
Recurrent Neural Networks
Bruno Gonçalves 
www.bgoncalves.com
github.com/bmtgoncalves/RNN

http://github.com/bmtgoncalves/RNN

www.bgoncalves.com@bgoncalves

The views and opinions expressed in this article are
those of the authors and do not necessarily reflect the
official policy or position of my employer. The
examples provided with this tutorial were chosen for
their didactic value and are not mean to be
representative of my day to day work.

Disclaimer

www.bgoncalves.com@bgoncalves

References

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with with 104 weights

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with with 104 weights
• Weights can be positive or negative

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with with 104 weights
• Weights can be positive or negative
• Weights adapt during the learning process

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with with 104 weights
• Weights can be positive or negative
• Weights adapt during the learning process
• “neurons that fire together wire together” (Hebb)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with with 104 weights
• Weights can be positive or negative
• Weights adapt during the learning process
• “neurons that fire together wire together” (Hebb)
• Different areas perform different functions using same structure (Modularity)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

f(Inputs)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

Inputs f(Inputs)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

Inputs f(Inputs)

www.bgoncalves.com@bgoncalves

How the Brain “Works” (Cartoon version)

Inputs Outputf(Inputs)

www.bgoncalves.com@bgoncalves

Optimization Problem

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

• The constraints

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

• The constraints

• The function to optimize

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

• The constraints

• The function to optimize

• The optimization algorithm.

www.bgoncalves.com@bgoncalves

Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

• The constraints

• The function to optimize

• The optimization algorithm.

Neural Network

Prediction Error

Gradient Descent

www.bgoncalves.com@bgoncalves

Artificial Neuron

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

Inputs

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

Inputs Weights

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

w
0j

1

Inputs Weights

Bias

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

w
0j

1

Inputs Weights
Activation
function

Bias

www.bgoncalves.com@bgoncalves

Artificial Neuron

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

zj
wTx

aj
� (z)

w
0j

1

Inputs Weights OutputActivation
function

Bias

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

• non-decreasing

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

• Each layer builds up a more abstract
representation of the data

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

• Each layer builds up a more abstract
representation of the data

• Perhaps the most common

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

• Non-Linear function

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

• Non-Linear function

• Differentiable

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

• Non-Linear function

• Differentiable

• non-decreasing

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Activation Function - tanh

� (z) =
ez � e�z

ez + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

• Each layer builds up a more abstract
representation of the data

http://github.com/bmtgoncalves/Neural-Networks

www.bgoncalves.com@bgoncalves

Forward Propagation

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

• To create a multi-layer perceptron, you can simply use the output of
one layer as the input to the next one.  

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

aj

w
0j

1

�
�
wTx

�

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

• To create a multi-layer perceptron, you can simply use the output of
one layer as the input to the next one.  

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

aj

w
0j

1

�
�
wTx

�

1

w
0k

w
1k

w2k

w3k

w Nk

ak�
�
wTa

�

a1

a2

aN

www.bgoncalves.com@bgoncalves

Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

• To create a multi-layer perceptron, you can simply use the output of
one layer as the input to the next one.  

• But how can we propagate back the errors and update the weights?

x1

x2

x3

xN

w
1j

w2j

w3j

wN
j

aj

w
0j

1

�
�
wTx

�

1

w
0k

w
1k

w2k

w3k

w Nk

ak�
�
wTa

�

a1

a2

aN

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

• Forward propagate the inputs and calculate the deltas

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

• Forward propagate the inputs and calculate the deltas

• Update the weights

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

• Forward propagate the inputs and calculate the deltas

• Update the weights

• The error at the output is a weighted average difference between predicted output and the
observed one.

www.bgoncalves.com@bgoncalves

Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

• Forward propagate the inputs and calculate the deltas

• Update the weights

• The error at the output is a weighted average difference between predicted output and the
observed one.

• For inner layers there is no “real output”!

www.bgoncalves.com@bgoncalves

Loss Functions

www.bgoncalves.com@bgoncalves

Loss Functions
• For learning to occur, we must quantify how far off we are from the desired output. There are

two common ways of doing this:

www.bgoncalves.com@bgoncalves

Loss Functions
• For learning to occur, we must quantify how far off we are from the desired output. There are

two common ways of doing this:

• Quadratic error function:
E =

1

N

X

n

|yn � an|2

www.bgoncalves.com@bgoncalves

Loss Functions
• For learning to occur, we must quantify how far off we are from the desired output. There are

two common ways of doing this:

• Quadratic error function:

• Cross Entropy
E =

1

N

X

n

|yn � an|2

J = � 1

N

X

n

h
yTn log an + (1� yn)

T log (1� an)
i

www.bgoncalves.com@bgoncalves

The Cross Entropy is complementary to sigmoid
activation in the output layer and improves its stability.

Loss Functions
• For learning to occur, we must quantify how far off we are from the desired output. There are

two common ways of doing this:

• Quadratic error function:

• Cross Entropy
E =

1

N

X

n

|yn � an|2

J = � 1

N

X

n

h
yTn log an + (1� yn)

T log (1� an)
i

www.bgoncalves.com@bgoncalves

Gradient Descent

H

www.bgoncalves.com@bgoncalves

Gradient Descent

• Find the gradient for each training batch

H

� @H

@✓mn

www.bgoncalves.com@bgoncalves

Gradient Descent

• Find the gradient for each training batch

• Take a step downhill along the
direction of the gradient  
 

H

✓mn ✓mn � ↵
@H

@✓mn

� @H

@✓mn

www.bgoncalves.com@bgoncalves

Gradient Descent

• Find the gradient for each training batch

• Take a step downhill along the
direction of the gradient  
 

• where is the step size.
H

✓mn ✓mn � ↵
@H

@✓mn

� @H

@✓mn

↵

www.bgoncalves.com@bgoncalves

Gradient Descent

• Find the gradient for each training batch

• Take a step downhill along the
direction of the gradient  
 

• where is the step size.

• Repeat until “convergence”.

H

✓mn ✓mn � ↵
@H

@✓mn

� @H

@✓mn

↵

www.bgoncalves.com@bgoncalves

www.bgoncalves.com@bgoncalves

Feed Forward Networks

ht Output

ht = f (xt)
xt Input

www.bgoncalves.com@bgoncalves

Feed Forward Networks

ht

xt Input

Output

ht = f (xt)

www.bgoncalves.com@bgoncalves

Feed Forward Networks

ht

xt

Information 
Flow

Input

Output

ht = f (xt)

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

ht Output

Information 
Flow

ht = f (xt)
xt Input

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

ht Output

ht Output

Previous
Output

Information 
Flow

ht−1

ht = f (xt)
xt Input

www.bgoncalves.com@bgoncalves

ht = f (xt, ht−1)

Recurrent Neural Network (RNN)

ht Output

ht Output

Previous
Output

Information 
Flow

ht−1

xt Input

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

xt

ht

ht−1 ht

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

xt

ht

ht−1 ht

xt+1

ht+1

ht+1

xt−1

ht−1

ht−2

• Each output depends (implicitly) on all previous outputs.

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

xt

ht

ht−1 ht

xt+1

ht+1

ht+1

xt−1

ht−1

ht−2

• Each output depends (implicitly) on all previous outputs.

• Input sequences generate output sequences (seq2seq)

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

ht

ht

ht−1

xt

tanh

ht = tanh (Wht−1 + Uxt)

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

ht

ht

ht−1

xt

tanh

ht = tanh (Wht−1 + Uxt) Concatenate
both inputs.

www.bgoncalves.com@bgoncalves

Recurrent Neural Network (RNN)

ht

ht

ht−1

xt

tanh

ht = tanh (Wht−1 + Uxt) Concatenate
both inputs.

www.bgoncalves.com@bgoncalves

Long-Short Term Memory (LSTM)

xt

ht

ct−1 ct

xt+1

ht+1

ct+1

xt−1

ht−1

ct−2

ht−2 ht−1 ht ht+1

www.bgoncalves.com@bgoncalves

Long-Short Term Memory (LSTM)

xt

ht

ct−1 ct

xt+1

ht+1

ct+1

xt−1

ht−1

ct−2

• What if we want to keep explicit information about previous states (memory)?

ht−2 ht−1 ht ht+1

www.bgoncalves.com@bgoncalves

Long-Short Term Memory (LSTM)

xt

ht

ct−1 ct

xt+1

ht+1

ct+1

xt−1

ht−1

ct−2

• What if we want to keep explicit information about previous states (memory)?

• How much information is kept, can be controlled through gates.

ht−2 ht−1 ht ht+1

www.bgoncalves.com@bgoncalves

Long-Short Term Memory (LSTM)

xt

ht

ct−1 ct

xt+1

ht+1

ct+1

xt−1

ht−1

ct−2

• What if we want to keep explicit information about previous states (memory)?

• How much information is kept, can be controlled through gates.

ht−2 ht−1 ht ht+1

• LSTMs were first introduced in 1997 by Hochreiter and Schmidhuber

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

Forget gate: 
How much of
the previous
state should

be kept?
tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

Input gate: 
How much of
the previous

output
should be

remembered? tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

Output gate: 
How much of
the previous

output
should

contribute?

All gates use
the same

inputs and
activation
functions,

but different
weights

tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

Output gate: 
How much of
the previous

output
should

contribute? tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

State: 
Update the
current state

tanh

www.bgoncalves.com@bgoncalves

σ σ

f

g
×

σ

×i o

Long-Short Term Memory (LSTM)

ht

ht

ht−1

xt

ct−1 ct

g = tanh (Wght−1 + Ugxt)
ct = (ct−1 ⊗ f) + (g ⊗ i)
ht = tanh (ct) ⊗ o

+×

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

tanh

i = σ (Wiht−1 + Uixt)
f = σ (Wf ht−1 + Uf xt)

o = σ (Woht−1 + Uoxt)

Output: 
Combine all

available
information.

tanh

www.bgoncalves.com@bgoncalves

Neural Networks?

ht

ht

ht−1

xt

ct−1 ct

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1

W2

N
eu

ro
n

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2
#w

or
ds

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

#w
or

ds

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

#w
or

ds

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

Sequence Length

#w
or

ds

www.bgoncalves.com@bgoncalves

Using LSTMs

�

in
pu

ts
W1 LS

TM W2

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

in
pu

ts

W1 LS
TM

Sequence Length

#w
or

ds

#L
ST

M
 c

ell
s

www.bgoncalves.com@bgoncalves

Applications

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

• Part-of-Speech Tagging

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

• Part-of-Speech Tagging

• Sentiment Analysis

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

• Part-of-Speech Tagging

• Sentiment Analysis

• Summarization

www.bgoncalves.com@bgoncalves

Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

• Part-of-Speech Tagging

• Sentiment Analysis

• Summarization

• Time series forecasting

www.bgoncalves.com@bgoncalves

Gated Recurrent Unit (GRU)

www.bgoncalves.com@bgoncalves

Gated Recurrent Unit (GRU)
• Introduced in 2014 by Cho

www.bgoncalves.com@bgoncalves

Gated Recurrent Unit (GRU)
• Introduced in 2014 by Cho

• Meant to solve the Vanishing Gradient Problem

www.bgoncalves.com@bgoncalves

Gated Recurrent Unit (GRU)
• Introduced in 2014 by Cho

• Meant to solve the Vanishing Gradient Problem

• Can be considered as a simplification of LSTMs

www.bgoncalves.com@bgoncalves

Gated Recurrent Unit (GRU)
• Introduced in 2014 by Cho

• Meant to solve the Vanishing Gradient Problem

• Can be considered as a simplification of LSTMs

• Similar performance to LSTM in some applications, better performance for smaller
datasets.

www.bgoncalves.com@bgoncalves

σ tanh

×

σ

×r

cz

Gated Recurrent Unit (GRU)

ht

ht

ht−1

xt

+×

z = σ (Wzht−1 + Uzxt)
r = σ (Wrht−1 + Urxt)

c = tanh (Wc (ht−1 ⊗ r) + Ucxt)
ht = (z ⊗ c) + ((1 − z) ⊗ ht−1)

1−

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

www.bgoncalves.com@bgoncalves

σ tanh

×

σ

×r

cz

Gated Recurrent Unit (GRU)

ht

ht

ht−1

xt

+×

z = σ (Wzht−1 + Uzxt)
r = σ (Wrht−1 + Urxt)

c = tanh (Wc (ht−1 ⊗ r) + Ucxt)
ht = (z ⊗ c) + ((1 − z) ⊗ ht−1)

1−

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

Update gate: 
How much of
the previous
state should

be kept?

www.bgoncalves.com@bgoncalves

σ tanh

×

σ

×r

cz

Gated Recurrent Unit (GRU)

ht

ht

ht−1

xt

+×

z = σ (Wzht−1 + Uzxt)
r = σ (Wrht−1 + Urxt)

c = tanh (Wc (ht−1 ⊗ r) + Ucxt)
ht = (z ⊗ c) + ((1 − z) ⊗ ht−1)

1−

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

Reset gate: 
How much of
the previous

output should
be removed?

www.bgoncalves.com@bgoncalves

σ tanh

×

σ

×r

cz

Gated Recurrent Unit (GRU)

ht

ht

ht−1

xt

+×

z = σ (Wzht−1 + Uzxt)
r = σ (Wrht−1 + Urxt)

c = tanh (Wc (ht−1 ⊗ r) + Ucxt)
ht = (z ⊗ c) + ((1 − z) ⊗ ht−1)

1−

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

Current
memory: 

What
information do
we remember

right now?

www.bgoncalves.com@bgoncalves

σ tanh

×

σ

×r

cz

Gated Recurrent Unit (GRU)

ht

ht

ht−1

xt

+×

z = σ (Wzht−1 + Uzxt)
r = σ (Wrht−1 + Urxt)

c = tanh (Wc (ht−1 ⊗ r) + Ucxt)
ht = (z ⊗ c) + ((1 − z) ⊗ ht−1)

1−

×
+

1−

Element wise addition

Element wise multiplication

1 minus the input

Output: 
Combine all

available
information.

www.bgoncalves.com@bgoncalves

Language Models

www.bgoncalves.com@bgoncalves

Language Models
• Assigns a probability to a sequence of words.  

P (w1, w2, ⋯, wn)

www.bgoncalves.com@bgoncalves

Language Models
• Assigns a probability to a sequence of words.  

• Typically based on conditional probabilities  

P (w1, w2, ⋯, wn)

P (w1, ⋯, wn) = ∏
i

P (wi |w1, ⋯, wi)

www.bgoncalves.com@bgoncalves

Language Models
• Assigns a probability to a sequence of words.  

• Typically based on conditional probabilities  

• Can be formulated as find the next word: 
 

P (w1, w2, ⋯, wn)

P (w1, ⋯, wn) = ∏
i

P (wi |w1, ⋯, wi)

My name is _____. 
The sky is _____.

P (Bruno |my, name, is) ≫ P (red |my, name, is)
P (Red | the, sky, is) ≫ P (Bruno | the, sky, is)

www.bgoncalves.com@bgoncalves

Language Models
• Assigns a probability to a sequence of words.  

• Typically based on conditional probabilities  

• Can be formulated as find the next word: 
 

• So given a piece of text, we build a training dataset:  
 
Mary had a little lamb whose fleece was white as snow. 
 
Using a running window of a certain length

P (w1, w2, ⋯, wn)

P (w1, ⋯, wn) = ∏
i

P (wi |w1, ⋯, wi)

My name is _____. 
The sky is _____.

P (Bruno |my, name, is) ≫ P (red |my, name, is)
P (Red | the, sky, is) ≫ P (Bruno | the, sky, is)

www.bgoncalves.com@bgoncalves

Language Models
• Assigns a probability to a sequence of words.  

• Typically based on conditional probabilities  

• Can be formulated as find the next word: 
 

• So given a piece of text, we build a training dataset:  
 
Mary had a little lamb whose fleece was white as snow. 
 
Using a running window of a certain length

• Supervised learning model

P (w1, w2, ⋯, wn)

P (w1, ⋯, wn) = ∏
i

P (wi |w1, ⋯, wi)

My name is _____. 
The sky is _____.

P (Bruno |my, name, is) ≫ P (red |my, name, is)
P (Red | the, sky, is) ≫ P (Bruno | the, sky, is)

Input Sequence output
Mary had a little lamb
had a little lamb whose
a little lamb whose fleece
little lamb whose fleece was
lamb whose fleece was white
whose fleece was white as
fleece was white as snow

www.bgoncalves.com@bgoncalves

Or legos?

www.bgoncalves.com@bgoncalves

Or legos?

www.bgoncalves.com@bgoncalves

Or legos?
https://keras.io

www.bgoncalves.com@bgoncalves

Keras
https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• Open Source neural network library written in Python

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• Open Source neural network library written in Python

• TensorFlow, Microsoft Cognitive Toolkit or Theano backends

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• Open Source neural network library written in Python

• TensorFlow, Microsoft Cognitive Toolkit or Theano backends

• Enables fast experimentation

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• Open Source neural network library written in Python

• TensorFlow, Microsoft Cognitive Toolkit or Theano backends

• Enables fast experimentation

• Created and maintained by François Chollet, a Google engineer.

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• Open Source neural network library written in Python

• TensorFlow, Microsoft Cognitive Toolkit or Theano backends

• Enables fast experimentation

• Created and maintained by François Chollet, a Google engineer.

• Implements Layers, Objective/Loss functions, Activation
functions, Optimizers, etc…

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None)

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None)
• Activation(activation) - Same as the activation option to Dense, can also be used to

pass TensorFlow or Theano operations directly.

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None)
• Activation(activation) - Same as the activation option to Dense, can also be used to

pass TensorFlow or Theano operations directly.
• SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None)
• Activation(activation) - Same as the activation option to Dense, can also be used to

pass TensorFlow or Theano operations directly.
• SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)
• GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None)
• Activation(activation) - Same as the activation option to Dense, can also be used to

pass TensorFlow or Theano operations directly.
• SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)
• GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)
• LSTM(units, input_shape, activation='tanh', use_bias=True, dropout=0.0,

return_sequences=False)

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc…

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc…

• loss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc…

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc…

• loss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc…

• model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=True)

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc…

• loss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc…

• model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=True)

• model.predict(x, batch_size=32, verbose=0) - fit/predict interface similar to sklearn.

https://keras.io

www.bgoncalves.com@bgoncalves

Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc…

• loss - ‘mean_squared_error’, ‘categorical_crossentropy’,
‘kullback_leibler_divergence’, etc…

• model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1,
validation_split=0.0, validation_data=None, shuffle=True)

• model.predict(x, batch_size=32, verbose=0) - fit/predict interface similar to sklearn.

• model.summary() - Output a textual representation of the model

https://keras.io

github.com/bmtgoncalves/RNN

