JPMorgan Chase \& Co.

Recurrent Neural Networks

Bruno Gonçalves
www.Ggoncalves.com
github.com/bmtgoncalves/RNN

Disclaimer

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of my employer. The examples provided with this tutorial were chosen for their didactic value and are not mean to be representative of my day to day work.

References

How the Brain "Works" (Cartoon version)

How the Brain "Works" (Cartoon version)

How the Brain "Works" (Cartoon version)

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons
- 1011 neurons, each with with 10^{4} weights

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons
- 1011 neurons, each with with 10^{4} weights
- Weights can be positive or negative

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons
- 1011 neurons, each with with 10^{4} weights
- Weights can be positive or negative
- Weights adapt during the learning process

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons
- 10^{11} neurons, each with with 10^{4} weights
- Weights can be positive or negative
- Weights adapt during the learning process
- "neurons that fire together wire together" (Hebb)

How the Brain "Works" (Cartoon version)

- Each neuron receives input from other neurons
- 10^{11} neurons, each with with 10^{4} weights
- Weights can be positive or negative
- Weights adapt during the learning process
- "neurons that fire together wire together" (Hebb)
- Different areas perform different functions using same structure (Modularity)

How the Brain "Works" (Cartoon version)

Optimization Problem

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.
- Optimization Problems have 3 distinct pieces:

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.
- Optimization Problems have 3 distinct pieces:
- The constraints

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.
- Optimization Problems have 3 distinct pieces:
- The constraints
- The function to optimize

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.
- Optimization Problems have 3 distinct pieces:
- The constraints
- The function to optimize
- The optimization algorithm.

Optimization Problem

- (Machine) Learning can be thought of as an optimization problem.
- Optimization Problems have 3 distinct pieces:
- The constraints
- The function to optimize
- The optimization algorithm. Gradient Descent

Artificial Neuron

Artificial Neuron

Artificial Neuron

Inputs

Artificial Neuron

Inputs Weights

Artificial Neuron

Inputs Weights

Artificial Neuron

Artificial Neuron

Activation Function - Sigmoid

Sigmoid activation function

Activation Function - Sigmoid

- Non-Linear function

Activation Function - Sigmoid

- Non-Linear function

Sigmoid activation function

- Differentiable

Activation Function - Sigmoid

- Non-Linear function
- Differentiable
- non-decreasing

Activation Function - Sigmoid

- Non-Linear function

Sigmoid activation function

- Differentiable
- non-decreasing
- Compute new sets of features

Activation Function - Sigmoid

- Non-Linear function

Sigmoid activation function

- Differentiable
- non-decreasing
- Compute new sets of features
- Each layer builds up a more abstract representation of the data

Activation Function - Sigmoid

- Non-Linear function
- Differentiable
- non-decreasing
- Compute new sets of features
- Each layer builds up a more abstract representation of the data
- Perhaps the most common

Sigmoid activation function

Activation Function - tanh

Activation Function - tanh

- Non-Linear function

Activation Function - tanh

- Non-Linear function
- Differentiable

Activation Function - tanh

- Non-Linear function
- Differentiable
- non-decreasing

Activation Function - tanh

- Non-Linear function
- Differentiable
- non-decreasing
- Compute new sets of features

Activation Function - tanh

- Non-Linear function
- Differentiable
- non-decreasing
- Compute new sets of features
- Each layer builds up a more abstract representation of the data

Forward Propagation

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs
- multiply the inputs by the respective weights

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs
- multiply the inputs by the respective weights
- calculate output using the activation function

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs
- multiply the inputs by the respective weights
- calculate output using the activation function
- To create a multi-layer perceptron, you can simply use the output of one layer as the input to the next one.

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs
- multiply the inputs by the respective weights
- calculate output using the activation function
- To create a multi-layer perceptron, you can simply use the output of one layer as the input to the next one.

Forward Propagation

- The output of a perceptron is determined by a sequence of steps:
- obtain the inputs
- multiply the inputs by the respective weights
- calculate output using the activation function
- To create a multi-layer perceptron, you can simply use the output of one layer as the input to the next one.

- But how can we propagate back the errors and update the weights?

Backward Propagation of Errors (BackProp)

Backward Propagation of Errors (BackProp)

- BackProp operates in two phases:

Backward Propagation of Errors (BackProp)

- BackProp operates in two phases:
- Forward propagate the inputs and calculate the deltas

Backward Propagation of Errors (BackProp)

- BackProp operates in two phases:
- Forward propagate the inputs and calculate the deltas
- Update the weights

Backward Propagation of Errors (BackProp)

- BackProp operates in two phases:
- Forward propagate the inputs and calculate the deltas
- Update the weights
- The error at the output is a weighted average difference between predicted output and the observed one.

Backward Propagation of Errors (BackProp)

- BackProp operates in two phases:
- Forward propagate the inputs and calculate the deltas
- Update the weights
- The error at the output is a weighted average difference between predicted output and the observed one.
- For inner layers there is no "real output"!

Loss Functions

Loss Functions

- For learning to occur, we must quantify how far off we are from the desired output. There are two common ways of doing this:

Loss Functions

- For learning to occur, we must quantify how far off we are from the desired output. There are two common ways of doing this:
- Quadratic error function:

$$
E=\frac{1}{N} \sum_{n}\left|y_{n}-a_{n}\right|^{2}
$$

Loss Functions

- For learning to occur, we must quantify how far off we are from the desired output. There are two common ways of doing this:
- Quadratic error function:

$$
E=\frac{1}{N} \sum_{n}\left|y_{n}-a_{n}\right|^{2}
$$

- Cross Entropy

$$
J=-\frac{1}{N} \sum_{n}\left[y_{n}^{T} \log a_{n}+\left(1-y_{n}\right)^{T} \log \left(1-a_{n}\right)\right]
$$

Loss Functions

- For learning to occur, we must quantify how far off we are from the desired output. There are two common ways of doing this:
- Quadratic error function:

$$
E=\frac{1}{N} \sum_{n}\left|y_{n}-a_{n}\right|^{2}
$$

- Cross Entropy

$$
J=-\frac{1}{N} \sum_{n}\left[y_{n}^{T} \log a_{n}+\left(1-y_{n}\right)^{T} \log \left(1-a_{n}\right)\right]
$$

> The Cross Entropy is complementary to sigmoid activation in the output layer and improves its stability.

Gradient Descent

@Ggoncalves

Gradient Descent

- Find the gradient for each training batch

Gradient Descent

- Find the gradient for each training batch
- Take a step downhill along the direction of the gradient

$$
\theta_{m n} \leftarrow \theta_{m n}-\alpha \frac{\partial H}{\partial \theta_{m n}}
$$

Gradient Descent

Gradient Descent

INPUT TERMS

FEATURES
PREDICTIONS
ATTRIBUTES
PREDICTABLE VARIABLES

MACHINE

ALGORITHMS

TECHNIQUES
MODELS

OUTPUT TERMS

CLASSES
RESPONSES
TARGETS
DEPENDANT VARIABLES

Feed Forward Networks

$$
h_{t}=f\left(x_{t}\right)
$$

Feed Forward Networks

$$
h_{t}=f\left(x_{t}\right)
$$

Feed Forward Networks

$h_{t}=f\left(x_{t}\right)$

Recurrent Neural Network (RNN)

$h_{t}=f\left(x_{t}\right)$

Recurrent Neural Network (RNN)

$h_{t}=f\left(x_{t}\right)$

Recurrent Neural Network (RNN)

$$
h_{t}=f\left(x_{t}, h_{t-1}\right)
$$

Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN)

- Each output depends (implicitly) on all previous outputs.

Recurrent Neural Network (RNN)

- Each output depends (implicitly) on all previous outputs.
- Input sequences generate output sequences (seq2seq)

Recurrent Neural Network (RNN)

$h_{t}=\tanh \left(W h_{t-1}+U x_{t}\right)$

Recurrent Neural Network (RNN)

$$
h_{t}=\tanh \left(W h_{t-1}+U x_{t}\right) \quad \begin{aligned}
& \text { concatenate } \\
& \text { both inputs. }
\end{aligned}
$$

Recurrent Neural Network (RNN)

$$
h_{t}=\tanh \left(W h_{t-1}+U x_{t}\right) \quad \begin{aligned}
& \text { concatenate } \\
& \text { both inputs. }
\end{aligned}
$$

Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM)

- What if we want to keep explicit information about previous states (memory)?

Long-Short Term Memory (LSTM)

- What if we want to keep explicit information about previous states (memory)?
- How much information is kept, can be controlled through gates,

Long-Short Term Memory (LSTM)

- What if we want to keep explicit information about previous states (memory)?
- How much information is kept, can be controlled through gates,
- LSTMS were first introduced in 1997 by Hochreiter and Schmidhuber

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Long-Short Term Memory (LSTM)

$$
\begin{array}{ll}
f=\sigma\left(W_{f} h_{t-1}+U_{f} x_{t}\right) & g=\tanh \left(W_{g} h_{t-1}+U_{g} x_{t}\right) \\
i=\sigma\left(W_{i} h_{t-1}+U_{i} x_{t}\right) & c_{t}=\left(c_{t-1} \otimes f\right)+(g \otimes i) \\
o=\sigma\left(W_{o} h_{t-1}+U_{o} x_{t}\right) & h_{t}=\tanh \left(c_{t}\right) \otimes o
\end{array}
$$

Neural Networks?

Using LSTMs

Applications

Applications

- Language Modeling and Prediction

Applications

- Language Modeling and Prediction
- Speech Recognition

Applications

- Language Modeling and Prediction
- Speech Recognition
- Machine Translation

Applications

- Language Modeling and Prediction
- Speech Recognition
- Machine Translation
- Part-of-Speech Tagging

Applications

- Language Modeling and Prediction
- Speech Recognition
- Machine Translation
- Part-of-Speech Tagging
- Sentiment Analysis

Applications

- Language Modeling and Prediction
- Speech Recognition
- Machine Translation
- Part-of-Speech Tagging
- Sentiment Analysis
- Summarization

Applications

- Language Modeling and Prediction
- Speech Recognition
- Machine Translation
- Part-of-Speech Tagging
- Sentiment Analysis
- Summarization
- Time series forecasting

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU)

- Introduced in 2014 by Cho

Gated Recurrent Unit (GRU)

- Introduced in 2014 by Cho
- Meant to solve the Vanishing Gradient Problem

Gated Recurrent Unit (GRU)

- Introduced in 2014 by Cho
- Meant to solve the Vanishing Gradient Problem
- Can be considered as a simplification of LSTMs

Gated Recurrent Unit (GRU)

- Introduced in 2014 by Cho
- Meant to solve the Vanishing Gradient Problem
- Can be considered as a simplification of LSTMs
- Similar performance to LSTM in some applications, better performance for smaller datasets.

$z=\sigma\left(W_{z} h_{t-1}+U_{z} x_{t}\right) \quad c=\tanh \left(W_{c}\left(h_{t-1} \otimes r\right)+U_{c} x_{t}\right)$
$r=\sigma\left(W_{r} h_{t-1}+U_{r} x_{t}\right) \quad h_{t}=(z \otimes c)+\left((1-z) \otimes h_{t-1}\right)$
@Ggoncalves

Gated Recurrent Unit (GRU)

(1- 1 minus the input

Gated Recurrent Unit (GRU)

(1-) 1 minus the input

Gated Recurrent Unit (GRU)

(1-) 1 minus the input

$z=\sigma\left(W_{z} h_{t-1}+U_{z} x_{t}\right) \quad c=\tanh \left(W_{c}\left(h_{t-1} \otimes r\right)+U_{c} x_{t}\right)$
$r=\sigma\left(W_{r} h_{t-1}+U_{r} x_{t}\right) \quad h_{t}=(z \otimes c)+\left((1-z) \otimes h_{t-1}\right)$
@Ggoncalves

Gated Recurrent Unit (GRU)

(1-) 1 minus the input

$z=\sigma\left(W_{z} h_{t-1}+U_{z} x_{t}\right) \quad c=\tanh \left(W_{c}\left(h_{t-1} \otimes r\right)+U_{c} x_{t}\right)$
$r=\sigma\left(W_{r} h_{t-1}+U_{r} x_{t}\right) \quad h_{t}=(z \otimes c)+\left((1-z) \otimes h_{t-1}\right)$
@Ggoncalves

Language Models

Language Models

- Assigns a probability to a sequence of words.

$$
P\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

Language Models

- Assigns a probability to a sequence of words.

$$
P\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

- Typically based on conditional probabilities

$$
P\left(w_{1}, \cdots, w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1}, \cdots, w_{i}\right)
$$

Language Models

- Assigns a probability to a sequence of words.

$$
P\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

- Typically based on conditional probabilities

$$
P\left(w_{1}, \cdots, w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1}, \cdots, w_{i}\right)
$$

- Can be formulated as find the next word:

My name is ___
The sky is \qquad $-$
$P($ Bruno $\mid m y$, name, is $) \gg P($ red $\mid m y$, name, is $)$
$P($ Red \mid the, sky, is $) \gg P($ Bruno \mid the, sky, is $)$

Language Models

- Assigns a probability to a sequence of words.

$$
P\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

- Typically based on conditional probabilities

$$
P\left(w_{1}, \cdots, w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1}, \cdots, w_{i}\right)
$$

- Can be formulated as find the next word:
\qquad
The sky is \qquad $-$

$$
\begin{aligned}
& P(\text { Bruno } \mid \text { my }, \text { name }, \text { is }) \gg P(\text { red } \mid \text { my, name }, \text { is }) \\
& P(\text { Red } \mid \text { the }, \text { sky, is }) \gg P(\text { Bruno } \mid \text { the, sky, is })
\end{aligned}
$$

- So given a piece of text, we build a training dataset:

Mary had a little lamb whose fleece was white as snow.
Using a running window of a certain length

Language Models

- Assigns a probability to a sequence of words.

$$
P\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

- Typically based on conditional probabilities

$$
P\left(w_{1}, \cdots, w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1}, \cdots, w_{i}\right)
$$

- Can be formulated as find the next word:

$$
\begin{array}{ll}
\text { My name is } & P(\text { Bruno } \mid \text { my }, \text { name }, \text { is }) \gg P(\text { red } \mid \text { my }, \text { name }, \text { is }) \\
\text { The sky is } \\
& P(\text { Red } \mid \text { the }, \text { sky, is }) \gg P(\text { Bruno } \mid \text { the }, \text { sky, is })
\end{array}
$$

- So given a piece of text, we build a training dataset:

Using a running window of a certain length

- Supervised learning model
@Ggoncalves

Input Sequence
Mary had a little
, had a little lamb whose a little lamb whose fleece little lamb whose fleece was lamb whose fleece was white whose fleece was white fleece was white as

Or legos?

Or legos?

@Ggoncalves
www.Ggoncalves.com

Or legos?

- Open Source neural network library written in Python

Keras

- Open Source neural network library written in Python
- TensorFlow, Microsoft Cognitive Toolkit or Theano backends

Keras

- Open Source neural network library written in Python
- TensorFlow, Microsoft Cognitive Toolkit or Theano backends
- Enables fast experimentation

Keras

- Open Source neural network library written in Python
- TensorFlow, Microsoft Cognitive Toolkit or Theano backends
- Enables fast experimentation
- Created and maintained by François Chollet, a Google engineer.

Keras

- Open Source neural network library written in Python
- TensorFlow, Microsoft Cognitive Toolkit or Theano backends
- Enables fast experimentation
- Created and maintained by François Chollet, a Google engineer.
- Implements Layers, Objective/Loss functions, Activation functions, Optimizers, etc...
- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.
- $\operatorname{Dropout(rate,~seed=None)~}$

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.
- Dropout(rate, seed=None)
- Activation(activation) - Same as the activation option to Dense, can also be used to pass TensorFlow or Theano operations directly.

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.
- $\operatorname{Dropout(rate,~seed=None)~}$
- Activation(activation) - Same as the activation option to Dense, can also be used to pass TensorFlow or Theano operations directly.
- SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.
- $\operatorname{Dropout(rate,~seed=None)~}$
- Activation(activation) - Same as the activation option to Dense, can also be used to pass TensorFlow or Theano operations directly.
- SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)
- GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)

Keras

- keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to build a model layer by layer. Returns the object that we will use to build the model
- keras.layers
- Dense(units, activation=None, use_bias=True) - None means linear activation. Other options are, 'tanh', 'sigmoid', 'softmax', 'relu', etc.
- $\operatorname{Dropout(rate,~seed=None)~}$
- Activation(activation) - Same as the activation option to Dense, can also be used to pass TensorFlow or Theano operations directly.
- SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)
- GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)
- LSTM(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, return_sequences=False)

Keras

- model $=$ Sequential()

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it
- optimizer - 'adam', 'sgd', 'rmsprop', etc...

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it
- optimizer - 'adam', ‘sgd', 'rmsprop', etc...
- loss - 'mean_squared_error', 'categorical_crossentropy', ‘kulllback_leibler_divergence’, etc...

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it
- optimizer - 'adam', 'sgd', 'rmsprop', etc...
- loss - 'mean_squared_error', 'categorical_crossentropy', ‘kullback_leibler_divergence’, etc...
- model.fit($x=$ None, $y=$ None, batch_size=None, epochs=1, verbose=1, validation_split=0.0, validation_data=None, shuffle=True)

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it
- optimizer - 'adam', 'sgd', 'rmsprop', etc...
- loss - 'mean_squared_error', 'categorical_crossentropy', ‘kulllback_leibler_divergence’, etc...
- model.fit($x=$ None, $y=$ None, batch_size=None, epochs=1, verbose=1, validation_split=0.0, validation_data=None, shuffle=True)
- model.predict(x, batch_size=32, verbose=0) - fit/predict interface similar to sklearn.

Keras

- model $=$ Sequential()
- model.add(layer) - Add a layer to the top of the model
- model. compile(optimizer, loss) - We have to compile the model before we can use it
- optimizer - 'adam', 'sgd', 'rmsprop', etc...
- loss - 'mean_squared_error', 'categorical_crossentropy', ‘kulllback_leibler_divergence’, etc...
- model.fit($x=$ None, $y=$ None, batch_size=None, epochs=1, verbose=1, validation_split=0.0, validation_data=None, shuffle=True)
- model.predict(x, batch_size=32, verbose=0) - fit/predict interface similar to sklearn.
- model.summary() - Output a textual representation of the model
github.com/bmtgoncalves/RNN

