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1 Introduction

What followed the Great Recession was a prolonged period of low interest rates and high liquidity. After fixing the target federal

funds rate at 0 ~ 0.25% for years, the U.S. Federal Reserve has signalled the transition of the U.S. economy by incrementally

raising this rate. While these rate hikes are coming at a pace below the historical average, there seems to be little disagreement

over the view that change is due.

A raise in interest rates affects the whole economy, albeit in different pace, direction, and magnitude. For example, suppose

the Federal Open Market Committee announces a higher target rate. The financial markets tend to respond almost immediately,

whereas it takes much longer for the effect to be realized in a more widespread manner. The profitability of banks increase,

whereas other firms may respond negatively to the added cost of borrowing. But amidst all this, it is quite possible for the

average consumer to not notice any difference after an interest rate hike, while many analysts cautiously watch the markets over

a couple of basis point changes in interest rates. In the current world with the globalization of economies, such changes also

induce action from foreign investors.

Quantifying these effects in the macroeconomic scale would be a profoundly complex task. With many segments of the

economy working together and against each other, both the cause and the effect appear to be elusive and not very amenable

to analysis. What this paper tries to achieve is a reasonable first step in the right direction in developing a model to study and

quantify such effects.

In this paper, I develop and solve a simple model of an agent that faces income and interest rate fluctuations in the economy.

The uncertainty in the income and interest rate processes are characterized by two separate finite state, discrete time Markov

Chains. In this setting, the agent has the option to save in order to smooth consumption over his lifetime, while borrowing is not

allowed. After numerically solving for the optimal policy function, I run simulations for seven different scenarios and present

plots and empirical statistics for each.

There are two main features of this paper that are important to put forward from the onset. The first is the restriction of

the scope of analysis to an arbitrary agent. In a more general context, this might be the individual household that provides the

microeconomic foundations of the aggregate macroeconomic sector. This restriction has two advantages: one is that this allows

us to focus our attention to individuals that make up one of the most crucial sectors in the economy, and the other is that it allows

us to directly study behavior without relying on other equilibrium arguments in the economy. Using a more parsimonious model

gives us a partial snapshot of the bigger picture that is the macroeconomy. The tradeoff here is that to gain a clearer sense of what

happens to the individual agent and what drives his or her decisions, I abstract away the details of other sectors of the economy

that the agent interacts with.

The second feature is that by assuming incomplete markets, I expose the agent to risks that stem from income and interest

rate fluctuations. Standard economic theory tells us that a risk averse agent, given access to financial markets and the appropriate

instruments, will hedge out risk factors and smooth consumption over different time periods. I deviate from this standard by only

allowing the agent to save and not borrow, in order to more closely examine consumption and saving behavior of individuals under

exposure to risk. This not only gives rise to more interesting behavior, but also dispenses with what is perhaps a less favorable

concept of the standard complete markets assumption. What results is a “self-insurance” type of behavior of an individual, shown

through a series of saving and consumption rates throughout her lifetime.

There are a couple of forces in play when considering the effect of interest rates on income and savings. Substitution effect

suggests that an increase in interest rates makes savings more attractive, making people shift consumption to the future and save

more today. The income effect tells us that an increase in the interest rate expands the feasible consumption set, inducing the

agent to raise present consumption and save less. And lastly, the wealth effect implies that a raise in interest rate will decrease

the discounted lifetime income, and thus reinforces the interest rate’s substitution effect in decreasing present consumption and

raising saving. These concepts will serve as important tools of analysis, especially as I move on towards comparing results in
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later sections of this paper.

Now, what we observe in the outcome is a mix of these effects, and thus the overall effect is somewhat ambiguous. The

substitution and income effects are offsetting forces in this dynamic, and what we can say a priori about which effect dominates

is limited. However, studying a simple two period case gives us an idea of where this is headed, although it is not the full model

considered and solved in the paper. Consider an agent who wishes to maximize the two period utility

max
c1,c2

u(c1)+bu(c2) ,

with 0 < b < 1 as the discount factor of future utility. The agent makes the decision subject to the lifetime budget constraint

c1 +
c2

1+ r

= y1 +
y2

1+ r

,

with an isoelastic utility function u(c) =

c

1�q
1�q , where q is the risk aversion parameter. Here c1 and c2 denote the period 1 and

period 2 consumption, respectively, whereas y1 and y2 are the period 1 and period 2 deterministic endowments. Interest rates are

fixed at r, and the utility is loosely interpreted as the total value derived from consumption.

Calculating the first order condition and applying the utility function gives the optimal future consumption rate, c2 =

c1b 1/q
(1+ r)

1/q . Substituting this value into the lifetime budget constraint yields the optimal present consumption,

c1 =
1

1+b 1
q
(1+ r)

1
q �1

✓
y1 +

y2

1+ r

◆
.

One of the parameters that drives the agent’s decision on how much to consume and save is the risk aversion parameter, q . In

this simple two period case, it is possible to tell which effect dominates depending on the risk aversion parameter q . The two

offsetting forces of substitution effect and the income effect are characterized by the (1+ r)

1
q �1 term in the above formula. If

q < 1, then the substitution effect dominates. If q > 1, the income effect will drive the decision. Each of those two scenarios

will be considered in the general model setting below. What is interesting is that for the q = 1 case where u(c) = ln(c), the ratio

of present consumption to the lifetime income is independent of the interest rate. The ratio is

c1

y1 +
y2

1+r

=

c1

c1 +
c2

1+r

=

c1

c1 + c1
b 1/q

(1+r)

1/q

1+r

=

1

1+b 1
q
(1+ r)

1
q �1

,

where I applied the lifetime budget constraint in the first equality, and the optimal future consumption rate in the second. Letting

q = 1, this quantity simplifies to
1

1+b
,

as the fraction of lifetime income consumed today. Again, this is not the actual model considered in the rest of the paper, but it

gives us some insight to the mechanism at work behind the full model. It also shows some of the elements that the consumption

and saving behaviors depend on - namely the risk aversion parameter q and the discount factor b .

Related Literature

The savings problem is one of the classical problems in macroeconomics. One can trace its beginnings from Irving Fisher’s

and Milton Friedman’s consumption Euler equation, and the permanent income hypothesis proposed by Friedman (1957). The

central message of the permanent income hypothesis is that consumption levels will be consistent with the expected long term

average income of the consumers. The rich analysis that followed paved the way for a vast amount of literature that formed the

cornerstones of modern macroeconomic theory.

Some of the earlier papers such as Schectman (1976), Yaari (1976), and Bewley (1977) aimed to give a more formal treatment

of Friedman (1957). Both Schectman (1976) and Yaari (1976) proposed a utility maximization framework for the permanent

income hypothesis in a finite horzion, zero interest rate, and undiscounted (b = 1) setting. The first two papers formulate income
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fluctuations as independent and identically distributed random variables, whereas Bewley (1977) formulates it as a stationary

stochastic process.

Such developments then motivated another line of work that analyzed agent behavior. Brock and Mirman (1972) introduces

uncertainty to the model through random shocks in the production function. Aiyagari (1994) then modifies this model to

include uninsured idiosyncratic risks and liquidity contraints. The Aiyagari (1994) paper was motivated by the observation

that the behavior of individual’s consumption rates are strongly at odds with the complete markets assumption, which had been

the building blocks of the representative agent model. Krussell and Smith (1998) then extends Aiyagari (1994) by adding a

technology shock (presented as an aggregate state variable) that follows a Markov process. Krusell and Smith (1998) also

proposes a numerical method to resolve the complexities that arise with introducing heterogeneous agents.

The notion of “self-insurance” characterizes an important feature of this paper. When faced with uncertainty and no means

to perfectly hedge risk, the agent saves in order to self-insure against possible future drops in income. Similarly, the agent may

also draw from savings in periods of low realized income to avoid drastic drops in consumption rates. Both Sotomayor (1984)

and Chamberlain and Wilson (2000) analyzes economic settings where this type of behavior is observed. They both discuss

conditions that will induce the optimal consumption path to eventually diverge to infinity.

On the other hand, this paper also assumes incomplete markets, which describes environments with restrictions to hedging or

exchanging risks. In recent years, significant progress has been made to depart from the traditional complete markets setting. For

example, Marcet and Singleton (1999) does this to compute equilibrium consumption-savings plans and asset prices. İmrohoroğlu

(1989) considers two versions of incomplete insurance markets to study the welfare costs of business cycles. Huggett (1993)

also works in this setting to develop models for risk-free interest rates that better explains an empirical observation than those

formulated in a tradional Arrow-Debreu market context.

As these models evolved with increasing complexity, it also became nearly impossible to achieve analytical solutions in

many cases. Accordingly, an important line of development in the literature involved numerical methods. The papers den Haan

(1997) and the previously mentioned Krusell and Smith (1998) show that models with both aggregate and idiosyncratic risk are

computable. In particular, the methods described in the second paper became very popularized, and led to more papers in a

similar strand of logic. For example, Young (2010) presents a similar solution algorithm with a different simulation procedure;

den Haan (2010) et al. compares some of the properties of algorithms used to solve models that feature incomplete markets with

aggregate uncertainty; and Maliar, Maliar, and Valli (2010) extends the analysis on the properties of numerical solutions. The

more recent paper Chipeniuk et al. (2016) offers a formal treatment to the numerical findings of Krusell and Smith (1998).

Outline

Section 2 describes the economic environment of the model and the underlying assumptions. Section 3 explains the approach

and the methodology for solving the model. Section 4 makes a brief detour to the solutions of simplified versions of the

model. Section 5 presents the solution and simulation results through a comparison scheme across different scenarios. Section 6

concludes, followed by a technical appendix and a list of references.

2 Economic Environment

In this section of the paper, I will lay out the setup of the model and outline its assumptions. The model seeks to solve the savings

problem of an arbitrary consumer who wants to maximize the discounted expected utility by choosing a sequence of consumption

rates.

Main problem The central component of the consumption and saving problem for the consumer is to find the maximized

lifetime utility by choosing a sequence of consumption rates, {c

t

}•
t=0, at the initial time period t = 0. As it will be explained
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later, instead of designating some fixed consumption rate for every future time period t, I do this by choosing a consumption

“plan” associated with every possible state variable that may arise in the future. This effectively chooses the optimal saving and

consumption rate as the agent goes through the random fluctuations in the economy.

Here, how much a consumer values the consumption path, or the total sequence of consumption rates, is expressed as follows:

E0

•

Â
t=0

b t

u(c

t

) .

The expectation operator conditioned at time t = 0 signals that there is uncertainty in this total sum, no matter how the consumer

decides. The uncertainty stems from two main sources - changes in the endowment (or income) and interest rates over the

consumer’s lifetime. The consumer, however, has perfect a priori information on the probabilities of each events. In other words,

the consumer knows the distribution of possible events and acts accordingly by maximizing the expectation. The key insights will

follow from how the agent varies the consumption in between periods, while faced with the said uncertainty. In addition, all future

values are discounted by a constant b , which is called the intertemporal discount factor. This agent-specific parameter takes a

real number between 0 and 1, and reflects “patience,” or how much the agent values future utility. Note that each successive

time period is discounted equally - by b ,b 2,b 3, · · · , so on and so forth. A b value closer to 1 describes a consumer that is more

patient, and a value closer to 0 someone who is less so.

The agent saves and consumes a single good at time t, where c

t

represents the amount consumed at time t. In this setting,

the time is discrete, and takes values t = 0,1,2, · · · . The real-valued utility function u(·) then indicates how much the agent

values the consumption rate at each period. This mapping is taken to be twice continuously differentiable, increasing, and strictly

concave. One function that satisfies these requirements, and is used in this paper, is the Constant Relative Risk Aversion (CRRA)

utility function:

u(c) =

8
<

:

1
1�q c

1�q if 0 < q < 1

ln(c) if q = 1.
(1)

Its namesake feature is that the relative risk aversion does not change with the level of consumption. Relative risk aversion is

defined as

�c

u

00
(c)

u

0
(c)

,

which in this case is equal to q . This has the implication that the decision-making process is independent of scale.

Then, the problem is to find the maximum possible value over all feasible consumption paths:

max
{c

t

}•
t=0

E0

•

Â
t=0

b t

u(c

t

) .

What I mean by feasible is explained in the following section.

Constraints and timeline In essence, what is presented here is an infinite horizon, sequential decision-making process. The

tricky part of the problem is that this decision-making process is inherently an intertemporal one. The tradeoff of consuming

more today is that, all else equal, there will be less to consume tomorrow. Similarly, while increasing savings today in the face

of uncertainty will insure the agent against future downturns, he will be forced to lower consumption today. This tradeoff is

expressed mathematically in the following form of contraints at each time period t:

a

t+1 + c

t

= (1+ r

t+1)a

t

+ y

t

(2)

a

t+1 � 0. (3)

In the above expression, a refers to the level of assets held by the agent (hence one of the state variables in this case), r the

interest rate, and y the income. The initial wealth a0 is given. The equality in the first line is interpreted as the sum of next
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period assets and current consumption (left hand side) is equal to the return on current assets at the rate of (1+ r

t+1) plus the

income that period (right hand side). The second line delivers the additional condition that level of assets at every period must be

nonnegative. This may seem like a somewhat arbitrary lower bound, but it has the interpretation that the agent can only save, not

borrow. It is equivalent to having access to capital markets with a single, one-period security that has a return of (1+ r

t+1) the

next period, but without the option to short it. This condition will prevent the agent from reacting to economic dowturns simply

by borrowing to avoid low consumption rates. Instead, it will help bring focus to the “self-insurance” type of behavior, where

one saves in response to the possibility of financial turmoil.

t t+ 1

at given from

t� 1

rt+1

realized

yt realized

return on

(1 + rt+1)at

cash on hand

(1 + rt+1)at + yt

consume

ct

at+1

carried over

Figure 1: Timeline

The agent’s actual decision-making process is best illustrated by a timeline. At the beginning of every period t, the agent

is left with assets a

t

from the previous period. While this is a consequence of the decision made in the previous period t � 1,

the consumer cannot change its level of assets a

t

at the current period - instead, it is simply given. Then, the interest rate r

t+1

is realized exogenously with respect to some probability, and the leftover assets a

t

are saved at that rate. Overtime, the income

y

t

is also realized and the agent receives y

t

, along with the return from the savings (1+ r

t+1)a

t

. The total amount of wealth

available at the time of decision-making is then (1+ r

t+1)a

t

+ y

t

, which is called the cash on hand for that period. From a total

of (1+ r

t+1)a

t

+y

t

, the agent then chooses how much to consume (“c

t

”) and how much to leave out for the next period (“a

t+1”).

Notice that the agent practically only decides how much to consume; how much to leave out for the next period is determined

by exclusion. This is guaranteed mathematically by our constraint (2) because it is possible to solve for a

t+1 given the rest of

the variables c

t

,r
t+1,at

, and y

t

. Then there is a certain duality to the agent’s problem - the savings problem is the consumption

problem, and vice versa.
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Figure 2: Sample Decision Tree

Another important observation is that every choice has consequences for all future periods. A decision made today not

only affects tomorrow, but the entire future (Naturally, however, future decision-making cannot affect the present). It is also

formulated recursively, which is a feature that will be exploited in obtaining the numeircal solution. The above figure shows one

possible scenario of a decision making process, with the level of assets a

t

describing the transition in between states.

Random components: income and interest rates Other crucial aspects of this model include its stochastic elements, the

income and interest rates. Every period, the income and interest rate are realized by a random mechanism that is detached from

the agent’s decisions. Thus the consumer is a price taker in this setting, and does not have enough market power to affect this

process. His individual savings are inconsequential as to how the interest rate is set, and his consumption (or lack thereof) will not

start a recession. While incorporating firms, production, labor, among others can be done, the reason for pursuing this particular,

rather parsimonious model is twofold: 1) restricting our attention to the household sector helps us focus on agent behavior under

the specific circumstances of random interest rates without having to rely on any equilibrium argument; and 2) it streamlines the

formulation and computation of the model.

Both income and interest rates follow random processes generated by discrete time, finite state Markov Chains. These

stochastic processes exhibit the Markov Property, or “memorylessness.” This means that the probability of moving to another

state only depends on the present state, and not on the previous states. The process in a sense “forgets” its past states when

evolving from the current state to the next.

In this environment, the agent faces income fluctuations according to transitions between three states in the macroeconomy -

normal growth, mild recession, and severe recession. At each period t, the agent is assigned one value for the endowment, which

we will label with a superscript, y

1,y2, and y

3, respectively. We denote the state space of income with an upper case Y with

no labels,Y =

�
y

1,y2,y3 . Note that these y

1,y2, and y

3 are fixed values of endowment corresponding to each state. Now, the

transitions in the states for income follow a Markov Chain with a transition matrix P that has the following form:

[P] =

2

664

P11 P12 P13

P21 P22 P23

P31 P32 P33

3

775 where
3

Â
j=1

P

i j

= 1 for i = 1,2,3

so that each row of the matrix adds up to one. Here each entry P

i j

refers to the probability of transitioning from state y

i to y

j:

P

i j

= P
⇥

y

t+1 = y

j

��
y

t

= y

i

⇤
for all t = 0,1,2, · · · .
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Figure 3: Markov States

On the other hand, the interest rate transitions between two states in the state space R, and is noted as R =

�
r

1,r2 . This

second process for interest rates is independent of the process for income, and is also realized exogenously. Here it can be

interpreted that the economy transitions between two states of high and low interest rates, of low liquidity and high liquidity

in the economy, or of high cost of capital and low cost of capital. It may also be interpreted as the per unit cost of present

consumption in terms of future consumption. Similar to income, the interest rates in this economy evolves according to a

Markov Chain with a transition matrix Q:

[Q] =

"
Q11 Q12

Q21 Q22

#
where

2

Â
j=1

Q

i j

= 1 for i = 1,2,

and each entry Q

i j

refers to the probability of transition from some state r

i to r

j :

Q

i j

= P
⇥

r

t+1 = r

j

��
r

t

= r

i

⇤
for all t = 0,1,2, · · · .

Similarly, r

1 and r

2 are some fixed values, and the economy simply moves between the two.

Note that there are then six possible states associated with the random components, |Y | · |R| = 3 · 2 = 6. However, it may

be simpler to think of two separate, independent Markov processes evolving throughout time, than to think of economy moving

between six different states.

3 Methodology

Solving the main problem To reiterate, the goal is to find the objective function

max
{c

t

}•
t=0

E0

•

Â
t=0

b t

u(c

t

)

subjective to

a

t+1 + c

t

= (1+ r

t+1)a

t

+ y

t

a

t+1 � 0,

for each time period t.

I will approach this problem using dynamic programming. More specifically, I will solve this problem by iterating the value

function (also called the Bellman operator) until convergence. Here, the value function expresses the maximized value of current

utility and discounted expected future utility for each period.

For ease of presentation, the subcript t denoting the period will be dropped from all variables. Next period variables will

be labelled with a superscript 0, such as a

0,y0,r0, so on and so forth. For example, for period t, a

t

becomes a, a

t+1 becomes a

0.

Similarly, r

t+1 becomes r, and r

t+2 becomes r

0. Then the Bellman equation has the following form:

v(a,y,r) = max
c,a0�0

�
u(c)+bE

⇥
v

�
a

0,y0,r0
���

y,r
⇤ 
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subject to the contraints

c+a

0
=

�
1+ r

0�
a+ y

a

0 � 0.

The value function takes a,y, and r (the level of assets, income, and interest rate for the period considered) as given. These are the

three state variables. Then, the maximum is taken over all possible choices c and a

0 (the consumption and the assets carried over

to the next period) so that it maximizes the quantity u(c)+bE [v(a

0,y0,r0)|y,r]. Here, c and a

0 are called the control variables.

Notice that this formulation is recursive.

An essential feature of this problem is that it has optimal substructure, so that the principle of optimality applies. Borrowing

from Bellman (1957), the principle of optimality states that “An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first

decision.” This means that the consumer’s consumption-saving problem can be broken down into smaller subproblems, which

is what makes this problem tractable. In other words, choice made at time 1 will put the agent in a certain state, affecting the

decision problem from time 1 and onwards.

From here, I will take steps to simplify this problem and make it solvable by numerical means. Since I will be using the

CRRA utility function (1), the Bellman equation can be rewritten as

v(a,y,r) = max
c,a0�0

⇢
c

1�q

1�q
+bE

⇥
v

�
a

0,y0,r0
���

y,r
⇤�

.

Furthermore, notice that consumption can be rewrriten as c = (1+ r

0
)a+y�a

0. This is in line with the duality mentioned before

- the constraint effectively eliminates one of the two control variables (c and a

0) by substitution. Thus, the maximum is now

only taken over a

0 instead of both a

0
and c. Also, the expectation operator can be calculated explicitly because the probability

distribution for the two stochastic elements in this model - y and r - are known. The probabilities, however, depend on two of the

current state variables y and r due to the Markov Property. Then, making these changes to the Bellman equation,

v(a,y,r) = max
a

0

8
><

>:

⇣
(1+ r)a+ y�a

0
⌘1�q

1�q
+bE

y

0,r0

h
v

⇣
a

0
,y

0
,r

0
⌘���y,r

i
9
>=

>;

= max
a

0

8
><

>:

⇣
(1+ r)a+ y�a

0
⌘1�q

1�q
+b

"
2

Â
j=1

3

Â
i=1

P
⇣

y

0
= y

i

���y
⌘
P
�

r

0
= r

j

��
r

�
v

⇣
a

0
,y

0
= y

i,r
0
= r

j

⌘#
9
>=

>;
,

where the index i sums over the three possible states for come, and j over the two possible states for interest rates. The conditional

probabilities involving income and interest rates are given by the entries in the transition matrices P and Q, respectively.

4 Sample Scenarios: Analytical Solutions

Two periods with no uncertainty and log utility Suppose we have a simplified version of the model with only two periods

and deterministic income and interest rates. Take q = 1, so that the CRRA utility simplifies to log utility. Then the problem at

hand becomes

max
c1,c2

{ln(c1)+b ln(c2)}

9



subject to

a2 + c1 = (1+ r2)a1 + y1

c2 = (1+ r3)a2 + y2

a2 � 0.

The initial values are given: a1the initial wealth, y1 and r2. The terminal wealth a3 is implicitly assumed to be zero, so that

a3 = 0. Previously random values r3 and y2 are also known ahead of time. Then the problem becomes

max
a2

{ln((1+ r2)a1 + y1 �a2)+b ln((1+ r3)a2 + y2)} .

The corresponding first order condition is

b (1+ r3) =
c2

c1
.

Here it can be interpreted that at the optimal consumption path, the ratio of tomorrow’s consumption to today’s consumption is

given by b (1+ r3). This value may be rewritten in the more familiar form

bu

0
(c2)

u

0
(c1)

=

1
1+ r3

.

The left hand side gives the ratio of utility earned by increasing a unit of tomorrow’s consumption to the utility earned by

increasing a unit of today’s consumption. The right hand side tells us that at the optimal path is when this ratio is equal to 1
1+r3

.

In this simplified version, it is possible to solve for a

⇤
2 value that maximizes the above objective function:

a

⇤
2 =

b [(1+ r2)a1 + y1]� y2
1+r3

(1+b )
.

All the values on the right hand side of the above equation are constants in this setting - b ,a1,y1,y2,r2, and r3. Then, the optimal

consumption path associated with this policy is

c

⇤
1 =

1
1+b


(1+ r2)a1 + y1 +

y2

1+ r3

�

c

⇤
2 =

b
1+b

[(1+ r3) [(1+ r2)a1 + y1]+ y2] .

Finite periods with no uncertainty and log utility First suppose we have a finite horizon case with terminal period T . Assume

the deterministic and log utility setting as before. The objective is to choose a consumption path that will maximize

T

Â
t=0

b t

u(c

t

) .

As before, I will use the constraints to eliminate the consumption variable. This yields

max
{a

t+1}T

t=0

T

Â
t=0

b t

u((1+ r

t+1)a

t

+ y

t

�a

t+1) .

Expanding this sum will give an expression for an arbitrary period t such that 0  t < T ,

· · ·+b t

u((1+ r

t+1)a

t

+ y

t

�a

t+1)+b t+1
u((1+ r

t+2)a

t+1 + y

t+1 �a

t+2)+ · · · .

Observe that these two terms are the only terms that include the variable a

t+1. Taking the derivative respect to a

t+1 gives the first

order condition:

�b t

u

0
((1+ r

t+1)a

t

+ y

t

�a

t+1)+b t+1
u

0
((1+ r

t+2)a

t+1 + y

t+1 �a

t+2)(1+ r

t+2) = 0.
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Then, rearranging this expression,

u

0
((1+ r

t+1)a

t

+ y

t

�a

t+1) = bu

0
((1+ r

t+2)a

t+1 + y

t+1 �a

t+2)(1+ r

t+2) .

Again, the familar form arises:
bu

0
(c

t+1)

u

0
(c

t

)

=

1
1+ r

t+2
.

This applies to all the periods except the last one. As in the two period case, the terminal wealth is assumed to be zero, hence it

is implied that

a

T+1 = 0.

Now I will apply the log-utlity form. This means the first order condition becomes

1
(1+ r

t+1)a

t

+ y

t

�a

t+1
=

b (1+ r

t+2)

(1+ r

t+2)a

t+1 + y

t+1 �a

t+2
.

This gives the quasi-analytical solution

a

t+1 =
b

1+b


(1+ r

t+1)a

t

+ y

t

+

a

t+2 � y

t+1

b (1+ r

t+2)

�
.

Notice that this is not a real solution because of the a

t+2 term in the expression.

5 Comparing Computational Results

A roadmap I will present the results of the calculation on a case-by-case basis. The emphasis will be on how changing the

various statistical properties of the interest rate process will affect the optimal policy and other results. Different values for the

risk aversion parameter will also be considered. After obtaining the optimal policies in each setting, I will then apply the policy to

simulated income and interest rate processes. By obtaining the empirical variance-covariance matrix for the implied consumption

rate, asset policy, cash on hand, income and interest rates in this simulated setting, I will be able to compare how differences

across parameters will cause these correlations to change.

Income process The one constant in this series of computational experiments will be the formulation of the income process.

I will fix a transition matrix and state vector for the income process to better compare differences across other features of the

model. The values for the transition probabilities will be borrowed from Hamilton (2005). The paper proposes a three-state

Markov-switching model in studying the post-war U.S. business cycles. The author then calibrates the model to the seasonally

adjusted monthly unemployment data from 1948 January to 2004 March. This dataset is available from the Bureau of Labor

Statistics (http://stats.bls.gov).

The values presented in Hamilton (2005) are

[P] =

2

664

0.971 0.029 0

0.145 0.778 0.077

0 0.508 0.492

3

775 .

Notice that some transition probabilties, such as the one from normal growth to severe recession and vice versa, are zero. This

consequently imposes the condition that the economy cannot directly switch between extremes states in neighboring periods.

Now, the state vector for the income will have to be chosen somewhat arbitrarily, with only the condition that it is the highest

in periods of normal growth, lower during mild recessions, and the lowest in times of severe recessions. The vector that will be

used in the following sections will be

y =

2

664

5

3

1

3

775 .
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Benchmark interest rate process: Rouwenhorst method In order to obtain an approximate benchmark for the interest rate

process, I first fitted an AR(1) process with drift to actual data. The different cases considered below are obtained by making

changes to this process, and then by discretizing it using the Rouwenhorst method. I used the monthly effective federal funds

rate from 1954 July to 2004 March, fitting on 597 observations (data available at https://www.federalreserve.gov/data.htm). The

model has the following form:

r

t

= w +rr

t�1 + e
t

,

where w and r are constants, and the e
t

’s are assumed to be independent, identically normally distributed, so that e
t

⇠ N

�
0,s2�.

In order to estimate these parameters, I used the following formulas:

µ =

w
1�r

t 0.004859687

var(r
t

) =

s2

1�r2 t 0.0028186072,

where µ is the sample average of r

t

, r is the first order autocorrelation of r

t

. It is then possible solve for the parameters of the

AR(1) process mentioned above. Making these calculations I obtain

br = 0.9824744

bw = 8.516905⇥10�5

bs = 5.253818⇥10�4.

Then, I used the Rouwenhorst method to derive a Markov chain from this process. I obtain the following estimates:

[Q] =

"
0.9912372 0.0087628

0.0087628 0.9912372

#

r =

"
0.0020411

0.0076783

#
.

From here on, I will only change the values for b (discount factor), q (risk aversion parameter), Q (transition matrix for interest

rates), and r (state vector for interest rates). At each heading, I will clearly denote which values are used for these parameters.

Simulation and computed statistics Every simulation was done using a random number generator in Python. The length of

the series is 500 periods for all cases. I began by obtaining a simulated array for income and interest rate processes, as those

are the purely random processes. The random seed for the income process was fixed throughout this paper, so that the income

process is identical for all cases. This was done to better compare differences across other components. Then, I applied the

previously calculated policy function to derive the other simulated processes.

As for the computed statistics, I presented below the correlation matrix and the standard deviations. Unlike the plots, these

values are obtained by a much longer simulated process. For each sample time series of length T = 5000, I computed the

correlation matrix and the standard deviations. Then, I averaged these statistics across 1000 samples, and presented the outcome.

5.1 Case 1: Low mean

For the first case, I would like to refer back to the Markov process and the AR(1) process for the interest rates. To make

comparisons between one process with a lower mean and higher mean, suppose the underlying data for the interest rate process

had a 20% lower mean. Then I can fit an AR(1) process with drift, and again derive the transition matrix and the state vectors.

Then the values for (w,r,s) = (0.00006813524,0.9824744,0.0005253818) . Using the Rouwenhorst method, I can then find

the associated transition matrix and state vector. To summarize, the following values are used for the first case:

12



b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628

0.0087628 0.9912372

#
, and r =

"
0.00106915

0.00670636

#
.

Here are the plots of the solved model:

*Case 1: Low mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00106915
0.00670636

#
.

Figure 4: Solution results

Figure 4 shows the four “solution” plots for the first case. Beginning from the top left hand side, I have the value function,

followed by the three policy functions associated with assets, consumption, and cash in hand.

The first plot is the direct outcome of the calculation, as it is the optimal value function that results after iterating the Bellman

operator until convergence. What is plotted is the value function associated with various state variables (a,y,r). The first state

variable a is continuous and is shown on the x-axis. Six different curves correspond to six different finite state values of y and

r (3⇥2 = 6) for each asset value. Notice that the y-axis values are negative - this is a result of setting q > 1, which pushes the

utility to negative values. This should not be interpreted as these functions having “negative” value, per se, as utility is simply

a way to present a preference relationship. What really matters is the ordered relationship between those values. In addition,

observe that the value function curves inherit its shape from the utility function - it is also increasing and concave.

The second plot on the top right hand side shows the assets policy function, which is derived from the value function. Again,

the state variables are represented similarly. The current assets are on the x-axis, and the different curves correspond to different y

and r values. The asset policy function tells the agent that given these state variables a

t

, y

t

, and r

t+1, the optimal response in that

state is to set the a

t+1 (assets to carry over to the next period) equal to the value of the asset policy function. Because choosing

a

t+1 effectively chooses the consumption rate and vice versa, this fully characterizes what the optimal policy is in any given state.

13



Notice that these calculations fully incorporate the uncertainty associated with the income and interest rate fluctuations.

The bottom two plots are the consumption policy function and the cash in hand policy function. Both are derived from the

asset policy function, and both represent optimal policies. For example, the consumption policy function “instructs” the agent

that given the state variables (a,y,r), the optimal policy is to consume the amount shown on the y-axis. Note that here a lower

interest rate value is associated with higher consumption, highlighting the substitution effect. A higher interest rate makes savings

more attractive, inducing the agent to shift from consumption to saving. However, as shown in the plots, there are much larger

differences in consumption rates across income states than across interest rate states. This hints that the decision is driven mostly

by the income fluctuations.

In Figure 5 on the next page, I have the five different simulation plots for Case 1. The first three plots, titled “Consumption,”

“Assets,” and “Cash in hand” are results of applying the previously mentioned three policy functions to simulated random

processes for y and r. Since the policy functions instructs the agent what to do in every possible state, I test it to simulated

processes, and plot the agent’s optimal response in every period. The last two plots, titled “Income” and “Interest rates” are

purely random simulated Markov Chains. Remember that the random seed was fixed for the income process.

Beginning with the plot on the left hand side of the first row, I have the simulated consumption paths. Notice that the

consumption path is not smooth at all - instead it fluctuates very frequently, and somewhat resembles the income process. This

is a result of the agent’s exposure to the risks associated with income and interest rate processes. Without the means to hedge out

risks, the agent has to face the drops in consumption levels during downturns in the economy. In the other extreme, if the agent

had full access to the appropriate financial instruments, then the consumption rate of a risk averse agent would be flat.

On the right hand side of the first row is the simulated assets policy function. Whereas the consumption, cash in hand, and

income plots seem to more closely resemble one another, the plot for assets look a little different. But the sudden drops in the

asset levels are almost traceable by comparing them to the simulated income process. Large drops in income correspond to large

drops in assets. As do the consumption and cash in hand, the asset levels seem to fluctuate a lot throughout time.

As for the income process, one can almost see the three different states in the Markov Chain - normal growth, mild recession,

and severe recession. Since income only takes three different values, the plot seems like a step function with three different

values. The same is true for the interest rate plot, but more noticeably so. The reason is that the transition matrix for the interest

rate process is very persistent, meaning transitions between states are rare. In this case there are only a handful of interest rate

changes. In a later case, I will examine the results for a less persistent interest rate process.
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*Case 1: Low mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00106915
0.00670636

#
.

Figure 5: Simulation results

On the other hand, here are the computed statistics. The table on the left hand side shows the correlation matrix, followed by

the standard deviations on the right. Notice that interest rate and the income processes have a correlation coefficient of -0.0001

in practice, but theoretically, those are independent processes. As expected, consumption and income are strongly correlated, at

0.9962, whereas assets and income are negatively correlated with a coefficient of -0.1120. As for the standard deviations, cash

in hand is the most volatile, followed by income, consumption, assets, then interest rate.
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 -0.0957 0.7882 -0.0014 0.9962

Assets -0.0957 1.0000 0.1667 0.7590 -0.1120

Cash 0.7882 0.1667 1.0000 0.1955 0.7715

Interest rate -0.0014 0.7590 0.1955 1.0000 -0.0001

Income 0.9962 -0.1120 0.7715 -0.0001 1.0000

Standard deviation

Consumption 0.9106

Assets 0.2373

Cash 0.9246

Interest rate 0.0028

Income 0.9123

*Case 1: Low mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00106915
0.00670636

#
.

5.2 Case 2: High mean

In the second case, I approach similarly as the first.

The AR(1) parameters are (w,r,s) = (0.0001022029,0.9824743761,0.0005253818) . The parameters changed are then

b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628

0.0087628 0.9912372

#
, and r =

"
0.00301303

0.00865024

#
.

’

*Case 2: High mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00301303
0.00865024

#
.

Figure 6: Solution results
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*Case 2: High mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00301303
0.00865024

#
.

Figure 7: Simulation results

The preceding figures show the solution and simulation plots for the second case with high mean. Notice that while the

income process is identical to Case 1 with low mean, the interest rate process is different. This is because the random seed is

fixed for the income process, whereas the interest rates are newly drawn each time. Furthermore, in Case 2 with high mean, the

interest rate state values both shift upwards.

Here are the computed statistics:
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 0.0697 0.7928 0.0017 0.9961

Assets 0.0697 1.0000 0.3579 0.7979 0.0520

Cash 0.7928 0.3579 1.0000 0.2114 0.7724

Interest rate 0.0017 0.7979 0.2114 1.0000 0.0026

Income 0.9961 0.0520 0.7724 0.0026 1.0000

Standard deviation

Consumption 0.9029

Assets 0.2538

Cash 0.9754

Interest rate 0.0028

Income 0.9123

*Case 2: High mean b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00301303
0.00865024

#
.

5.3 Case 3: Low volatility

In the case of comparing high and low volatilities, I will change the standard deviation of the e
t

’s (that is, the s ) associated

with the AR(1) process. As before, the changes will be 20% lower and 20% above. Using 0.8 ⇥ s for the standard

deviation, I obtain the transition matrix and state vectors. As a result, the parameters used in this case are b = 0.96, q = 1.5,

Q =

"
0.9912372 0.0087628

0.0087628 0.9912372

#
, and r =

"
0.00260481

0.00711458

#
.

’

*Case 3: Low volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00260481
0.00711458

#
.

Figure 8: Solution results
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*Case 3: Low volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00260481
0.00711458

#
.

Figure 9: Simulation results

For Case 3 and Case 4, the volatilities for the interest rates are changed. Applying the Rouwenhorst method only changes

the state vector for the interest rate, causing the discrepancy between the high and low values to become smaller, then larger. In

this case, the level of assets is slightly negatively correlated with income as before. The correlation between consumption and

income seems to have become even stronger at 0.9963. This is a very large number, considering the coefficient is between -1 and

1. Noticeably, the standard deviation for interest rate has become smaller, now at 0.0022.
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 -0.0200 0.7967 0.0018 0.9963

Assets -0.0200 1.0000 0.2282 0.7487 -0.0381

Cash 0.7967 0.2282 1.0000 0.1721 0.7784

Interest rate 0.0018 0.7487 0.1721 1.0000 0.0028

Income 0.9963 -0.0381 0.7784 0.0028 1.0000

Standard deviation

Consumption 0.9069

Assets 0.2118

Cash 0.9403

Interest rate 0.0022

Income 0.9123

*Case 3: Low volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00260481
0.00711458

#
.

5.4 Case 4: High volatility

In continuation of the previous case, I will increase s by 20%. Then, I obtain b = 0.96, q = 1.5, Q ="
0.9912372 0.0087628

0.0087628 0.9912372

#
, and r =

"
0.00147736

0.00824202

#
.

’

*Case 4: High volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00147736
0.00824202

#
.

Figure 10: Solution results

20



*Case 4: High volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00147736
0.00824202

#
.

Figure 11: Simulation results

Similar plots follow as before. Simulated asset policy plot shows that asset levels still fluctuate throughout time. However,

the correlation between assets and consumption changes from -0.02 in the low volatility case to 0.0034. The correlation between

interest rate and consumption changes from 0.0018 to -0.0006. The standard deviation for assets rise from 0.2118 in the

low volatility case to 0.2796 in the high volatility case. The standard deviation for cash in hand and interest rate also rises.

Interestingly, while the interest rate standard deviation increases from 0.0022 to 0.0033, the standard deviation for asset increases

by a larger amount.
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 0.0034 0.7832 -0.0006 0.9961

Assets 0.0034 1.0000 0.3121 0.8103 -0.0125

Cash 0.7832 0.3121 1.0000 0.2375 0.7645

Interest rate -0.0006 0.8103 0.2375 1.0000 0.0008

Income 0.9961 -0.0125 0.7645 0.0008 1.0000

Standard deviation

Consumption 0.9063

Assets 0.2796

Cash 0.9635

Interest rate 0.0033

Income 0.9123

*Case 4: High volatility b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.00147736
0.00824202

#
.

5.5 Case 5: Low autocorrelation / Less persistence

For Case 5, I consider an interest rate process with less persistence. Instead of using the Rouwenhorst method on the AR(1)

process as before, I do this by directly changing the autocorrelation of the transition matrix. I use a slightly different approach for

coming up with parameter values here because changing the autocorrelation of the AR(1) process even by a very small amount

results in negative state values for the interest rates.

Here, persistence should be interpreted as how long the process tends to stay in one state. A persistent process, such as those

considered before in Cases from 1 to 4, tends to have less frequent transitions. On the other hand, a less persistent one will have

much more frequent changes. This point will be best illustrated by considering the simulated interest rate process below.

Note that for any transition matrix of the form
"

p 1� p

1�q q

#
,

the first order autocorrelation is p+ q� 1. Because in our case p = q, I can directly change the autocorrelation in this case.

Decreasing the value by 20%, I have

0.8(2p�1) = 0.8(0.9824744) = 0.78597952.

Then the new parameter values for Case 5 becomes

[Q] =

"
0.78597952 0.21402048

0.21402048 0.78597952

#

r =

"
0.0020411

0.0076783

#
.

Note that this method only works in the 2⇥2 matrix case. As before, b = 0.96,q = 1.5.
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’

*Case 5: Low autocorrelation b = 0.96, q = 1.5, Q =

"
0.78597952 0.21402048
0.21402048 0.78597952

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 12: Solution results

As for the plots, the most noticeable change in this case is the simulated interest rate process. Before, there had only been

a handful of interest rate changes in the time series. Here the changes are immensely more frequent. The plot for the simulated

asset policy also has changed in that there are now much more frequent smaller perturbations. In previous cases, the plot seemed

to be more or less charaterized by large swings - here there seems to be more frequent changes in smaller scale.

As for the statistics, the correlation between interest rate and consumption is negative at -0.0082 compared to 0.0016 for

Case 6, the risk averse case. The correlation between cash in hand and assets fall to 0.0974 from 0.2756 in Case 6. Compared

to Case 6, the correlation between consumption and income is very slightly stronger. The standard deviation for consumption

barely changes at 0.9072 from 0.9064 for Case 6. However, the standard deviation for assets goes through a notable change, from

0.2462 in Case 6 to 0.1181 in this case.
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*Case 5: Low autocorrelation b = 0.96, q = 1.5, Q =

"
0.78597952 0.21402048
0.21402048 0.78597952

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 13: Simulation results
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 -0.0693 0.8107 -0.0082 0.9964

Assets -0.0693 1.0000 0.0974 0.0891 -0.0973

Cash 0.8107 0.0974 1.0000 0.0107 0.7924

Interest rate -0.0082 0.0891 0.0107 1.0000 -0.0012

Income 0.9964 -0.0973 0.7924 -0.0012 1.0000

Standard deviation

Consumption 0.9072

Assets 0.1181

Cash 0.9193

Interest rate 0.0028

Income 0.9123

*Case 5: Low autocorrelation b = 0.96, q = 1.5, Q =

"
0.78597952 0.21402048
0.21402048 0.78597952

#
, and r =

"
0.0020411
0.0076783

#
.

5.6 Case 6: Risk-averse

In the sixth case, I present the results in the same setting as the benchmark interest rate process, with the risk aversion parameter

set to q = 1.5.

’

*Case 6: Risk-averse b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 14: Solution results
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*Case 6: Risk-averse b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 15: Simulation results
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Consumption Assets Cash Interest rate Income

Consumption 1.0000 -0.0042 0.7904 0.0016 0.9962

Assets -0.0042 1.0000 0.2756 0.7883 -0.0207

Cash 0.7904 0.2756 1.0000 0.2079 0.7717

Interest rate 0.0016 0.7883 0.2079 1.0000 0.0028

Income 0.9962 -0.0207 0.7717 0.0028 1.0000

Standard deviation

Consumption 0.9064

Assets 0.2464

Cash 0.9523

Interest rate 0.0028

Income 0.9123

*Case 6: Risk-averse b = 0.96, q = 1.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

5.7 Case 7: Risk-seeking

In the final case, I present the results for an individual with a relatively low risk aversion parameter, or for an individual who is a

“risk-seeker.” I will use b = 0.96, q = 0.5, Q =

"
0.9912372 0.0087628

0.0087628 0.9912372

#
, and r =

"
0.0020411

0.0076783

#
.

’

*Case 7: Risk-seeking b = 0.96, q = 0.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 16: Solution results
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*Case 7: Risk-seeking b = 0.96, q = 0.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

Figure 17: Simulation results

A few comments are in order. A quick examination shows that the consumption pattern seems to closely track the income

process. Again, this is a consequence of the incomplete markets assumption. Left without the means to hedge her risks, the

consumer is forced to essentially “eat what you have” each period. With access to capital markets that provide the appropriate

financial instruments, the agent would be able to smooth her consumption over time much better. In addition, the accumulation

of assets falls to the zero level very noticeably. Looking at the plot on the right hand side of the first row for Figure 17, the level

of assets fall drastically to zero almost immediately, where it stays low for the remainder of the period. In the risk-seeking case,

it seems like the agent does not accumulate assets at all.
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Looking at the statistics, the standard deviation for assets is very low. This is expected from the plots, as it does not change

much at all. Perhaps as a result of this, the consumption rates show a higher standard deviation of 0.9121. A risk seeking agent

would not mind the changes in consumption levels. In this case, the correlation between income and consumption grew even

higher, shown as 1.000 for the approximation to four digits. Compared to other cases considered so far, this seems to be a rather

extreme scenario.

Consumption Assets Cash Interest rate Income

Consumption 1.0000 -0.0217 0.8085 0.0022 1.0000

Assets -0.0217 1.0000 -0.0732 0.0215 -0.0310

Cash 0.8085 -0.0732 1.0000 0.0010 0.8090

Interest rate 0.0022 0.0215 0.0010 1.0000 0.0019

Income 1.0000 -0.0310 0.8090 0.0019 1.0000

Standard deviation

Consumption 0.9121

Assets 0.0163

Cash 0.9141

Interest rate 0.0028

Income 0.9123

*Case 7: Risk-seeking b = 0.96, q = 0.5, Q =

"
0.9912372 0.0087628
0.0087628 0.9912372

#
, and r =

"
0.0020411
0.0076783

#
.

6 Conclusion

Consumption and saving are perhaps one of the most extensively studied topics in economics. In this paper, I changed the

economic environment in a way that allows for a closer examination of the effect of interest changes on those two components.

It is, however, crucial how the uncertainty is being incorporated into the model, and how risk-averse the agent is.

It seems to be the case that in the model, most of the changes in the asset levels are driven by income. Large changes swings

in endowment translate to fluctuations in asset levels due to the incomplete markets assumption. However, there are noticeable

changes that follow from interest rate hikes or drops.

Figure 18: Assets and income

To illustrate, here is a combined plot for income and asset levels. This is the simulated asset policy plot and the simulated

income plot based on the values of Case 4. Smaller decreases in income correspond to small deterioration in asset levels, and the

larger decreases correspond to large drops in assets. However, even in periods of constant income levels, there are fluctuations.

To get the full picture, consider the next plot.
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Figure 19: Assets and interest rates

Similar to the previous figure, this plot shows both the simulated asset policy and the simulated interest rate process. While

there are much less fluctuations in interest rates in the persistent case, it is possible to trace some changes in asset levels back to

changes in interest levels. For example, consider the time period a little before t = 200 in both plots. For the income process,

there is a relatively sustained period of normal growth, with a constant income level. However, the asset level goes through a

sharp increase and then a fall. Looking at the second plot shows that the sharp increase was induced by the hike and drop of

the interest rate for that period. This is consistent with our intuition that a greater return on savings lead to an increase (albeit

temporary) in asset levels.
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7 Technical Appendix

In this section, I will explain some of the mathematical ideas behind this paper, along with the methodology used in obtaining

the numerical solutions of the model.

7.1 Mathematical concepts

Definition 1: Markov Property A sequence of random variables X1,X2, · · · has the Markov Property if

P(X

n+1 = x|X1 = x1,X2 = x2, · · ·) = P(X

n+1 = x|X
n

= x

n

) ,

where the lower case x’s denote some value in the finite state space of the chain.

Definition 2: Contraction mapping Let (X ,d) be a metric space and let T : X ! X. Then T is a contraction mapping if there

exists a real number k, where 0  l < 1, such that

d [T x,Ty] ld (x,y) for all x,y 2 X .

The full strength of a contraction mapping lies in the next theorem, where the existence and uniqueness of a fixed point is

established under certain conditions.

Theorem 3: Contraction mapping principle If X is a complete metric space, and if T is a contraction mapping of X into X,

then there exists one and only one x 2 X such that T (x) = x.

The difficulty of applying this principle may often lie in verifying whether a certain function T is actually a contraction. The

following theorem provides a way of doing this.

Theorem 4: Blackwell’s Sufficient Conditions Let T be an operator on a metric space (X ,d•), where X is a space of functions

and d• (x,y) = sup
t

|x(t)� y(t)|. Suppose that T has the following properties:

1. Monotonicity: For any x,y 2 X, x  y implies T (x) T (y) .

2. Discounting: Let c denote the constant function that takes the real value c over its domain X. For any positive real c and

every x 2 X, T (x+ c) T (x)+bc for some b satisfying 0  b < 1.

Then T is a contraction mapping with modulus b .

These ideas provide the framework for the methodology used in this paper. To apply them, consider the set C [a,b] of

continuous functions on some closed interval [a,b] . Since the functions are continuous and are defined on a closed bounded

interval, they are also bounded. Pairing this set with the d• (·, ·) metric yields a complete metric space. It can be verified that the

Bellman operator used in the paper is also a contraction because it satisfies Blackwell’s Sufficient Conditions.

7.2 Numerical Solution

Here I explain the numerical methods used in order to obtain the solution to the models. The entire model was solved in Python,

using packages such as NumPy, Matplotlib, and QuantEcon.py.

CRRA(c, theta): This function takes an array of consumption values and returns the array of CRRA utility values with the

parameter theta. The formula is as follows: CRRA = 1
1�q c

1�q .
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exp_value(V0, P, Q, j, k): This function was created ad hoc to compute the particular expected value for iterating the value

function. V0 is a (N ⇥S⇥L) 3-dimensional array that constitutes the value function at that iteration. P and Q are the transition

matrices for income and interest rates, respectively. The last two scalars j and k are indices of the iteration step. The function

handles the following computation with the double summation:

E
y

0,r0

h
v

�
a

0,y0,r0
���

y = y

j,r = r

k

i
=

2

Â
m=1

3

Â
n=1

P
⇣

y

0
= y

n

���y = y

j

⌘
P
⇣

r

0
= r

m

��
r = r

k

⌘
v

⇣
a

0
,y

0
= y

n,r
0
= r

m

⌘
.

The probabilities are given by the entries in the transition matrices P and Q.

Main algorithm: Given P, Q, and array a, this part of the code returns the converged value function. It does this by iterating

the value function until convergence.

The maximization operation, which is noticeably a part of the Bellman operator, is done element-wise. What I mean by this

is that, after computing many possible values of V1 for each a

0 on a grid, I use np.amax to return the maximal element on that

grid. Then that maximal element is stored in V1. The corresponding a

0 is also stored in order to later yield the policy function.

This is done exactly N ⇥ S⇥L times for each iteration, where N is the number of elements on the grid, S is the number of

states for income, and L is the number of states for interest rates.

After each iteration, the code computes the error, which is defined as the maximum element of the element-wise absolute

difference of the V0 and V1 arrays. This was written as err = np.amax(np.abs(V0-V1)). If the error falls below a very small

constant (say, 0.001), then convergence is complete, and the code stores the V1 and a1 arrays. Otherwise, the code repeats the

whole process.

Simulation. In the second part of the code, I use the computed value and policy functions to apply them to a simulated economy.

The random values for income and interest rates are created using a Python package for Markov Chain simulation. Grids are

created as arrays for consumption, assets, and cash on hand. For each element on the time grid t, I store a value for consumption,

assets, and cash on hand by searching for indices on previously computed arrays for implied consumption, policy function, and

cash on hand.

qe.MarkovChain(P, state_values=y[:,0]): This function from the QuantEcon.py library takes a transition matrix P and an

array of state values and creates a class for a finite-state discrete-time Markov Chain. I only use it to create an array of Markov

Chain simulations. This is done by calling .simulate on the defined object with a specified length for the array.
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7.3 Table of parameters

To sum up, here is a table of all the symbols used.

variable or parameter meaning

V (·) value function

u(·) utility

b discount factor

q risk aversion

a

t

assets

c

t

consumption

y

t

income

r

t

interest rate

P transition matrix for income

Q transition matrix for interest rate
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