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examples provided with this tutorial were chosen for 
their didactic value and are not mean to be 
representative of my day to day work.
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How the Brain “Works” (Cartoon version)
• Each neuron receives input from other neurons
• 1011 neurons, each with  with 104 weights
• Weights can be positive or negative
• Weights adapt during the learning process
• “neurons that fire together wire together” (Hebb)
• Different areas perform different functions using same structure (Modularity)
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Optimization Problem
• (Machine) Learning can be thought of as an optimization problem.

• Optimization Problems have 3 distinct pieces:

• The constraints

• The function to optimize

• The optimization algorithm.

Neural Network

Prediction Error

Gradient Descent
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Activation Function - Sigmoid

� (z) =
1

1 + e�z

• Non-Linear function

• Differentiable

• non-decreasing

• Compute new sets of features

• Each layer builds up a more abstract 
representation of the data

• Perhaps the most common

http://github.com/bmtgoncalves/Neural-Networks
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• Differentiable

• non-decreasing

• Compute new sets of features

• Each layer builds up a more abstract 
representation of the data

http://github.com/bmtgoncalves/Neural-Networks
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• To create a multi-layer perceptron, you can simply use the output of 
one layer as the input to the next one.  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• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

• To create a multi-layer perceptron, you can simply use the output of 
one layer as the input to the next one.  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Forward Propagation
• The output of a perceptron is determined by a sequence of steps:

• obtain the inputs

• multiply the inputs by the respective weights

• calculate output using the activation function

• To create a multi-layer perceptron, you can simply use the output of 
one layer as the input to the next one.  

• But how can we propagate back the errors and update the weights?
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Backward Propagation of Errors (BackProp)
• BackProp operates in two phases:

• Forward propagate the inputs and calculate the deltas

• Update the weights

• The error at the output is a weighted average difference between predicted output and the 
observed one.

• For inner layers there is no “real output”! 
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Loss Functions
• For learning to occur, we must quantify how far off we are from the desired output. There are 
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The Cross Entropy is complementary to sigmoid 
activation in the output layer and improves its stability.

Loss Functions
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Gradient Descent

• Find the gradient for each training batch

• Take a step downhill along the 
direction of the gradient  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Gradient Descent

• Find the gradient for each training batch

• Take a step downhill along the 
direction of the gradient  
 

• where     is the step size.

• Repeat until “convergence”. 
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• Each output depends (implicitly) on all previous outputs.

• Input sequences generate output sequences (seq2seq)
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Long-Short Term Memory (LSTM)
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• What if we want to keep explicit information about previous states (memory)?

• How much information is kept, can be controlled through gates.

ht−2 ht−1 ht ht+1

• LSTMs were first introduced in 1997 by Hochreiter and Schmidhuber
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Applications
• Language Modeling and Prediction

• Speech Recognition

• Machine Translation

• Part-of-Speech Tagging

• Sentiment Analysis

• Summarization

• Time series forecasting 
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Gated Recurrent Unit (GRU)
• Introduced in 2014 by Cho

• Meant to solve the Vanishing Gradient Problem

• Can be considered as a simplification of LSTMs

• Similar performance to LSTM in some applications, better performance for smaller 
datasets.
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Language Models
• Assigns a probability to a sequence of words.  

• Typically based on conditional probabilities  

• Can be formulated as find the next word: 
 

• So given a piece of text, we build a training dataset:  
 
Mary had a little lamb whose fleece was white as snow. 
 
Using a running window of a certain length

• Supervised learning model

P (w1, w2, ⋯, wn)

P (w1, ⋯, wn) = ∏
i

P (wi |w1, ⋯, wi)

My name is _____. 
The sky is _____.

P (Bruno |my, name, is) ≫ P (red |my, name, is)
P (Red | the, sky, is) ≫ P (Bruno | the, sky, is)

Input Sequence output
Mary had a little lamb
had a little lamb whose
a little lamb whose fleece
little lamb whose fleece was
lamb whose fleece was white
whose fleece was white as
fleece was white as snow
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Keras
•  Open Source neural network library written in Python

• TensorFlow, Microsoft Cognitive Toolkit or Theano backends

• Enables fast experimentation

• Created and maintained by François Chollet, a Google engineer.

• Implements Layers, Objective/Loss functions, Activation 
functions, Optimizers, etc… 

https://keras.io
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Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to 

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other 
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None) 
• Activation(activation) - Same as the activation option to Dense, can also be used to 

pass TensorFlow or Theano operations directly.
• SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, 

return_sequences=False)
• GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, 

return_sequences=False)
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Keras
• keras.models.Sequential(layers=None, name=None)- is the workhorse. You use it to 

build a model layer by layer. Returns the object that we will use to build the model
• keras.layers

• Dense(units, activation=None, use_bias=True) - None means linear activation. Other 
options are, ’tanh’, ’sigmoid’, ’softmax’, ’relu’, etc.

• Dropout(rate, seed=None) 
• Activation(activation) - Same as the activation option to Dense, can also be used to 

pass TensorFlow or Theano operations directly.
• SimpleRNN(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, 

return_sequences=False)
• GRU(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, 

return_sequences=False)
• LSTM(units, input_shape, activation='tanh', use_bias=True, dropout=0.0, 

return_sequences=False)

https://keras.io
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Keras
• model = Sequential()

• model.add(layer) - Add a layer to the top of the model

• model.compile(optimizer, loss) - We have to compile the model before we can use it

• optimizer - ‘adam’, ‘sgd’, ‘rmsprop’, etc… 

• loss - ‘mean_squared_error’, ‘categorical_crossentropy’, 
‘kullback_leibler_divergence’, etc… 

• model.fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, 
validation_split=0.0, validation_data=None, shuffle=True) 

• model.predict(x, batch_size=32, verbose=0) - fit/predict interface similar to sklearn.

• model.summary() - Output a textual representation of the model

https://keras.io
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