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® —ach neuron receinves INput from other neurons
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® -oCh neuron recenves Input from other neurons
e 10" neurons, each with with 10% weights
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® -oCh neuron recenves Input from other neurons
e 10" neurons, each with with 10% weights

e \/\leights can e positve or negative

e \/\leights adapt during the leaming process

e ‘Nneurons that fire together wire together” (Heobb)
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How the Brain "Works” (Cartoon version)

® -oCh neuron recenves Input from other neurons
e 10" neurons, each with with 10% weights

e \/\leights can e positve or negative

e \/\leights adapt during the leaming process

e ‘Nneurons that fire together wire together” (Heobb)

e Different greas perform different functions using same structure (Modularity)
'
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Optimization Problem

¢ (Machine) Learning can e thought of as an optimization problem.
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Optimization Problem

¢ (Machine) Learning can e thought of as an optimization problem.

e Optimization Problems have 3 distinct pieces:

® [hc constraints

e [he function to optimize K E E P
CALM

® [he optimization algorithm., AND

START
OPTIMIZING

@bgoncalves www.bgoncalves.com



Optimization Problem

¢ (Machine) Learning can e thought of as an optimization problem.

e Optimization Problems have 3 distinct pieces:

® [hc constraints Neural Network

¢ [he function to optimize Prediction Error

CALM

* [he optimization algorithm.  Gradient Descent AND

START
OPTIMIZING
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Artificial Neuron
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Artificial Neuron
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Activation Function - SIgMoio

http://githulb.com/bmtgoncalves/Neural-Networks

10 Sigmoid activation function

— function
— gradient
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e Non-Linear function

Lo Sigmoid activation function

— function
— gradient
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e Non-Linear function

Lo Sigmoid activation function

e Differentiable — function
— gradient

® NoON-decreasing
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e Non-Linear function

Lo Sigmoid activation function

e Differentiable — function
— gradient

® NON-decreasing

e Compute new sets of features
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e Non-Linear function

Lo Sigmoid activation function

e Differentiable — function
— gradient

® NON-decreasing

e Compute new sets of features

e —ach layer bulds up a more abstract
representation of the data
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Activation Function - SIgMoio

http://githulb.com/bmtgoncalves/Neural-Networks

e Non-Linear function

10 Sigmoid activation function

e Differentiable — function
— gradient

® NON-decreasing

e Compute new sets of features

e —ach layer bulds up a more abstract
representation of the data

® Porngps the most common
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Activation FuNnction - tann

http://githulb.com/bmtgoncalves/Neural-Networks

e Non-Linear function

- Hyperbolic Tangent activation function

1.0 -

e Differentiable — function

— gradient
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Activation FuNnction - tann

http://githulb.com/bmtgoncalves/Neural-Networks

e Non-Linear function

1.0 - - Hyperbolic Tangent activation function

e Differentiable — function
— gradient
¢ (z) =
® NON-decreasing 0.5 -
e Compute new sets of features
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Activation FuNnction - tann

http://githulb.com/bmtgoncalves/Neural-Networks

e Non-Linear function

1.0 - - Hyperbolic Tangent activation function

o Differentiable — function
— gradient
¢ (2) =
® NON-decreasing 0.5 -
e Compute new sets of features
0.0 -
e —ach layer bulds up a more abstract
representation of the data
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® [Ne output of a perceptron Is determined by a seguence of steps:
e Optan the INputs
e Multioly the Inputs by the respective weignts

® Calculate output using the activation function
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—orward Fropagation

e [Ne output of a perceptron is determined by a sequence of steps:
e Optan the INputs
e Multioly the Inputs by the respective weignts
® Calculate output using the activation function

e |0 create a multi-layer perceptron, you can simply use the output of
one layer as the Input to the next one.

LN
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—orward Fropagation

e [Ne output of a perceptron is determined by a sequence of steps:
e Optan the INputs
e Multioly the Inputs by the respective weignts
® Calculate output using the activation function

e |0 create a multi-layer perceptron, you can simply use the output of
one layer as the Input to the next one.

1

2

L3

a N

LN

e But how can we propagate back the errors and update the weights”?
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Sackward Propagation of Errors (Back-rop)

® BackProp operates In two phases:
e ~orward propagate the inputs and calculate the deltas
e Update the weights

e [ne eror at the output Is a weighted average difference between predicted output and the
opsenved one.
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Sackward Propagation of Errors (Back-rop)

® BackProp operates In two phases:
e ~orward propagate the inputs and calculate the deltas
e Update the weights

e [ne eror at the output Is a weighted average difference between predicted output and the
opsenved one.

® -Or INNer layers there Is No "real output’!
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| 0SS FUNctions

® -Or leamning to occur, we must guantity how far off we are from the desired output, There are
two common ways of doing this:
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| 0SS FUNctions

® -Or leamning to occur, we must guantity how far off we are from the desired output, There are
two common ways of doing this:

e ()uadratic error function: !
4 B 2
FE = ~ En Yn — an|
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| 0SS FUNctions

® -Or leamning to occur, we must guantity how far off we are from the desired output, There are
two common ways of doing this:

e (Juadratic error function:

1 2
E = N Z |yn — an‘
e Cross Entropy "
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| 0SS FUNctions

® -Or leamning to occur, we must guantity how far off we are from the desired output, There are
two common ways of doing this:

e (Juadratic error function:

e (ross Entropy

The Cross Entropy is complementary to sigmoid
activation In the output layer and Improves [ts stapility,
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GGradient Descent

¢ HiNd the gradient for each training batch
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GGradient Descent

¢ HiNd the gradient for each training batch

e |ake a step downnhill along the
direction of the gradient

OH

Hmn Hmn T
< Q 90
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GGradient Descent

¢ HiNd the gradient for each training batch

e |ake a step downnhill along the
direction of the gradient

OH

Hmn Hmn T
< Q 90

® Where s the step size.
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GGradient Descent

¢ HiNd the gradient for each training batch

e |ake a step downnhill along the
direction of the gradient

OH

Hmn Hmn T
< Q 90

® Where s the step size.

e Sopeat untl ‘convergence’
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—cod Forward Networks
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—ecurrent Neural Network (RNN)
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Flow

@bgoncalves

ht Output

-~

|

X, Input

www.bgoncalves.com



p
Information

Recurrent Neural Network (RNN) Flow

ht QUTDUT

\\ > ht Output

~revious h,_ \
Output N

X, Input

h,=f (xt>
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)

e —och output depends (Implicitly) on all previous

ht+1

L H H I

—1 Xy xt+1
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Recurrent Neural Network (RNN)

e —och output depends (Implicitly) on all previous

® [nput sequences generate output sequences | )

h h ht+1

L H H I

xr—l Xy xt+1
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Recurrent Neural Network (RNN)

\_ ' J

h, = tanh (Wht_l + Uxt)
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Recurrent Neural Network (RNN)

\_

X¢
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—ecurrent Neural Network (RNN)

\_

X¢

h, = tanh (Wht_l + Uxt)
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_ong-Short Term Memory (LSTM)

ht— 1 ht hl‘ +1
4 ‘ ) 4 ‘ R 4 ‘ R
—2 ht— 1 ht ht+ 1
\— ‘ _J g ‘ J \ ‘ _J
X1 Xt X+1
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_ong-Short Term Memory (LSTM)

o \/Vhat If we want to keep explict information about previous states | I
ht—l ht ht+1
4 ‘ ) 4 ‘ ) ~ ‘ R
=2 ht—l ht ht+1
\ ‘ _J \ ‘ J g ‘ _J
Xt—1 At Xt+1
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_ong-Short Term Memory (LSTM)

o \/Vhat If we want to keep explict information about previous states | I

e How much information Is kept, can be controlled through gates.

ht— 1 ht hl‘ +1
4 ‘ ) 4 ‘ N (" ‘ )
—2 ht— 1 ht +1
\— ‘ _J g ‘ J \ ‘ _J
X1 Xt X+1
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_ong-Short Term Memory (LSTM)

o \/Vhat If we want to keep explict information about previous states | I

e How much information Is kept, can be controlled through gates.

e | STMs were first introduced In oy Hochreiter and Schmidnuoer
ht—l ht ht+1
4 ‘ ) 4 ‘ N (" ‘ )
ht—z ht—l ht +1
\— ‘ _J g ‘ J \ ‘ _J
Xt—1 At Xt+1
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. Element wise addition

‘ Element wise multiplication

L ong-short Term Memory (LS TV @ 1 rirus the o
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0=o0 (WOht_l + ont> h, = tanh (ct) ® o
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. Element wise addition

‘ Element wise multiplication

L ong-short Term Memory (LS TV @ 1 rirus the o

ht
|
Cr—1 ' .G
Forget gate:
How much of f j
the previous
state should 1
be kept”? ’
ht—l T ’ ht
Xy
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. Element wise addition

‘ Element wise multiplication

L ong-short Term Memory (LS TV @ 1 rirus the o

ht
|
Cr—1 ' .Gy
Input gate:
How much of f j
the previous
output
should be
remembered”? ,
ht—l T | ’ ht

At
f=o0 (tht_l + fot> g = tanh (Wght_l + ngt>
=0 (‘/‘/iht—l + Ul-.xt) C; = (Ct—l ®f) + (g ® l)

0=o0 (Woht_l + ont> h, = tanh (ct) ® o
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L ong-short Term Memory (LS TV

. Element wise addition

‘ Element wise multiplication

@ T minus the Input

i1

Output gate:
How much of
the previous
output
should
contribute”

ht—l

f=o0 (tht_l + fot> g = tanh (Wght_l + ngt>
¢ = (Ct—l ®f) + (g X i)
h, = tanh (ct) K o

i =0 (Wh_, + Ugx,)
0=0 <Woht—1 + ont)

=Ct

(]
> —
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Al gates use
the same
inputs and
activation
functions,
but different
weights
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. Element wise addition

‘ Element wise multiplication
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. Element wise addition

‘ Element wise multiplication

L ong-short Term Memory (LS TV @ 1 rirus the o

State:
Update the f
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ht—l ’ht
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. Element wise addition

‘ Element wise multiplication
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Applications

¢ | anguage Modeling and Prediction
e Speech Recognition

® \achine Iranslation

e Part-of-Speech Tagging

e Sentiment Analysis

® SUuMMarization

e [Ime series forecasting
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Gated Recurrent Unit (GRU)

e Introduced In oy Cho
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Gated Recurrent Unit (GRU)

e Introduced in 2014 by Cho

e \eant to solve the Vanishing Gradient Problem
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e Introduced in 2014 by Cho

e \eant to solve the Vanishing Gradient Problem

e Can be considered as a simplification of LSTMs
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Gated Recurrent Unit (GRU)

e Introduced in 2014 by Cho

e \eant to solve the Vanishing Gradient Problem
e Can be considered as a simplification of LSTMs

e Similar performance to LSTM in some applications, better performance for smaller
datasets.
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Element wise addition

@ Element wise multiplication

G@T@d R@CUW@HT UHIT <GRU> @ T minus the input

c=0(Wh_ +Uyx) ©=tam (We (o ® 1) + U

r=c(Wh_,+Ux) h=c®c+(1-2®h,_,)
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. Element wise addition

‘ Element wise multiplication

G&T@d R@CUW@HT UHIT (GRU) @ T minus the input

ht—l > ht
Update gate: 1
How much of '

the previous _,‘
< c

state should

oe kept”

J

Xy

c=0(Wh_,+Ux) €= tauh <WC (1 @) + chf>

r=o (W,,ht_l + U,,xt) h=(2Z&c)+ ((1 -2)® ht_l)
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. Element wise addition

‘ Element wise multiplication

G&T@d R@CUW@HT UHIT (GRU) @ T minus the input

ht— 1

Reset gate:
How much of
the previous r

output should
oe removed?

Xy

c=0(Wh_ +Ux) ©=tanh <WC (1 @) + cht)

r=o(Wh_ +Ux) h=c®c+((1-2)®h_,)
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. Element wise addition

‘ Element wise multiplication

G&T@d R@CUW@W UHIT (GRU) @ T minus the input

ht— 1

Current
memory:
What
information do
we remember
rght now”?

J

Xy

c=o(Wh_ +Ux) © W0 (W (o ®7) + U

r=o (W,,ht_l + U,,xt) h=(2Z&c)+ ((1 -2)® ht_l)
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. Element wise addition

‘ Element wise multiplication

G&T@d R@CUW@W UHIT (GRU) @ T minus the input

ht— 1

OQutput:
Combine &l

avalaple
iNnformation.
@

Xy

c=0(Wh_ +Ux) ©=tanh (WC (1 @) + cht)

r=c(Wh_+Ux) h=0c@c)+((1-2®Dh_)
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L anguage Models

e ASSIgNs a provablity to a seguence of words.

P (wl, Wo, **+, wn)
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¢ |\ypically based on conditional probapilities

Wl, HP w; | wy, -
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L anguage Models

e ASSIgNs a provablity to a seguence of words.

P (wl, Wo, **+, wn)

¢ |\ypically based on conditional probapilities

wl, HP wi | wy, - )
e Can be formulated as find the next word:

My name Is . P (Bruno |my, name, is) > P (redlmy, name, is)
1he sky is ' P (Redl the, sky, is) > P (Bruno | the, sk, is)
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L anguage Models

e ASSIgNs a provablity to a seguence of words.

P (wl, Wo, **+, wn)

¢ |\ypically based on conditional probapilities

P wl, HP wi | wy, - )

e Can be formulated as find the next word:

My name is | P (Bruno | my, name, is) > P (red | my, name, is)
Ihe sky Is ' P (Redl the, sky, is) > P (Bruno | the, sk, is)
® S0 given a piece of - we buld a training dataset:

Using a running window of a certain length
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L anguage Models

e ASSIgNs a provablity to a seguence of words.

P (wl,wz, .o, wn)

¢ |\ypicaly based on conditional propabilities

P wl,

HP wi | wy, -

e Can be formulated as find the next word:

My name Is
The sky Is

P (Bruno | my, name, is) > P (red | my, name, is)
P (Redl the, sky, is) > P (Bruno | the, sk, is)

e S0 given a piece of text, we buld a training dataset:

[I\/Iary @d eﬁttle lamb vﬁvose f%ce was white as snow.

Using a running window of a certain length

e Supenvised leaming model

@bgoncalves

Input Sequence output

Mary had a little lamb
had a little lamb whose
a little lamb whose fleece
little lamb whose fleece was
lamb whose fleece was white
whose fleece was white as
fleece was white as SNow
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https://keras.io

o neural network library written In
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<eras

https://keras.io

o neural network library written In

o - Microsoft Cognitive Toolkit or Theano backends
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<eras

https://keras.io

e Open Source neural network liorary written in Python
e [ensorflow, Microsoft Cognitive Toolkit or Theano backends

e Fnables fast experimentation
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<eras

https://keras.io

e Open Source neural network liorary written in Python
e [ensorflow, Microsoft Cognitive Toolkit or Theano backends
e Fnables fast experimentation

e Created and maintained by Francois Chollet, a Google engineer,
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<eras

https://keras.io

e Open Source neural network liorary written in Python

e [ensorflow, Microsoft Cognitive Toolkit or Theano backends

e Fnables fast experimentation

e Created and maintained by Francois Chollet, a Google engineer,

e Implements Layers, Objective/LLoss functions, Activation
functions, Optimizers, etc. .,
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https://keras.io
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https://keras.io

o .Seqguential(layers=None, name=None)- is the workhorse. You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model
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<eras

https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers
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<eras

https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc
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<eras

https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc

e Dropout(rate, seed=None)
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<eras

https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc.

e Dropout(rate, seed=None)

e Activation(activation) - Same as the activation option to Dense, can also be used to
nass lensorkFlow or Theano operations directly.
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<eras

https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc.

e Dropout(rate, seed=None)

e Activation(activation) - Same as the activation option to Dense, can also be used to
nass lensorkFlow or Theano operations directly.

o SimpleRNN(units, input_shape, activation="tanh’, use_bias=True, dropout=0.0,
return_sequences=>ralse)
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https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc.

e Dropout(rate, seed=None)

e Activation(activation) - Same as the activation option to Dense, can also be used to
nass lensorkFlow or Theano operations directly.

o SimpleRNN(units, input_shape, activation="tanh’, use_bias=True, dropout=0.0,
return_sequences=>ralse)

e GRU(units, Input_shape, activation="tanh’, use_bias=True, dropout=0.0,
return_sequences=>ralse)
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https://keras.io

e Keras.models.Sequential(layers=None, name=None)- is the worknorse, You use it to
ould a model layer by layer. Retumns the object that we will use to bulld the model

e keras.layers

e Dense(units, activation=None, use_bias=1rue) - None means linear activation. Other
options are, 'tanh’, 'sigmoid’, 'softmax’, 'relu’, etc

e Dropout(rate, seed=None)

e Activation(activation) - same as the activation option to Dense, can also be used to
nass lensorkFlow or Theano operations directly.

e SimpleRNN(units, , activation="tanh’, use_bias=1rue, dropout=0.0,
return_sequences=ralse)

o GRU(units, , activation="tanh’, use_bias=True, dropout=0.0,
return_sequences=ralse)

o | ST (units, , activation="tanh’, use_bias=1rue, dropout=0.0,
return_sequences=ralse)
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https://keras.io

e Model =
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<eras

https://keras.io

e Model =

e model.add(layer) - Add a layer to the top of the mode
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<eras

https://keras.io

e model = Sequential()
e model.add(layer) - Add a layer to the top of the mode

e model.compile(optimizer, loss) - Ve have to complle the model before we can use it
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<eras

https://keras.io

e model = Sequential()
e model.add(layer) - Add a layer to the top of the mode
e model.compile(optimizer, loss) - Ve have to complle the model before we can use it

e optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc. ..
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https://keras.io

e model = Sequential()

e model.add(layer) - Add a layer 1o the top of the model

e model.compile(optimizer, loss) - Ve have to complle the model before we can use It
e optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc. ..

¢ |0ss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc. ..
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<eras

https://keras.io

e model = Sequential()

e model.add(layer) - Add a layer 1o the top of the model

e model.compile(optimizer, loss) - Ve have to complle the model before we can use It
e optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc. ..

¢ |0ss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc. ..

e model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=TIrue)
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https://keras.io

e model = Sequential()

e model.add(layer) - Add a layer 1o the top of the model

e model.compile(optimizer, loss) - Ve have to complle the model before we can use It
e optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc. ..

¢ |0ss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc. .

e model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=TIrue)

e model.predict(x, batch_size=32, verbose=0) - fit/predict interface simlar to skiearmn
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https://keras.io

e model = Sequential()

e model.add(layer) - Add a layer 1o the top of the model

e model.compile(optimizer, loss) - Ve have to complle the model before we can use It
e optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc. ..

¢ |0ss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc. .

e model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=TIrue)

e model.predict(x, batch_size=32, verbose=0) - fit/predict interface simlar to skiearmn

e model.summary() - Output a textual representation of the mode
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github.com/bmtgoncalves/ENN



