baseline entry cost.
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Figure 8: Allocation of labor as a function of the entry cost.


