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Abstract

In many regulatory settings, regulators often debate whether to pay producers

at fixed prices or at market-based prices. In this paper, we assess how firms’ price

exposure affects the degree of market power. Fixed prices mitigate market power

by directly affecting the dominant firms’ incentives to exert market power, while

market-based prices do so indirectly by promoting the fringe firms’ incentives to

engage in arbitrage. To empirically identify these effects, we exploit a natural

experiment that took place in the Spanish electricity market, where the regulator

switched back and forth from paying renewable energies according to fixed or to

market-based prices. Overall, we find that fixed prices were relatively more effective

in weakening firms’ market power, even though the market-based price regime led

to more active price arbitrage.
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1 Introduction

Ambitious environmental targets, together with decreasing investment costs, have fos-

tered the rapid deployment of renewable energy around the world. However, the goal to

fully decarbonize the power sector will require further investments to replace conventional

power plants with renewable energy resources.1 To achieve this objective, regulators are

increasingly relying on auctions for renewable investments.2 The idea is simple: they set

a target level of investment in renewable energy capacity and then allocate long-term

energy contracts to the lowest bidders at the resulting auction-based prices.

In designing these auctions, regulators have to make several decisions, ranging from

the auction format to the bidders’ eligibility requirements, to name just two.3 However,

one dimension of auction design stands out for its key impact on electricity markets:

whether the auctioned contracts expose renewable investors to the volatility of short-

run market-based electricity prices, or not. To provide full price insurance, regulators

have the option of auctioning off fixed prices per unit of output. Instead, to provide

full price exposure, regulators have the option of allowing producers to sell their output

at the short-run electricity market price, to which they add an auction-based fixed pre-

mium.4 This paper aims to analyze how these choices regarding the degree of renewables’

price exposure affect the performance of electricity markets once the investments have

1The International Renewable Energy Agency (IRENA) estimates that compliance with the 2017

Paris Climate Agreement will require overall investments in renewables to increase by 76% in 2030,

relative to 2014 levels. Europe expects that over two-thirds of its electricity generation will come from

renewable resources by 2030, with the goal of achieving a carbon-free power sector before 2050 (Euro-

pean Commission, 2019). Likewise, at the time of writing this paper, Joe Biden has announced his plans

to achieve carbon neutrality by 2050, with a 90% carbon-free electricity sector by 2035.
2According to IRENA (2019), by the end of 2018 more than 100 countries had adopted auction-

based approaches to promoting investment in renewables, i.e., a ten-fold increase in just one decade.

Many large corporations are also resorting to auctions to procure renewable power. For instance, from

2017-2019 Google procured renewable supplies equivalent to 100% of the company’s total electricity use

(Google, 2020).
3See IRENA (2019) for the full list of auction design choices, as well as for country-specific examples

of where such choices have been used in practice.
4In the industry jargon, these two schemes are commonly referred to as Feed-in-Tariffs (FiT) and

Feed-in-Premia (FiP). The latter can take several forms; it can be a direct payment by the regulator, it

can be a tax credit (as the Federal Production Tax Credit in the US), or it might derive from the sale

of renewable energy credits to electricity providers that are required to procure a proportion of their

sales with renewable energy (as the system of Revenue Obligation Certificates (ROCs) in the UK, or

the Renewable Portfolio Standard (RPS) in the US). See Newbery (2016) for a description of the ROCs,

and Greenstone, McDowell and Nath (2019) for an analysis of RPS.
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taken place.5 The importance of this question is compounded by the massive renewable

investments that will have to take place in the future.

One approach for analyzing this question would be to use actual bidding data of

renewable projects with varying degrees of price exposure. However, those projects must

have accessed the market through different auctions, possibly at different times and in

different countries, which would likely confound the true market impact of price exposure.

To avoid this, we leverage a quasi-experiment that took place in the Spanish electricity

market, where the regulator first decided to pay existing wind producers at market-based

prices, then moved them to fixed prices, and ultimately switched them back to market-

based prices again.6 These regulatory changes provide a unique opportunity to identify

the impacts of renewables’ price exposure on market performance. It is important to point

out that these changes were implemented by surprise, that wind already represented a

significant share of total output, and that no other changes in market rules or market

structure took place during that time. Access to very detailed wholesale market bid data

thus allows us to conduct an empirical analysis of the causal effects of changes in the

degree of renewables’ price exposure on firms’ bidding behavior in electricity markets and

the resulting impacts on market power.

Theoretical approach and findings Electricity markets are commonly organized as

a sequence of markets, with a large market that operates one day-ahead of the actual de-

livery, and several smaller sequential markets that operate closer to real-time. Generators

typically exert market power by withholding part of their production in the day-ahead

market, increasing its price, and then selling additional amounts at lower prices in the

subsequent markets. Fully exposing renewables to electricity market prices encourages

them to arbitrage the resulting price differences across the sequential markets, which

reduces the dominant firms’ incentives to exercise market power in the day-ahead market

(Ito and Reguant, 2016). We refer to this effect as the ‘arbitrage effect’.

Instead, shielding renewable producers from short-run electricity market prices essen-

tially bars them from serving as arbitrageurs as they receive the same price regardless

of whether they sell their output in the day-ahead market or in the subsequent markets.

5In between these two extremes, there are hybrid solutions. For instance, producers could receive

fixed prices for a shorter time and then sell their output at market prices until the end of their lifetimes.

Alternatively, the auctioneer could pay the renewable output at a weighted average of a fixed price (to

be determined through the auction) and the short-run market price.
6These prices were not set through auctions, but were instead determined by the regulator. However,

for our study, this difference is irrelevant as once the investments are in place, price levels do not affect

bidding incentives (as long as they are above marginal costs, which was always the case).
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However, even if this limits arbitrage, it also mitigates market power through another

channel: fixed prices reduce the dominant producer’s incentives to increase market prices

as fixed prices act as a forward contract over the firm’s renewable sales (Allaz and Vila,

1993).7 We refer to this as the ‘forward contract’ effect.

While the ‘arbitrage’ and the ‘forward contract’ effects act in opposite directions,

we show that their relative strengths depend on market structure. In particular, the

higher the share of wind output in the hands of the dominant producers, the stronger the

‘forward contract’ effect and the weaker the ‘arbitrage effect’. Hence, shielding renewable

producers from market prices is relatively more effective for mitigating market power in

highly concentrated markets, which are the ones where market power concerns are likely

to be higher.8

Empirical approach and findings To test these predictions, we first estimate a

structural model of price-setting incentives in the Spanish day-ahead market. On the one

hand, taking the slopes of the realized residual demands as given, we show that when

firms received fixed prices, they did not took into account the market price increases on

their wind output, in contrast to when their wind output was exposed to market-based

prices. This suggests that, all else equal, the ‘forward contract effect’ reduced firms’

markups under fixed prices.

Second, we analyze how changes in price exposure affected the fringe firms’ incen-

tives to arbitrage. To ensure that time-varying changes in unobservable variables do

not confound the effects, we rely on a differences-in-differences (DiD) approach. Two

appealing features of our analysis are that: (i) we exploit the two regulatory changes,

from market-based prices to fixed prices and then back to market-based prices, and that

(ii) we use two control groups, either independent suppliers that faced the same arbi-

trage incentives as renewables before the first and after the second regulatory change, or

renewables other than wind that faced similar arbitrage incentives as wind after the first

regulatory change. Our DiD analysis shows that wind producers stopped arbitraging

price differences after the switch from market-based prices to fixed prices. However, they

resumed arbitrage once they were exposed to market-based prices again. This confirms

7Empirically, the market impacts of forward contracts in electricity markets have been analyzed by

several authors (Wolak, 2000; Bushnell, Mansur and Saravia, 2008; Hortaçsu and Puller, 2008; Fabra

and Toro, 2005).
8Acemoglu, Kakhbod and Ozdaglar (2017) and Genc and Reynolds (2019) also point out the relevance

of market structure in shaping the price depressing effects of renewables in a Cournot model. However,

they do not assess the effects of market structure on the relative performance of market-based versus

fixed prices simply because they only consider the former.
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the empirical relevance and robustness of the ‘arbitrage effect’.

The interplay between the ‘forward contract’ and the ‘arbitrage’ effects is also con-

firmed by the empirical analysis of the price differences across markets. We show that,

under fixed prices, an increase in the dominant firm’s wind share reduced price differ-

ences across markets, as expected from the strengthening of the ‘forward contract effect’.

Instead, under market-based prices, an increase in the fringe firms’ wind share enlarged

price differences across markets, as expected from the weakening of the ‘arbitrage effect’.

In order to understand which of these two effects dominated in shaping market power,

we leverage our structural estimates to compute markups in the day-ahead market. We

find that markups were significantly lower while firms were subject to fixed prices as

compared to market-based prices. The average markup during the fixed price regime was

6.3%, while it was 8.3% and 10.7% under the market-based price regimes. Our results

are robust to alternative ways of comparing the markups (i.e., by firms, by windy-vs.-

less-windy hours, by peak-vs.-off-peak hours). Based on these findings, we conclude that,

given the market structure of the Spanish electricity market, the ‘forward contract effect’

dominated over the ‘arbitrage effect’, which led to weaker market power when renewables

were paid at fixed prices, relative to when they were exposed to market-based prices.

Our contribution Our contribution is to capture the effects of price exposure on

market power, an issue that is relevant in electricity markets and beyond. We provide

a tractable model and a structural analysis comparing firms’ market behavior subject

to different degrees of price exposure. To our knowledge, this article is also the first

to provide a causal impact of price exposure on market power, taking into account the

countervailing incentives.

From a theoretical point of view, we also contribute to the literature by characterizing

and comparing the equilibria under fixed-prices and market-based prices. Ito and Reguant

(2016), who also analyze the latter, document the role of arbitrage in mitigating market

power. However, the analysis with fixed prices and the comparison between the two

cases are novel. From an empirical point of view, we provide new evidence on the impact

of firms’ price exposure on market power and the price differences across markets by

highlighting the relevance of forward contracting through structural estimates. We use

a differences-in-differences approach to capture the magnitude of the arbitrage effect

while avoiding potential confounding effects. Using two regulatory changes, our findings

give further support to the results in Ito and Reguant (2016) regarding the impacts of

arbitrage.

Our results provide key insights to the ongoing debate about how to support the
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deployment of renewables at least cost. We focus on the largely unexplored issue of

how renewables’ pricing schemes affect firms’ bidding incentives for given capacities, an

important determinant of the performance of electricity markets. This is a required first

step towards analyzing the endogenous choice of long-run variables such as entry, exit, or

the capacity and location of the new investments. To our knowledge, only a few papers

explore the effects of renewables’ pricing schemes for given capacities. From a theoretical

perspective, Dressler (2016) highlights that FiT acts like forward contracts.9 From an

empirical perspective, Bohland and Schwenen (2020) attempt to explore the market power

impacts of a voluntary change in the pricing scheme in the Spanish Electricity market

during 2005, a period when renewables represented less than 10% in the energy mix.

Nevertheless, firms’ price exposure can also have important impacts through capacity

investment decisions. For instance, Newbery et al. (2018) and May and Neuhoff (2017)

favor the use of pricing schemes with limited price exposure as a way to de-risk the

investments, ultimately bringing down the costs of capital and facilitating the entry of

more diverse players.10 Instead, other authors advocate for exposing producers to market

price volatility so that they internalize the economic value of their investments (Joskow,

2011), which depends on their production profiles, their correlation with the availability

of other installed technologies and with demand, as well as on the costs of the generation

technologies that they displace (Callaway, Fowlie and McCormick, 2018). Auctioning

fixed-price contracts would select the lowest cost technologies, which need not be the

most valuable ones. Instead, auctioning contracts with price exposure would select those

investors that are able to produce at times when market prices are higher, as they would

require a smaller premium to break even.11

Finally, our work complements the growing literature exploring the short-run and

long-run effects of renewables, including their impacts on energy prices (Gowrisankaran,

9However, Dressler (2016) abstracts from the impacts of FiT on price arbitrage and focuses instead on

the impacts on forward trading. She finds that FiT might crowd out other forms of forward contracting,

in line with Ritz (2016).
10As pointed out by Newbery et al. (2018), it is more efficient to share the investment risks across the

mass of consumers than to concentrate such risk on a small number of companies. For the former, their

share of the construction cost is only a small fraction of their total expenditures, while for the latter the

investment might represent a high share of their profits. See Ritzenhofen, Birge and Spinler (2016) for

further references. Another interesting, though distinct debate, is whether renewable producers should

be supported through investment or output subsidies. Aldy, Gerarden and Sweeney (2018) show that

the former led 10 to 12 percent lower wind production.
11Some papers compare renewable support schemes in other dimensions. For instance, Reguant (2019)

conducts a simulation that also accounts for the interaction between renewable energy policies and the

retail tariff design to compare their efficiency and distributional impacts.
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Reynolds and Samano (2016); Genc and Reynolds (2019); Acemoglu, Kakhbod and

Ozdaglar (2017)), on the nature of competition (Fabra and Llobet (2019)), on emis-

sions (Cullen (2013) and Novan (2015)), and on the profits earned by the conventional

producers (Bushnell and Novan (2018); Liski and Vehviläinen (2017)), among others.

Nonetheless, these papers apply to settings in which renewables are exposed to market

prices but do not analyze whether the effects of renewables would differ if they were

subject to fixed prices instead.

The remainder of the paper is organized as follows. Section 2 builds and solves a

model of optimal bidding across sequential markets when firms are subject either to

market-based prices or to fixed prices. Section 3 provides an overview of the institutional

setting and data used in the analysis. Section 4 performs the empirical analysis and

Section 5 concludes. Proofs are postponed to the Appendix.

2 The Model

In this section, we develop a simple model of strategic bidding that mimics some of the

key ingredients of electricity markets. In line with Allaz and Vila (1993), we abstract

from uncertainty and risk aversion in order to focus on the impact of pricing schemes on

market power.

We assume that total demand is downward sloping, D (p). This demand can be

thought of as the sum of the demand of households, which tends to be price unresponsive,

and the demand of large energy consumers and suppliers, which is price responsive.12

Both types of consumers are assumed to be myopic.13

Sequential markets Transactions take place in two sequential markets: a day-ahead

market (t = 1) and a spot market (t = 2). Total demand is determined in the second

market at the spot price, D (p2) . It can be decomposed as the sum of the day-ahead

market demand, D (p1) , plus the unserved demand which is traded in the spot market,

12As in Ito and Reguant (2016), an equivalent micro foundation for demand elasticity is that D(p) is

total demand net of the demand of a myopic competitive fringe with increasing marginal costs.
13In reality, the demand of households is inelastically cleared in the day-ahead market. Hence it is

reasonable to assume that they are myopic. Large consumers and suppliers can participate in both

markets and could thus wait to buy in the spot market if they expect that prices will be lower than in

the day-ahead market. We allow for this possibility in the empirical analysis. The theory model would

easily allow to add financial arbitrageurs.
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D (p2)−D (p1).
14 Let ∆p ≡ p1 − p2 denote the price difference across markets.

Technologies and Firms Electricity is produced by two types of technologies (renew-

able and conventional) and two types of firms (fringe and dominant, respectively denoted

by i = f, d). The fringe firms only own renewable assets, in contrast to the dominant

firm that also owns conventional assets. While fringe firms are price-takers, the dominant

firm sets prices in both markets, taking into account the decisions of the fringe players.

Renewables, which we generically refer to as wind, allow firms to produce at zero

marginal costs up to their available capacities. We use wi and ki to respectively denote

firm i’s available and maximum wind capacity, with wi ≤ ki, i = d, f. Without loss of

generality, we assume that firms are able to perfectly predict their available capacities

so wi is indistinctively used to refer to both actual or expected wind availability.15 The

dominant firm’s conventional technology has constant marginal costs of production, c > 0.

Throughout, we assume that the conventional technology is needed to satisfy total

demand, i.e., D(c)−wd−wf > 0. This implies that the dominant firm’s relevant marginal

cost is c. Relaxing this assumption would require considering several subcases, without

altering the main insights of the analysis.

Pricing rules We consider two commonly used pricing schemes for renewables:16 (i)

under market-based or variable prices (FiP), renewable producers receive the price of

the market where they sell their output, plus a premium; (ii) under fixed prices (FiT),

renewable producers receive a fixed price for their output regardless of the market at

which they sell it.

14The model can be solved under the assumption that demand in the spot market becomes more

inelastic. This would not affect the main results of the analysis. In the empirical analysis of section 4.3,

we incorporate the elasticities of the demands in the day-ahead and the spot market as two separate

variables.
15Fabra and Llobet (2019) report empirical evidence on the wind forecast errors in the Spanish elec-

tricity market and show that these tend to be small. Still, they show that uncertainty and private

information over available capacities impacts equilibrium bidding behavior when renewables are exposed

to market-based prices. However, if this uncertainty is small, the impact is second-order as compared to

the impact of changes in the pricing rules.
16We focus on these two schemes since these are the ones used in the Spanish electricity market,

which is the subject of our empirical investigation. However, for completeness, in the appendix, we also

characterize the equilibrium under an alternative pricing scheme: Contracts-for-Differences (CfDs).
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2.1 No Arbitrage

We first consider the case in which renewable producers are required to offer all their

output in the day-ahead market. This will serve as a benchmark to assess the effects of

allowing for arbitrage across markets. The residual demands faced by the dominant firm

in the day-ahead market and in the spot market are thus given by

q1(p1) = D(p1)− wf (1)

q2(p1, p2) = D(p2)−D(p1). (2)

We solve the game by backward induction. In the spot market, the dominant firm

sets p2 so as to maximize its profits, taking p1 as given. Under both pricing rules, its

profit maximization problem can be written as

max
p2

[p2q2(p1, p2)− c (q1(p1) + q2(p1, p2)− wd)] . (3)

Solving the first order condition for p2,

p∗2 = c+ (D(p∗2)−D(p1))

∣∣∣∣∂D(p∗2)

∂p2

∣∣∣∣−1 . (4)

As it is standard, the firm adds a mark-up over its marginal cost c. This mark-up is

increasing in p1 as a higher p1 implies a larger spot market demand.

In the day-ahead market, under variable prices, renewable output is paid at the market

price p1 plus a fixed premium p. Hence, the dominant firm’s profit maximization problem

is

max
p1

[
p1q1(p1) + p∗2 (p1) q2 (p1, p

∗
2)− c (q1(p1) + q2 (p1, p

∗
2)− wd) + wdp

]
. (5)

Under fixed prices, the profit maximization problem in the day-ahead market changes,

as renewable output is now paid at p.17 This reduces the dominant firm’s price exposure,

as shown in the first term of the following profit expression,

max
p1

[p1(q1 (p1)− wd) + p∗2 (p1) q2 (p1, p
∗
2)− c (q1(p1) + q2 (p1, p

∗
2)− wd) + wdp] . (6)

The first order conditions of the profit maximization problems (5) and (6) illustrate

the drivers of our main results. Using the Envelope Theorem and solving for p1,

p∗1 = p∗2 + (D(p∗1)− wf − Iwd)

∣∣∣∣∂D(p∗1)

∂p1

∣∣∣∣−1 , (7)

17The values of the fixed premium and the fixed price do not affect bidding incentives and therefore

equilibrium market prices. Hence, one could well them set them so that total payments to wind are the

same, i.e., p = p+ p∗1.
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where I = 0 under variable prices and I = 1 under fixed prices. From this expression,

it is clear that the spot price becomes the opportunity cost of sales in the day-ahead

market. Hence, the dominant firm optimally sets p∗1 with a mark-up over p∗2. Such a

mark-up depends on the pricing rule in place, given that under fixed prices, increasing

the day-ahead price does not increase the price for its renewable output. As this implies

lower marginal gains from increasing p1, the day-ahead market price is lower under fixed

prices as compared to variable prices. Furthermore, since a lower day-ahead price reduces

spot market demand, the spot price under fixed prices is lower as well.

Our first lemma illustrates these results (we use super-scripts V and F to denote

equilibrium outcomes under variable and fixed prices, respectively).

Lemma 1 Suppose that arbitrage is not allowed. In equilibrium,

(i) pV1 > pV2 > c and pF1 > pF2 > c.

(ii) pV1 > pF1 > c and pV2 > pF2 > c.

2.2 Limited Arbitrage

Given the positive price differential across markets, there are profitable opportunities to

engage in arbitrage. These involve selling output in the day-ahead market at a high price

and re-buying it in the spot market at a lower price. If there are no limits on arbitrage,

and if arbitrage is competitive, the price differential across markets is competed away

until both prices converge, p1 = p2.

However, in many electricity markets in practice (including the one in our empirical

application), market rules impose limits on arbitrage. Typically, all transactions need to

be backed by physical assets, thus implying that arbitrage can only come from market

agents and only up to their capacities. This leaves some scope for wind producers to

engage in arbitrage if their capacity constraint wf ≤ kf is not binding. They can thus

arbitrage by selling kf in the day-ahead market to then buy (kf − wf ) back in the spot

market. We refer to overselling as the difference between the day-ahead sales of wind

producers and their final allocation, ∆qf = kf − wf .

Under variable prices, fringe firms have incentives to engage in arbitrage given that

they are paid at the market price where they sell their output. Hence, the residual

demands faced by the dominant firm in both markets are now given by18

q1(p1) = D(p1)− kf
q2(p1, p2) = D(p2)−D(p1) + (kf − wf )

18In these expressions we are implicitly assuming that arbitrage (kf −wf ) is not large enough to close

the price gap.
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Since pricing incentives are directly linked to market size, arbitrage pushes the day-

ahead price down and the spot price up as compared to the case with no arbitrage

(Lemma 1). We refer to this as the arbitrage effect.

Instead, under fixed prices, fringe firms have no incentives to engage in arbitrage

as they obtain the same price regardless of where they sell their output. Given this

indifference, and in line with empirical evidence, we assume that they offer all their

renewable output in the day-ahead market. Accordingly, the residual demands faced by

the dominant firm remain as in (1) and (2), and equilibrium prices remain as in Lemma

1.

The following lemma summarizes these results.

Lemma 2 Allowing for limited arbitrage implies that, relative to Lemma 1, in equilib-

rium pV1 goes down while pV2 goes up. In contrast, equilibrium prices pF1 and pF2 remain

unchanged.

It follows that the comparison between fixed prices versus variable prices essentially

bolts down to the comparison between the forward contract and the arbitrage effects.

As shown in our next proposition, this trade-off depends on the renewables’ ownership

structure.19

Proposition 1 Assume linear demand of the form D(p) = A − bp. If the arbitrage

constraint is binding, the comparison of equilibrium outcomes across pricing schemes

shows that:

(i) pF1 < pV1 if and only if wd > (kf − wf )/2.

(ii) pF2 < pV2 .

(iii) ∆qFf = 0 and ∆qVf = (kf − wf ).

(iv) ∆pF is decreasing in wd, while ∆pV is increasing in wf .

Proof. See the Appendix.

First, the proposition shows that day-ahead prices are relatively lower under fixed

prices when the dominant firm owns a big share of renewables. The reason is that

the forward contract effect under fixed prices is channeled through the dominant firm’s

renewable output, while the arbitrage effect under variable prices is channeled through

the fringe firms’ ability to arbitrage, which depends negatively on its own renewable

production (as shown in point (iii)).

19The proposition assumes linear demand to obtain closed form solutions. Similar results would apply

under more general functional forms.
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Second, the proposition shows that fixed prices ambiguously give rise to lower spot

prices than variable prices. Intuitively, the arbitrage effect under variable prices translates

into a higher demand in the spot market, which pushes spot prices up. Instead, the

forward contract effect under fixed prices weakens the incentives of the dominant producer

to raise the day-ahead price. This in turn reduces the extent of unserved demand, leading

to lower spot prices.

Last, all the factors that enhance market power in the day-ahead market also strengthen

the price differences across markets. Since the determinants of market power differ under

the two pricing schemes, so do the comparative statics of the price differences. While the

price differences under variable prices increase in wf (as it reduces the amount of idle

capacity that firms can use to arbitrage) the price differences under fixed prices decrease

in wd (as it mitigates the dominant producer’s market power).

Proposition 1 leads to an important conclusion: within this model, overall welfare

is greater under fixed prices than under variable prices.20 However, the choice between

the two might have distributional consequences between firms and consumers and across

consumer groups.21 Even though this issue is outside of this model, let us note that

in practice, households’ demand is typically cleared in the day-ahead market, whereas

energy suppliers and large energy consumers often buy a fraction of their demands in

the spot market. Hence, changes in day-head and spot prices do not affect all consumers

equally. The reduction in day-ahead market prices is particularly relevant, not only

because of the relatively larger volume of day-ahead transactions, but also because it

directly translates into lower prices for households.

2.3 Testable Predictions

The above analysis provides theoretical predictions which will be tested in the empirical

section of the paper. We group them in three blocks:

(i) Price-setting incentives in the day-ahead market: Under fixed prices, the

forward contract effect implies that, for given residual demands, the dominant firms

20Jha and Wolak (2019) find that financial arbitrage can reduce costs by improving the scheduling of

power plants in the day-ahead market. This can be due to cost complementarities across hours. This

source of efficiency does not show up in our model as we model hours independently of each others.
21To see the impacts on consumers, note that we can write the difference in consumer surplus as:

CSF − CSV =

∫ pV
2

pF
2

D (ρ) dρ−
[
qF1 ∆pF − qV1 ∆pV

]
. (8)

While the first term is positive, the second term can be positive or negative depending on parameter

values.
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do not take into account the price impact on their own wind output. This is unlike

the case in which firms are exposed to variable prices.

(ii) Arbitrage across markets: Under variable prices, the arbitrage effect implies

that fringe producers oversell in the day-ahead market as compared to their final

commitments. Their incentives to do so are greater the larger the price differential

across markets. Since this effect is not present under fixed prices, any differences

between the renewable fringe producers’ day-ahead and final commitments should

be orthogonal to the price differential.

(iii) Price differences across markets: the comparative statics of prices differences

differ under the two pricing schemes: they increase in wf under variable prices, but

decrease in wd under fixed prices.

Last, the interplay between the forward contract and the arbitrage effects deter-

mines whether market power in the day-ahead market is larger under variable prices

relative to fixed prices, or vice-versa. The resulting estimates will serve to determine

the relative strength of these two effects.

Before we take these predictions to the data, we move on to describing some of the

institutional details of the Spanish electricity market.

3 Context and Data

In this section, we describe the institutional setting, which is key for understanding the

pricing incentives faced by the Spanish electricity producers. We also describe our data

sources.

3.1 Market design and regulation

The Spanish electricity market is organized as a sequence of markets: the day-ahead

market, seven intraday markets that operate close to real-time, and several balancing

mechanisms managed by the System Operator. In order to participate in these markets,

plants must have offered their output in the day-ahead market first. Electricity produc-

ers and consumers can also enter into bilateral contracts whose quantities have to be

communicated to the Market Operator, or auctioneer, on an hourly basis one day ahead.

In our empirical analysis, we analyze bidding in the day-ahead market and arbitrage

between the day-ahead market and the first intraday market (which we refer to as the
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spot market). Both markets concentrate the vast majority of all trades, contributing to

approximately 80% of the final electricity price. The day-ahead market opens every day

at 12 pm to determine the exchange of electricity to be delivered each hour of the day

after. It is organized through a uniform-price central auction mechanism. On the supply

side, producers submit price-quantity offers specifying the minimum price at which they

are willing to produce with each of their units. The demand side works as a mirror

image. The auctioneer ranks the supply bids in an increasing order and the demand bids

in a decreasing order to construct the aggregate supply and demand curves, respectively.

The market clears at the intersection of the two: the winning supply (demand) units are

those that bid below (above) the market-clearing price. All winning units receive (pay)

such price.

The intraday markets work in a similar fashion as the day-ahead market, with the

difference being that all units - regardless of whether they are supply or demand units -

can enter both sides of the market in order to fine-tune their day-ahead commitments.

For instance, if a supplier wants to sell less (more) than its day-ahead commitment, it can

submit a demand (supply) bid in the intraday markets. The same applies to consumers.

The first intra-day market opens at 4pm on the day-ahead, 4 hours after the day-ahead

market. Because of their volume of trade, our empirical analysis will focus on comparing

the day-ahead and the first intra-day market (which we will refer to as the spot market).

Firms face a fine if their actual production deviates from their final commitment, which

provides strong incentives to avoid imbalances.

In some cases, non-strategic reasons can give rise to differences between the day-

ahead and the final commitments. For instance, a plant might suffer an outage after the

day-ahead market has closed, forcing it to buy back whatever it committed to produce.

Similarly, a renewable producer might have to buy or sell additional output if its wind

or solar forecasts turn out to be wrong.

However, in other cases, such differences might be explained by strategic consider-

ations. In particular, if market agents expect a positive price difference between the

day-ahead and intraday markets, they might want to engage in arbitrage. Producers

oversell in the day-ahead market at a high price and buy back their excess production

in the intraday market at a lower price. Similarly, suppliers delay their purchases to the

intraday market as much as they can.

However, as we considered in the theoretical analysis, the rules of the Spanish elec-

tricity market impose some constraints on arbitrage. In particular, supply (demand) bids

have to be tied to a particular generation (consumption) unit, and the quantity offered

(demanded) cannot exceed their maximum production (consumption) capacity. This
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implies that renewable plants (or big consumers and suppliers) have relatively more flex-

ibility to arbitrage than coal or gas plants, as these are more often operating at capacity.

For instance, renewables can offer to produce at their nameplate capacity in the day-

ahead market even when they forecast that their actual available capacity will be lower.

Likewise, suppliers can commit to consume below or above their expected consumption

knowing that they will have more opportunities to trade in the intraday markets.

Beyond differences in the ability to arbitrage, the regulation also introduces differences

in their incentives to do so, across technologies and market agents. Big customers and

suppliers face full price exposure, as they pay the market price and can keep any potential

profits from arbitrage. Instead, the incentives of renewable producers to arbitrage depend

on the pricing scheme they are subject to. We next describe the pricing schemes of

Spanish renewables, which are key for our identification strategy.

3.2 Pricing schemes for renewables

The pricing schemes for Spanish renewables have been subject to various regulatory

changes.22 In our empirical analysis, we will exploit the occurrence of the two most

recent regulatory changes affecting wind operators.

Prior to February 2013, the existing regulation (Royal Decree 661/2007) gave all

wind producers the ability to choose between two pricing schemes: either a market-based

scheme (Feed-in-Premium or FiP) or a fixed price scheme (Feed-in-Tariff or FiT). Under

the FiP option, wind producers had to sell their electricity directly into the wholesale

market and would receive a premium payment on top. Under the FiT option, wind

producers were obliged to bid their output at a zero price into the wholesale market and

would receive a fixed price for it (RD 661/2007; article 31). Since expected payments

under the FiP option were notably higher than under the FiT option, the vast majority

of wind operators opted for the former. We will label this regime as Regime I. When,

on 2 February 2013 (Royal Decree Law 2/2013), the Government decided to abolish the

FiP option “without any former notice”,23 all wind producers were de facto moved from

FiP to FiT.

The FiT regime – which we label as Regime II - Fixed Prices – only lasted until June

2014, when the government published the details for computing a new remuneration for

22See del Rio (2008) for an overview of the changes up to 2007, and Mir-Artiguesa, Cerda and del Rio

(2014) for the 2013 reform.
23The quotes are taken from ‘Pain in Spain: New Retroactive Changes Hinder Renewable Energy’,

published in April 2013 at www.renewableenergyworld.com. Similar quotes can be found in other indus-

try publications.
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each type of renewable installation (the Royal Decree 413/2014 was published on June

6, and Ministerial Order IET 1045/2014 that came into force on June 21).24 In two

earlier pieces of legislation (Royal Decree 9/2013 on July 14, 2013, and Law 26/2013 on

December 27, 2013), the Government had already announced the main guidelines of the

new regulation, but it did not actually implement it until June 2014.25

In general terms, the new scheme that was introduced in June 2014 – which we label

as Regime III – moved all renewable generators to FiP. Under this regulation, which

is still in place, renewables have to sell their production into the Spanish electricity

wholesale market and receive the market price for such sales plus additional regulated

payments.26 The latter is based on technology and vintage specific standards, and are

thus independent of the actual market revenues made by each firm. In particular, the old

wind farms (i.e., those that were commissioned before 2005) do not receive any additional

payment under the premise that they had previously received enough revenues to cover

their construction costs. Hence, there exist some differences between the pre-February

2013 regulation (Regime I) and the post-June 2014 regulation (Regime III), mainly in

the level of support. Nonetheless, they both have one thing in common: they expose

renewable producers to market-based prices, which is the key difference our analysis

focuses on.

3.3 Data

We use different sources of data on bids, costs, actual and forecast renewable production,

and weather data. First, we use detailed bid data from the Iberian market operator

(OMIE), which reports all the supply and demand functions submitted by all plants,

every hour, in the day-ahead market as well as in the intraday markets. We match the

plants’ bid codes with the plants’ names to obtain information on their owners and types

(e.g., for supply units, we know their technology and maximum capacity; for demand

24Various reasons explained these changes, including the regulator’s lack of a forward-looking under-

standing of market performance as well as the attempt to hide payment cuts under the change of pricing

format. Prior to 2013, market prices were relatively higher as compared to the fixed prices. Hence, the

regulator thought that by moving wind producers to the fixed price regime their payments would be

reduced. The opposite occurred prior to the 2014 regulatory change.
25We have ran placebo tests with these dates, which show that these laws had no effect.
26These include a remuneration per MW of installed capacity, meant to compensate those construction

costs that cannot be reasonably recovered through the market, and a remuneration per MWh produced,

meant to cover the costs of operating the plants. These two regulated payments are based, not on the

actual construction costs or market revenues of the plant, but rather on those of a so-called efficient and

well-managed company subject to technology-dependent standards.
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units, we know whether they are big customers with direct market access, suppliers of

last resort, or liberalized suppliers). With these bid data, we can construct each firm’s

residual demand by subtracting the supply functions of all its competitors from the

aggregate demand curve. We also observe the market-clearing price, the marginal unit

that set it, and the units that submitted prices close to it.

Second, we have data on the cost characteristics of all the coal plants and Combined

Cycle Gas Turbines (CCGTs), including their efficiency rates (i.e., how much fuel they

burn per unit of electricity) and their emission rates (i.e., how much carbon they emit

per unit of electricity). Together with Bloomberg daily data on coal prices (API2), gas

prices (TTF), and CO2 prices (ETS), we compute engineering-based estimates of each

thermal plant’s marginal cost, on a daily basis.27 While these are reliable cost data

sources,28 we cannot rule out measurement errors. For instance, the price of coal and

gas in international markets need not reflect the correct opportunity cost firms face when

burning their fossil fuels. This might be due to transaction costs, transportation costs, or

contractual constraints on firms’ ability to resell the gas they buy on long term contracts.

Indeed, large disparities between the load factors of various CCGTs in the market suggest

that one of the dominant firms might have had access to cheaper gas, well below the price

of gas in the international exchanges.29

Third, we use publicly available data provided by the System Operator (REE) on

the hourly production of all the plants in the Spanish electricity market, including the

fraction that they sold through the market or through bilateral contracts.30 These data

allow us to compute, on an hourly basis, the market shares of the various technologies

27A 7% tax was levied at the start of 2013 on all electricity producers, including both conventional

and renewables. We take this into account when computing marginal costs in our empirical analysis.
28The cost parameters were provided to us by the Spanish System Operator (REE) and were previously

used in Fabra and Toro (2005) and Fabra and Reguant (2014). We have recently updated them to include

the new capacity additions. The efficiency and emission rates are in line with standard measures for

each technology, but incorporate finer heterogeneity across plants, e.g., reflecting their vintage, or, for

the coal plants, incorporating the exact type of coal they burn which affects both their efficiency as well

as their emission rate.
29For instance, as reported by REE, in 2014 Gas Natural’s CCGTs had the highest load factors (22%

on average, as compared to 4% of all the other CGGTs). Notably, this was true also for twin CCGTs

(i.e., at the same location and same vintage, owned by different companies). For instance, Besos 4 owned

by Gas Natural operated at a 65% load factor, while Besos 3 owned by Endesa operated at an 8% load

factor. The same was true for San Roque 1 (owned by Gas Natural, 59% load factor) and 2 (owned by

Endesa, 12% load factor).
30One drawback of these data is that it does not include information on the units located in Portugal.

However, as these plants were not affected by the regulatory changes implemented by the Spanish

Government, we exclude them from the analysis.
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(including renewables) and firms. Since we observe the supply and demand allocated

to the vertically integrated firms, we can compute their hourly net positions, i.e., their

production net of their bilateral contracts and vertical commitments.31 Furthermore, by

computing each plants’ day-ahead and final commitments, we can assess whether firms

engaged in arbitrage markets. The System Operator also provides detailed information

on the hourly demand and wind forecasts one day ahead, right before the market opens.

Last, we also use publicly available daily weather data (including temperature, wind

speed, and precipitation) provided by the Spanish Meteorological Agency (AEMET).

In order to encompass the two main regulatory changes affecting renewables in the

Spanish electricity market, the time frame of our empirical study runs from February

2012 until January 2015. During this period, there were no major capacity additions

or other relevant changes in the market structure. There were three main vertically-

integrated firms, which we refer to as the dominant firms : Iberdrola (firm 1), Endesa

(firm 2), and Gas Natural (firm 3). They all owned various technologies, with differences

in the weight of each technology in their portfolios. Notably, Iberdrola was the largest

wind producer, while Gas Natural was the main owner of CCGTs.32 There was also a

fringe of conventional producers, renewable producers, and independent suppliers. The

market structure in the renewable segment was more fragmented than in the conventional

segment. The market share for the dominant firms was relatively lower in the renewable

segment than in the conventional segment. Annual renewable production ranged from

42% to 45% of total generation, and the rest came from nuclear (19%), hydro (10% to

18%), coal (13% to 15%) and CCGTs (3% to 9%).

Table 1 reports the summary statistics. We use hourly data in all of our analysis

and there were a total of 26,304 hourly observations, split into 8,784 observations for the

first period with market prices (Regime I, from 1 February 2012 to 31 January 2013),

12,120 observations for the period with fixed prices (Regime II, from 1 February 2013 to

21 June 2014) and 5,400 observations for the second period with market prices (Regime

III, from 22 June 2014 to 31 January 2015). The day-ahead price ranged between 38

to 52 Euro/MWh, being lower on average but also more volatile during Regime II. The

spot market price was consistently lower than the day-ahead price. The average price

differential across the two markets ranged between 0.3 and 1.2 Euro/MWh, being smaller

during Regime III. Demand net of wind forecasts was similar on average across all three

31We do not include vertical commitments due to regulated sales since these are simply pass-through

market prices to the final consumers.
32This explains why Gas Natural is the price-setter during a large fraction of the time. This, together

with the fact that Gas Natural had long-term contracts for gas at prices below the international spot

price for gas, explains why we sometimes find negative markups in the day-ahead market prices.
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periods, if anything only slightly higher under Regime III.

Table 1: Summary Statistics

R I R II R III

Mean SD Mean SD Mean SD

Price Day-ahead 50.2 (13.8) 38.1 (22.2) 52.0 (11.2)

Price Intra-day 1 48.9 (14.2) 37.2 (22.1) 51.7 (11.7)

Price premium 1.2 (5.0) 1.0 (5.6) 0.3 (3.9)

Marginal Cost 47.5 (6.6) 42.3 (7.2) 37.0 (3.8)

Demand Forecast 29.8 (4.8) 28.5 (4.6) 28.1 (4.3)

Wind Forecast 5.7 (3.4) 6.5 (3.6) 5.0 (3.2)

Dominant wind share 0.6 (0.0) 0.7 (0.0) 0.6 (0.0)

Fringe wind share 0.4 (0.0) 0.3 (0.0) 0.4 (0.0)

Installed capacity wind 22.76 23.01 23.03

Dominant non-wind share 0.8 (0.0) 0.8 (0.1) 0.8 (0.1)

Fringe non-wind share 0.2 (0.0) 0.2 (0.1) 0.2 (0.1)

Installed capacity non-wind 99.82 100.16 100.08

Notes: Sample from 1 February 2012 to 31 January 2015. Regime I is from 1 February 2012 to 31

January 2013; Regime II is from 1 February 2013 to 21 June 2014; Regime III is from 22 June 2014 to

31 January 2015. Prices are in Euro/MWh. Demand forecasts, wind forecasts and installed capacities

are in GWh. Installed capacities are in GW.

A first look at the data It is illustrative to provide a first look at the raw data.

Figure 1 plots the difference between the day-ahead and the final output commitments for

wind plants belonging to the fringe and to the dominant firms (positive numbers reflect

overselling in the day-ahead market, while negative numbers reflect withholding). As

can be seen, when paid according to fixed prices (Regime II), the fringe wind producers

did not engage in arbitrage (i.e., on average, they sold all of their output in the day-

ahead market). They also behaved fairly similarly as the dominant firms. Instead, when

paid according to market prices (Regimes I and III), the fringe wind producers actively

engaged in arbitrage by overselling their wind output in the day-ahead market.33 The

33This is consistent with Ito and Reguant (2016), who showed that fringe firms stopped arbitraging

after the switch from market prices to fixed prices (from Regime I to II). Our results further show that

they resumed arbitrage after the switch from fixed to variable prices (from Regime II to III).
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smaller amount of arbitrage by wind plants during Regime III is likely due to the smaller

price differences across markets (see Table 1). The change in the pricing schemes also had

a strong impact on the dominant producers’ behavior. The dominant producers withheld

more wind output across markets when exposed to market prices, notably so after the

switch from Regime II to III.34

Figure 1: Overselling and withholding across markets by wind producers

Notes: This figure shows the day-ahead relative to the final commitments of wind producers belonging

to both the dominant and the fringe firms. The values greater than 0 reflect overselling, while values less

than 0 reflect withholding. The vertical lines date the changes in the pricing schemes for renewables.

While this figure suggests that changes in the pricing schemes had a strong impact

on firms’ bidding behavior, it would be misleading to derive further conclusions from

these figures alone. First, price differences, overselling, and withholding across markets

are all jointly determined in equilibrium, thus implying that they cannot be assessed

in isolation. Furthermore, one needs to take into account the dominant firms’ overall

behavior, not just the one that is reflected in the supply of their wind plants. Since

34Figure 4 in the Appendix shows that these effects showed up not only on average, but also across

all hours of the day, and particularly so at peak times.
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wind represents only a fraction of the dominant firms’ assets, and given the noise in the

series, it is difficult to visualize large differences across time in their overall withholding

behaviour. Last but not least, exogenous changes in some of the relevant variables (e.g.,

wind availability, or demand factors, among others) could be confounding some of the

effects. Without controlling for those factors, one cannot obtain robust conclusions.

Therefore, to properly analyze the impacts of renewables’ price exposure on market

power, we undertake a deeper empirical analysis in the rest of the paper.

4 Empirical Analysis

In this section, we perform an empirical analysis of the market impacts of renewables’

pricing schemes. To disentangle the mechanisms at play, we decompose the analysis in

four steps. First, we perform a structural analysis of the determinants of the dominant

firms’ price-setting incentives in the day-ahead market. Second, we use a differences-

in-differences approach to assess the effects of pricing schemes on the fringe’s incentives

to engage in arbitrage. Third, we analyze whether the determinants of price differences

across markets are consistent with the model’s predictions. Last, to assess the overall

impact of the pricing regulation, we leverage on our structural estimates to construct

estimates of market power under the two pricing schemes.

4.1 Price-setting incentives in the day-ahead market

We use a structural approach to assess whether the changes in the renewables’ pricing

schemes affected the price-setting incentives of the dominant producers in the day-ahead

market. Our focus is on whether the dominant firms take into account changes in their

wind output when setting prices, and whether this depends on the pricing scheme in

place, as predicted by our theoretical model.

Empirical Approach Building on the first-order condition of profit maximization in

the day-ahead market, equation (7), we estimate the following empirical equation in hours

t in which firm i is bidding at or close to the market-clearing price:

bijt = ρp̂2t + β

∣∣∣∣ qit
DR′it

∣∣∣∣+
3∑

R=1

θs
∣∣∣∣ wit

DR′it

∣∣∣∣ Ist + αij + γt + εijt, (9)

where bijt is the marginal bid of firm i when bidding at or close to the market-clearing

price with unit j at time t; p̂2t is the expected spot price at time t; qit is firm i’s total sales

at time t; DR′it is the slope of firm i’s residual demand at time t at the market-clearing
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price; wit is firm i’s wind output at time t; Ist are three indicator variables for each pricing

scheme s (Regimes I, II, and III);35 αij are unit fixed effects, and γt are time fixed effects.

We include unit, quarter, and hour fixed-effects, while linear and quadratic time trends

are added in a cumulative fashion. Last, εijt is the error term clustered at the plant level

to allow errors to be correlated within the same plant.36

Variable Description First, on the left hand side of equation (9), we include the bids

of all price-setting units belonging to one of the dominant firms,37 plus those within a

5 Euro/MWh range as they have an ex-ante positive probability of setting the market

price. We exclude (i) hydro units (since it is difficult to assess the true opportunity costs

of using their stored water), as well as (ii) units that operate on either the first or last

step in their bidding functions (since their constraints for reducing or increasing their

output might be binding, invalidating the use of the first-order in equation 7).38

On the right hand side of (9), in order to compute the expected spot market price,

we use information available to firms at the time the day-ahead market opens. In partic-

ular, we regress demand and wind forecasts, hourly dummies, and date dummies on the

observed spot market price, and use the estimated coefficients to predict p̂2t.
39 Also, in

order to build the realized residual demand curve faced by each firm, we fit a quadratic

function to the residual demand curve and calculate its slope at the market-clearing price

(see Figures 8 in the Appendix for an illustration).40

35We define the indicator variables for Regimes I, II, III using the February 1, 2013 and June 22,

2014 cutoffs, respectively, which is when the regulatory changes were fully implemented, as described in

Section 3.2.
36Our results are robust to several ways of clustering, such as at firm-day, firm-month-year, and

firm-week levels (see Table 6 in the Appendix).
37If a dominant firm owns more than one unit with these characteristics, we include them all in the

analysis.
38We follow a similar approach as Fabra and Reguant (2014) and Reguant (2014).
39The estimating equation is p2t = αDfc

t + βwfc
t + Xt + Yt + εt, where the two first regressors are

the demand and wind forecasts. We allow all the coefficients to vary across pricing regimes, so the

relationship between the spot price, demand, and wind forecasts need not be the same across regimes.

The errors are clustered within day.
40Approximating the slope of residual demand is common in the existing literature, see also Wolak

(2003); Reguant (2014); Fabra and Reguant (2014); Ito and Reguant (2016). To avoid the flat region of

the inverse residual demand curve occurred at zero price, which makes our linear approximation poorly

predict the local slopes, we truncate the residual demand to the minimum quantity that firms are willing

to serve at zero price. Note that we also explore the other alternative methods such as kernel smoothing

around the market price (Reguant, 2014) and fitting linear splines with 10 knots to the residual demand

curve. Our conclusions are similar regardless the method of approximation we use.
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Identification When estimating equation (9), there are at least two identification chal-

lenges. First, the slope of the residual demand at the market-clearing price (DRit) is likely

endogenous, thus making the markup terms endogenous as well.41 Second, other factors

may influence the bids, and hence not properly controlling for them could lead to omitted

variable bias.

To address the first challenge, we instrument the slope of the day-ahead residual de-

mand, DR′it, using wind speed and precipitation (and each of them interacted with three

dummies for the pricing scheme) as residual demand shifters. The exclusion restriction

holds under the assumption that, conditional on unit and time fixed effects, wind speed

and precipitation affect firms’ marginal bids only through our markup parameters. This

assumption is plausible and common in the literature (Fabra and Reguant, 2014; Ito

and Reguant, 2016) because wind speed and precipitation may influence the firm’s in-

framarginal quantity, but they are unlikely to influence the marginal bid directly. We

then use Two-Stage Least Squares (2SLS) to estimate equation (9). To address the sec-

ond challenge, we add a set of flexible controls, such as time trends, and quadratic time

trends, on the top of a set of fixed effects discussed earlier.

Since we want to understand whether firms’ markups are affected by their wind out-

put, our parameter of interest in equation (9) is θs. We expect it to take a negative value

under fixed prices (Regime II), but we expect it to be not significantly different from

zero under market prices (Regimes I and II). This would reflect that firms do not (do)

take into account the price effects on their wind output when it is paid at fixed (variable)

prices.

Results The results are shown in Table 2. In columns (1)-(3), we constrain the coeffi-

cient on the firm’s markup over its total output to be equal to one. In all specifications,

the p̂2 coefficients are positive, as expected. The results confirm that wind output has

a significant price-depressing effect when renewable output is paid at fixed prices, but it

has a small and noisy effect otherwise, consistently with our predictions. Moreover, these

coefficients are stable across the different specifications, reassuring robustness regardless

of the set of flexible controls we use. In column (4), we allow the coefficient for the firm’s

total output markup to vary. The estimated coefficient for the Regime II indicator vari-

able is still very similar. The sign of the coefficient for the firm’s total output markup is

positive as expected, given that greater output and a steeper residual demand enhance

41Note that, since we use the predicted spot price (p̂2t) based on the public information available to

firm at day-ahead, it is exogenous.
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market power.42

Table 2: The Forward Contract Effect

2SLS

(1) (2) (3) (4)

RI × wit

DR′
it

6.35 9.31 9.10 5.54

(5.03) (6.28) (6.10) (5.47)

RII × wit

DR′
it

-14.2*** -14.5*** -14.9*** -14.3***

(3.03) (2.88) (3.02) (3.24)

RIII × wit

DR′
it

1.72 0.049 0.60 5.69

(4.10) (3.42) (3.21) (5.24)

p̂2t 0.77*** 0.78*** 0.77*** 0.38***

(0.057) (0.062) (0.062) (0.15)

qit
DR′

it
4.81***

(1.25)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: This table shows the estimation results of equation (9) using 2SLS. All regressions include linear

time trends, unit, firm and quarterly dummies. In columns (2)-(4) we add day-of-the-week dummies,

hour fixed effects, and quadratic time trends in a cumulative fashion. We constrain the coefficient for the

markup for firms’ total output to be one in columns (1) to (3), and we relax this by allowing the markup

coefficient to vary in column (4). We limit hourly prices to be within 5 Euro/MWh range relative to

the market price and exclude the outliers (bids with market prices below the 1st percentile and above

the 99th percentile). We instrument our markups with wind speed, precipitation, and each of them

interacted with the three pricing scheme indicators. The standard errors are clustered at the plant level.

See Table 6 for alternative ways of clustering.

It would be misleading to compare the coefficients on the various variables given

42The firms included in this analysis are vertically integrated. Hence, one could conjecture that they

set prices to maximize the profits of the vertical chain. Table 7 in the Appendix reports the results

accounting for vertical integration. The main predictions remain valid. However, relative to the results

in Table 2, the coefficients under the Regimes I and III go up, with the former becoming slightly

significant. This is an indication that firms were only maximizing their supply-side profits as market

power is under-estimated when we take account firms’ net sales.
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that their means are very different. To get some orders of magnitude of the forward

contract effect, one can take for instance the mean of a dominant firm’s hourly wind

production during Regime II, 317.5 MWh, over the mean of the slope of its residual

demand, 404.9 Euro/MWh. Using the estimates in column (1) for instance, an increase in

wind output of ten percent over its mean would imply a price reduction of 1.2 Euro/MWh

(approximately, a 3.1 percent reduction over the average price) during Regime II.

4.2 Arbitrage across markets

Since day-ahead prices were systematically higher than prices in the spot market, fringe

producers under Regimes I and III with market prices could gain by engaging in arbitrage;

in particular, by overselling in the day-ahead market at high prices and buying back their

excess supply at the lower spot price. However, differences between the day-ahead and

the final commitments could also be explained by non-strategic reasons, such as wind

or demand forecast errors. What distinguishes arbitrage from non-strategic reasons is

that the former are linked to price differences across markets, whereas the latter are not.

Accordingly, in order to understand whether pricing rules affected firms’ incentives to

engage in arbitrage, we examine whether the response of overselling to the predicted

price differential differed when renewables were paid according to fixed (Regime II) or

market prices (Regimes I and III).43

Empirical Approach Following a DiD approach, we regress the differences between

the day-ahead and the final output commitments on the price differential, interacted with

a dummy variable for each pricing regime. Using this approach, we limit the concern that

other unobservable time-variant factors may also influence arbitrage through the price

differential, therefore leading to an omitted variable bias. Our treatment group is wind

producers and our two possible control groups are: (1) non-wind renewable producers

(i.e., solar, small hydro and cogeneration units), and (2) suppliers in the liberalized

market.

We split the sample in two, each of which contains one regulatory change. The first

sample (d = 1), which ranges from February 1, 2012, to February 1, 2014, contains the

change from variable to fixed prices that took place on February 1, 2013. The second

sample (d = 2), which ranges from February 1, 2013, to January 31, 2015, contains the

43Our results are consistent with Ito and Reguant (2016), who show that after the first regulatory

change, from Regime I to II, fringe producers stopped arbitraging. We further show that the second

regulatory change, from Regime II to III, had the opposite effect. Also, we rely on a differences-in-

differences approach using two possible control groups.
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change from fixed to variable prices that took place on June 22, 2014.

We run three separate OLS regressions, one for each sample d = 1, 2 and one for each

each control group g= non-wind renewables, suppliers. Note that for sample d = 2, we

cannot use other renewables as the control group given that they were also affected by

the regulatory change. We estimate the following equation, for d = 1, 2,

∆lnqt =α + β1WIdt ∆p̂t + β2W∆p̂t + β3WIdt + β4I
d
t ∆p̂t + β5∆p̂t+

β6W + β7I
d
t + ρXt + ηt

(10)

In equation above, I1t is an indicator for fixed prices (Regime II) –the switch from

variable to fixed prices. Similarly, I2t is an indicator for market prices (Regime III) –

the switch from fixed to variable prices. For both samples, W is an indicator for wind

fringe producers. We include a set of control variables such as weather controls (daily

solar radiation time and precipitation), the hourly demand forecast error, the hourly

wind forecast error, week of sample fixed effects, and day-of-week fixed effects. Standard

errors are clustered at the week of sample.

Our coefficient of interest, β1, captures the change in the price response of arbitrage

by wind producers relative to the control group. We expect the sign of this coefficient

to be negative using sample 1, as the switch from variable to fixed prices should reduce

the wind producers’ incentives to engage in arbitrage. On the contrary, we expect the

coefficient for β1 to be positive using sample 2, as the switch from fixed to variable prices

should induce wind producers to engage in arbitrage again.

A Key Variable To capture how fringe firms reacted to changes in the price differ-

ential across markets that they could forecast at the time of bidding, we construct the

forecasted price premium (∆p̂t) as follows. First, we use two exogenous variables that

were available to firms prior to bidding: demand and wind forecasts. Similar to how we

compute the expected spot price in Section 4.1, we regress demand and wind forecasts,

hourly dummies, and date dummies on the price premium.44 We then use the regression

coefficients to obtain the forecasted price premium at time t, ∆p̂t. Using ∆p̂t rather

than the actual price difference is important to rule out potential endogeneity concerns

between arbitrage and price differences.

Parallel Trends Non-wind renewable producers were subject to fixed prices under

Regimes I and II, and were then moved to variable prices under Regime III. Hence, their

44 The estimating equation is ∆pt = αDfc
t + βwfc

t + Xt + Yt + εt, where the two first regressors are

the demand and wind forecasts. We also allow all the coefficients to vary across pricing regimes. The

regressions have an Regime-squared ranging from 0.3 to 0.4.
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incentives to engage in arbitrage should be similar to those of wind during Regimes II

and III regimes. For this reason, one should observe parallel trends for wind vs. non-

wind renewables during Regimes II and III. The regulation impact on wind overselling

is captured by the difference between wind vs. non-wind renewables during Regime I.

For suppliers, they have incentives to engage in arbitrage in all periods as they were not

subject to price regulation. Hence, we expect suppliers to engage in arbitrage just like

wind under Regimes I and III. For this reason, one should observe parallel trends for

wind vs. suppliers during those regimes. The regulation impact on wind overselling is

captured by the difference between wind vs. suppliers during Regime II.

To compare the price response of wind producers, non-wind renewable producers, and

suppliers, we first document the response of each group’s arbitrage to the predicted price

premium on a quarterly basis. We regress the forecasted price premium, ∆p̂t, on the

difference between the logs of the day-ahead and the final commitments of firms in group

g (wind producers, non-wind renewable producers, and suppliers), ∆lnqtg. Our sample

includes 13 quarters, from Q1 2012 to Q1 2015. We control for demand and wind forecast

errors, denoted Der
t and wer

t , as these could give rise to differences between day-ahead

and final commitments which are unrelated to arbitrage.45 We also control for seasonality

(i.e., using dummies for days-of-the-week and week of sample), for daily solar radiation

time, daily precipitation, and temperature, all captured in Xt. The estimating equation

is

∆lnqtg =α +
13∑
q=1

θqg∆p̂t + γDer
t + δwer

t + ρXt + ηtg (11)

where ηtg is the error term. Our coefficients of interest are θqg, which capture the response

of arbitrage by group g at quarter q to the predicted price differential. We cluster standard

errors at the week of sample.

Figures 2 plots the θqg coefficients from equation (11) for each quarter.46 As expected,

in Figure 2 (a) one can observe that during Regime II (Q1 2013 to Q2 2014), the price

response of arbitrage by the non-wind renewable producers is similar to that of wind

producers and not significantly different from zero. Similarly, Figure 2 (b) shows that

during Regime II (Q1 2013 to Q2 2014), the price response of the suppliers’ arbitrage is

45Demand and wind forecast errors are computed by subtracting the hourly forecast and the observed

values. The forecast values are publicly available to firms the day before.
46For this graphical evidence, hours when the predicted price differential gives a poor prediction for the

observed price differential are excluded (i.e., when the difference between predicted and observed price

differential is above the 50th percentile). Figure 5 in the Appendix shows that, in some hours, the pre-

dicted price differential departs substantially from the observed one, probably due to some unobservables

not included in our estimating equation.
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positive and very similar to that of the wind producers during Regimes I and III (2012

and Q3 2014 onwards). Therefore, Figure 2 provides graphical evidence on the parallel

trend between wind and each of the control groups, during the relevant periods. The

statistical test for each of the parallel trends, Table 8 in the Appendix, shows three

parallel trend tests: (1) for sample d = 1, during Regime I the wind producers and the

suppliers behave similarly in response to the predicted price differential (p-values 0.529);

(2) for sample d = 1, during Regime II wind and non-wind renewables behave similarly

(p-values 0.151); (3) for sample d = 2, during Regime III, wind and suppliers behave

similarly (p-values 0.503).

Results We report the DiD results (β1 coefficients from equation (10)) in Table 3.47

The impact of the switch from market prices (Regime I) to fixed prices (Regime II)

is shown in columns (1) and (2), depending on whether we use non-wind renewables

or suppliers as the control group, respectively. In both cases, the negative coefficients

show that this switch reduced arbitrage relative to both control groups, and by a similar

magnitude. In contrast, the impact of the switch from fixed (Regime II) to variable prices

(Regime III), shown in column (3), was positive, thus indicating that this switch brought

wind fringe producers back to arbitrage.48 Overall, these results are all consistent with

our predictions.

Having confirmed the empirical relevance of the forward contract and the arbitrage

effects, we next provide further evidence showing that the resulting price differences

across markets responded to changes in the renewables’ market structure, as predicted

by the model.

4.3 Price differences across markets

Empirical Approach Our model predicts that price differences across markets re-

spond differently to changes in the wind production market shares depending on whether

wind producers are subject to fixed or variable prices. To test for this, we use 2SLS and

47The complete results with the overselling response to the price premium (and its corresponding

p-values) are reported in the Appendix Table 8.
48As mentioned earlier, during Regime III, all renewables are exposed to market prices, hence we

expect to see their price responses are not very different with that of wind. Here, we do not report the

effect of the move from Regime II to III as the other renewables were also affected by it. The treatment

effect is also positive, but smaller than that on column (3). See the Appendix Table 8.
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Figure 2: Arbitrage Trends by the Fringe (Wind, Non-Wind Renewables, and Suppliers)

(a) Non-Wind Renewables

(b) Suppliers

Notes: This figure plots the coefficients of the OLS regression in equation (11) for (a) wind vs. other

non-wind renewable producers and (b) wind vs. suppliers. It captures the response of overselling to the

predicted price differential. Positive numbers suggest that overselling was increasing in the predicted

price differential. A zero coefficient shows no attempt to arbitrage. The parallel trends are shown by

the shaded areas: during Regime II for (a), and during Regimes I and III for (b). The sample includes

hours from 1 January 2012 to 31 March 2015 to ensure a similar number of observations in each quarter.

Hours when the predicted price differential is poorly predicted are excluded.
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Table 3: Impacts of Changing the Pricing Schemes on Overselling by Wind

Non-wind renewables Retailers

(1) (2) (3)

∆p̂× Wind × R II -0.071*** -0.069***

(0.0068) (0.014)

∆p̂× Wind × R III 0.059***

(0.011)

Observations 41,080 41,080 34,194

Notes: This table shows the β1 coefficients from equation (10). Each column is a different regression

using the log of overselling as the dependent variable. Non-wind renewables is the control group in

columns (1), suppliers in columns (2)-(3). Columns (1) and (2) use sample d = 1 from 1 February 2012

to 1 February 2014, with the Regime II indicator equal to one for days after 1 February 2013, while

column (3) uses the sample from 1 February 2013 to 31 January 2015, with the Regime III equal to one

for days after 22 June 2014. All regressions include seasonality controls, hour of day, and week fixed

effects. Note that, Under Regime III, non-wind renewables are also affected by the regulation. Hence,

we prefer not to use it as a control group in our analysis during Regime III. The standard errors are

clustered at the week of sample.

estimate the following empirical equation for our second stage:

∆pt =α +
2∑

s=1

βs
1It + β2

wdt

Wt

+
2∑

s=1

βs
3It
wdt

Wt

+ α1
ˆDR′1t + α2

ˆDR′2t + γXt + εt (12)

where ∆pt is the price premium at time t; It takes two values (1 for Regime I, 2 for Regime

III, and therefore 0 for Regime II serves as the reference point); the wind share wdt/Wt

captures the wind share of the dominant firms as it is computed as the ratio between

the dominant firms’ wind output over total wind output; ˆDR′1t and ˆDR′2t capture the

(instrumented) slopes of the residual demands faced by the dominant firms in the day-

ahead and intraday markets, respectively, from our first stage regression. We follow a

approach similar as in Section 4.1 as the slopes of the residual demands are potentially

endogenous. Therefore, we instrument these two slopes (DR′1 and DR′2) with daily

and hourly weather variables (daily average, minimum, and maximum temperature, and

average temperature interacted with hourly dummies).49 Xt is a set of controls, such as

demand forecasts,50 wind forecasts, and dummy variables (i.e., hourly dummies, peak-

49We compute the aggregate hourly residual demand faced by the dominant firms in the day ahead

and in the intraday markets and their slopes using the same approach as discussed in footnote 40.
50The demand forecast is predetermined before the day-ahead market opens. It is therefore exogenous.
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hour dummy, weekend dummy); last, εt is the error term. We use bootstrap standard

errors with 200 replications.

The coefficient β1 compares price differences across pricing schemes. Coefficients β2

and β3 capture the impacts of changes in the wind shares on the price difference. Our

theoretical model predicts that an increase in the dominant firms’ wind share should

reduce the price differential when renewables are subject to fixed prices, but it should

increase the price differential under variable prices. Regarding the other coefficients, we

expect that all the variables that enhance market power –a higher demand and a steeper

(flatter) demand at day-ahead (spot)– also enlarge the price differences across markets.

Results Table 4 reports our main coefficients of interest: β2, β
1
3 , and β2

3 from equation

(12). The remaining coefficients are all broadly consistent with our theoretical predic-

tions.51 We can see that the price difference is smaller when the wind share of the dom-

inant firms increases. Also, price differences are higher under variable prices (Regimes I

and III) relative to fixed prices (Regime II) when the wind share of the dominant firms

increases, as reflected by the positive coefficients of Regime I × wdt/Wt and Regime III

× wdt/Wt in all columns. This evidence is consistent with the predictions of the model,

giving further support to the relevance of the forward contract effect under fixed prices

(which is strengthened the higher wd) and the arbitrage effect under variable (which is

weakened the higher wd).

4.4 Market power in the day-ahead market

Our results in 4.1 showed that, given the observed residual demands, firms had weaker

incentives to increase day-ahead prices when their renewable output was paid according to

fixed rather than variable prices. However, this alone does not allow us to conclude that

reducing firms’ price exposure mitigated market power in the day-ahead market, which

is the most relevant market given its size. As our previous results also indicate, the

pricing schemes might have also affected firms’ residual demands through the impacts on

arbitrage across markets. Therefore, to evaluate the overall impact of the pricing schemes

on market power in the day-ahead market, in this section we compute and compare firms’

markups across pricing regimes.

Using the first-order condition of profit-maximization –represented by equations (7)

51See the complete list of coefficients is in the Appendix, Table 9. The sign of the other coefficients,

such as those on total demand and the slopes of the residual demands in the day-ahead and in the

intraday markets, are respectively positive, negative, and positive, as expected. Results are very similar

if we instead define the market share variable as wdt/wft.
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Table 4: The Impact of Pricing Schemes on Price Differences across Markets

2SLS

(1) (2) (3) (4)

wdt

Wt
-0.59*** -0.50*** -0.59*** -0.50***

(0.18) (0.17) (0.18) (0.18)

R I × wdt

Wt
0.44** 0.46** 0.44** 0.46**

(0.21) (0.19) (0.21) (0.21)

R III × wdt

Wt
0.46** 0.41** 0.46*** 0.41**

(0.18) (0.17) (0.16) (0.17)

Weekend FE N N Y Y

Peak Hour FE N Y N Y

Observations 25334 25334 25334 25334

Notes: This table shows only our coefficients of interest: β2 and β3 from equation (12). The complete

list of coefficients is in the Appendix, Table 9. R I is an indicator for Regime I periods, R III for Regime

III periods, and Regime II periods are the reference periods. We use bootstrap standard errors with 200

replications.

in the theory analysis and (9) in the empirical analysis– markups in the day-ahead market

can be expressed as
p1t − p̂2t
p1t

=

∣∣∣∣∂DRi1t

∂p1t

∣∣∣∣−1 qi1t − Itwi1

p1t

where, leveraging on the structural estimates obtained in Section 4.1, we set It = 1 under

Regime II and It = 0 under Regimes I and III.

Results The first and third rows of Table 5 report firms’ average markups in the day-

ahead market (using either the simple average or the demand-weighted average). Figure

3 shows their distribution. Markups are always relatively lower under fixed prices: the

average markup during Regime II was 6.3%, while it was 8.3% and 10.7% under Regimes

I and III regimes, respectively. A two-sample Kolmogorov–Smirnov test rejects at 1%

significance level the hypothesis that the markup distributions are the same across pricing

regimes. A similar conclusion applies when comparing the markups of each dominant

firm individually, for off-peak versus on-peak hours, or for more windy or less windy

hours.52 This evidence on the markups comparison is also consistent with the slopes

of the residual demands being relatively larger under fixed prices, thus indicating that

52See Figures 6 and 7 in the Appendix.
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the weaker incentives to exercise market power induced firms to submit flatter supply

functions (see the last row of Table 5). This effect seems to have played a stronger role

than the absence of significant arbitrage.

Table 5: Average markups across pricing regimes

R I R II R III

Mean SD Mean SD Mean SD

Markups (in %) – Simple average

Day-Ahead (structural) 8.3 (3.3) 6.3 (3.3) 10.7 (3.7)

Overall (engineering) 8.6 (23.1) 8.1 (29.4) 29.7 (14.0)

Markups (in %) – Demand weighted average

Day-Ahead (structural) 8.3 (3.2) 6.4 (3.3) 10.7 (3.6)

Overall (engineering) 10.0 (22.8) 9.2 (29.6) 30.4 (13.5)

Slope of day-ahead residual

demand (in MWh/euros)

524.2 (78.2) 553.6 (120.7) 418.2 (73.0)

Notes: It reports the mean and standard deviation of markups and slopes of the day-ahead residual

demand using the sample from February 2012 to February 2015. Regime I (market prices) is from 1

February 2012 to 31 January 2013; Regime II (fixed prices) is from 1 February 2013 to June 13 2014;

Regime III (market prices) is from June 14 2014 to January 2015, for three dominant firms. It only

includes marginal bids around 5 Euro/MWh range and bids with prices above 25 Euro/MWh.

These results are a lower bound on the degree of market power actually exercised

by firms, given that the expected spot market price (which we have used as the shadow

cost of day-ahead sales) might also include a markup over the firm’s marginal costs.

To compute firms’ markups over their actual marginal costs, we rely on engineering

estimates for marginal costs. This approach, which is common in the literature,53 leads

to noisier markups due to potential measurement errors in the marginal cost estimates.54

Nonetheless, as shown in Table 5, the results are consistent with our main result; namely,

market power as measured by the price-cost mark-ups was weaker when renewables were

paid according to fixed prices. Also note that the price-cost markups are larger on average

than the markups at day-ahead, given that the expected spot market price includes a

53For example, see Borenstein, Bushnell and Wolak (2002), Fabra and Toro (2005), or Fabra and

Reguant (2014), among others.
54For instance, we see some negative markups which could be explained by firms buying coal and gas

through long-term bilateral contracts at prices below the spot market price, which we use to compute

our marginal cost estimates.
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Figure 3: Distribution of day-ahead markups

Notes: This figure plots the distributions of day-ahead markups for all firms by pricing regimes, for

hours with prices above 25 Euro/MWh. Plots by firms (Figure 6) in the Appendix show a very similar

pattern. To absorb some seasonal variation in the markups, Figure 7 by wind quartiles in the Appendix

suggests that markups are still lower during Regime II, although they are relatively lower during windy

hours than low-wind hours.

markup over marginal costs.

5 Conclusions

In this paper, we have analyzed how the degree of firms’ price exposure impacts market

power, taking into account two countervailing incentives. On the one hand, as first

pointed out by Allaz and Vila (1993), reducing firms’ price exposure mitigates firms’

incentives to increase prices. On the other hand, if firms are insulated from price changes,

they face weaker incentives to arbitrage price differences, which enhances the dominant

producers’ market power.

This trade-off is particularly relevant for a key policy debate in electricity markets;

namely, how to pay for renewables. Since compliance with the environmental targets

requires massive investments in renewables, it is paramount to understand how alterna-
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tive pricing schemes for renewables impact market prices and efficiency. One of the key

messages of the paper is that understanding the impact of renewable policy requires an

analysis of the interaction between conventional and renewable suppliers, and not just of

renewables alone. The interplay between the two types of suppliers drives much of the

outcomes and efficiency results of the paper.

We have used the Spanish electricity market as a lab to explore the trade-off between

the forward contract and the arbitrage effects. Our empirical analysis confirms that the

dominant producers attempted to exercise market power by withholding output in the

day-ahead market. When exposed to variable prices, independent wind producers made

the withholding strategy more costly by overselling their idle capacity in the day-ahead

market in order to arbitrage price differences across markets. Instead, paying renewables

according to fixed prices reduced arbitrage, but it also mitigated the dominant producers’

incentives to withhold output in the first place. The latter effect dominated, giving rise

to relatively lower markups under fixed prices.

There are reasons to expect that market power concerns in electricity markets will di-

minish over time (as demand response and storage facilities become more widely spread).

However, there are also compelling reasons to remain vigilant as the increase in renew-

ables’ penetration in the hands of the dominant producers will make it increasingly

important to understand how renewables’ pricing rules affect market performance. The

long-run impacts of such differences on investment decisions are left for future research.

References

Acemoglu, Daron, Ali Kakhbod, and Asuman Ozdaglar. 2017. “Competition in

Electricity Markets with Renewable Energy Sources.” The Energy Journal, 38(KAP-

SARC Special Issue).

Aldy, Joseph E, Todd D Gerarden, and Richard L Sweeney. 2018. “Investment

versus Output Subsidies: Implications of Alternative Incentives for Wind Energy.”

National Bureau of Economic Research Working Paper 24378.

Allaz, Blaise, and Jean-Luc Vila. 1993. “Cournot Competition, Forward Markets

and Efficiency.” Journal of Economic Theory, 59(1): 1–16.

Bohland, M., and S. Schwenen. 2020. “Technology Policy and Market Structure:

Evidence from the Power Sector.” DIW 1856, April.

34



Borenstein, Severin, James Bushnell, and Frank Wolak. 2002. “Measuring Market

Inefficiencies in California’s Restructured Wholesale Electricity Market.” American

Economic Review, 92(5): 1376–1405.

Bushnell, James, and Kevin Novan. 2018. “Setting With the Sun: The Impacts of

Renewable Energy on Wholesale Power Markets.” Energy Institute at Hass WP 292.

Bushnell, James B, Erin T Mansur, and Celeste Saravia. 2008. “Vertical Ar-

rangements, Market structure, and Competition: An Analysis of Restructured US

Electricity Markets.” American Economic Review, 98(1): 237–66.

Callaway, Duncan S., Meredith Fowlie, and Gavin McCormick. 2018. “Loca-

tion, Location, Location: The Variable Value of Renewable Energy and Demand-

Side Efficiency Resources.” Journal of the Association of Environmental and Resource

Economists, 5(1): 39–75.

Cleveland, William S. 1979. “Robust Locally Weighted Regression and Smoothing

Scatterplots.” Journal of the American statistical association, 74(368): 829–836.

Cullen, Joseph. 2013. “Measuring the Environmental Benefits of Wind-Generated Elec-

tricity.” American Economic Journal: Economic Policy, 5(4): 107–33.

del Rio, Pablo. 2008. “Ten Years of Renewable Electricity Policies in Spain: An Anal-

ysis of Successive Feed-In Tariff Reforms.” Energy Policy, 36: 2917–2929.

Dressler, Luisa. 2016. “Support Schemes for Renewable Electricity in the European

Union: Producer Strategies and Competition.” Energy economics, 60: 186–196.

European Commission, EU. 2019. “EU Clean Energy Package.”

Fabra, Natalia, and Gerard Llobet. 2019. “Auctions with Unknown Capacities: Un-

derstanding Competition among Renewables.” CEPR CEPR Discussion Papers 14060.

Fabra, Natalia, and Juan Toro. 2005. “Price Wars and Collusion in the Spanish

Electricity Market.” International Journal of Industrial Organisation, 23(3-4): 155–

181.

Fabra, Natalia, and Mar Reguant. 2014. “Pass-through of Emmissions Costs in

Electricity Markets.” American Economic Review, 104(9): 2872–2899.

Genc, Talat S., and Stanley S. Reynolds. 2019. “Who Should Own a Renewable

Technology? Ownership Theory and an Application.” International Journal of Indus-

trial Organization, 63: 213–238.

35



Google. 2020. “Realizing a Carbon Free Future: Google’s Third Decade of Climate

Action.”

Gowrisankaran, Gautam, Stanley S. Reynolds, and Mario Samano. 2016.

“Intermittency and the Value of Renewable Energy.” Journal of Political Economy,

124(4): 1187–1234.

Greenstone, Michael, Richard McDowell, and Ishan Nath. 2019. “Do Renewable

Portfolio Standards Deliver?” EPIC Working Paper, 2019-62.
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Appendix

Appendix A: Additional Results and Proofs

A.1. Contracts for Differences (CfDs)

Suppose now that renewables are paid according to Contracts-for-Differences (CfDs) by

which, (i) firms receive market prices (similarly to variable prices), but (ii) their payments

are settled by differences between the contract’s price, p, and the day-ahead market price

(similarly to fixed prices). Point (i) implies that the fringe renewables have the same
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incentives to arbitrage as under variable prices, giving rise to the same residual demands

for the dominant firm. In turn, point (ii) implies that the dominant firm’s day-ahead

profit maximization problem is the same as under fixed prices.

Our last lemma characterizes, under limited arbitrage, the solution when firms are

subject to contracts-for-differences, which we denote with the super-script C (for Con-

tracts). As it is clear, the solution combines elements from Lemmas 1 and 2.

Lemma 3 Suppose that renewable producers are subject to contracts-for-differences, and

assume linear demand D(p) = A − bp. Under limited arbitrage, the day-ahead and spot

market equilibrium prices are given by

pC1 = pF1 + β (kf − wf ) > c

pC2 = pF2 + β (kf − wf ) > c

or equivalently to

pC1 = pV1 − 2βwd > c

pC2 = pV2 − βwd > c

leading to a positive price differential

∆pC = ∆pF − βwd = ∆pV − 2β (kf − wf ) > 0,

where β = (3b)−1 > 0, and pF1 , pF2 and ∆pF are those in Lemma 1.

Proof. It follows the same steps as the proofs of Lemmas 1 and 2, and it is therefore

omitted

The above characterization allows us to compare equilibrium outcomes across all three

pricing schemes.

Proposition 2 Under limited arbitrage, the comparison of equilibrium outcomes across

pricing schemes (contracts-for-differences, fixed prices and variable prices) shows that:

(i) pC1 < pF1 and pC1 < pV1 .

(ii) pF2 < pC2 < pV2 .

(iii) ∆pC < ∆pF and ∆pC < ∆pV .

Proof. It follows from comparing Lemmas 1, 2 and 3.
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A.2. Proofs

The proofs of Lemmas 1 and 2 are included in the main text. Here we provide closed-form

solutions for all results under linear demand, D (p) = A− bp.
We first solve the profit maximization problems in (3) for the spot market, and (5)

under variable prices and (6) under fixed prices for the day-ahead market. We do so by

backward induction, with q1(p1) = A− bp1 − wf and q2(p1, p2) = b∆p. For given p1, the

spot market solution is given by, under both pricing rules,

p2 =
p1 + c

2
, implying q2 = b

p1 − c
2
· (13)

To solve the day-ahead market problem, we first consider variable prices and then fixed

prices.

(i) Under variable prices, plugging (13) into the day-ahead problem (5), one can find

the day-ahead market solution

pV1 = [2 (A− wf ) + bc] /3b, implying qV1 = (A− wf − bc) /3.

Plugging this back into the spot market solution gives

pV2 = [A− wf + 2bc] /3b, implying q2 = (A− wf − bc) /3.

Taking the difference between the two prices,

∆pV ≡ pV1 − pV2 = (A− wf − bc) /3b.

Since we have assumed A − wd − wf − bc > 0, it follows that qV1 > 0, and pV1 > pV2 >

wd/3b+ c > c. Note that the solution is the same as Ito and Reguant (2016)’s Result 1,

with (A− wf ) here in the place of A there.

(ii) Under fixed prices, plugging (13) into the day-ahead problem (6), one can find

the day-ahead market solution,

pF1 = [2 (A− wd − wf ) + bc] /3b = pV1 − 2wd/3b (14)

implying

qF1 =
(A+ 2wd − wf − bc)

3
= qV1 + 2wd/3

Plugging this back into the spot market solution gives

pF2 = [A− wd − wf + 2bc] /3b = pV2 − wd/3b

implying

qF2 = (A− wd − wf − bc) /3 = qV2 − wd/3
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Taking the difference between the two prices,

∆pF = (A− wd − wf − bc) /3b = ∆pV − wd/3b > 0.

Since we have assumed A − wd − wf − b > 0, it follows that pF1 > pF2 > c. The price

differential is increasing in A, and it is decreasing in wf , wd and b.

Last, using the above expressions, we obtain

qF2 = (A− wf − wd − bc) /3 = qV2 − wd/3 > 0.

This implies that total quantity is

qF1 + qF2 = qV1 + qV2 + wd/3.

We now solve the profit maximization problem under variable prices with unlimited

arbitrage s adjusted so that the two prices converge. We again proceed by backward

induction. For given p1, the spot market solution is given by, under both pricing rules,

p2 =
p1 + c

2
+

s

2b
, implying q2 = b

p1 − c
2

+
s

2
· (15)

Plugging (15) into the day-ahead problem (5), one can find the day-ahead market solution

pV1 = [2 (A− wf ) + bc− s] /3b, implying qV1 = (A− wf − bc− 2s) /3. (16)

Plugging this back into the spot market solution gives

pV2 = [A− wf + 2bc+ s] /3b, implying qV2 = (A− wf − bc+ s) /3. (17)

Taking the difference between the two prices,

∆pV ≡ pV1 − pV2 = (A− wf − bc− 2s) /3b.

Setting pV1 = pV2 , we find

sV = (A− wf − bc) /2.

Plugging this back into the price expressions,

pV1 = pV2 = [A− wf + bc] /2b

If arbitrage is limited, so that kf − wf < (A− wf − bc) /2, the solution is found by

simply plugging s = kf − wf in equations (16) and (17) above.

With the above results, we can now prove Proposition 1.
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Proof of Proposition 1. We compare the equilibrium outcomes under limited

arbitrage across pricing rules under the assumption that the arbitrage constraint is bind-

ing.

(i) Comparison of p1:

pV1 − pF1 = [− (kf − wf ) + 2wd] /3b

Hence, pV1 > pF1 iff wd > (kf − wf ) /2.

Comparison of p2:

pV2 − pF2 = [(kf − wf ) + wd] /3b > 0.

(ii) Since there are (no) incentives to arbitrage under variable (fixed) prices, then ∆pV > 0

implies ∆qVf = (kf − wf ); and ∆qVf = 0.

(iii) The price differences are

∆pV = (A+ wf − bc− 2kf ) /3b

∆pF = (A− wd − wf − bc) /3b

Hence, ∆pV is increasing in wf while ∆pF is decreasing in wd and wf .

Appendix B: Additional Figures and Tables
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Figure 4: Overselling and Withholding by Wind Producers

Notes: This figure shows the weekly average of the day-ahead commitments relative to the final com-

mitments of the wind producers, split in three regulatory regimes. Sample is from February 2012 to

February 2015. Regime I - Market Prices is from 1 February 2012 to 31 January 2013; Regime II - Fixed

Prices is from 1 February 2013 to 21 June 2014; Regime III - Market Prices is from 22 June 2014 to 31

January 2015.
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Figure 5: Predicted and Observed Price Premium

Notes: This figure shows locally weighted linear regressions of ∆p̂t (predicted) and ∆pt (observed) from

February 2012 to February 2015. The weights are applied using a tricube weighting function (Cleveland,

1979) with a bandwidth of 0.1. The predictions (∆p̂t) are done using the estimated coefficients obtained

from equation in footnote 44. These ∆p̂t are used in equation 11.
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Figure 6: Markup Distribution by Firm

Notes: This figure plots the markup distributions for each of the dominant firms by their pricing regimes

for hours with prices above 25 Euro/MWh.

Figure 7: Markup Distribution by Wind Quartiles

Notes: This figure compares markups distribution by wind forecast quartiles (low, medium, and high

wind days) in three different pricing regimes for hours with prices above 25 Euro/MWh.
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Figure 8: Approximating the slopes of the residual demands

Firm 1

Firm 2 Firm 3

Notes: This figure illustrates how we use quadratic approximation to compute the local slope around

the market clearing price (the horizontal line) for each of the dominant firm’s residual demand curve.

Here, we show each firm’s the residual demand curve in October 10, 2014, 18.00.
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Table 6: The Forward Contract Effect with Various Clusterings

2SLS

(1) (2) (3) (4)

RI × wit

DR′
it

6.35 9.31 9.10 5.54

Firm-month-year (8.58) (9.20) (8.70) (7.43)

Firm-week (7.12) (7.20) (6.98) (6.97)

Firm-day (5.35) (5.50) (5.37) (5.58)

RII × wit

DR′
it

-14.2** -14.5** -14.9** -14.3

Firm-month-year (6.43) (6.16) (6.30) (8.68)

Firm-week (7.11) (7.05) (7.17) (8.24)

Firm-day (7.22) (7.15) (7.24) (8.46)

RIII × wit

DR′
it

1.72 0.049 0.60 5.69

Firm-month-year (6.81) (5.87) (5.56) (7.67)

Firm-week (6.71) (5.98) (5.81) (8.50)

Firm-day (4.04) (3.45) (3.32) (6.84)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: See the notes in Table 2 which uses plant level clustering. Here we report three different standard

errors from three alternative clusterings: firm-day, firm-month-year, and firm-week levels.
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Table 7: The Forward Contract Effect Accounting for Vertical Integration

2SLS

(1) (2) (3) (4)

RI × wit

DR′
it

11.9* 12.5* 12.4* 18.5**

(6.45) (6.59) (6.41) (8.79)

RII × wit

DR′
it

-14.1*** -12.7*** -13.1*** -7.48**

(3.47) (2.83) (2.97) (3.48)

RIII × wit

DR′
it

1.09 1.15 1.78 7.57*

(3.91) (3.74) (3.43) (4.18)

p̂2t 0.94*** 0.96*** 0.96*** 1.18***

(0.064) (0.067) (0.067) (0.10)

qit
DR′

it
3.36***

(0.93)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: This table shows the estimation results of equation (9) using 2SLS. All regressions include linear

time trends, unit, firm and quarterly dummies, time trends, while in columns (2)-(4) we add day-of-

the-week dummies, hour fixed effects, and quadratic time trends are added in a cumulative fashion.

We constrain the coefficient for markups from firms’ total output to be one in columns (1) to (3), and

we relax this by allowing the markup coefficient to vary in column (4). We limit hourly prices to be

within 5 Euro/MWh range relative to the market price and exclude the outliers (bids with market prices

below the 1st percentile and above the 99th percentile). We instrument our markups with wind speed,

precipitation, and each of them interacted with the three pricing scheme indicators. The standard errors

are clustered at the plant level.
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Table 8: The Response of Overselling to the Price Premium

Wind Non-wind Retailers Diff

Renewables

(1) (2) (3) (1)-(2) (1)-(3)

R I 0.064 0.008 0.079 -0.076 -0.006

(0.000) (0.000) (0.000) (0.000) (0.529)

R II -0.001 -0.004 0.086 -0.005 0.063

(0.882) (0.004) (0.000) (0.151) (0.000)

R III 0.032 -0.006 0.053 -0.036 0.004

(0.000) (0.000) (0.000) (0.000) (0.503)

R I→R II -0.065 -0.013 0.008 -0.071 -0.069

(0.000) (0.000) (0.334) (0.000) (0.000)

R II→R III 0.026 -0.000 -0.049 0.03 0.059

(0.000) (0.812) (0.000) (0.000) (0.000)

Notes: This table reports the coefficient of ∆p̂t from 25 different regressions similar to equation (11).

Columns (1)-(3) only use overselling quantity from each group on the corresponding column header. The

two columns on the right compare the difference in overselling from either columns (1) and (2) or columns

(1) and (3). The last two rows compare two pricing regimes, either from Regime I to II or from Regime

II to III. The corresponding P-values for each coefficient are in parentheses. Pre-trend assumptions are

supported by the p-values in columns (1)-(2) row 2 – under Regime II, wind and non-wind renewables

face the same incentives to oversell – and columns (1)-(3) row 1 or row 3 – under Regime III, wind, and

suppliers face the same incentives to oversell. The impact on the price response of overselling can be

seen in the last two rows in columns (1)-(2) and (1)-(3), and it is similar to numbers reported in Table

3.
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Table 9: The Impact of Pricing Schemes on Price Differences across Markets

2SLS

(1) (2) (3) (4)

DR’1 -0.014** -0.0080 -0.014** -0.0080

(0.0058) (0.0061) (0.0062) (0.0066)

DR’2 0.091*** 0.089*** 0.091*** 0.089***

(0.024) (0.024) (0.024) (0.025)

Wind Forecast (GWh) 0.060 0.0029 0.060 0.0029

(0.046) (0.050) (0.049) (0.056)

wdt

Wt
-0.59*** -0.50*** -0.59*** -0.50***

(0.18) (0.17) (0.18) (0.18)

R I -0.46*** -0.52*** -0.46*** -0.52***

(0.16) (0.16) (0.15) (0.17)

R II -1.16*** -1.01*** -1.16*** -1.01***

(0.21) (0.22) (0.23) (0.23)

R I × wdt

Wt
0.44** 0.46** 0.44** 0.46**

(0.21) (0.19) (0.21) (0.21)

R II × wdt

Wt
0.46** 0.41** 0.46*** 0.41**

(0.18) (0.17) (0.16) (0.17)

Demand Forecast (GWh) -0.0029 0.079*** -0.0029 0.079***

(0.017) (0.024) (0.019) (0.027)

Weekend FE N N Y Y

Peak Hour FE N Y N Y

Observations 25334 25334 25334 25334

Notes: This table shows the coefficients from equation (12). The slopes of the residual demands DR′1

and DR′2 are instrumented using daily average, minimum, and maximum temperature, and average

temperature interacted with hourly dummies. Regime I is an indicator for Regime I periods, R IIIt for

Regime III periods, with Regime II periods used as the reference point. We use bootstrap standard

errors with 200 replications.
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Table 10: Average Markups in the Day-ahead Market

R I R II R III

Mean SD Mean SD Mean SD

Markups (in %) – Simple average

All 8.3 (3.3) 6.3 (3.3) 10.7 (3.7)

Firm 1 7.0 (2.2) 7.0 (2.6) 12.1 (4.4)

Firm 2 12.3 (4.1) 8.2 (5.1) 14.7 (4.4)

Firm 3 7.7 (2.3) 6.0 (3.3) 10.3 (3.3)

Slope of day-ahead residual demand (in MWh/euros)

All 524.2 (78.2) 553.6 (120.7) 418.2 (73.0)

Firm 1 506.6 (50.5) 458.4 (72.7) 411.0 (62.4)

Firm 2 508.5 (71.8) 556.4 (165.0) 453.8 (99.8)

Firm 3 538.2 (88.7) 573.3 (117.2) 418.0 (73.2)

Notes: Sample from February 2012 to January 2015, includes the markups for those units bidding within

a 5 Euro/MWh range around the market price, for hours with prices above 25 Euro/MWh. Regime I is

from 1 February 2012 to 31 January 2013; Regime II is from 1 February 2013 to 21 June 2014; Regime

III is from 22 June 2014 to 31 January 2015.
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