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1 Introduction

In most modern economies, central banks implement monetary policy indirectly, by interven-

ing in certain financial markets (e.g., in the United States, the federal funds market and the

market for treasury securities). The underlying idea is that the effects of those interventions

on asset prices are transmitted to the rest of the economy to help achieve the ultimate policy

objectives. Thus, the transmission mechanism of monetary policy to asset prices is important

for understanding how monetary policy actually operates.

In this paper, we conduct an empirical, theoretical, and quantitative study of the effects of

monetary policy on financial markets in general and the equity market in particular. Specifically,

we make three contributions. First, we provide empirical evidence of a novel channel through

which monetary policy influences financial markets: tight money increases the opportunity cost

of holding the nominal assets used routinely to settle financial transactions (e.g., bank reserves,

money balances), making these payment instruments scarcer. In turn, this scarcity reduces the

resalability and turnover of financial assets, and this increased illiquidity leads to a reduction in

price. We label this mechanism the turnover-liquidity (transmission) mechanism (of monetary

policy). Second, to gain a deeper understanding of this mechanism, we develop a theory of

trade in financial over-the-counter (OTC) markets (that nests the competitive benchmark as

a special case) in which money is used as a medium of exchange in financial transactions.

The model shows how the details of the market microstructure and the quantity of money

shape the performance of financial markets (e.g., as gauged by standard measures of market

liquidity), contribute to the determination of asset prices (e.g., through the resale option value

of assets), and—consistent with the evidence we document—offer a liquidity-based explanation

for the negative correlation between real stock returns and unexpected increases in the nominal

interest rate that is used to implement monetary policy. Third, we bring the theory to the

data. We calibrate a generalized version of the basic model and use it to conduct a number

of quantitative theoretical exercises designed to assess the ability of the theory to match the

empirical effects of monetary policy on asset prices, both on policy announcement days and at

longer horizons.

The rest of the paper is organized as follows. Section 2 presents the basic model. It

considers a setting in which a financial asset that yields a dividend flow of consumption goods

(e.g., an equity or a real bond) is demanded by investors who have time-varying heterogeneous
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valuations for the dividend. To achieve the gains from trade that arise from their heterogeneous

valuations, investors participate in a bilateral market with random search that is intermediated

by specialized dealers who have access to a competitive interdealer market. In the dealer-

intermediated bilateral market, which has many of the stylized features of a typical OTC market

structure but also nests the perfectly competitive market structure as a special case, investors

and dealers seek to trade the financial asset using money as a means of payment. Periodically,

dealers and investors are also able to rebalance their portfolios in a conventional Walrasian

market. Section 3 describes the efficient allocation. Equilibrium is characterized in Section 4.

Section 5 presents the main implications of the theory. Asset prices and conventional measures of

financial liquidity (e.g., spreads, trade volume, and dealer supply of immediacy) are determined

by the quantity of money and the details of the microstructure where the asset trades (e.g.,

the degree of market power of dealers and the ease with which investors find counterparties).

Generically, asset prices in the monetary economy exhibit a speculative premium (or speculative

“bubble”) whose size varies systematically with the market microstructure and the monetary

policy stance. For example, a high anticipated opportunity cost of holding money reduces

equilibrium real balances and distorts the asset allocation by causing too many assets to remain

in the hands of investors with relatively low valuations, which depresses real asset prices. Section

6 is purely empirical. In it we confirm the finding, documented in previous empirical work, that

surprise increases in the nominal policy rate cause sizable reductions in real stock returns on

FOMC announcement days. A 1 basis point unexpected increase in the policy rate causes

a decrease of between 4 and 8 basis points in the stock market return on the day of the

policy announcement. In addition, this section contains two new empirical findings. First,

we document that episodes of unexpected policy tightening are also associated with large and

persistent declines in stock turnover. Second, we find evidence that the magnitude of the

reduction in return caused by the policy tightening is significantly larger for stocks that are

normally traded more actively, e.g., stocks with higher turnover rates. For example, in response

to an unexpected increase in the policy rate, the announcement-day decline in the return of a

stock in the 95th percentile of turnover rates is about twelve times larger than that of a stock

in the 5th percentile. The empirical evidence in this section suggests a mechanism whereby

monetary policy affects asset prices through a reduction in turnover liquidity. In Section 7

we formulate, calibrate, and simulate a generalized version of the basic model and use it to

assess the ability of the theory to fit the empirical evidence on the effects of monetary shocks
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on aggregate stock returns as well as the new cross-sectional evidence on the turnover-liquidity

transmission mechanism. Section 8 concludes. Appendix A contains all proofs. Appendices

B, C, and D, contain supplementary material. Appendix B deals with technical aspects of

the data, estimation, and simulation. Appendix C contains additional theoretical derivations

and results. This paper is related to four areas of research: search-theoretic models of money,

search-theoretic models of financial trade in OTC markets, resale option theories of asset price

bubbles, and an extensive empirical literature that studies the effects of monetary policy on

asset prices. Appendix D places our contribution in the context of all these literatures.

2 Model

Time is represented by a sequence of periods indexed by t = 0, 1, .... Each time is divided

into two subperiods where different activities take place. There is a continuum of infinitely

lived agents called investors, each identified with a point in the set I = [0, 1]. There is also

a continuum of infinitely lived agents called dealers, each identified with a point in the set

D = [0, 1]. All agents discount payoffs across periods with the same factor, β ∈ (0, 1). In

every period, there is a continuum of active production units with measure As ∈ R++. Every

active unit yields an exogenous dividend yt ∈ R+ of a perishable consumption good at the end

of the first subperiod of period t. (Each active unit yields the same dividend as every other

active unit, so ytA
s is the aggregate dividend.) At the beginning of every period, every active

unit is subject to an independent idiosyncratic shock that renders it permanently unproductive

with probability 1 − δ ∈ [0, 1). If a production unit remains active, its dividend in period t is

yt = γtyt−1 where γt is a nonnegative random variable with cumulative distribution function Γ,

i.e., Pr (γt ≤ γ) = Γ (γ), and mean γ̄ ∈ (0, (βδ)−1). The time t dividend becomes known to all

agents at the beginning of period t, and at that time each failed production unit is replaced by

a new unit that yields dividend yt in the initial period and follows the same stochastic process

as other active units thereafter (the dividend of the initial set of production units, y0 ∈ R++,

is given at t = 0). In the second subperiod of every period, every agent has access to a linear

production technology that transforms effort into a perishable homogeneous consumption good.

For each active production unit, there is a durable and perfectly divisible equity share

that represents the bearer’s ownership of the production unit and confers him the right to

collect dividends. At the beginning of every period t ≥ 1, each investor receives an endowment

of (1− δ)As equity shares corresponding to the new production units. (When a production
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unit fails, its equity share disappears.) There is a second financial instrument, money, that

is intrinsically useless (it is not an argument of any utility or production function, and unlike

equity, ownership of money does not constitute a right to collect any resources). The stock

of money at time t is denoted Amt . The initial stock of money, Am0 ∈ R++, is given and

Amt+1 = µAmt , with µ ∈ R++. A monetary authority injects or withdraws money via lump-sum

transfers or taxes to investors in the second subperiod of every period. At the beginning of

period t = 0, each investor is endowed with a portfolio of equity shares and money. All financial

instruments are perfectly recognizable, cannot be forged, and can be traded in every subperiod.

In the second subperiod of every period, all agents can trade the consumption good produced

in that subperiod, equity shares, and money in a spot Walrasian market. In the first subperiod

of every period, trading is organized as follows. Investors can trade equity shares and money

in a random bilateral OTC market with dealers, while dealers can also trade equity shares and

money with other dealers in a spot Walrasian interdealer market. We use α ∈ [0, 1] to denote

the probability that an individual investor is able to make contact with a dealer in the OTC

market. (The probability that a dealer contacts an investor is also α.) Once a dealer and

an investor have contacted each other, the pair negotiates the quantity of equity shares and

money that the dealer will trade in the interdealer market on behalf of the investor and an

intermediation fee for the dealer’s intermediation services. We assume the terms of the trade

between an investor and a dealer in the OTC market are determined by Nash bargaining where

θ ∈ [0, 1] is the investor’s bargaining power. The timing is that the round of OTC trade takes

place in the first subperiod and ends before production units yield dividends. Hence equity is

traded cum dividend in the OTC market (and in the interdealer market) of the first subperiod

and ex dividend in the Walrasian market of the second subperiod.1 Asset purchases in the

OTC market cannot be financed by borrowing (e.g., due to anonymity and lack of commitment

and enforcement). This assumption and the structure of preferences described below create the

need for a medium of exchange in the OTC market.

An individual dealer’s preferences are represented by

Ed0
∞∑
t=0

βt(cdt − hdt),

where cdt is his consumption of the homogeneous good that is produced, traded, and consumed

1As in previous search models of OTC markets, e.g., see Duffie et al. (2005) and Lagos and Rocheteau (2009),
an investor must own the equity share in order to consume the dividend.
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in the second subperiod of period t, and hdt is the utility cost from exerting hdt units of effort

to produce this good. The expectation operator Ed0 is with respect to the probability measure

induced by the dividend process and the random trading process in the OTC market. Dealers

get no utility from the dividend good.2 An individual investor’s preferences are represented by

E0

∞∑
t=0

βt (εityit + cit − hit) ,

where yit is the quantity of the dividend good that investor i consumes at the end of the first

subperiod of period t, cit is his consumption of the homogeneous good that is produced, traded,

and consumed in the second subperiod of period t, and hit is the utility cost from exerting hit

units of effort to produce this good. The variable εit denotes the realization of a valuation shock

that is distributed independently over time and across agents, with a differentiable cumulative

distribution function G on the support [εL, εH ] ⊆ [0,∞], and ε̄ =
∫
εdG (ε). Investor i learns

his realization εit at the beginning of period t, before the OTC trading round. The expectation

operator E0 is with respect to the probability measure induced by the dividend process, the

investor’s valuation shock, and the random trading process in the OTC market.

3 Efficiency

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted

utilities subject to the same meeting frictions that agents face in the decentralized formulation.

Specifically, in the first subperiod of every period, the planner can only reallocate assets among

all dealers and the measure α of investors who contact dealers at random. We restrict attention

to symmetric allocations (identical agents receive equal treatment). Let cDt and hDt denote

a dealer’s consumption and production of the homogeneous consumption good in the second

subperiod of period t. Let cIt and hIt denote an investor’s consumption and production of

the homogeneous consumption good in the second subperiod of period t. Let ãDt denote the

beginning-of-period t (before depreciation) equity holding of a dealer, and let a′Dt denote the

equity holding of a dealer at the end of the first subperiod of period t (after OTC trade). Let

ãIt denote the beginning-of-period t (before depreciation and endowment) asset holding of an

investor. Finally, let a′It denote a measure on F ([εL, εH ]), the Borel σ-field defined on [εL, εH ].

2This assumption implies that dealers have no direct consumption motive for holding the equity share. It is
easy to relax, but we adopt it because it is the standard benchmark in the search-based OTC literature, e.g., see
Duffie et al. (2005), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), and Weill (2007).
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The measure a′It is interpreted as the distribution of post-OTC-trade asset holdings among

investors with different valuations who contacted a dealer in the first subperiod of period t.

With this notation, the planner’s problem consists of choosing a nonnegative allocation,{[
ãjt, a

′
jt, cjt, hjt

]
j∈{D,I}

}∞
t=0

,

to maximize

E0

∞∑
t=0

βt

[
α

∫ εH

εL

εyta
′
It (dε) + (1− α)

∫ εH

εL

εytaItdG (ε) + cDt + cIt − hDt − hIt

]

(the expectation operator E0 is with respect to the probability measure induced by the dividend

process) subject to

ãDt + ãIt ≤ As (1)

a′Dt + α

∫ εH

εL

a′It (dε) ≤ aDt + αaIt (2)

cDt + cIt ≤ hDt + hIt (3)

aDt = δãDt (4)

aIt = δãIt + (1− δ)As. (5)

Proposition 1 The efficient allocation satisfies the following two conditions for every t: (a)

ãDt = As − ãIt = As and (b) a′It (E) = I{εH∈E} [δ + α (1− δ)]As/α, where I{εH∈E} is an

indicator function that takes the value 1 if εH ∈ E, and 0 otherwise, for any E ∈ F ([εL, εH ]).

According to Proposition 1, the efficient allocation is characterized by the following two

properties: (a) only dealers carry equity between periods, and (b) among those investors who

have a trading opportunity with a dealer, only those with the highest valuation hold equity

shares at the end of the first subperiod.

4 Equilibrium

Consider the determination of the terms of trade in a bilateral meeting in the OTC round

of period t between a dealer with portfolio adt and an investor with portfolio ait and val-

uation ε. Let at = (amt , a
s
t ) denote the investor’s post-trade portfolio and let kt denote

the intermediation fee the dealer charges for his intermediation services. We assume the
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fee is expressed in terms of the general good and paid by the investor in the second sub-

period.3 We assume (at, kt) is determined by the Nash bargaining solution where the in-

vestor has bargaining power θ ∈ [0, 1]. Let ŴD
t (adt, kt) denote the maximum expected dis-

counted payoff of a dealer with portfolio adt and earned fee kt when he reallocates his port-

folio in the interdealer market of period t. Let W I
t (ait,−kt) denote the maximum expected

discounted payoff at the beginning of the second subperiod of period t (after the produc-

tion units have borne dividends) of an investor who is holding portfolio ait and has to pay

a fee kt. For each t, define a pair of functions akt : R2
+ × [εL, εH ] → R+ for k = m, s

and a function kt : R2
+ × [εL, εH ] → R, and let at (ait, ε) = (amt (ait, ε) , a

s
t (ait, ε)) for each

(ait, ε) ∈ R2
+× [εL, εH ]. We use [at (ait, ε) , kt (ait, ε)] to represent the bargaining outcome for a

bilateral meeting at time t between an investor with portfolio ait and valuation ε, and a dealer

with portfolio adt. That is, [at (ait, ε) , kt (ait, ε)] solves

max
(at,kt)∈R2

+×R

[
εyta

s
t +W I

t (at,−kt)− εytasit −W I
t (ait, 0)

]θ
[ŴD

t (adt, kt)− ŴD
t (adt, 0)]1−θ (6)

s.t. amt + pta
s
t ≤ amit + pta

s
it

ŴD
t (adt, 0) ≤ ŴD

t (adt, kt)

εyta
s
it +W I

t (ait, 0) ≤ εytast +W I
t (at,−kt) ,

where pt is the dollar price of an equity share in the interdealer market of period t.

Let WD
t (at, kt) denote the maximum expected discounted payoff of a dealer who has earned

fee kt in the OTC round of period t and, at the beginning of the second subperiod of period t,

is holding portfolio at. Then the dealer’s value of trading in the interdealer market is

ŴD
t (at, kt) = max

ât∈R2
+

WD
t (ât, kt) (7)

s.t. âmt + ptâ
s
t ≤ amt + pta

s
t ,

where ât ≡ (âmt , â
s
t ). For each t, define a pair of functions, âkt : R2

+ → R+ for k = m, s, and let

ât (at) = (âmt (at) , â
s
t (at)) denote the solution to (7).

Let V D
t (at) denote the maximum expected discounted payoff of a dealer who enters the

OTC round of period t with portfolio at ≡ (amt , a
s
t ). Let φt ≡ (φmt , φ

s
t ), where φmt is the real

3In the working paper version of this model (Lagos and Zhang, 2015), we instead assume that the investor
must pay the intermediation fee on the spot, i.e., with money or equity. The alternative formulation we use
here makes the analysis and the exposition much simpler while the main economic mechanisms are essentially
unchanged.
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price of money and φst the real ex dividend price of equity in the second subperiod of period t

(both expressed in terms of the second subperiod consumption good). Then,

WD
t (at, kt) = max

(ct,ht,ãt+1)∈R4
+

[
ct − ht + βEtV D

t+1 (at+1)
]

(8)

s.t. ct + φtãt+1 ≤ ht + kt + φtat,

where ãt+1 ≡
(
ãmt+1, ã

s
t+1

)
, at+1 =

(
ãmt+1, δã

s
t+1

)
, Et is the conditional expectation over the next-

period realization of the dividend, and φtat denotes the dot product of φt and at. Similarly,

let V I
t (at, ε) denote the maximum expected discounted payoff of an investor with valuation ε

and portfolio at ≡ (amt , a
s
t ) at the beginning of the OTC round of period t. Then,

W I
t (at,−kt) = max

(ct,ht,ãt+1)∈R4
+

[
ct − ht + βEt

∫
V I
t+1

(
at+1, ε

′) dG(ε′)

]
(9)

s.t. ct + φtãt+1 ≤ ht − kt + φtat + Tt,

where at+1 = (ãmt+1, δã
s
t+1 + (1− δ)As) and Tt ∈ R is the real value of the time t lump-sum

monetary transfer.

The value function of an investor who enters the OTC round of period t with portfolio at

and valuation ε is

V I
t (at, ε) = α

{
εyta

s
t (at, ε) +W I

t [at (at, ε) ,−kt (at, ε)]
}

+ (1− α)
[
εyta

s
t +W I

t (at, 0)
]
.

The value function of a dealer who enters the OTC round of period t with portfolio at is

V D
t (at) = α

∫
ŴD
t [at, kt (ait, ε)] dHIt (ait, ε) + (1− α) ŴD

t (at, 0) ,

where HIt is the joint cumulative distribution function over the portfolios and valuations of the

investors the dealer may contact in the OTC market of period t.

Let j ∈ {D, I} denote the agent type, i.e., “D” for dealers and “I” for investors. Then for

j ∈ {D, I}, let Amjt and Asjt denote the quantities of money and equity shares, respectively, held

by all agents of type j at the beginning of the OTC round of period t (after production units have

depreciated and been replaced). That is, Amjt =
∫
amt dFjt (at) and Asjt =

∫
astdFjt (at), where

Fjt is the cumulative distribution function over portfolios at = (amt , a
s
t ) held by agents of type j

at the beginning of the OTC round of period t. Let Ãmjt+1 and Ãsjt+1 denote the total quantities

of money and shares held by all agents of type j at the end of period t, i.e., ÃkDt+1 =
∫
D ã

k
jt+1dj

and ÃkIt+1 =
∫
I ã

k
it+1di for k ∈ {s,m}, with AmDt+1 = ÃmDt+1, AsDt+1 = δÃsDt+1, AmIt+1 = ÃmIt+1,
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and AsIt+1 = δÃsIt+1 + (1− δ)As. Let ĀmDt and ĀsDt denote the quantities of money and shares

held after the OTC round of trade of period t by all the dealers, and let ĀmIt and ĀsIt denote the

quantities of money and shares held after the OTC round of trade of period t by all the investors

who are able to trade in the first subperiod. For asset k ∈ {s,m}, ĀkDt =
∫
âkt (at) dFDt (at)

and ĀkIt = α
∫
akt (at, ε)dHIt(at, ε). We are now ready to define an equilibrium.

Definition 1 An equilibrium is a sequence of prices, {1/pt, φmt , φst}∞t=0, bilateral terms of trade

in the OTC market, {āt, kt}∞t=0, dealer portfolios, {〈âdt, ãdt+1,adt+1〉d∈D}∞t=0, and investor port-

folios, {〈ãit+1,ait+1〉i∈I}∞t=0, such that for all t: (i) the bilateral terms of trade {āt, kt}∞t=0 solve

(6), (ii) taking prices and the bargaining protocol as given, the portfolios 〈âdt, ãdt+1,adt+1〉 solve

the individual dealer’s optimization problems (7) and (8), and the portfolios 〈ãit+1,ait+1〉 solve

the individual investor’s optimization problem (9), and (iii) prices, {1/pt, φmt , φst}∞t=0, are such

that all Walrasian markets clear, i.e., ÃsDt+1 + ÃsIt+1 = As (the end-of-period t Walrasian mar-

ket for equity clears), ÃmDt+1 + ÃmIt+1 = Amt+1 (the end-of-period t Walrasian market for money

clears), and ĀkDt + ĀkIt = AkDt + αAkIt for k = s,m (the period t OTC interdealer markets for

equity and money clear). An equilibrium is “monetary” if φmt > 0 for all t and “nonmonetary”

otherwise.

The following result characterizes the equilibrium post-trade portfolios of dealers and in-

vestors in the OTC market, taking beginning-of-period portfolios as given.

Lemma 1 Define ε∗t ≡
ptφmt −φst

yt
and

χ (ε∗t , ε)


= 1 if ε∗t < ε
∈ [0, 1] if ε∗t = ε
= 0 if ε < ε∗t .

Consider a bilateral meeting in the OTC round of period t between a dealer and an investor

with portfolio at and valuation ε. The investor’s post-trade portfolio, [amt (at, ε) , a
s
t (at, ε)], is

given by

amt (at, ε) = [1− χ (ε∗t , ε)] (amt + pta
s
t )

ast (at, ε) = χ (ε∗t , ε) (1/pt) (amt + pta
s
t ) ,

and the intermediation fee charged by the dealer is

kt (at, ε) = (1− θ) (ε− ε∗t )
[
χ (ε∗t , ε)

1

pt
amt − [1− χ (ε∗t , ε)] a

s
t

]
yt.
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A dealer who enters the OTC market with portfolio adt exits the OTC market with portfolio

[âmt (adt) , â
s
t (adt)] = [amt (adt, 0) , ast (adt, 0)].

Lemma 1 offers a full characterization of the post-trade portfolios of investors and dealers in

the OTC market. First, the bargaining outcome depends on whether the investor’s valuation,

ε, is above or below a cutoff, ε∗t . If ε∗t < ε, the investor uses all his cash to buy equity. If ε < ε∗t ,

he sells all his equity holding for cash. The intermediation fee earned by the dealer is equal to

a share 1− θ of the investor’s gain from trade. The dealer’s post-trade portfolio is the same as

that of an investor with ε = 0.

We focus the analysis on stationary equilibria, that is, equilibria in which aggregate equity

holdings are constant over time, i.e., AsDt = AsD and AsIt = AsI for all t, and real asset prices

are time-invariant linear functions of the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄st = φ̄syt,

φmt A
m
It = Zyt, and φmt A

m
Dt = ZDyt, where Z,ZD ∈ R+ Hence, in a stationary equilibrium,

ε∗t = φ̄s−φs ≡ ε∗, φst+1/φ
s
t = φ̄st+1/φ̄

s
t = γt+1, φmt /φ

m
t+1 = µ/γt+1, and pt+1/pt = µ. Throughout

the analysis, we let β̄ ≡ βγ̄ and maintain the assumption µ > β̄ (but we consider the limiting

case µ→ β̄).

For the analysis that follows, it is convenient to define

µ̂ ≡ β̄

[
1 +

(1− αθ)
(
1− β̄δ

)
(ε̂− ε̄)

ε̂

]
and µ̄ ≡ β̄

[
1 +

αθ
(
1− β̄δ

)
(ε̄− εL)

β̄δε̄+
(
1− β̄δ

)
εL

]
, (10)

where ε̂ ∈ [ε̄, εH ] is the unique solution to

ε̄− ε̂+ αθ

∫ ε̂

εL

(ε̂− ε) dG(ε) = 0. (11)

Lemma 4 (in Appendix A) establishes that µ̂ < µ̄. The following proposition characterizes the

equilibrium set.

Proposition 2 (i) A nonmonetary equilibrium exists for any parametrization. (ii) There is

no stationary monetary equilibrium if µ ≥ µ̄. (iii) In the nonmonetary equilibrium, AsI =

As − AsD = As (only investors hold equity shares), there is no trade in the OTC market, and

the equity price in the second subperiod is

φst = φsyt, with φs =
β̄δ

1− β̄δ
ε̄. (12)
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(iv) If µ ∈ (β̄, µ̄), then there is one stationary monetary equilibrium; asset holdings of dealers

and investors at the beginning of the OTC round of period t are AmDt = Amt −AmIt = 0 and

AsD = As −AsI


= δAs if β̄ < µ < µ̂
∈ [0, δAs] if µ = µ̂
= 0 if µ̂ < µ < µ̄

and asset prices are

φst = φsyt, with φs =


β̄δ

1−β̄δε
∗ if β̄ < µ ≤ µ̂

β̄δ
1−β̄δ

[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]

if µ̂ < µ < µ̄
(13)

φ̄st = φ̄syt, with φ̄s = ε∗ + φs (14)

φmt = Z
yt
Amt

(15)

pt =
φ̄s

Z
Amt , (16)

where

Z =
αG (ε∗)AsI +AsD
α [1−G (ε∗)]

(ε∗ + φs) (17)

and for any µ ∈
(
β̄, µ̄

)
, ε∗ ∈ (εL, εH) is the unique solution to(

1− β̄δ
) ∫ εH

ε∗ (ε− ε∗) dG(ε)

ε∗ + β̄δ
[
ε̄− ε∗ + αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]
I{µ̂<µ}

− µ− β̄
β̄αθ

= 0. (18)

(v) (a) As µ→ µ̄, ε∗ → εL and φst →
β̄δ

1−β̄δ ε̄yt. (b) As µ→ β̄, ε∗ → εH and φst →
β̄δ

1−β̄δεHyt.

In the nonmonetary equilibrium, dealers are inactive and equity shares are held only by

investors. With no valued money, investors and dealers cannot exploit the gains from trade

that arise from the heterogeneity in investor valuations in the first subperiod, and the real asset

price is φs = β̄δ
1−β̄δ ε̄y, i.e., equal to the expected discounted value of the dividend stream since

the equity share is not traded. (Shares can be traded in the Walrasian market of the second

subperiod, but gains from trade at that stage are nil.) The stationary monetary equilibrium

exists only if the inflation rate is not too high, i.e., if µ < µ̄. In the monetary equilibrium,

the marginal valuation, ε∗, which according to Lemma 1 partitions the set of investors into

those who buy and those who sell the asset when they meet a dealer in the OTC market, is

characterized by (18) in part (iv) of Proposition 2. Unlike what happens in the nonmonetary

equilibrium, the OTC market is active in the monetary equilibrium, and it is easy to show
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that the marginal valuation, ε∗, is strictly decreasing in the rate of inflation, i.e., ∂ε∗

∂µ < 0 (see

Corollary 3 in Appendix A). Intuitively, the real value of money falls as µ increases, so the

marginal investor valuation, ε∗, decreases, reflecting the fact that under the higher inflation rate,

the investor that was marginal under the lower inflation rate is no longer indifferent between

carrying cash and equity out of the OTC market—he prefers equity.

According to Proposition 2, 0 ≤ εL < ε∗t in the monetary equilibrium, so Lemma 1 implies

that dealers hold no equity shares at the end of the OTC round: all equity is held by investors,

in particular, by those investors who carried equity into the period but were unable to contact

a dealer, and by those investors who purchased equity shares in bilateral trades with dealers.

After the round of OTC trade, all the money supply is held by the investors who carried cash

into the period but were unable to contact a dealer, by the investors who sold equity shares

through dealers, and by those dealers who carried equity into the OTC market.

A feature of the monetary equilibrium is that dealers never hold money overnight: at the

beginning of every period t, the money supply is all in the hands of investors, i.e., AmDt = 0 and

AmIt = Amt . The reason is that access to the interdealer market allows dealers to intermediate

assets without cash. Whether it is investors or dealers who hold the equity shares overnight

depends on the inflation rate: if it is low, i.e., if µ ∈ (β̄, µ̂), then only dealers hold equity

overnight, that is, ÃsDt+1 = As and ÃsIt+1 = 0 for all t. Conversely, if the inflation rate is

high, i.e., if µ ∈ (µ̂, µ̄), then at the end of every period t, all equity shares are in the hands of

investors, i.e., ÃsDt+1 = 0 and ÃsIt+1 = As, so strictly speaking, in this case dealers only provide

brokerage services in the OTC market. The intuition for this result is as follows.4 For dealers,

the return from holding equity overnight is given by the resale price in the OTC market. If

inflation is low, ε∗t is high (the asset is priced by relatively high valuation investors), and this

means the resale price in the OTC market is high. Since dealers are sure to trade in the OTC

market every period while investors only trade with effective probability αθ, the former are

in a better position to reap the capital gains and end up holding all equity shares overnight.

Conversely, if inflation is high then ε∗t is low, so the capital gain to a dealer from carrying the

asset to sell in the OTC market is small. The benefit to investors from holding equity includes

not only the resale value in the OTC market (which is small at high inflation) but also their

own expected valuation of the dividend good, so for high inflation, the return that investors

obtain from holding equity overnight is higher than it is for dealers. For example, as µ→ µ̄ we

4See Lagos and Zhang (2015) for a more detailed discussion.
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have ε∗t → εL, so the dealer’s expected return from holding equity overnight is (εL+φs)γ̄
φs , while

the investor’s is (ε̄+φs)γ̄
φs .

Given the marginal valuation, ε∗, part (iv) of Proposition 2 gives all asset prices in closed

form. The real ex dividend price of equity (in terms of the second subperiod consumption

good), φst , is given by (13). The cum dividend dollar price of equity in the OTC market, pt, is

given by (16). The real price of money (in terms of the second subperiod consumption good),

φmt , is given by (15). The real cum dividend price of equity (in terms of the second subperiod

consumption good) in the OTC market, ptφ
m
t = φ̄syt, is given by (14).

Finally, part (v)(a) states that as the rate of money creation increases toward µ̄, ε∗ ap-

proaches the lower bound of the distribution of valuations, εL, so no investor wishes to sell

equity in the OTC market, and as a result the allocations and prices of the monetary equilib-

rium approach those of the nonmonetary equilibrium. Part (v)(b) states that as µ decreases

toward β̄, ε∗ increases toward the upper bound of the distribution of valuations, εH , so only

investors with the highest valuation purchase equity in the OTC market (all other investors

wish to sell it). Moreover, since β̄ < µ̂, as µ→ β̄ only dealers hold equity overnight. Thus, we

have the following result.

Corollary 1 The allocation implemented by the stationary monetary equilibrium converges to

the efficient allocation as µ→ β̄.

Let qBt,k denote the nominal price in the second subperiod of period t of an N -period risk-free

pure discount nominal bond that matures in period t+k, for k = 0, 1, 2, ..., N (so k is the number

of periods until the bond matures). Imagine the bond is illiquid in the sense that it cannot be

traded in the OTC market. Then in a stationary monetary equilibrium, qBt,k = (β̄/µ)k, and

ι =
µ

β̄
− 1 (19)

is the time t nominal yield to maturity of the bond with k periods until maturity. Thus, the

optimal monetary policy described in Corollary 1 and part (v)(b) of Proposition 2 in which the

money supply grows at rate β̄ can be interpreted as a policy that implements the Friedman

rule, i.e., ι = 0 for all contingencies at all dates.
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5 Implications

In this section, we discuss the main implications of the theory. Specifically, we show how asset

prices and conventional measures of financial liquidity (spreads, trade volume, and dealer supply

of immediacy) are determined by the quantity of money (the inflation regime) and the details

of the microstructure where the asset trades (e.g., the degree of market power of dealers and

the ease with which investors find counterparties). We also show that generically, asset prices

in the monetary economy exhibit a speculative premium (or speculative “bubble”) whose size

varies systematically with the inflation regime and the market microstructure.

5.1 Asset prices

In this subsection, we study the asset-pricing implications of the theory. We focus on how the

asset price depends on monetary policy and on the degree of OTC frictions as captured by the

parameters that regulate trading frequency and the relative bargaining strengths of the various

traders.5

5.1.1 Inflation

The real price of equity in a monetary equilibrium is in part determined by the option available

to low-valuation investors to resell the equity to high-valuation investors. As the nominal rate ι

(or equivalently, the inflation rate µ) increases, equilibrium real money balances decline and the

marginal investor valuation, ε∗, decreases, reflecting the fact that under the higher nominal rate,

the investor valuation that was marginal under the lower nominal rate is no longer indifferent

between carrying cash and equity out of the OTC market (he prefers equity). Since the marginal

investor who prices the equity in the OTC market has a lower valuation, the value of the resale

option is smaller, i.e., the turnover liquidity of the asset is lower, which in turn makes the real

equity price (both φs and φ̄s) smaller. Naturally, the real value of money, φmt , is also decreasing

in the nominal interest rate. All this is formalized in Proposition 3. The top row of Figure 1

illustrates the typical time paths of the ex dividend equity price, φst , real balances, φmt A
m
t , and

the price level, φmt , for different values of µ.

5In Appendix A (Proposition 8) we also establish the effect of a mean-preserving spread in the distribution
of valuations on the equity price.
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Proposition 3 In the stationary monetary equilibrium: (i) ∂φs/∂µ < 0 and ∂φs/∂ι < 0, (ii)

∂φ̄s/∂µ < 0, (iii) ∂Z/∂µ < 0 and ∂φmt /∂µ < 0.

5.1.2 OTC frictions: trading delays and market power

In the OTC market, αθ is an investor’s effective bargaining power in negotiations with dealers.

A larger αθ implies a larger gain from trade for low-valuation investors when they sell the asset

to dealers. In turn, this makes investors more willing to hold equity shares in the previous

period, since they anticipate larger gains from selling the equity in case they were to draw a

relatively low valuation in the following OTC round. Hence, real equity prices, φs and φ̄s, are

increasing in α and θ.6 If α increases, money becomes more valuable (both Z and φmt increase),

provided we focus on a regime in which only investors carry equity overnight.7 Proposition 4

formalizes these ideas. The bottom row of Figure 1 illustrates the time paths of the ex dividend

equity price, φst , real balances φmt A
m
t , and the price level, φmt , for two different values of α.

Proposition 4 In the stationary monetary equilibrium: (i) ∂φs/∂ (αθ) > 0, (ii) ∂φ̄s/∂ (αθ) >

0, (iii) ∂Z/∂α > 0 and ∂φmt /∂α > 0, for µ ∈ (µ̂, µ̄).

5.2 Financial liquidity

In this subsection, we use the theory to study the determinants of standard measures of market

liquidity: liquidity provision by dealers, trade volume, and bid-ask spreads.

5.2.1 Liquidity provision by dealers

Broker-dealers in financial markets provide liquidity (immediacy) to investors by finding them

counterparties for trade, or by trading with them out of their own account, effectively becoming

their counterparty. The following result characterizes the effect of inflation on dealers’ provision

of liquidity by accumulating assets.

Proposition 5 In the stationary monetary equilibrium: (i) dealers’ provision of liquidity by

accumulating assets, i.e., AsD, is nonincreasing in the inflation rate. (ii) For any µ close to β̄,

dealers’ provision of liquidity by accumulating assets is nonmonotonic in αθ, i.e., AsD = 0 for

αθ close to 0 and close to 1, but AsD > 0 for intermediate values of αθ.

6This finding is consistent with the behavior of the illiquidity premia in response to variations in the measures
of liquidity documented by Ang et al. (2013).

7Real balances can actually fall with α for µ ∈ (β̄, µ̂).
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Part (i) of Proposition 5 is related to the discussion that followed Proposition 2. The expected

return from holding equity is larger for investors than for dealers with high inflation (µ > µ̂)

because in that case the expected resale value of equity in the OTC market is relatively low

and dealers only buy equity to resell in the OTC market, while investors also buy it with

the expectation of getting utility from the dividend flow. For low inflation (µ < µ̂), dealers

value equity more than investors because the OTC resale value is high and they have a higher

probability of making capital gains from reselling than investors, and this trading advantage

more than compensates for the fact that investors enjoy the additional utility from the dividend

flow. Part (ii) of Proposition 5 states that given a low enough rate of inflation, dealers’ incentive

to hold equity inventories overnight is nonmonotonic in the degree of OTC frictions as measured

by αθ. In particular, dealers will not hold inventories if αθ is either very small or very large. If

αθ is close to zero, few investors contact the interdealer market, and this makes the equity price

in the OTC market very low, which in turn implies too small a capital gain to induce dealers to

hold equity overnight. Conversely, if αθ is close to one, a dealer has no trading advantage over

an investor in the OTC market and since the investor gets utility from the dividend while the

dealer does not, the willingness to pay for the asset in the centralized market is higher for the

investor than for the dealer, and therefore it is investors and not dealers who carry the asset

overnight into the OTC market.

5.2.2 Trade volume

Trade volume is commonly used as a measure of market liquidity because it is a manifestation

of the ability of the market to reallocate assets across investors. According to Lemma 1, any

investor with ε < ε∗t who has a trading opportunity in the OTC market sells all his equity

holding. Hence, in a stationary equilibrium, the quantity of assets sold by investors to dealers

in the OTC market is Qs = αG (ε∗)AsI . From Lemma 1, the quantity of assets purchased by

investors from dealers is Qb = α [1−G (ε∗)]Amt /pt. Thus, the total quantity of equity shares

traded in the OTC market is V = Qb +Qs, or equivalently8

V = 2αG (ε∗)AsI +AsD. (20)

8To obtain (20) we used the clearing condition for the interdealer market, Qb = Qs +AsDt. Also, note that V
is trade volume in the OTC market, but since every equity share traded in the first subperiod gets retraded in
the second subperiod, total trade volume in the whole time period equals 2V.
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Trade volume, V, depends on the nominal rate ι (or equivalently, inflation µ), and dealers’

market power θ indirectly, through the general equilibrium effect on ε∗. A decrease in ι or

an increase in θ increases the expected return to holding money, which makes more investors

willing to sell equity for money in the OTC market, i.e., ε∗ increases and so does trade volume.

In other words, the increase in turnover liquidity caused by the increase in ι or θ manifests

itself through an increase in trade volume. The indirect positive effect on V (through ε∗) of an

increase in the investors’ trade probability α is similar to an increase in θ, but in addition, α

directly increases trade volume, since with a higher α more investors are able to trade in the

OTC market. These results are summarized in the following proposition.

Proposition 6 In the stationary monetary equilibrium: (i) ∂V/∂µ < 0 and ∂V/∂ι < 0, and

(ii) ∂V/∂θ > 0 and ∂V/∂α > 0.

5.2.3 Bid-ask spreads

Bid-ask spreads and intermediation fees are a popular measure of market liquidity as they

constitute the main out-of-pocket transaction cost that investors bear in OTC markets. Lemma

1 shows that when dealers execute trades on behalf of their investors, they charge a fee kt (at, ε)

that is linear in the trade size. This means that when an investor with ε > ε∗t wants to

buy equity, the dealer charges him an ask price, pat (ε) = ptφ
m
t + (1− θ) (ε− ε∗t ) yt per share.

When an investor with ε < ε∗t wants to sell, the dealer pays him a bid price, pbt (ε) = ptφ
m
t −

(1− θ) (ε∗t − ε) yt per share. Define Sat (ε) =
pat (ε)−ptφmt

ptφmt
and Sbt (ε) =

ptφmt −pbt(ε)
ptφmt

, i.e., the ask

spread and bid spread, respectively, expressed as fractions of the price of the asset in the

interdealer market. Then in a stationary equilibrium, the ask spread earned by a dealer when

trading with an investor with ε > ε∗ is Sa (ε) = (1−θ)(ε−ε∗)
ε∗+φs and the bid spread earned by a

dealer when trading with an investor with ε < ε∗ is Sb (ε) = (1−θ)(ε∗−ε)
ε∗+φs . The average real spread

earned by dealers is S̄ =
∫ [
Sa (ε) I{ε∗<ε} + Sb (ε) I{ε<ε∗}

]
dG (ε). The change S̄ in response to

changes in µ or α is ambiguous in general.9

5.3 Speculative premium

According to Proposition 2, in a monetary equilibrium the equity price, φs, is larger than

the expected present discounted value that any agent assigns to the dividend stream, i.e.,

9The reason is that the spread Sa (ε) charged to buyers is decreasing in ε∗ while the spread Sb (ε) charged to
sellers may be increasing in ε∗. For example, if µ ∈

(
β̄, µ̂

)
, it is easy to show ∂Sa (ε) /∂ε∗ = −∂Sb (ε) /∂ε∗ < 0.
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φ̂st ≡
[
β̄δ/(1− β̄δ)

]
ε̄yt. We follow Harrison and Kreps (1978) and call the equilibrium value of

the asset in excess of the expected present discounted value of the dividend, i.e., φst − φ̂st , the

speculative premium that investors are willing to pay in anticipation of the capital gains they

will reap when reselling the asset to investors with higher valuations in the future.10 Thus, we

say investors exhibit speculative behavior if the prospect of reselling a stock makes them willing

to pay more for it than they would if they were obliged to hold it forever. Investors exhibit

speculative behavior in the sense that they buy with the expectation to resell, and naturally

the asset price incorporates the value of this option to resell.

The speculative premium in a monetary equilibrium is Pt = Pyt, where

P =

{
β̄δ

1−β̄δ (ε∗ − ε̄) if β̄ < µ ≤ µ̂
β̄δ

1−β̄δαθ
∫ ε∗
εL
G (ε) dε if µ̂ < µ < µ̄.

The speculative premium is nonnegative in any monetary equilibrium, i.e., Pt ≥ 0, with “=”

only if µ = µ̄. Since ∂ε∗/∂µ < 0 (Corollary 3), it is immediate that the speculative premium

is decreasing in the rate of inflation. Intuitively, anticipated inflation reduces the real money

balances used to finance asset trading, which limits the ability of high-valuation traders to

purchase the asset from low-valuation traders. As a result, the speculative premium is decreas-

ing in µ. Since ∂ε∗/∂ (αθ) > 0 (see the proof of Proposition 4), the speculative premium is

increasing in α and θ. Intuitively, the speculative premium is the value of the option to resell

the equity to a higher valuation investor in the future, and the value of this resale option to

the investor increases with the probability α that the investor gets a trading opportunity in

an OTC trading round and with the probability θ that he can capture the gains from trade in

those trades. So in low-inflation regimes, the model predicts large trade volume and a large

speculative premium. The following proposition summarizes these results.

10It is commonplace to define the fundamental value of the asset as the expected present discounted value of
the dividend stream and to call any transaction value in excess of this benchmark a bubble. In fact, our notion
of speculative premium corresponds to the notion of speculative bubble that is used in the modern literature on
bubbles. See, e.g., Barlevy (2007), Brunnermeier (2008), Scheinkman and Xiong (2003a, 2003b), Scheinkman
(2013), and Xiong (2013), who discuss Harrison and Kreps (1978) in the context of what is generally known
as the resale option theory of bubbles. One could argue, of course, that the relevant notion of “fundamental
value” should be calculated through market aggregation of diverse investor valuations and taking into account
the monetary policy stance as well as all the details of the market structure in which the asset is traded (such
as the frequency of trading opportunities and the degree of market power of financial intermediaries), which
ultimately also factor into the asset price in equilibrium. We adopt the label used by Harrison and Kreps (1978)
to avoid semantic controversies.
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Proposition 7 In the stationary monetary equilibrium: (i) ∂P/∂µ < 0 and ∂P/∂ι < 0, and

(ii) ∂P/∂ (αθ) > 0.

Together, Proposition 6 and Proposition 7 imply that changes in the trading probability will

generate a positive correlation between trade volume and the size of the speculative premium.

The same is true of changes in the bargaining power. The positive correlation between trade

volume and the size of the speculative premium is a feature of historical episodes that are

usually regarded as bubbles—a point emphasized by Scheinkman and Xiong (2003a, 2003b)

and Scheinkman (2013).

6 Empirical results

According to the theory, the real asset price decreases in response to an entirely unanticipated

and permanent increase in the nominal interest rate (part (i) of Proposition 3). The mechanism

through which the increase in the nominal rate is transmitted to the asset price is the reduction

in turnover liquidity evidenced in a reduction in trade volume (part (i) of Proposition 6).

These two theoretical results suggest two hypotheses that can be tested with asset pricing and

turnover data: (a) surprise increases in the nominal rate reduce real stock returns, and (b)

the mechanism operates through a reduction in turnover liquidity (e.g., as measured by trade

volume).

6.1 Data

We use daily time series for all individual common stocks in the New York Stock Exchange

(NYSE) from the Center for Research in Security Prices (CRSP). The daily stock return from

CRSP takes into account changes in prices and accrued dividend payment, i.e., the return of

stock s on day t is Rst =
(
P st +Dst
P st−1

− 1
)
×100, where P st is the ex dividend dollar price of stock s

on day t and Ds
t denotes the dollar dividend paid per share of stock s on day t. As a measure of

trade volume for each stock, we construct the daily turnover rate from CRSP, i.e., T st = Vst /Ast ,
where Vst is the trade volume of stock s on day t (measured as the total number of shares

traded) and Ast is the number of outstanding shares of stock s on day t. Whenever we use an

average, e.g., of equity returns or turnover rates across a set of stocks, we use the arithmetic

average, e.g., RIt = 1
n

∑n
s=1Rst and T It = 1

n

∑n
s=1 T st are the average return and the average

turnover rate for the universe of n common stocks listed in the NYSE.
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As a proxy for the policy (nominal interest) rate, we use the rate on the nearest Eurodollar

futures contract due to mature after the FOMC (Federal Open Market Committee) policy

announcement, as in Rigobon and Sack (2004).11 Specifically, we use the 3-month Eurodollar

futures rate produced by the CME Group (Chicago Mercantile Exchange Group) and supplied

by Datastream. In some of our empirical exercises, we use the tick-by-tick nominal interest

rate implied by 30-day federal funds futures and consider a high-frequency measure of the

unexpected change in the nominal policy rate on FOMC announcement days. The sample we

analyze runs from January 3, 1994 to November 26, 2001.12 The sample includes between 1300

and 1800 stocks (depending on the time period) and 73 policy dates.13

In the following subsections, we use the data described above to estimate the sign and

magnitude of the effect of monetary policy on stock returns and turnover. In Subsection 6.2, we

estimate these effects for policy announcement days for a broad index of stocks. In Subsection

6.3, we document that the strength of the effect of monetary policy on stock returns differs

11Eurodollar futures are based on a $1 million face value 3-month maturity Eurodollar time deposit. These
futures contracts mature during the conventional IMM (International Monetary Market) dates in the months of
March, June, September, or December, extending outward 10 years into the future. In addition, at any point
in time, there are so-called 3-month Eurodollar serial contracts extending 4 months into the future that mature
in months that are not conventional IMM dates. For example, at the beginning of January 2016, there are
contracts maturing in mid-March, mid-June, mid-September, and mid-December of 2016, through 2025. There
are also serial contracts maturing in mid-January, mid-February, mid-April, and mid-May of 2016. Thus, de-
pending on the timing of the FOMC announcement, the nearest contract to mature may expire between zero and
30 days after the announcement. Current quotes are available at http://www.cmegroup.com/trading/interest-
rates/stir/eurodollar quotes settlements futures.html. An advantage of using a futures rate as a proxy for the
“policy rate” is that its movement on dates of FOMC policy announcements reflects policy surprises only and
does not reflect anticipated policy changes. The importance of focusing on the surprise component of policy
announcements (rather than on the anticipated component) in order to identify the response of asset prices to
monetary policy was originally pointed out by Kuttner (2001) and has been emphasized by the literature since
then, e.g., Bernanke and Kuttner (2005) and Rigobon and Sack (2004). Gürkaynak et al. (2007) offer empirical
evidence supporting the use of futures contracts as an effective proxy for policy expectations and discuss their
use to define policy shocks.

12We choose to end the sample period in 2001 because our theory abstracts from credit, and credit conditions in
the U.S. financial market appear to have eased dramatically in the six years leading up to the 2007 financial crisis.
For example, the private-label securitization market grew in issuance from under $500 billion to over $2 trillion in
2006, the year before the crisis; see e.g., Gorton and Metrick (2012). However, in Appendix B (Section B.5), we
extend the empirical analysis to the sample period 1994-2007. We start our sample period in 1994 because prior to
1994, policy changes in the federal funds target were unannounced and frequently occurred between FOMC meet-
ings. From 1994 onward, all changes are announced and most coincided with FOMC meetings, so as policy an-
nouncement dates we use the dates of FOMC meetings obtained from the website of the Board of Governors of the
Federal Reserve System. The web address is http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm.
See Bernanke and Kuttner (2005) for more discussion on the exact timing of policy announcements.

13Our full sample contains 78 policy dates, but we follow Rigobon and Sack (2004) and discard five of these
policy dates because they are preceded by either one or two holidays in financial markets. Those observations
are needed because one of our procedures requires data involving first differences in variables on the policy day
and on the day preceding the policy day.
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systematically with the turnover liquidity of the stock. In Subsection 6.4, we go a step further

and estimate the dynamic effects of the policy announcement on returns and turnover.

6.2 Aggregate announcement-day effects

The empirical literature has followed several approaches to estimate the impact of monetary

policy surprises on the stock market on the day of a policy announcement. A popular one,

known as event-study analysis, consists of estimating the market reaction to monetary policy

surprises on a subsample of trading days consisting exclusively of the days of monetary policy

announcements (we denote this subsample S1). Let it denote the day t “policy rate” (in our

case, the CME Group 3-month Eurodollar future with closest expiration date at or after day t,

expressed in percentage terms) and define ∆it ≡ it − it−1. The event-study analysis consists of

running the following regression:

Y I
t = a+ b∆it + εt (21)

for t ∈ S1, with Y I
t = RIt , where εt is an exogenous shock to the asset price.14 We refer to the

estimator b as the event-study estimator (or “E-based” estimator, for short).

A concern with (21) is that it does not take into account the fact that the policy rate on

the right side may itself be reacting to asset prices (a simultaneity bias) and that a number of

other variables (e.g., news about economic outlook) are likely to have an impact on both the

policy rate and asset prices (an omitted variables bias). This concern motivates us to consider

the heteroskedasticity-based estimator (“H-based” estimator, for short) proposed by Rigobon

and Sack (2004). The derivation of the H-based estimator is discussed in Appendix B (Section

B.1). In Appendix B (Section B.2), we also consider a version of the event-study estimator

that relies on an instrumental variable identification strategy that uses intraday high-frequency

tick-by-tick interest rate data. By focusing on changes in a proxy for the policy rate in a very

narrow 30-minute window around the time of the policy announcement, this high-frequency

instrumental variable estimator (“HFIV” estimator, for short) addresses the omitted variable

bias and the concern that the Eurodollar futures rate may itself respond to market conditions

on policy announcement days.

Table 1 presents the baseline results. The first column corresponds to the event-based

estimation, the second column corresponds to the heteroskedasticity-based estimation, and the

14In the context of monetary policy, this approach was originally used by Cook and Hahn (1989) and has been
followed by a large number of papers, e.g., Bernanke and Kuttner (2005), Cochrane and Piazzesi (2002), Kuttner
(2001), and Thorbecke (1997).
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third column corresponds to the high-frequency instrumental variable estimation. Returns are

expressed in percentage terms. The first row presents estimates of the reaction of equity returns

to monetary policy. The point estimate for b in (21) is −3.77. This means that a 1 basis point

(bp) increase in the policy rate causes a decrease of 3.77 basis points (bps) in the stock market

return on the day of the policy announcement.15 The analogous H-based point estimate is

−6.18, implying that a 25 bp increase in the policy rate causes a decrease in the stock market

return of 1.54 percentage points (pps) on the day of the policy announcement. These results

are in line with those reported in previous studies.16 The HFIV point estimate is also negative,

and the magnitude is larger than the E-based and H-based estimates.17

Previous studies have not clearly identified the specific economic mechanism that transmits

monetary policy shocks to the stock market. Conventional asset-pricing theory suggests three

broad immediate reasons why an unexpected policy nominal rate increase may lead to a decline

in stock prices. It may be associated with a decrease in expected dividend growth, with a rise

in the future real interest rates used to discount dividends, or with an increase in the expected

excess returns (i.e., equity premia) associated with holding stocks. Our theory formalizes a new

mechanism: the reduction in turnover liquidity caused by the increase in the opportunity cost

of holding the nominal assets that are routinely used to settle financial transactions. To assess

this theoretical mechanism, we again estimate b in (21) (and the analogous H-based and HFIV

estimates), but with Y I
t = T It −T It−1, i.e., we use the change in the daily turnover rate averaged

over all traded stocks as the dependent variable (instead of the average stock return, RIt ).
The estimated effects of monetary policy announcements on the turnover rate are reported

in the second row of Table 1. According to the event-based estimate, a 1 bp increase in the

policy rate causes a change in the level of the marketwide turnover rate on the day of the policy

announcement equal to −.000025.18 The daily marketwide turnover rate for our sample period

is .0037 (i.e., on average, stocks turn over .94 times during a typical year composed of 252

15The R2 indicates that 16 percent of the variance of equity prices in days of FOMC policy announcements is
associated with news about monetary policy.

16The comparable event-based estimates in Bernanke and Kuttner (2005), who focus on a different sample
period and measure stock returns using the value-weighted return from CRSP, range between −2.55 and −4.68.
The comparable heteroskedasticity-based estimates in Rigobon and Sack (2004), who use a different series for the
Eurodollar forward rate, are −6.81 for the S&P 500 index, −6.5 for the WIL5000 index, −9.42 for the NASDAQ,
and −4.85 for the DJIA.

17Note, however, that due to data availability, the HFIV estimation is based on 64 policy dates used for the
E-based and H-based estimations.

18The R2 indicates that 15 percent of the variance of the daily turnover rate in days of FOMC policy an-
nouncements is associated with unexpected changes in monetary policy.
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trading days), which means that an increase in the policy rate of 25 bps causes a reduction in

the marketwide turnover rate on the day of the policy announcement of about 17 percent of

its typical level. The heteroskedasticity-based estimate for a 1 bp increase in the policy rate is

−.000045, implying that a 25 bp increase in the policy rate causes a reduction in the marketwide

turnover rate of about 30 percent of its typical level. The HFIV estimate is similar.

6.3 Disaggregative announcement-day effects

Another way to provide direct evidence of the turnover-liquidity transmission mechanism of

monetary policy is to exploit the cross-sectional variation in turnover rates across stocks. Our

theory implies that the magnitude of the change in the stock return induced by a change in the

policy rate will tend to be larger for more liquid stocks (i.e., stocks with a higher turnover rate).

To test this prediction, we sort stocks into portfolios according to their turnover liquidity, as

follows. For each policy announcement date, t, we calculate T st as the average turnover rate of

an individual stock s over all the trading days during the four weeks prior to the day of the policy

announcement. We then sort all stocks into 20 portfolios by assigning stocks with T st ranked

between the [5 (i− 1)]th percentile and (5i)th percentile to the ith portfolio, for i = 1, ..., 20.

Hence, the average turnover rate over the four-week period prior to the announcement date for

a stock in ith portfolio is at least as large as that of a stock in (i− 1)th portfolio. In Table 2, the

column labeled “Turnover” reports the annual turnover rate (based on a year with 252 trading

days) corresponding to each of the 20 portfolios. For example, portfolio 1 turns over .11 times

per year while portfolio 20 turns over 3.11 times per year.19

For each of the 20 portfolios, the columns in Table 2 labeled “E-based” report the event-

study estimates of the responses (on the day of the policy announcement) of the return and

turnover of the portfolio to a 1 percentage point (pp) increase in the policy rate. All the

estimates in the column labeled “Return” are negative, as predicted by the theory. Also as

predicted by the quantitative theory, the magnitude of the (statistically significant) estimates

increases with the turnover liquidity of the portfolio. For example, a 1 bp increase in the policy

19Our motivation for constructing these liquidity-based portfolios is twofold. First, at a daily frequency,
individual stock returns are extremely noisy; by grouping stocks into portfolios based on some characteristic(s)
related to returns, it becomes possible to see average return differences. Second, stock-specific turnover measures
are time-varying, i.e., the turnover rate of a particular stock may change over time. Bernanke and Kuttner
(2005) also examine the responses of more disaggregated indices to monetary policy shocks. Specifically, they
estimate the responses of 10 industry portfolios constructed from CRSP returns as in Fama and French (1988)
but find that the precision of their estimates is not sufficient to reject the hypothesis of an equal reaction for all
10 industries.
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rate causes a decrease of 2.03 bps in the return of portfolio 1 and a decrease of 6.27 bps in the

return of portfolio 20. Fourteen of the E-based estimates in the column labeled “Turnover” are

negative and statistically significant (at the 5 percent level), as predicted by the theory. Also as

predicted by the quantitative theory, the magnitude of the (statistically significant) estimates

increases with the turnover liquidity of the portfolio. For example, based on the point estimates,

the magnitude of the response of the turnover rate of portfolio 20 is about twelve times larger

than that of portfolio 2.

In Table 2, the columns labeled “H-based” report the H-based estimates of the responses

(on the day of the policy announcement) of the return and turnover of each of the 20 portfolios

to a 1 pp increase in the policy rate. The magnitudes of the H-based estimates tend to be larger

than the E-based estimates. The sign and ranking of the H-based estimates across portfolios

are roughly in line with the predictions of the theory. All the coefficients in the column labeled

“Return” are negative, and the magnitude of the (statistically significant) estimates tends to

increase with the turnover liquidity of the portfolio. For example, a 1 bp increase in the policy

rate causes a decrease of 3.4 bps in the return of portfolio 1 and a decrease of 12 bps in the return

of portfolio 20. Fifteen of the coefficients in the column labeled “Turnover” are negative and

statistically significant (at the 5 percent level), as predicted by the theory. Also, the magnitude

of the (statistically significant) coefficients tends to increase with the turnover liquidity of the

portfolio.20 For example, the response of the turnover rate of portfolio 20 is about twelve times

larger than the response of the turnover rate of portfolio 2.

As an alternative way to estimate the heterogeneous responses of returns to monetary policy

shocks for stocks with different turnover liquidity, we ran an event-study regression of individual

stock returns (for the universe of stocks listed in the NYSE) on changes in the policy rate, an

interaction term between the change in the policy rate and individual stock turnover rate, and

several controls. As before, ∆it denotes the monetary policy shock on policy announcement

day t (measured by the change between day t and day t− 1 in the 3-month Eurodollar futures

contract with nearest expiration after the day t FOMC policy announcement), and T st is the

average turnover rate of the individual stock s over all the trading days during the four weeks

prior to the day of the policy announcement of day t. Let ∆i and T denote the sample averages

20In Appendix B (Section B.3), we report similar results from an alternative procedure that sorts stocks into
portfolios according to the strength of individual stock returns to changes in an aggregate (marketwide) measure
of turnover. This alternative sorting criterion allows us to control for other differences across stocks, such as the
conventional risk factors used in empirical asset-pricing models.
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of ∆it and T st , respectively, and define T st ≡ (T st − T ) and ∆it ≡ (∆it −∆i). The regression

we fit is

Rst = β0 + β1∆it + β2T st + β3T st ×∆it

+Ds +Dt + β4 (∆it)
2 + β5 (T st )2 + εst, (22)

where Ds is a stock fixed effect, Dt is a quarterly time dummy, and εst is the error term

corresponding to stock s on policy announcement day t. The time dummies control for omitted

variables that may affect the return of all stocks in the NYSE over time. The stock fixed

effects control for the effects that permanent stock characteristics not included explicitly in the

regression may have on individual stock returns. We include the interaction term T st ×∆it to

estimate how the effect of changes in the policy rate on individual stock returns varies across

stocks with different turnover liquidity. The coefficient of interest is β3, i.e., we want to test

whether changes in the policy rate affect individual stock returns through the stock-specific

turnover-liquidity channel. The estimate of β3 can help us evaluate the theoretical prediction

that increases (reductions) in the policy rate cause larger reductions (increases) in returns of

stocks with a larger turnover rate, i.e., the quantitative theory predicts β3 < 0.

Table 3 reports the results from estimating five different specifications based on (22). Spec-

ification (I) excludes Ds, Dt, the interaction term, T st ×∆it, and the squared terms, (∆it)
2 and

(T st )2. Specification (II) adds the interaction term to specification (I). Specification (III) adds

Ds to specification (II). Specification (IV) adds Dt to specification (II). Specification (V) adds

Ds to specification (IV). Specifications (VI), (VII), (VIII), and (IX) each add the squared terms

(∆it)
2 and (T st )2 to specifications (II), (III), (IV), and (V), respectively. In all specifications,

all estimates are significant at 1 percent level.

The estimate of β1 is about −2.4 in specifications (I)-(V), implying that a 1 bp increase in

the policy rate reduces the return of a stock with average turnover by 2.4 bps on the day of the

policy announcement.21 Combined, the estimates of β1 and β4 in specifications (VI)-(IX) imply

a stronger response of stock returns to the policy rate. For example, according to specification

(IX), a 1 bp increase in the policy rate reduces the return of a stock with average turnover by

5.6 bps on the day of the policy announcement. The sign and magnitude of the estimates lie

within the range of responses reported in Table 1.

The estimate of interest, β3, is large and negative in all specifications, ranging from −415

21Recall the average daily turnover in our sample is .0037.
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(specification (VII)) to −100 (specification (IV)). The negative and statistically significant

estimates of β3 indicate that the magnitude of the negative effect of changes in the policy rate

on announcement-day equity returns is larger for stocks with higher turnover liquidity. To

interpret the magnitude of the estimates, consider an equity A with a turnover rate equal to

94.679 bps (i.e., an equity in the 95th percentile of turnover rates of the sample) and an equity

B with a turnover rate equal to 5.975 bps (i.e., in the 5th percentile of turnover rates). Then,

for example according to specification (IX), the estimate of β3 is −410, implying that a 1 bp

increase in the policy rate reduces the announcement-day return by β1+2β4+β3

(
T At − T

)
≈ −4

bps for equity A and by β1 + 2β4 + β3

(
T Bt − T

)
≈ −.34 bps for equity B. Together with the

findings reported in Table 1 and Table 2, these results provide additional evidence that turnover

liquidity is a quantitatively important channel that transmits monetary policy shocks to asset

prices.

6.4 Dynamic effects

In the previous section, we have documented the effect of monetary policy shocks on equity

returns and turnover on the day the policy announcement takes place. While the turnover

liquidity channel highlighted by our theory can generate the effects on announcement days

documented in the previous section, the theoretical channel is eminently dynamic. In the

theory, persistent changes in the nominal rate affect stock returns because they imply persistent

changes in future stock turnover. To study the dynamic effects of monetary policy on prices

and turnover rates, we conduct a vector autoregression (VAR) analysis on the sample consisting

of all trading days during 1994-2001.

The baseline VAR we estimate consists of three variables, i.e.,
{
it,RIt , T It

}
, where it, RIt ,

and T It are the daily measures of the policy rate, the stock return, and turnover described

in Section 6.1 and Section 6.2.22 The lag length is set to 10.23 To identify the effects of

22In Section 6.2, we used the change in the 3-month Eurodollar futures rate on the day of the FOMC an-
nouncement as a proxy for the unexpected component of the change in the true policy rate, i.e., the effective
federal funds rate. In this section, we instead regard the 3-month Eurodollar futures rate as the policy rate itself.
We do this because, at a daily frequency, the effective federal funds rate is very volatile for much of our sample,
e.g., due to institutional considerations, such as “settlement Wednesdays.” The path of the 3-month Eurodollar
futures rate is quite similar to the effective federal funds rate, but it does not display the large regulation-induced
weekly swings. In any case, we have also performed the estimation in this section using the daily effective federal
funds rate instead of the Eurodolar futures rate, and the results for returns and turnover are quite similar.

23The Akaike information criterion (AIC) suggests 10 lags, while Schwarz’s Bayesian information criterion
(SBIC) and the Hannan and Quinn information criterion (HQIC) suggest 5 lags. We adopted the formulation
with 10 lags, but both formulations deliver similar estimates of the theoretical impulse responses implied by our
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monetary policy shocks, we apply an identification scheme based on an external high-frequency

instrument.24

Figure 2 reports the impulse responses of the policy rate, the average stock return, and the

average turnover rate, to a 1 bp increase in the policy rate. The 95 percent confidence intervals

are computed using a recursive wild bootstrap based on 10,000 replications.25 The top and

bottom rows show responses for forecast horizons of 30 days and 120 days, respectively. The

path of the policy rate is quite persistent; it remains significantly above the level prevailing

prior to the shock for about one year. The middle panels in Figure 2 show the response of daily

stock returns. On impact, in response to the 1 bp unexpected increase in the nominal rate, the

stock return falls by about 7 bps (the 95 percent confidence band ranges from −8.03 to −6.24

bps). Notice that the size and magnitude of this decrease in the stock return on the day of the

policy shock are in line with the estimates reported in Table 1. The negative effect on the stock

return is relatively short-lived: it becomes statistically insignificant about two days after the

policy shock, and according to the point estimates, it takes about 1 day to recover half of the

initial drop. The right panels in Figure 2 show the response of the level of the daily turnover

rate. On impact, a 1 bp surprise increase in the nominal rate causes a change in the level of

the turnover rate equal to −.000038 (the 95 percent confidence band ranges from −.000047

to −.000035), which is similar to the H-based and HFIV point estimates reported in Table 1.

According to the point estimates, it takes about 1 day for the turnover rate to recover half of

the initial drop. However, beyond that point, the negative effect of the increase in the policy

rate is quite persistent (e.g., it takes about 50 days for it to become statistically insignificant).

Bernanke and Kuttner (2005) is one of the few papers that tries to identify the economic

forces behind the negative effect of nominal rate increases on stock returns. They use a VAR

to decompose excess equity returns into components attributable to news about dividends, real

interest rates, and future excess returns. They find that the component associated with future

excess returns accounts for the largest part of the response of stock prices to changes in the

nominal rate. This means that an increase in the policy rate lowers stock prices mostly by

quantitative theory (see Appendix B, Section B.4.3, for details).
24See Appendix B (Section B.4.1) for details. The basic idea of structural vector autoregression (SVAR)

identification using instruments external to the VAR can be traced back to Romer and Romer (1989) and has
been adopted in a number of more recent papers, including Cochrane and Piazzesi (2002), Hamilton (2003),
Kilian (2008a, 2008b), Stock and Watson (2012), Mertens and Ravn (2013), and Gertler and Karadi (2015).

25The procedure to calculate the confidence intervals is described in Appendix B (Section B.4.2). See Gonçalves
and Kilian (2004) for a formal econometric analysis of this method.
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increasing the expected equity premium. Bernanke and Kuttner speculate that this could come

about via some unspecified mechanism through which tight money increases the riskiness of

stocks or decreases the investor’s willingness to bear risk. In this section, we have provided

empirical evidence for the novel mechanism suggested by our theory, i.e., that (at least part

of) this increase in future stock returns comes about because tight money reduces the turnover

liquidity of stocks (as measured by the stock turnover rate). Specifically, a higher nominal rate

makes the payment instruments (e.g. real bank reserves, real money balances) more scarce,

which reduces the resalability and turnover, and this increased illiquidity is reflected in a re-

duction of the equity price. In Appendix B (Section B.4.5), we carry out the same VAR analysis

of this section on each of the 20 liquidity portfolios constructed in Section 6.3 and find that—as

predicted by the quantitative theory—the strength and persistence of the responses to nominal

rate shocks are larger for portfolios with larger turnover liquidity.

7 Quantitative analysis

The theoretical result we used to motivate these regressions of Section 6 (i.e., part (i) of

Proposition 3 and part (i) of Proposition 6) is akin to an experiment consisting of a permanent

and entirely unanticipated increase in the nominal rate, so while suggestive, it is not a theoretical

experiment that corresponds exactly to the empirical estimates we reported in Section 6. In

order to properly assess the predictions and quantitative performance of the theory, in this

section we formulate, calibrate, and simulate a generalized version of the model of Section

2. Specifically, we simultaneously extend the model in two directions. First, we incorporate

aggregate uncertainty regarding the path of monetary policy (implemented through changes in

the nominal interest rate). This extension allows us to consider theoretical experiments that

resemble more closely what goes on in financial markets, in the sense that while investors may

be surprised by the timing and size of changes in the nominal rate, they take into account

a probability distribution over future paths of the monetary policy so these changes are not

entirely unexpected. Second, we extend the model to the case of multiple assets that differ

in their liquidity properties. This extension allows us to provide additional evidence for the

turnover liquidity mechanism by exploiting the cross-sectional heterogeneity and using it to

assess the quantitative theoretical effects of monetary policy on the cross section of asset returns

and turnover.
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7.1 Generalized model

There are N asset classes, each indexed by s ∈ N = {1, 2, ..., N}. The outstanding quantity

of equity shares of class s is As. Since the focus is on the implication of liquidity differences

across asset classes, we assume each asset gives the same dividend yt, which follows the same

stochastic process described in the one-asset model of Section 2. An investor’s period t valuation

of the dividend of any asset is distributed independently over time and across investors, with

cumulative distribution function G, just as in the one-asset setup.

We model liquidity differences as follows. In each round of OTC trade, each investor can

trade asset class s ∈ N with probability αs ∈ [0, 1]. The event that the investor is able to

trade asset class s is independent of the event that he is able to trade any other asset class

n ∈ N. We interpret αs as the probability that an individual investor contacts a dealer with

whom he can trade asset class s. This captures the idea that dealers are specialized in trading a

particular asset class.26 In the OTC trading round there are N competitive interdealer markets,

one for each asset class. These markets are segmented in the following sense: (i) in the OTC

trading round, asset s can only be traded in market s, and (ii) at the beginning of the period,

investors partition the money they will use for trading stocks in the first subperiod into N

portfolios, i.e., each agent chooses {amst }s∈N, where amst is the amount of money the investor

will have available to trade asset class s in the OTC market of period t. Each investor makes

this cash rebalancing decision after having observed the realization of the aggregate state, but

before learning which asset classes he will be able to trade, and before learning his individual

valuation of the dividend (the two latter assumptions keep the ex post number of investor types

to a minimum). For simplicity, in this section we assume dealers do not hold asset inventories

overnight (and without loss of generality, also that they do not hold money overnight).

In Section 2, we assumed a constant growth rate of the money supply, i.e., Amt+1 = µAmt ,

where µ ∈ R++. Here we instead assume Amt+1 = µtA
m
t , where {µt}∞t=1 follows a Markov chain

26In the theory, differences in α, θ, or G all give rise to differences in turnover across assets. We focus on
differences in α because it is conceptually the simplest and analytically the most direct way to construct asset
classes that differ in turnover liquidity. However, one could carry out the theoretical analysis by constructing asset
classes based on differences in G and θ. Differences in G work similarly to differences in α (see the equivalence
result proved in Proposition 9, Appendix A). With regard to differences in θ, in a large class of models that
includes this one, Duffie et al. (2005) and Lagos and Rocheteau (2009), the equilibrium asset price does not
depend on α and θ independently, but on their product, αθ. Thus, for asset-pricing purposes, differences in α can
be interpreted as capturing differences in the trading probability or in the bargaining power. The quantitative
response of turnover to money shocks will typically be different depending on whether assets differ in α or θ,
however.
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with σij = Pr (µt+1 = µj |µt = µi) and µi ∈ R++ for all i, j ∈ M = {1, . . . ,M}. The realization

of µt is known at the beginning of period t. As before, money is injected via lump-sum transfers

to investors in the second subperiod of every period.

We specialize the analysis to recursive equilibria in which prices and portfolio decisions are

time-invariant functions of the aggregate state, xt = (Amt , yt, µt) ∈ R3
+. That is, φst = φs (xt),

φ̄st = φ̄s (xt), φ
m
t = φm (xt), p

s
t = ps (xt), and εs∗t = εs∗ (xt). We conjecture that the recursive

equilibrium has the property that real prices are linear functions of the aggregate dividend, i.e.,

suppose xt = (Amt , yt, µi), then φs (xt) = φsiyt, φ̄
s (xt) ≡ ps (xt)φ

m (xt) = φ̄siyt, φ
m (xt)A

m
t =

Ziyt, ε
s∗ (xt) ≡

[
φ̄s (xt)− φs (xt)

]
/yt = φ̄si − φsi ≡ εs∗i , and Amst = λsiA

m
t , where λsi ∈ [0, 1]

denotes the fraction of the beginning-of-period money holdings that investors have chosen to

have available to trade asset class s in the OTC round of period t. In Appendix C (Section C.2),

we show that an equilibrium is characterized by a vector {φsi , εs∗i , Zi, λsi}i∈M,s∈N of M (3N + 1)

unknowns that solves the following system of M (3N + 1) equations:

φsi = β̄δ
∑
j∈M

σij

[
ε̄+ φsj + αsθ

∫ εs∗j

εL

(εs∗j − ε)dG(ε)

]
for all (i, s) ∈M× N (23)

Zi =
β̄

µi

∑
j∈M

σij

[
1 + αsθ

∫ εH

εs∗j

ε− εs∗j
εs∗j + φsj

dG(ε)

]
Zj for all (i, s) ∈M× N (24)

λsiZi =
G (εs∗i )As

1−G (εs∗i )
(εs∗i + φsi ) for all (i, s) ∈M× N (25)

1 =
∑
s∈N

λsi for all i ∈M. (26)

In the following subsections, we calibrate and simulate this model to assess the ability of

the theory to account for the empirical findings reported in Section 6. Before doing so, it is

useful to define the theoretical analogues to the variables we studied in the empirical section.

The return of stock s at date t + 1 is Rst+1 = φ̄st+1/φ
s
t − 1, where φ̄st ≡ ptφ

m
t = φst + ε∗t yt

is the cum dividend price of equity at date t defined in Section 4. In a recursive equilibrium,

suppose the state is xt = (Amt , yt, µi) at t, and xt+1 = (µiA
m
t , yt+1, µj) at t+ 1, then

Rst+1 =
φsj + εs∗j
φsi

yt+1

yt
− 1.

So far we have implicitly assumed that As, i.e., all outstanding equity shares of class s are

actively traded every day. In actual markets, however, a fraction of the outstanding equity

shares are seldom traded (stocks held in 401(k) accounts, for example). Our theory remains
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unchanged if we replace As with κAs for some κ ∈ [0, 1] that represents the proportion of the

universe of outstanding stocks that are actively traded and think of the remaining (1− κ)As

as being held by nontraders outside the model. In an equilibrium in which dealers do not

hold assets (as is the case in this section), trade volume for asset class s at date t is Vst =

2αsG (εs∗t )κAs. A conventional measure of trade volume is the turnover rate used in the

empirical work of Section 6.1. According to the theory, the turnover rate on date t is

T st = Vst /As = 2αsG (εs∗t )κ.

Naturally, a nonzero fraction of inactive stocks (i.e., κ < 1) lowers the measured turnover rate.27

In a recursive equilibrium, suppose the state at date t is xt = (Amt , yt, µi), then the turnover

rate can be written as T si = 2αsG (εs∗i )κ.

In the theory as in our empirical work, whenever we use an average, e.g., of equity returns

or turnover rates across a set of stocks, we use the arithmetic average, e.g., RIt = 1
N

∑
s∈NRst

and T It = 1
N

∑
s∈N T st are the average return and the average turnover rate for the universe of

stocks in the theory.

Let ψb (xt) denote the state xt real price of an illiquid one-period pure discount nominal

bond in the second subperiod of any period (the bond is illiquid in the sense that it cannot be

traded in the OTC market).28 The Euler equation for this asset is ψb (xt) = βE [φm (xt+1)|xt].
The dollar price of the asset in the second subperiod of period t is q (xt) ≡ ψb (xt) /φ

m (xt), so

the Euler equation can be written as q (xt) = β/π̄ (xt), where π̄ (xt) ≡ φm(xt)
E[φm(xt+1)|xt] . Then the

(net) nominal rate on this bond (between period t and period t+ 1) is r (xt) ≡ q (xt)
−1 − 1 =

π̄ (xt) /β − 1. Suppose xt = (Amt , yt, µi), then in a recursive equilibrium, π̄ (xt) ≡ π̄i and

r (xt) ≡ ri = π̄i/β − 1, where π̄i = µi
γ̄

Zi∑
j∈M σijZj

. So the one-period risk-free nominal interest

rate between time t in state xt = (Amt , yt, µi) and time t+ 1 is

ri =
µi
β̄

Zi∑
j∈M σijZj

− 1. (27)

27The first column labeled “Turnover” in Table 2 reports the annual turnover rates corresponding to each of
the 20 portfolios we studied in Section 6.3. Notice that the turnover rates appear to be quite low: even the top
5 percent most traded stocks are only traded about 3 times per year, on average, which suggests that the model
should allow for the possibility of κ < 1.

28To simplify the exposition, here we consider the nominal interest on a hypothetical bond that is not actually
traded. In Appendix C (Section C.3) we develop an extension where the monetary authority can also inject or
withdraw money via explicit open-market operations involving risk-free nominal government bonds. Proposition
10 (in Appendix C, Section C.3) establishes that the simpler environment presented here can be interpreted
formally as a reduced-form of the richer environment with explicit open-market operations.

32



7.2 Calibration

We think of one model period as being one day. The discount factor, β, is chosen so that the

annual real risk-free rate equals 3 percent, i.e., β = (0.97)1/365. Idiosyncratic valuation shocks

are distributed uniformly on [0, 1], i.e., G (ε) = I{εL≤ε≤εH}ε+ I{εH<ε} with εL = 0 and εH = 1.

The dividend growth rate is independently lognormally distributed over time, with mean .04 and

standard deviation .12 per annum (e.g., as documented in Lettau and Ludvigson (2005), Table

1). That is, yt+1 = ext+1yt, with xt+1 ∼ N
(
γ̄ − 1,Σ2

)
, where γ̄ − 1 = E (log yt+1 − log yt) =

.04/365 and Σ = SD (log yt+1 − log yt) = .12/
√

365. The parameter δ can be taken as a proxy

of the riskiness of stocks; a relatively low value ensures the monetary equilibrium exists even at

relatively high inflation rates. We choose δ = (.7)1/365, i.e., a productive unit has a 70 percent

probability of remaining productive each year. The number of outstanding shares of stocks of

every class is normalized to 1, i.e., As = 1 for all s ∈ N. We set N = 20 so the number of asset

classes in the theory matches the number of synthetic empirical liquidity portfolios we considered

in the cross-sectional analysis of Section 6.3. We normalize α20 = 1 and calibrate {αs}19
s=1

and the fraction of actively traded stocks, κ, so that the following twenty moment conditions

are satisfied: (a) for s = 1, ..., 19, the long-run time-average of the equilibrium turnover rate,

i.e., T̄ s ≡ limT→∞
1
T

∑T
t=1 T st , equals the average turnover rate of the sth synthetic empirical

liquidity portfolio in our sample, and (b) the average equilibrium turnover rate across asset

classes and time (under the invariant distribution of monetary policy shocks) equals the average

turnover rate across all stocks in our sample, i.e., 1
20

∑20
s=1 T̄ s = .0037.29

We set θ = 1 in our baseline and abstract from micro-level pricing frictions induced by

bargaining. Finally, we estimate the parameters that determine the monetary policy process,

i.e., {µi, σij}i,j∈M and M , as follows. We estimate the stochastic process for the policy rate

using the rate of the 3-month Eurodollar future contract. The sample runs from January 3,

1994, to November 26, 2001. We formulate that the logarithm of the policy rate follows an

AR(1) process, we estimate this process at a daily frequency, and approximate it with a 7-state

Markov chain, {ri, σij}7i,j=1.30 From (27), there is a one-to-one mapping between the nominal

29This procedure delivers α1 = .0952, α2 = .1171, α3 = .1344, α4 = .1506, α5 = .1665, α6 = .1822, α7 = .1977,
α8 = .2135, α9 = .2296, α10 = .2467, α11 = .2654, α12 = .2849, α13 = .3076, α14 = .3341, α15 = .3658,
α16 = .4051, α17 = .4561, α18 = .5287, α19 = .6520, and κ = .03.

30Specifically, the process we estimate is ln it = (1− ξ) ln i0 + ξ ln it−1 + εt, where εt is Gaussian white noise.
With it denominated in bps, the estimates are ξ = .9997652, E (ln it) = ln i0 = 5.7362, and

√
E (ε2

t ) = .0102.

Hence the estimated mean and standard deviation of the nominal rate, it, are E (it) = 346 and
√
V ar (it) = 172.

The estimated AR(1) process is very persistent so, as suggested by Galindev and Lkhagvasuren (2010), we use the
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rate and the money growth rate in the theory, and since the policy rate is estimated to be very

persistent, we have ri ≈ µi/β̄ − 1. Thus, the money supply process we use to simulate the

model is {µi, σij}7i,j=1, where σij are the estimated transition probabilities for the policy rate,

and µi ≈ β̄(1 + ri).

In the remainder of the section, we conduct three experiments to assess the ability of the

theory to match the evidence documented in Section 6. In all experiments, we simulate the

calibrated model as follows. First, compute the equilibrium functions characterized by (23)-

(26). Second, simulate 1,000 samples of the dividend, each of length equal to our data sample.

Then set the path of the nominal rate in the model equal to the actual empirical path of the

proxy for the policy rate. Finally, compute the equilibrium path of the model 1,000 times (one

for each realization of the simulated dividend path) and for each simulated equilibrium path,

compute the average daily equity return and turnover rate for each asset class.

7.3 Experiment 1: Aggregate announcement-day effects

The first experiment we conduct is the model analogue of the event-study regression analysis

of Section 6.2. For each simulated equilibrium path for average daily stock return and turnover

rate (i.e., the arithmetic average across the 20 stock classes), we run the event-study regression

(21) for returns as well as for turnover.

Figure 3 displays the distribution of point estimates for the response of the daily marketwide

average return to the policy rate implied by these 1,000 regressions on simulated data. The

average point estimate is −2.23 (with standard deviation 1.08), which is quite close to the

empirical (E-based) estimate of −3.77 obtained in Section 6.2. In fact, Figure 3 shows that

−3.77 is within the 95 percent confidence interval of the point estimates generated by the theory.

Regarding the model response of the turnover rate, the average point estimate in response to

a 1 bp increase in the policy rate is −.000001, about two orders of magnitude smaller than the

empirical point (E-based) estimate of −.000025 obtained in Section 6.2. These comparisons are

limited to the announcement-day responses. As we show below, although the model response

for turnover on the announcement day is relatively small, it is very persistent and tends to

converge to the empirical response in subsequent days.

Rouwenhorst method to compute the approximating Markov matrix and states. The code for the Rouwenhorst
method is also from Galindev and Lkhagvasuren (2010).
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7.4 Experiment 2: Disaggregative announcement-day effects

The second experiment is the model analogue of the cross-sectional event-study analysis of

Section 6.2. For each of the 20 asset classes, we run an event-study regression for returns

and an event-study regression of turnover using the simulated equilibrium path for daily stock

return and turnover rate for that particular asset class.

The results for returns are illustrated in Figure 4, which reports the empirical E-based

estimates from Table 2 along with the estimates from the simulated model. For each theoretical

portfolio, the value displayed in Figure 4 is the average E-based estimate over the model 1,000

simulations. The 95% confidence intervals for the theoretical estimates are constructed using

the distribution of estimates from the 1,000 model simulations. The 95 percent confidence

intervals for the empirical estimates are from the oridnary least squares (OLS) regressions from

Section 6.3. The magnitudes of the model estimates are somewhat smaller than their empirical

counterparts, but they all fall within the 95 percent confidence bands of the empirical estimates.

Also, the slope of the response appears to be somewhat steeper in the data.

The results for turnover are illustrated in Figure 5, which reports the empirical E-based

estimates from Table 2 along with the estimates from the simulated model. All estimates

shown in the figure have been normalized by the average of the estimates across portfolios.

That is, the response of each portfolio is expressed as a multiple of the average response.31

This allows us to focus on the magnitude of the relative response of turnover across asset

classes. For example, in both the empirical and the model regressions, the magnitude of the

drop in turnover of portfolio 13 is similar to that of the average portfolio. The magnitude of

the response for portfolios with turnover lower (higher) than portfolio 13 is lower (higher) than

the average. The relative magnitudes of the model responses are to a large extent in line with

those estimated from the data (the model only misses the particularly large relative responses

of portfolios 17 through 20).

31For each theoretical portfolio, the value displayed in Figure 5 is the average E-based estimate over the model
1,000 simulations divided by the average response across simulations and portfolios. The 95 percent confidence
intervals for the theoretical estimates are constructed using the distribution of estimates from the 1,000 model
simulations. The 95 percent confidence intervals for the empirical estimates are from the OLS regressions from
Section 6.3.
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7.5 Experiment 3: VAR analysis

The third experiment is the model analogue of the VAR analysis of Section 6.4. For each

simulated equilibrium path for average daily stock return and turnover rate (i.e., the arithmetic

average across the 20 stock classes), we estimate the impulse response to a 1 bp increase in the

policy rate using exactly the same procedure used to estimate the impulse responses from the

data, as described in Section 6.4 and Appendix B (Section B.4).32

Figure 6 reports the model-generated impulse responses for the policy rate, the average

stock return, and the average turnover rate to a 1 bp increase in the policy rate, along with

the corresponding empirical impulse responses estimated from actual data (those described in

Section 6.4). For each variable, the model-generated impulse response reported in the figure

is the median of the 1,000 impulse responses estimated from the 1,000 simulated equilibrium

paths. The 95 percent confidence intervals for the theoretical responses are constructed using

the distribution of estimates from the 1,000 model simulations. The 95 percent confidence

intervals for the empirical impulse responses are based on the recursive wild bootstrap procedure

described in Appendix B (Section B.4.2). The top and bottom panels show responses for forecast

horizons of 30 days and 120 days, respectively.

The path of the policy rate from the model is quite close to the empirical path. The panels

in the middle show the response of daily stock returns. On impact, in response to the 1 bp

unexpected increase in the nominal rate, the model stock return falls by −2.4 bps, which is

about 35 percent of the size of the empirical estimate. Just as in the data, the negative effect

of the policy rate increase on the stock return is relatively short-lived: it takes about 1 day

to recover half of the initial drop. The right panels of Figure 6 show the response of the

level of the daily turnover rate. On impact, in response to a 1 bp unexpected increase in the

nominal rate, the turnover rate falls by −.000001 in the model. As in Section 7.3, the model

response for turnover is much smaller than the empirical estimate (−.000038 according to the

empirical impulse response). However, although the model response for turnover is smaller

on impact, it is very persistent and tends to converge to the empirical response in subsequent

days. For example, the difference between the empirical path for the turnover rate and the

theoretical path becomes statistically insignificant after about 30 days. This persistent effect of

32In the model-based VAR exercises, we add a small noise term (drawn i.i.d. from a uniform distribution on
[−5 × 10−7, 5 × 10−7]) to the simulated turnover rate. We do this to ensure that return and turnover are not
perfectly collinear in the simulated equilibrium. Adding this noise term to the turnover rate does not alter the
equilibrium conditions in any way.

36



policy on the turnover rate allows the model to generate a short-run response in return that is

quantitatively roughly in line with the data, although the announcement-day effect on turnover

is much smaller than in the data.33

8 Conclusion

We conclude by mentioning what we think are three promising avenues for future work. First,

in the model we have presented, all asset purchases are paid for with outside money. In other

words, it focuses on the relevant margin for settings, transactions, or traders for which credit

limits have become binding. While arguably stark, we think this formulation is a useful bench-

mark to contrast with the traditional asset-pricing literature that abstracts from the role of

costly or scarce payment instruments. Having said this, we think it would be interesting to

extend the theory to allow for credit arrangements. The possibility of “buying on margin,” for

example, could very well magnify some of the monetary mechanisms we have emphasized here.

Second, given that trading frictions in the exchange process are at the center of the analysis

(e.g., the likelihood of finding a counterparty, or the market power of dealers who intermediate

transactions), it would be interesting to endogenize them (see Lagos and Zhang (2015) for some

work in this direction). Third, while our empirical work has focused on stocks, the transmission

mechanism we have identified is likely to be operative—and possibly even stronger and more

conspicuous—in markets for other assets, such as Treasury securities and assets that trade in

more frictional over-the-counter markets.

33Figure 7, discussed in Appendix B.4.3, shows that according to the model, the VAR procedure may be
overestimating the announcement-day effect of the policy rate on turnover and underestimating the persistence
of the effect.
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A Proofs

Proof of Proposition 1. The choice variable a′Dt does not appear in the planner’s objective

function, so a′Dt = 0 at an optimum. Also, (3) must bind for every t at an optimum, so the

planner’s problem is equivalent to

max
{ãDt,ãIt,a′It}

∞
t=0

E0

∞∑
t=0

βt
[
α

∫ εH

εL

εa′It (dε) + (1− α) ε̄aIt

]
yt

s.t. (1), (4), (5), and α

∫ εH

εL

a′It (dε) ≤ aDt + αaIt.

Let W ∗ denote the maximum value of this problem. Then clearly, W ∗ ≤ W̄ ∗, where

W̄ ∗ = max
{ãDt,ãIt}∞t=0

E0

∞∑
t=0

βt [εH (ãDt + αãIt) + (1− α) ε̄ãIt] δyt + w

s.t. (1), where w ≡ [αεH + (1− α) ε̄] (1− δ)AsE0
∑∞

t=0 β
tyt. Rearrange the expression for W̄ ∗

and substitute (1) (at equality) to obtain

W̄ ∗ = max
{ãIt}∞t=0

E0

∞∑
t=0

βt {εHAs − (1− α) (εH − ε̄) ãIt} δyt + w

= {δεH + (1− δ) [αεH + (1− α) ε̄]}AsE0

∞∑
t=0

βtyt.

The allocation consisting of ãDt = As, ãIt = 0, and the Dirac measure defined in the statement

of the proposition achieve W̄ ∗ and therefore solve the planner’s problem.

Proof of Lemma 1. Notice that (8) implies

WD
t (at, kt) = φtat + kt + W̄D

t ,

where

W̄D
t ≡ max

ãt+1∈R2
+

[
−φtãt+1 + βEtV D

t+1

(
ãmt+1, δã

s
t+1

)]
, (28)

so (7) implies

ŴD
t (at, kt) = kt + W̄D

t + max
ât∈R2

+

φtât

s.t. âmt + ptâ
s
t ≤ amt + pta

s
t .
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Hence,

âmt (at)


= amt + pta

s
t if 0 < ε∗t

∈ [0, amt + pta
s
t ] if 0 = ε∗t

= 0 if ε∗t < 0,

âst (at) = (1/pt) [amt + pta
s
t − âmt (at)] ,

and

ŴD
t (at, kt) = max (φmt , φ

s
t/pt) (amt + pta

s
t ) + kt + W̄D

t . (29)

Also, notice that (9) implies

W I
t (at,−kt) = φtat − kt + W̄ I

t , (30)

where

W̄ I
t ≡ Tt + max

ãt+1∈R2
+

[
−φtãt+1 + βEt

∫
V I
t+1

[
ãmt+1, δã

s
t+1 + (1− δ)As, ε

]
dG(ε)

]
. (31)

With (29) and (30), (6) can be written as

max
amt ,kt

[
(ε∗t − ε) (amt − amit )

1

pt
yt − kt

]θ
k1−θ
t

s.t. 0 ≤ kt ≤ (ε∗t − ε) (amt − amit )
1

pt
yt

with ast = asit + (1/pt) (amit − amt ). Hence,

amt (ait, ε)


= amit + pta

s
it if ε < ε∗t

∈ [0, amit + pta
s
it] if ε = ε∗t

= 0 if ε∗t < ε,

ast (ait, ε) = asit + (1/pt) [amit − amt (ait, ε)] ,

and

kt (ait, ε) = (1− θ) (ε− ε∗t )
[
I{ε∗t<ε}

1

pt
amit − I{ε<ε∗t }a

s
it

]
yt.

This concludes the proof.

Lemma 2 Let
(
ãmdt+1, ã

s
dt+1

)
and

(
ãmit+1, ã

s
it+1

)
denote the portfolios chosen by a dealer and

an investor, respectively, in the second subperiod of period t. These portfolios must satisfy the
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following first-order necessary and sufficient conditions:

φmt ≥ βEt max
(
φmt+1, φ

s
t+1/pt+1

)
, with “ = ” if ãmdt+1 > 0 (32)

φst ≥ βδEt max
(
pt+1φ

m
t+1, φ

s
t+1

)
, with “ = ” if ãsdt+1 > 0 (33)

φmt ≥ βEt

[
φmt+1 + αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1dG(ε)

1

pt+1

]
, with “ = ” if ãmit+1 > 0 (34)

φst ≥ βδEt

[
ε̄yt+1 + φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG(ε)

]
, with “ = ” if ãsit+1 > 0. (35)

Proof. With Lemma 1, we can write V I
t (at, ε) as

V I
t (at, ε) =

[
αθ (ε− ε∗t ) I{ε∗t<ε}

1

pt
yt + φmt

]
amt

+
{[
ε+ αθ (ε∗t − ε) I{ε<ε∗t }

]
yt + φst

}
ast + W̄ I

t (36)

and V D
t (at) as

V D
t (at) = α

∫
kt (ait, ε) dHIt (ait, ε) + max (φmt , φ

s
t/pt) (amt + pta

s
t ) + W̄D

t .

Since ε is i.i.d. over time, W I
t (at) is independent of ε, and the portfolio that each investor

chooses to carry into period t + 1 is independent of ε. Therefore, we can write dHIt (at, ε) =

dFIt (at) dG (ε), where FIt is the joint cumulative distribution function of investors’ money and

equity holdings at the beginning of the OTC round of period t. Thus,

V D
t (at) = max (φmt , φ

s
t/pt) (amt + pta

s
t ) + V D

t (0) , (37)

where

V D
t (0) = α (1− θ)

∫
(ε− ε∗t )

[
I{ε∗t<ε}

1

pt
AmIt − I{ε<ε∗t }A

s
It

]
dG (ε) yt + W̄D

t .

From (37) we have

V D
t+1

(
ãmt+1, δã

s
t+1

)
= max

(
φmt+1, φ

s
t+1/pt+1

) (
ãmt+1 + pt+1δã

s
t+1

)
+ V D

t+1 (0) ,

and from (36) we have∫
V I
t+1

[
ãmt+1, δã

s
t+1 + (1− δ)As, ε

]
=

[
αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
dG(ε)

1

pt+1
yt+1 + φmt+1

]
ãmt+1

+ δ

{[
ε̄+

∫ ε∗t+1

εL

αθ
(
ε∗t+1 − ε

)
dG(ε)

]
yt+1 + φst+1

}
ãst+1 + ζt+1,
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where ζt+1 ≡
{[
ε+ αθ

(
ε∗t+1 − ε

)
I{ε<ε∗t+1}

]
yt+1 + φst+1

}
(1− δ)As + W̄ I

t+1. Thus, the neces-

sary and sufficient first-order conditions corresponding to the maximization problems in (28)

and (31) are as in the statement of the lemma.

Lemma 3 In period t, the interdealer market-clearing condition for equity is

{α [1−G (ε∗t )]A
m
It + χ (ε∗t , 0)AmDt}

1

pt
= αG (ε∗t )A

s
It + [1− χ (ε∗t , 0)]AsDt. (38)

Proof. Recall ĀsDt =
∫
âst (at) dFDt (at), so from Lemma 1, we have

ĀsDt = χ (ε∗t , 0) (AsDt +AmDt/pt) .

Similarly, ĀsIt = α
∫
ast (at, ε)dHIt(at, ε), so from Lemma 1, we have

ĀsIt = α [1−G (ε∗t )] (AsIt +AmIt/pt) .

With these expressions, the market-clearing condition for equity in the interdealer market of

period t, i.e., ĀsDt + ĀsIt = AsDt + αAsIt, can be written as in the statement of the lemma.

Corollary 2 A sequence of prices, {1/pt, φmt , φst}∞t=0, together with bilateral terms of trade in

the OTC market, {āt, kt}∞t=0, dealer portfolios, {〈âdt, ãdt+1,adt+1〉d∈D}∞t=0, and investor port-

folios, {〈ãit+1,ait+1〉i∈I}∞t=0, constitute an equilibrium if and only if they satisfy the following

conditions for all t:

(i) Intermediation fee and optimal post-trade portfolios in OTC market

kt (at, ε) = (1− θ) (ε− ε∗t )
[
χ (ε∗t , ε)

1

pt
amt − [1− χ (ε∗t , ε)] a

s
t

]
yt

amt (at, ε) = [1− χ (ε∗t , ε)] (amt + pta
s
t )

ast (at, ε) = χ (ε∗t , ε) (1/pt) (amt + pta
s
t )

ât (at) = at (at, 0) .

(ii) Interdealer market clearing

{α [1−G (ε∗)]AmIt + χ (ε∗t , 0)AmDt}
1

pt
= αG (ε∗)AsIt + [1− χ (ε∗t , 0)]AsDt,

where Amjt ≡
∫
amt dFjt (at) and Asjt ≡

∫
astdFjt (at) for j ∈ {D, I}.
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(iii) Optimal end-of-period portfolios:

φmt ≥ βEt max
(
φmt+1, φ

s
t+1/pt+1

)
φst ≥ βδEt max

(
pt+1φ

m
t+1, φ

s
t+1

)
φmt ≥ βEt

[
φmt+1 + αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
dG(ε)

1

pt+1
yt+1

]

φst ≥ βδEt

[
ε̄yt+1 + φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG(ε)

]

with [
φmt − βEt max

(
φmt+1, φ

s
t+1/pt+1

)]
ãmdt+1 = 0[

φst − βδEt max
(
pt+1φ

m
t+1, φ

s
t+1

)]
ãsdt+1 = 0{

φmt − βEt

[
φmt+1 + αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
dG(ε)

1

pt+1
yt+1

]}
ãmit+1 = 0{

φst − βδEt

[
ε̄yt+1 + φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG(ε)

]}
ãsit+1 = 0

for all d ∈ D and all i ∈ I, and

amjt+1 = ãmjt+1

asjt+1 = δãsjt+1 + I{j∈I} (1− δ)As

ãkjt+1 ∈ R+ for k ∈ {s,m}

for all j ∈ D ∪ I.

(iv) End-of-period market clearing

ÃsDt+1 + ÃsIt+1 = As

ÃmDt+1 + ÃmIt+1 = Amt+1,

where ÃkDt+1 ≡
∫
D ã

k
xt+1dx and ÃkIt+1 ≡

∫
I ã

k
xt+1dx for k ∈ {s,m}.

Proof. Follows immediately from Definition 1 together with Lemma 1, Lemma 2, and

Lemma 3.

Lemma 4 Consider µ̂ and µ̄ as defined in (10). Then µ̂ < µ̄.
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Proof of Lemma 4. Define Υ (ζ) : R→ R by Υ (ζ) ≡ β̄
[
1 + αθ(1− β̄δ)ζ

]
. Let ζ̂ ≡ (1−αθ)(ε̂−ε̄)

αθε̂

and ζ̄ ≡ ε̄−εL
β̄δε̄+(1−β̄δ)εL

, so that µ̂ = Υ(ζ̂) and µ̄ = Υ(ζ̄). Since Υ is strictly increasing, µ̂ < µ̄ if

and only if ζ̂ < ζ̄. With (11) and the fact that ε̄ ≡
∫ εH
εL

εdG (ε) = εH −
∫ εH
εL

G (ε) dε,

ζ̂ =

∫ εH
ε̂ [1−G (ε)] dε

ε̄+ αθ
∫ ε̂
εL
G (ε) dε

,

so clearly,

ζ̂ <

∫ εH
εL

[1−G (ε)] dε

ε̄
=
ε̄− εL
ε̄

< ζ̄.

Hence, µ̂ < µ̄.

Proof of Proposition 2. In an equilibrium with no money (or no valued money), there is no

trade in the OTC market. From Lemma 2, the first-order conditions for a dealer d ∈ D and an

investor i ∈ I in the time t Walrasian market are

φst ≥ βδEtφst+1, “ = ” if ãst+1d > 0

φst ≥ βδEt
(
ε̄yt+1 + φst+1

)
, “ = ” if ãst+1i > 0.

In a stationary equilibrium, Et(φst+1/φ
s
t ) = γ̄, and βδγ̄ < 1 is a maintained assumption, so

no dealer holds equity. The Walrasian market for equity can only clear if φs = β̄δ
1−β̄δ ε̄. This

establishes parts (i) and (iii) in the statement of the proposition.

Next, we turn to monetary equilibria. In a stationary equilibrium, the Euler equations

(32)-(35) become

µ ≥ β̄, “ = ” if ãmdt+1 > 0 (39)

φs ≥ β̄δφ̄s, “ = ” if ãsdt+1 > 0 (40)

1 ≥ β̄

µ

[
1 +

αθ

ε∗ + φs

∫ εH

ε∗
(ε− ε∗) dG(ε)

]
, “ = ” if ãmit+1 > 0 (41)

φs ≥ β̄δ

1− β̄δ

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
, “ = ” if ãsit+1 > 0. (42)

(We have used the fact that, as will become clear below, φ̄s ≡ ε∗ + φs ≥ εL + φs > φs in

any equilibrium.) Under our maintained assumption β̄ < µ, (39) implies ãmdt+1 = ZD = 0,

so (41) must hold with equality for some investor in a monetary equilibrium. Thus, in order

to find a monetary equilibrium, there are three possible equilibrium configurations to consider
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depending on the binding patterns of the complementary slackness conditions associated with

(40) and (42). The interdealer market-clearing condition, ĀsDt + ĀsIt = AsDt + αAsIt, must hold

for all three configurations. Lemma 3 shows that this condition is equivalent to (38) and in a

stationary equilibrium (38) reduces to

Z =
ε∗ + φs

α [1−G (ε∗)]
{αG (ε∗)AsI + [1− χ (ε∗, 0)]AsD} .

This condition in turn reduces to (17) if, as shown below, the equilibrium has 0 < ε∗. The rest

of the proof proceeds in three steps.

Step 1: Try to construct a stationary monetary equilibrium with ãsdt+1 = 0 for all d ∈ D
and ãsit+1 > 0 for some i ∈ I. The equilibrium conditions for this case are (17) together with

φs > β̄δφ̄s (43)

1 =
β̄

µ

[
1 +

αθ

ε∗ + φs

∫ εH

ε∗
(ε− ε∗) dG(ε)

]
(44)

φs =
β̄δ

1− β̄δ

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
(45)

and

ãmdt+1 = 0 for all d ∈ D (46)

ãmit+1 ≥ 0, with “ > ” for some i ∈ I (47)

ãsdt+1 = 0 for all d ∈ D (48)

ãsit+1 ≥ 0, with “ > ” for some i ∈ I. (49)

Conditions (44) and (45) are to be solved for the two unknowns ε∗ and φs. Substitute (45) into

(44) to obtain

1 =
β̄

µ

1 + αθ

∫ εH
ε∗ (ε− ε∗) dG(ε)

ε∗ + β̄δ
1−β̄δ

[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]
 , (50)

which is a single equation in ε∗. Define

T (x) ≡
∫ εH
x (ε− x) dG(ε)

1
1−β̄δx+ β̄δ

1−β̄δ T̂ (x)
− µ− β̄

β̄αθ
(51)

with

T̂ (x) ≡ ε̄− x+ αθ

∫ x

εL

(x− ε) dG(ε), (52)
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and notice that ε∗ solves (50) if and only if it satisfies T (ε∗) = 0. T is a continuous real-valued

function on [εL, εH ], with

T (εL) =
ε̄− εL

εL + β̄δ
1−β̄δ ε̄

− µ− β̄
β̄αθ

,

T (εH) = −µ− β̄
β̄αθ

< 0,

and

T ′ (x) = −
[1−G(x)]

{
x+ β̄δ

1−β̄δ

[
ε̄+αθ

∫ x
εL
G(ε)dε

]}
+[

∫ εH
x [1−G(ε)]dε]

{
1+ β̄δ

1−β̄δαθG(x)
}

{
x+ β̄δ

1−β̄δ

[
ε̄+αθ

∫ x
εL
G(ε)dε

]}2 < 0.

Hence, if T (εL) > 0, or equivalently, if µ < µ̄ (with µ̄ is as defined in (10)), then there exists a

unique ε∗ ∈ (εL, εH) that satisfies T (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µ̄). Once we know ε∗, φs is

given by (45). Given ε∗ and φs, the values of Z, φ̄s, φmt , and pt are obtained using (17) (with

AsI = As and AsD = 0), (14), (15), and (16). To conclude this step, notice that for this case

to be an equilibrium, (43) must hold, or equivalently, using φ̄s = ε∗ + φs and (45), it must be

that T̂ (ε∗) > 0, where T̂ is the continuous function on [εL, εH ] defined in (52). Notice that

T̂ ′ (x) = − [1− αθG (x)] < 0, and T̂ (εH) = − (1− αθ) (εH − ε̄) < 0 < ε̄− εL = T̂ (εL), so there

exists a unique ε̂ ∈ (εL, εH) such that T̂ (ε̂) = 0. (Since T̂ (ε̄) > 0, and T̂ ′ < 0, it follows that

ε̄ < ε̂.) Then T̂ ′ (x) < 0 implies T̂ (ε∗) ≥ 0 if and only if ε∗ ≤ ε̂, with “=” for ε∗ = ε̂. With

(51), we know that ε∗ < ε̂ if and only if T (ε̂) < 0 = T (ε∗), i.e., if and only if

β̄

[
1 +

(
1− β̄δ

)
αθ
∫ εH
ε̂ (ε− ε̂) dG(ε)

ε̂

]
< µ.

Since T̂ (ε̂) = − (1− αθ) (ε̂− ε̄) + αθ
∫ εH
ε̂ (ε− ε̂) dG(ε) = 0, this last condition is equivalent to

µ̂ < µ, where µ̂ is as defined in (10). The allocations and asset prices described in this step

correspond to those in the statement of the proposition for µ ∈ (µ̂, µ̄).

Step 2: Try to construct a stationary monetary equilibrium with asdt+1 > 0 for some d ∈ D
and asit+1 = 0 for all i ∈ I. The equilibrium conditions are (17), (44), (46), and (47), together

with

φs = β̄δφ̄s (53)

φs >
β̄δ

1− β̄δ

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
, “ = ” if ãsit+1 > 0. (54)
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ãsdt+1 ≥ 0, with “ > ” for some d ∈ D (55)

ãsit+1 = 0, for all i ∈ I. (56)

The conditions (44) and (53) are to be solved for ε∗ and φs. First use φ̄s = ε∗ + φs in (53) to

obtain

φs =
β̄δ

1− β̄δ
ε∗. (57)

Substitute (57) in (44) to obtain

1 =
β̄

µ

[
1 +

αθ
(
1− β̄δ

) ∫ εH
ε∗ (ε− ε∗) dG(ε)

ε∗

]
, (58)

which is a single equation in ε∗. Define

R (x) ≡
(
1− β̄δ

) ∫ εH
x (ε− x) dG(ε)

x
− µ− β̄

β̄αθ
(59)

and notice that ε∗ solves (58) if and only if it satisfies R (ε∗) = 0. R is a continuous real-valued

function on [εL, εH ], with

R (εL) =

(
1− β̄δ

)
(ε̄− εL)

εL
− µ− β̄

β̄αθ

R (εH) = −µ− β̄
β̄αθ

and

R′ (x) = −
[1−G (x)]x+

∫ εH
x [1−G (ε)] dε

1
1−β̄δx

2
< 0.

Hence, if R (εL) > 0, or equivalently, if

µ < β̄

[
1 +

αθ
(
1− β̄δ

)
(ε̄− εL)

εL

]
≡ µo,

then there exists a unique ε∗ ∈ (εL, εH) that satisfies R (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µo).
Having solved for ε∗, φs is obtained from (57). Given ε∗ and φs, the values of Z, φ̄s, φmt , and

pt are obtained using (17) (with AsD = As − AsI = δAs), (14), (15), and (16). Notice that

for this case to be an equilibrium (54) must hold, or equivalently, using (57), it must be that

T̂ (ε∗) < 0, which in turn is equivalent to ε̂ < ε∗. With (59), we know that ε̂ < ε∗ if and only

if R (ε∗) = 0 < R (ε̂), i.e., if and only if

µ < β̄

[
1 +

αθ
(
1− β̄δ

) ∫ εH
ε̂ (ε− ε̂) dG(ε)

ε̂

]
,
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which using T̂ (ε̂) = 0 can be written as µ < µ̂. To summarize, the prices and allocations con-

structed in this step constitute a stationary monetary equilibrium provided µ ∈ (β̄,min (µ̂, µo)).

To conclude this step, we show that µ̂ < µ̄ < µo, which together with the previous step will

mean that there is no stationary monetary equilibrium for µ ≥ µ̄ (thus establishing part (ii)

in the statement of the proposition). It is clear that µ̄ < µo, and we know that µ̂ < µ̄ from

Lemma 4. Therefore, the allocations and asset prices described in this step correspond to those

in the statement of the proposition for the case with µ ∈ (β̄,min (µ̂, µo)) = (β̄, µ̂).

Step 3: Try to construct a stationary monetary equilibrium with ãsdt+1 > 0 for some d ∈ D
and ãsit+1 > 0 for some i ∈ I. The equilibrium conditions are (17), (44), (45), (46), (47), and

(53) with

ãsit+1 ≥ 0 and ãsdt+1 ≥ 0, with “ > ” for some i ∈ I or some d ∈ I.

Notice that ε∗ and φs are obtained as in Step 2. Now, however, (45) must also hold, which

together with (57) implies we must have T̂ (ε∗) = 0, or equivalently, ε∗ = ε̂. In other words,

this condition requires R (ε̂) = T̂ (ε̂), or equivalently, we must have µ = µ̂. As before, the

market-clearing condition (17) is used to obtain Z, while (14), (15), and (16) imply φ̄s, φmt , and

pt, respectively. The allocations and asset prices described in this step correspond to those in

the statement of the proposition for the case with µ = µ̂.

Combined, Steps 1, 2, and 3 prove part (iv) in the statement of the proposition. Part (v)(a)

is immediate from (45) and (51), and part (v)(b) from (57) and (59).

Corollary 3 The marginal valuation, ε∗, characterized in Proposition 2 is strictly decreasing

in the rate of inflation, i.e., ∂ε∗

∂µ < 0 both for µ ∈ (β̄, µ̂) and for µ ∈ (µ̂, µ̄).

Proof of Corollary 3. For µ ∈
(
β̄, µ̂

)
, implicitly differentiate R (ε∗) = 0 (with R given by

(59)), and for µ ∈ (µ̂, µ̄), implicitly differentiate T (ε∗) = 0 (with T given by (51)) to obtain

∂ε∗

∂µ
=


− ε∗

β̄αθ(1−β̄δ)[1−G(ε∗)]+µ−β̄ if β̄ < µ < µ̂

− β̄αθ
∫ εH
ε∗ [1−G(ε)]dε{

1+β̄αθ
[
δG(ε∗)
1−β̄δ +

1−G(ε∗)
µ−β̄

]}
(µ−β̄)

2 if µ̂ < µ < µ̄.

Clearly, ∂ε∗/∂µ < 0 for µ ∈ (β̄, µ̂) and for µ ∈ (µ̂, µ̄).

Proof of Proposition 3. Recall that ∂ε∗/∂µ < 0 (Corollary 3). (i) From (13),

∂φs

∂µ
=

β̄δ

1− β̄δ

[
I{β̄<µ≤µ̂} + I{µ̂<µ<µ̄}αθG (ε∗)

] ∂ε∗
∂µ

< 0,
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and from (19), ∂φs/∂ι = β̄∂φs/∂µ < 0. (ii) Condition (14) implies ∂φ̄s/∂µ = ∂ε∗/∂µ +

∂φs/∂µ < 0. (iii) From (17) it is clear that ∂Z/∂ε∗ > 0, so ∂Z/∂µ = (∂Z/∂ε∗)(∂ε∗/∂µ) < 0.

From (15), ∂φmt /∂µ = (yt/A
m
t ) ∂Z/∂µ < 0.

Proof of Proposition 4. From condition (18),

∂ε∗

∂ (αθ)
=

µ−β̄
αθ [ε∗ + β̄δ (ε̄− ε∗) I{µ̂<µ}]

β̄αθ(1− β̄δ) [1−G (ε∗)] + (µ− β̄)
{

1 + β̄δ [αθG (ε∗)− 1] I{µ̂<µ}
} > 0. (60)

(i) From (13),

∂φs

∂ (αθ)
=


β̄δ

1−β̄δ
∂ε∗

∂(αθ) > 0 if β̄ < µ ≤ µ̂
β̄δ

1−β̄δ

[∫ ε∗
εL
G (ε) dε+ αθG (ε∗) ∂ε∗

∂(αθ)

]
> 0 if µ̂ < µ < µ̄.

(ii) From (14), ∂φ̄s/∂ (αθ) = ∂ε∗/∂ (αθ) + ∂φs/∂ (αθ) > 0. (iii) For µ ∈ (µ̂, µ̄), (17) implies

∂Z/∂α = (∂Z/∂ε∗) (∂ε∗/∂α) > 0 and therefore ∂φmt /∂α = (∂Z/∂α) (yt/A
m
t ) > 0.

Proof of Proposition 5. (i) The result is immediate from the expression for AsD in Proposition

2. (ii) From (10) and (11),

∂µ̂

∂ (αθ)
= β̄

(
1− β̄δ

){ (1− αθ) ε̄
[1− αθG (ε̂)] ε̂2

∫ ε̂

εL

G (ε) dε− ε̂− ε̄
ε̂

}
.

Notice that ∂µ̂/∂ (αθ) approaches a positive value as αθ → 0 and a negative value as αθ → 1.

Also, µ̂→ β̄ both when αθ → 0 and when αθ → 1. Hence, µ > β̄ = limαθ→0 µ̂ = limαθ→1 µ̂ for

a range of values of αθ close to 0 and a range of values of αθ close to 1. For those ranges of

values of αθ, AsD = 0. In between those ranges there must exist values of αθ such that µ < µ̂,

which implies AsD > 0.

Proof of Proposition 6. (i) Differentiate (20) to get

∂V
∂µ

= 2αG′ (ε∗) (As − δÃsD)
∂ε∗

∂µ
< 0,

where the inequality follows from Corollary 3. Also, from (19), ∂V/∂ι = β̄∂V/∂µ < 0. (ii)

From (20),

∂V
∂θ

= 2αG′ (ε∗) (As − δÃsD)
∂ε∗

∂θ
∂V
∂α

= 2

[
G (ε∗) + αG′ (ε∗)

∂ε∗

∂α

]
(As − δÃsD),
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and both are positive since ∂ε∗/∂ (αθ) > 0 (see (60)).

Proof of Proposition 7. (i) For β̄ < µ ≤ µ̂, ∂P/∂µ =
[
β̄δ/(1− β̄δ)

]
(∂ε∗/∂µ) < 0, and for

µ̂ < µ < µ̄, ∂P/∂µ =
[
β̄δ/(1− β̄δ)

]
αθG (ε∗) (∂ε∗/∂µ) < 0. In both cases, ∂P/∂ι = β̄∂P/∂µ <

0. (ii) For β̄ < µ ≤ µ̂, ∂P/∂ (αθ) =
[
β̄δ/(1− β̄δ)

]
(∂ε∗/∂ (αθ)) > 0, and for µ̂ < µ < µ̄,

∂P/∂µ =
[
β̄δ/(1− β̄δ)

]
{αθG (ε∗) [∂ε∗/∂ (αθ)] +

∫ ε∗
εL
G (ε) dε} > 0.

Proposition 8 Assume G (ε;σ) is a differentiable function of the parameter σ that indexes a

family of mean-preserving spreads, so that for any σ < σ′, G (·;σ′) is a mean-preserving spread

of G (·;σ). Then in the stationary monetary equilibrium, ∂φs/∂σ > 0 and ∂φ̄s/∂σ > 0.

Proof of Proposition 8. From the definition of the mean-preserving spread, for any ∆ > 0,∫ x

εL

[G (ε;σ + ∆)−G (ε;σ)] dε ≥ 0 for all x ∈ (εL, εH) ,

with “=” if x ∈ {εL, εH}, and therefore

lim
∆→0

∫ x

εL

[G (ε;σ + ∆)−G (ε;σ)]

∆
dε =

∫ x

εL

Gσ (ε;σ) dε ≥ 0 for all x ∈ (εL, εH) ,

with “=” if x ∈ {εL, εH}, where Gσ (ε;σ) ≡ ∂Gσ (ε;σ) /∂σ. With this notation, the equilibrium

mapping (18) is

T (x;σ) =

1−β̄δ
1−β̄δI{µ̂<µ}

∫ εH
x [1−G (ε;σ)] dε

x+
β̄δI{µ̂<µ}

1−β̄δI{µ̂<µ}

[
ε̄+ αθ

∫ x
εL
G (ε;σ) dε

] − µ− β̄
β̄αθ

,

and the equilibrium ε∗ satisfies T (ε∗;σ) = 0. By implicitly differentiating this condition, we

get

∂ε∗

∂σ
= −

αθβ̄
1−β̄δI{µ̂<µ}

(
δI{µ̂<µ} − 1−β̄δ

µ−β̄

) ∫ ε∗
εL
Gσ (ε;σ) dε

1 + αθβ̄
1−β̄δI{µ̂<µ}

[
G (ε∗;σ) δI{µ̂<µ} + [1−G (ε∗;σ)] 1−β̄δ

µ−β̄

] .
If µ ∈

(
β̄, µ̂

)
, then ∂ε∗/∂σ > 0 since

(
1− β̄δ

)
/
(
µ− β̄

)
− δI{µ̂<µ} =

(
1− δβ̄

)
/
(
µ− β̄

)
> 0. If

µ ∈ (µ̂, µ̄), then ∂ε∗/∂σ > 0 since

δµ < δµ̄ = 1−
(
1− β̄δ

) β̄δ (1− αθ) ε̄+
[
1− β̄δ (1− αθ)

]
εL

β̄δε̄+
(
1− β̄δ

)
εL

< 1
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implies −
[
δ −

(
1− β̄δ

)
/
(
µ− β̄

)]
= (1− δµ) /

(
µ− β̄

)
> 0. Given that ∂ε∗/∂σ > 0 for all

µ ∈
(
β̄, µ̄

)
, (13) and (14) imply ∂φs/∂σ > 0 and ∂φ̄s/∂σ > 0, respectively.

The following proposition shows there is a certain equivalence between α and G as funda-

mental determinants of trading activity.

Proposition 9 Consider Economy A with contact probability α and distribution of valuations

G on [εL, εH ] and Economy B with contact probability α̃ and distribution of valuations G̃ on

[ε̃L, ε̃H ] (and all other primitives of Economy B are as in Economy A). Let ε∗ and ε̃∗denote

the equilibrium marginal valuation for Economy A and Economy B, respectively. Then for any

α̃ > α, there exists a G̃ such that

ε̃∗ =
β̄δI{µ̂<µ}

(
1− α

α̃

)
1− β̄δ

(
1− I{µ̂<µ}

) ε̄+

[
1−

β̄δI{µ̂<µ}
(
1− α

α̃

)
1− β̄δ

(
1− I{µ̂<µ}

)] ε∗,
and moreover, trade volume in Economy B is the same as in Economy A.

Proof of Proposition 9. In Economy A the marginal investor valuation, ε∗, is characterized

by (18), while in Economy B the marginal investor valuation is the ε̃∗ that solves(
1− β̄δ

)
α̃θ
∫ ε̃H
ε̃∗ [1− G̃ (ε)]dε(

1− β̄δ
)
ε̃∗ + β̄δ

[∫ ε̃H
ε̃L

εdG̃ (ε) + α̃θ
∫ ε̃∗
ε̃L
G̃ (ε) dε

]
I{µ̂<µ}

− µ− β̄
β̄

= 0.

Define

G̃ (ε) =


0 for ε ≤ ε̃L
α
α̃G (ε− c) +

(
1− α

α̃

)
I{ε∗<ε−c} for ε̃L ≤ ε ≤ ε̃H

1 for ε̃H < ε
(61)

with ε̃L ≡ εL + c, ε̃H ≡ εH + c and

c ≡
β̄δI{µ̂<µ}

1− β̄δ
(
1− I{µ̂<µ}

) (1− α

α̃

)
(ε̄− ε∗) . (62)

With (61) and (62), the equilibrium mapping for Economy B becomes(
1− β̄δ

)
α̃θ
∫ εH
ε̃∗−c

[
1− α

α̃G (z)−
(
1− α

α̃

)
I{ε∗<z}

]
dz(

1− β̄δ
)

(ε̃∗ − c) + β̄δ
[
ε̄+ α̃θ

∫ ε̃∗−c
εL

{
α
α̃G (z) +

(
1− α

α̃

)
I{ε∗<z}

}
dz
]
I{µ̂<µ}

− µ− β̄
β̄

= 0.

If we replace ε̃∗ = ε∗+c in this last expression, it reduces to (18), a condition that holds because

ε∗ is the equilibrium marginal valuation for Economy A. Hence, ε̃∗ = ε∗+c with c given by (62)

is the equilibrium marginal valuation for Economy B. Notice that α̃G̃ (ε̃∗) = α̃G̃ (ε∗ + c) =

αG (ε∗), so (20) implies that trade volume in Economy B is the same as in Economy A.
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B Supplementary material: data, estimation, and simulation

B.1 Heteroskedasticity-based estimator

In this section we explain the H-based estimator used in Section 6.2. Rigobon and Sack (2004)

show that the response of asset prices to changes in monetary policy can be identified based

on the increase in the variance of policy shocks that occurs on days of FOMC announcements.

They argue that this approach tends to be more reliable than the event-study approach based

on daily data because identification relies on a weaker set of conditions.

The idea behind the heteroskedasticity-based estimator of Rigobon and Sack (2004) is as

follows. Suppose the change in the policy rate, ∆it, and Yt (where Yt could be the stock market

return, RIt , or the turnover rate, T It ) are jointly determined by

∆it = κYt +$xt + εt (63)

Yt = ρ∆it + xt + ηt, (64)

where εt is a monetary policy shock and ηt is a shock to the asset price. To fix ideas, suppose

Yt = RIt . Then equation (63) represents the monetary policy reaction to asset returns and

possibly other variables represented by xt. Equation (64) represents the reaction of asset prices

to the policy rate and xt. The disturbances εt and ηt are assumed to have no serial correlation

and to be uncorrelated with each other and with xt. We are interested in estimating the

parameter ρ. Let Σv denote the variance of some variable v. If (63) and (64) were the true model

and one were to run an OLS regression on an equation like (21), there would be a simultaneity

bias if κ 6= 0 and Ση > 0, and an omitted variable bias if $ 6= 0 and Σx > 0. Conditions (63) and

(64) can be solved for ∆it = 1
1−ρκ [εt + κηt + (κ+$)xt] and Yt = 1

1−ρκ [ρεt + ηt + (1 + ρ$)xt].

Divide the data sample into two subsamples: one consisting of FOMC policy announcement

days and another consisting of the trading days immediately before the policy announcement

days. In what follows we refer to these subsamples as S1 and S0, respectively. Let Ωk denote

the covariance matrix of ∆it and RIt for t ∈ Sk, for k ∈ {0, 1}. Then

Ωk =
1

(1− ρκ)2

[
Ωk

11 Ωk
12

Ωk
21 Ωk

22

]
,

where Ωk
11 ≡ Σk

ε + κ2Σk
η + (κ+$)2 Σk

x, Ωk
12 = Ωk

21 ≡ ρΣk
ε + κΣk

η + (κ+$) (1 + ρ$) Σk
x, Ωk

22 ≡
ρ2Σk

ε + Σk
η + (1 + ρ$)2 Σk

x, and Σk
x denotes the variance of variable x in subsample Sk, for
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k ∈ {0, 1}. Provided Σ1
x = Σ0

x and Σ1
η = Σ0

η,

Ω1 − Ω0 =
Σ1
ε − Σ0

ε

(1− ρκ)2

[
1 ρ
ρ ρ2

]
.

Hence, if Σ1
ε −Σ0

ε > 0, then ρ can be identified from the difference in the covariance matrices of

the two subsamples. This suggests a natural way to estimate ρ. Replace Ω1 and Ω0 with their

sample estimates, denoted Ω̂1 and Ω̂0. Define Ω̂ ≡ Ω̂1 − Ω̂0 and use Ω̂ij to denote the (i, j)

element of Ω̂. Then ρ can be estimated by Ω̂12/Ω̂11 ≡ ρ̂. Rigobon and Sack (2004) show that

this estimate can be obtained by regressing RIt on ∆it over the combined sample S0 ∪S1 using

a standard instrumental variables regression.

The standard deviation of ∆it is 3.53 basis points (bps) in subsample S0 and 6.84 bps

in subsample S1. The standard deviation of RIt is 49.67 bps in subsample S0 and 64.22 bps

in subsample S1. The correlation between ∆it and RIt is 0.19 in subsample S0 and −0.4 in

subsample S1. Stock returns are more volatile on the days of monetary policy announcements

than on other days, which is consistent with policy actions inducing some reaction in the

stock market. The relatively large negative correlation between the policy rate and stock

returns for announcement days contrasts with the much smaller and positive correlation for

non-announcement days, suggesting that the negative effect of surprise increases in the nominal

rate on stock prices that has been documented in the empirical literature (e.g., Bernanke and

Kuttner, 2005, Rigobon and Sack, 2004).

B.2 High-frequency IV estimator

In this section we consider a version of the event-study estimator that, instead of daily changes

in the interest rate, uses intraday high-frequency tick-by-tick interest rate data to isolate the

change in the interest rate that takes place over a narrow window around each policy an-

nouncement. We refer to this as the high-frequency instrumental variable estimator (or “HFIV”

estimator, for short).

Specifically, the HFIV estimator is obtained by estimating (21), where instead of directly

using the daily change in the 3-month Eurodollar future rate, we instrument for it using the daily

imputed change in the 30-day federal funds futures rate from the level it has 20 minutes after the

FOMC announcement and the level it has 10 minutes before the FOMC announcement.34 By

34 By “daily imputed” we mean that in order to interpret the change in the federal funds futures rate as the
surprise component of the change in the daily policy rate, it is adjusted for the fact that the federal funds futures
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focusing on changes in a proxy for the policy rate in a very narrow 30-minute window around the

time of the policy announcement, the resulting HFIV estimator addresses the omitted variable

bias and the concern that the Eurodollar futures rate may itself respond to market conditions

on policy announcement days.

The data for the high-frequency interest change are constructed as follows. For each an-

nouncement day t ∈ S1, we define zt ≡ it,m∗t+20−it,m∗t−10, where it,m denotes the (daily imputed)

30-day federal funds futures rate on minute m of day t, and for any t ∈ S1, m∗t denotes the time

of day (measured in minutes) when the FOMC announcement was made.35 We then estimate b

in (21) using the following two-stage least squares (2SLS) procedure. Define ∆iedt ≡ iedt − iedt−1,

where iedt denotes the rate implied (for day t) by the 3-month Eurodollar futures contract with

closest expiration date at or after day t. First, run the regression ∆iedt = κ0 + κzt + ηt on

sample S1 (where ηt is an error term) to obtain the OLS estimates of κ0 and κ, namely κ̂0 and

κ̂. Second, construct the fitted values ẑt ≡ κ̂0 + κ̂zt and run the event-study regression (21)

setting ∆it = ẑt.

The sample period is again 1994-2001, but the data from Gorodnichenko and Weber (2016)

that we use contain intraday high-frequency interest rates for 64 policy announcement days

(we used data for 73 announcement days in the analysis of Section 6.2). The columns labeled

“HFIV” in Table 1 report the HFIV estimates. The stock return is expressed in percentage

terms. The first row reports estimates of the reaction of equity returns to monetary policy

shocks. The point estimate for b in (21) is −8.57. This means that a 1 bp increase in the

policy rate causes a reduction of 8.57 bps in the stock market return on the day of the policy

announcement. The estimated effects of monetary policy announcements on the turnover rate

are reported in the second row. A 1 bp increase in the policy rate causes a change in the level of

the marketwide turnover rate on the day of the policy announcement equal to −.000043. The

daily marketwide turnover rate for the sample period is .0037 (i.e., on average, stocks turn over

.94 times during a typical year composed of 252 trading days), which means that an increase

in the policy rate of 1 bp causes a reduction in the marketwide turnover rate on the day of the

policy announcement of about 1.16 percent of its typical level.

contracts settle on the effective federal funds rate averaged over the month covered by the contract. See Section
B.4.4 for details.

35We use the data set constructed by Gorodnichenko and Weber (2016) with tick-by-tick data of the federal
funds futures trading on the CME Globex electronic trading platform (as opposed to the open-outcry market).
The variable we denote as zt is the same variable that Gorodnichenko and Weber denote as vt. Their data are
available at http://faculty.chicagobooth.edu/michael.weber/research/data/replication dataset gw.xlsx.
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For each of the 20 portfolios analyzed in Section 6.3, the two columns in Table 4 labeled

“HFIV” report the HFIV estimates of the responses (on the day of the policy announcement)

of the return and turnover of the portfolio to a 1 pp increase in the policy rate.

All the estimates in the column labeled “Return” are negative (all but one are significant

at the 1 percent level) as predicted by the theory. Also as predicted by the quantitative theory,

the magnitude of the estimates tends to increase with the turnover liquidity of the portfolio.

The HFIV estimates for the response of the turnover rates are all negative and for the most

part statistically significant at the 1% level, as predicted by the theory. Also as predicted by

the theory, the magnitude of the estimates tends to increase with the turnover liquidity of the

portfolio.

B.3 More on disaggregative announcement-day effects

In Section 6.3 and Section B.2, we sorted stocks into 20 portfolios according to the level of

turnover of each individual stock and found that changes in the nominal rate affect stocks with

different turnover liquidity differently, with more liquid stocks responding more than less liquid

stocks. In this section, we complement that analysis by using an alternative procedure to sort

stocks into portfolios. Specifically, in this section we sort stocks according to the sensitivity

of their individual return to changes in an aggregate (marketwide) measure of turnover. This

alternative criterion is useful for two reasons. First, it will allow us to control for some differences

across stocks, such as the conventional risk factors used in empirical asset-pricing models.

Second, this sorting criterion emphasizes the responsiveness of the individual stock return to

changes in an aggregate measure of turnover, which is another manifestation of the transmission

mechanism that operates in the theory. To construct the portfolios, we proceed as follows.

For each individual stock s in our sample, we use daily time-series data to run

Rst = αs + βs0T It +
K∑
j=1

βsjfj,t + εst , (65)

where εst is an error term, Rst is the daily stock return (between day t and day t − 1), T It is

the aggregate (marketwide) turnover rate on day t, and {fj,t}Kj=1 are K pricing factors. We

set K = 3, with f1,t = MKTt, f2,t = HMLt, and f3,t = SMBt, where MKTt is a broad

measure of the market excess return, HMLt is the return of a portfolio of stocks with high

book-to-market value minus the return of a portfolio of stocks with low book-to-market value,
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and SMBt is the return of a portfolio of small-cap stocks minus the return of a portfolio of

large-cap stocks. That is, MKTt is the typical CAPM factor, while HMLt and SMBt are

the long-short spreads constructed by sorting stocks according to book-to-market value and

market capitalization, respectively, as in the Fama and French (1993) three-factor model.36 Let

tk denote the day of the kth policy announcement (we use 73 policy announcement days from

our sample period 1994-2001). For each stock s, regression (65) is run 73 times, once for each

policy announcement day, each time using the sample of all trading days between day tk−1

and day tk. Thus, for each stock s we obtain 292 estimates, {{βsj (k)}3j=0}73
k=1, where βsj (k)

denotes the estimate for the beta corresponding to factor j for stock s, estimated on the sample

consisting of all trading days between the policy announcement days tk−1 and tk. For each

policy announcement day, tk, we sort all NYSE stocks into 20 portfolios by assigning stocks

with βs0 (k) ranked between the [5 (i− 1)]th percentile and (5i)th percentile to the ith portfolio,

for i = 1, ..., 20. For each portfolio i ∈ {1, ..., 20} constructed in this manner, we compute the

daily return, Rit, and the daily change in the turnover rate, T it −T it−1, and run the event-study

regression (21) portfolio-by-portfolio, first with Y i
t = Rit and then with Y i

t = T it − T it−1, as in

Section 6.3.

For each of the 20 portfolios, Table 5 reports the E-based estimates of the responses (on the

day of the policy announcement) of the return and turnover of the portfolio to a 1 pp increase

in the policy rate. Estimates are negative, as predicted by the theory. Also as predicted

by the theory, the magnitude of the estimates tends to be larger for portfolios with higher

indices. From these estimates we learn that stocks whose returns are more sensitive to aggregate

measures of aggregate market turnover tend to experience larger declines in returns in response

to unexpected increases in the nominal rate. This finding is in line with the turnover-liquidity

channel of monetary policy.

36In order to construct the Fama-French factors HMLt and SMBt, stocks are sorted into six port-
folios obtained from the intersections of two portfolios formed on size (as measured by market capital-
ization and labeled “Small” and “Big”) and three portfolios formed on the ratio of book value to mar-
ket value (labeled “Value,” “Neutral,” and “Growth”). Then SMBt = (1/3)

(
RSGt +RSNt +RSVt

)
−

(1/3)
(
RBGt +RBNt +RBVt

)
and HMLt = (1/2)

(
RSVt +RBVt

)
− (1/2)

(
RSGt +RBGt

)
, where RBGt denotes

the return on portfolio “Big-Growth,” “RSVt ” denotes the return on portfolio “Small-Value,” and so on.
For a detailed description of the breakpoints used to define the six portfolios, see Kenneth French’s web-
site, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/six portfolios. The CAPM factor,
MKTt, is a broad measure of the market excess return, specifically, the value-weighted return of all CRSP firms
incorporated in the United States and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code
of 10 or 11 at the beginning of month t, good shares and price data at the beginning of t, and good return data
for t minus the one-month Treasury bill rate (from Ibbotson Associates). The data for the three Fama-French
factors were obtained from Wharton Research Data Services (WRDS).
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Notice that by sorting portfolios on the β0’s estimated from (65), we are controlling for the

three standard Fama-French factors. To explore how the portfolios sorted in this manner vary

in terms of the three standard Fama-French factors, we construct the series of monthly return

for each of the 20 portfolios for the period 1994-2001, {
(
Rit
)20

i=1
}, and run (65) to estimate the

vector of betas, {{βij}20
i=1}3j=0. The estimated betas corresponding to each portfolio are displayed

in Figure 8.37 Notice that there is no correlation between the turnover-liquidity betas,
{
βi0
}20

i=1
,

and the CAPM betas,
{
βi1
}20

i=1
. To get a sense of whether the different cross-portfolio responses

of returns to policy shocks documented in Table 5 can be accounted for by the standard CAPM,

consider the following back-of-the-envelope calculation. Let b denote the effect of a 1 bp increase

in the policy rate on the marketwide stock return on the day of the policy announcement (e.g.,

the E-based estimate obtained from running (21) with Y I
t = RIt ). Then according to the basic

CAPM model, the effect on portfolio i ∈ {1, ..., 20} would be b̃i ≡ βi1 × b, where
{
βi1
}20

i=1
is the

vector of betas estimated on monthly data for each of the 20 portfolios sorted on βi0 (plotted in

Figure 8). Figure 9 plots {(i, b̃i)}20
i=1 and {(i, bi)}20

i=1, where
{
bi
}20

i=1
corresponds to the E-based

estimates for the effect of monetary policy on returns reported in Table 5.

B.4 VAR estimation

B.4.1 Identification

We conjecture that the data, {Yt} with Yt ∈ Rn, correspond to an equilibrium that can be

approximated by a structural vector autoregression (SVAR),

KYt =

J∑
j=1

CjYt−j + εt, (66)

where K and Cj are n× n matrices, J ≥ 1 is an integer that denotes the maximum number of

lags, and εt ∈ Rn is a vector of structural shocks, with E (εt) = 0, E (εtε
′
t) = I, and E (εtε

′
s) = 0

for s 6= t, where 0 is a conformable matrix of zeroes and I denotes the n-dimensional identity.

If K is invertible, (66) can be represented by the reduced-form VAR

Yt =

J∑
j=1

BjYt−j + ut, (67)

where Bj = K−1Cj and

ut = K−1εt (68)

37The vector {βi0}20
i=1 shown in the figure has been normalized by dividing it by

∣∣β1
0

∣∣.
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is an error term with

Ξ ≡ E
(
utu
′
t

)
= K−1K−1′. (69)

The reduced-form VAR (67) can be estimated to obtain the matrices {Bj}Jj=1, and the

residuals {ut} from the estimation can be used to calculate Ξ. From (68), we know that the

disturbances of the reduced-form VAR (67) are linear combinations of the structural shocks,

εt, so in order to use (67) and the estimates {Bj}Jj=1 to compute the impulse responses to the

structural shocks, it is necessary to find the n2 elements of the matrix K−1. However, given

the known covariance matrix Ξ, (69) only provides n(n+ 1)/2 independent equations involving

the elements of K−1, so n (n− 1) /2 additional independent conditions would be necessary to

find all elements of K−1. This is the well-known identification problem of the SVAR (66).

Only three specific elements of K−1 are relevant for our analysis. To find them, we use an

identification scheme that relies on external instruments.38

The VAR we estimate consists of three variables, i.e., Yt =
(
it,RIt , T It

)′
, where it, RIt , and

T It are the measures of the policy rate, the stock return, and turnover described in Sections 6.1

and 6.2. Denote εt =
(
εit, ε

R
t , ε

T
t

)′
, ut =

(
uit, u

R
t , u

T
t

)′
, and

K−1 =

 kii kRi kTi
kiR kRR kTR
kiT kRT kTT

 .
Then ut = K−1εt can be written as uit

uRt
uTt

 =

 kii
kiR
kiT

 εit +

 kRi
kRR
kRT

 εRt +

 kTi
kTR
kTT

 εTt . (70)

Since we are only interested in the impulse responses for the monetary shock, εit, it suffices

to find the first column of K−1. The identification problem we face, of course, stems from

the fact that the structural shocks,
(
εit, ε

R
t , ε

T
t

)
, are unobservable and some of the elements of

K−1 are unknown (three elements are unknown in this 3 × 3 case). Suppose we had data on{
εit
}

. Then we could run the regression uit = κiiε
i
t + ηt to estimate κii, where ηt is an error

term. From (70) we have ηt = kRi ε
R
t + kTi ε

T
t , so E

(
εitηt

)
= E

[
εit
(
kRi ε

R
t + kTi ε

T
t

)]
= 0 (since

we are assuming E(εtε
′
t) = I), and thus the estimate of κii could be used to identify kii (up to

a constant) via the population regression of uit onto εit. Since εit is unobservable, one natural

38The identification methodology has been used by Mertens and Ravn (2013), Stock and Watson (2012),
Gertler and Karadi (2015), Hamilton (2003), and Kilian (2008a, 2008b), among others.

57



alternative is to find a proxy (instrumental) variable for it. Suppose there is a variable zt such

that

E
(
ztε
R
t

)
= E

(
ztε
T
t

)
= 0 < E

(
ztε

i
t

)
≡ v for all t.

Then

Λ ≡ E(ztut) = K−1E(ztεt) =
(
kii, k

i
R, k

i
T
)′
v. (71)

Since Λ = (Λ1,Λ2,Λ3)′ is a known (3×1) vector, we can identify the coefficients of interest,(
kii, k

i
R, k

i
T
)

up to the sign of the scalar v. To see this, notice (71) implies

vkii = Λ1 (72)

vkiR = Λ2 (73)

vkiT = Λ3 (74)

with

v2 = E(ztut)
′Ξ−1E(ztut). (75)

Since the sign of v is unknown, we could look for restrictions that do not involve v, and in this

case these conditions only provide two additional restrictions on
(
kii, k

i
R, k

i
T
)
, i.e., combining

(72) with (73), and (72) with (74), yields

kiR
kii

=
Λ2

Λ1
(76)

kiT
kii

=
Λ3

Λ1
. (77)

Thus, kiR and kiT are identified. From (72), kii is also identified but up to the sign of v.

Notice that if we run a 2SLS regression of uRt on uit using zt as an instrument for uit, then

the estimate of the slope coefficient on this regression is Λ2/Λ1. Similarly, Λ3/Λ1 corresponds

to the instrumental variable estimate of the slope coefficient of a regression of uTt on uit using

zt as an instrument for uit.

In our application, as an instrument for the structural monetary policy shock, εit, we use the

(daily imputed) change in the 30-day federal funds futures from the level it has 10 minutes before

the FOMC announcement and the level it has 20 minutes after the FOMC announcement.39

39By “daily imputed” we mean that in order to interpret the change in the federal funds futures rate as the
surprise component of the change in the daily policy rate, it is adjusted for the fact that the federal funds futures
contracts settle on the effective federal funds rate averaged over the month covered by the contract. See Section
B.4.4 for details.
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That is, we restrict our sample to t ∈ S1 and set {zt} =
{
it,m∗t+20 − it,m∗t−10

}
, where it,m

denotes the (daily imputed) 30-day federal funds futures rate on minute m of day t, and for any

t ∈ S1, m∗t denotes the time of day (measured in minutes) when the FOMC announcement was

made.40 All this leads to the following procedure, used by Mertens and Ravn (2013), Stock and

Watson (2012), and Gertler and Karadi (2015), to identify the coefficients needed to estimate

the empirical impulse responses to a monetary policy shock:

Step 1: Estimate the reduced-form VAR by least squares over the whole sample of all trading

days to obtain the coefficients {Bj}Jj=1 and the residuals {ut}.

Step 2: Run the regression uit = κ0 + κizt + ηt on sample S1 to obtain the OLS estimates of

κ0 and κi, namely κ̂0 and κ̂i, and construct the fitted values ûit = κ̂0 + κ̂izt.

Step 3: Run the regressions uRt = κ0 + κRûit + ηt and uTt = κ0 + κT ûit + ηt on sample S1 to

obtain the OLS estimates of κR and κT , namely κ̂R and κ̂T . Since κ̂R = Λ2/Λ1 and

κ̂T = Λ3/Λ1, (76) and (77) imply κ̂R = kiR/k
i
i and κ̂T = kiT /k

i
i.

For the purpose of getting impulse responses with respect to the shock εit, the scale and sign

of kii are irrelevant since the shock εit is typically normalized to have any desired impact on a

given variable.41 For example, in our impulse responses we normalize the shock εit so that it

induces a 1 pp increase in the level of the policy rate it on impact. To see this, consider (70)

with εRt = εTt = 0. Then for any kii, the shock that induces an x pp increase in the level of the

policy rate on impact (e.g., at t = 0) is εi0 = (x/100)/kii = (x/100)/(Λ1/v).

B.4.2 Confidence intervals for impulse responses

The 95 percent confidence intervals for the impulse response coefficients estimated from the data

are computed using a recursive wild bootstrap using 10,000 replications, as in Gonçalves and

40We use the data set constructed by Gorodnichenko and Weber (2016) with tick-by-tick data of the federal
funds futures trading on the CME Globex electronic trading platform (as opposed to the open-outcry market).
The variable we call zt is the same variable that Gorodnichenko and Weber denote as vt. Their data are
available at http://faculty.chicagobooth.edu/michael.weber/research/data/replication dataset gw.xlsx. We have
also performed the estimations using a different instrument for the high-frequency external identification scheme,
namely the 3-month Eurodollar rate (on the nearest futures contract to expire after the FOMC announcement)
from the level it has 10 minutes before the FOMC announcement and the level it has 20 minutes after the FOMC
announcement. That is, we restrict our sample to t ∈ S1 and set {zt} = {iedt,m∗

t +20− iedt,m∗
t−10}, where iedt,m denotes

the 3-month Eurodollar futures rate on minute m of day t, and for any t ∈ S1, m∗t denotes the time of day
(measured in minutes) when the FOMC announcement was made. The results were essentially the same.

41Alternatively, (72) and (75) can be combined to get kii = Λ1/v, which is then identified up to the sign of v.
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Kilian (2004) and Mertens and Ravn (2013). The procedure is as follows. Given the estimates

of the reduced-form VAR, {B̂j}Jj=1, and the residual, {ût}, we generate bootstrap draws,
{
Y b
t

}
,

recursively, by Y b
t =

∑J
j=1 B̂jYt−j + ebt ût, where ebt is the realization of a scalar random variable

taking values of −1 or 1, each with probability 1/2. Our identification procedure also requires us

to generate bootstrap draws for the proxy variable,
{
zbt
}

, so following Mertens and Ravn (2013),

we generate random draws for the proxy variable via zbt = ebtzt. We then use the bootstrap

samples
{
Y b
t

}
and

{
zbt
}

to reestimate the VAR coefficients and compute the associated impulse

responses (applying the covariance restrictions implied by the bootstrapped instrument zbt ).

This gives one bootstrap estimate of the impulse response coefficients. The confidence intervals

are the percentile intervals of the distribution of 10,000 bootstrap estimates for the impulse

response coefficients.

B.4.3 Lag length

The Akaike information criterion (AIC) suggests a VAR specification with 10 lags, while

Schwarz’s Bayesian information criterion (SBIC) and the Hannan and Quinn information crite-

rion (HQIC) suggest a specification with 5 lags. In order to choose between these alternatives,

we check which specification delivers a better estimate of the true impulse responses generated

by the quantitative theory presented in Section 7. Specifically, the baseline parameters and

the dividend process are calibrated as in Section 7.2. For the policy rate we adopt the AR(1)

process estimated from the data (see footnote 30 in Section 7.2 for details). We then proceed

as follows:

1. Compute the equilibrium functions characterized by (23)-(26) for the calibrated model.

2. Simulate 1,000 samples of the dividend and the policy rate, each sample of length equal

to our data sample (1,996 days, which is the number of trading days between January 1,

1994, and December 31, 2001).42

3. Compute the equilibrium of the model 1,000 times (one for each realization of the sim-

ulated dividend and policy rate paths) to produce 1,000 synthetic data samples (each

42The policy rate is simulated using the AR(1) process we estimated for our proxy for the policy rate (see
footnote 30 in Section 7.2). The initial condition for the policy rate is the mean value of the estimated AR(1)
process. The initial condition for the dividend is normalized to 1.
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consisting of 1,996 days) for the policy rate and the (arithmetic) average (across the 20

stock classes) of the stock return and the turnover rate.43

4. For each synthetic data set, estimate our baseline VAR specification with 10 lags and

an alternative specification with 5 lags. For each specification, calculate the impulse

responses to a 1 bp increase in the policy rate.44

5. Calculate the average (median) impulse responses over the 1,000 synthetic samples and

calculate the 95 percent confidence intervals using the distribution of estimates over the

1,000 synthetic samples. Do this for the specification with 10 lags and for the one with 5

lags.

6. Use the equilibrium conditions of the model to compute the true theoretical impulse

responses to a 1 bp increase in the policy rate that follows the estimated AR(1) process.45

For each variable, Figure 7 reports the average (median) impulse response and the 95 percent

confidence interval corresponding to the VAR specifications with 5 and 10 lags, along with the

true theoretical impulse response implied by the equilibrium conditions. The impulse responses

from the VAR specification with 10 lags and those from the VAR specification with 5 lags

approximate the true theoretical responses about as well.

B.4.4 Changes in federal funds future rate and unexpected policy rate changes

Fix a month, s, and let the intervals {[t, t+ 1]}Tt=1 denote the T days of the month. Let
{
f0
s,t

}T
t=1

denote the market prices of the federal funds futures contract at the end of day t of month s.

The superscript “0” indicates that the contract corresponds to the current month, s.46 Let

{rt}Tt=1 be the (average) daily fededral funds rate calculated at the end of day t. Finally, for

j = 1, ..., T − t, let Etrt+j denote the expectation of the spot federal funds rate on day t + j

43Measurement noise is added to the equilibrium path of the turnover rate, as explained in footnote 32. Linear
interpolation is used to compute the equilibrium variables for realizations of the policy rate that lie outside the
set of states of the Markov chain that is used to compute the equilibrium functions.

44We use the same policy dates on the synthetic data as in the actual data. We also follow the same identifica-
tion procedure used in the empirical section and described in Section B.4.1. To replicate this instrumental-variable
identification procedure in the context of the model simulations, as instrument (zt) we simply use with the change
in the policy rate (which is indeed exogenous in the model).

45Here again, linear interpolation is used to compute the equilibrium variables for realizations of the policy
rate that are not states of the Markov chain used to compute the equilibrium functions.

46Contracts can range from 1 to 5 months. For example, f5
s,t would be the price of the 5-month forward on

day t of month s.
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conditional on the information available at the end of day t. Then, since federal funds futures

contracts settle on the average daily rate of the month, we have

f0
s,t =

1

T

[∑t

i=1
ri +

∑T

i=t+1
Etri

]
, for t = 1, ..., T.

Hence, for t = 1, ..., T ,

f0
s,t − f0

s,t−1 =
1

T
rt −

1

T
Et−1rt +

1

T

∑T

i=t+1
Etri −

1

T

∑T

i=t+1
Et−1ri,

where f0
s,0 ≡ f1

s−1,T . Assume the federal funds rate changes at most once during the month,

and suppose it is known that the announcement takes place at the beginning of day t ≥ 1.47

Then

Etri = rt for i = t, ..., T

Et−1ri = Et−1rt for i = t+ 1, ...T.

Thus, the change in the forward rate at the time of the announcement, i.e., t = 1, ..., T , is

f0
s,t − f0

s,t−1 =
T + 1− t

T
(rt − Et−1rt) , (78)

where rt − Et−1rt is the surprise change in the federal funds rate on day t (the day of the

policy announcement). If we know the daily change in the forward rate at the time of the

announcement, f0
s,t−f0

s,t−1, then from (78) we can recover the unexpected change in the federal

funds rate on the day of the FOMC announcement, t, as follows:

rt+1 − Etrt+1 =
T

T − t
(
f0
s,t+1 − f0

s,t

)
for t = 0, ..., T − 1. (79)

This condition is the same as condition (7) in Kuttner (2001), which is the convention used by

the event-study literature to map the change in the 30-day federal funds futures rate on the day

of the FOMC policy announcement into the surprise change in the daily policy rate on the day

of the announcement. In terms of the notation for our high-frequency instrument introduced

in Section B.4.1, we set zt = T
T−t

(
f0
s,t+1 − f0

s,t

)
≡ it,m∗t+20 − it,m∗t−10, where f0

s,t+1 − f0
s,t is

measured (using high-frequency data) as the change in the 30-day federal funds futures rate

over a 30-minute window around the FOMC announcement that takes place on day t.

47If rt were the actual target federal funds rate, then the assumption that it changes at most once in the month
would be exactly true for most of our sample; see, e.g., footnote 16 in Gorodnichenko and Weber (2016). In
general this has to be regarded as an approximation, since on any given day the effective federal funds rate, rt,
can and does deviate somewhat from the announced federal funds rate target rate (see Afonso and Lagos, 2014).
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B.4.5 Portfolio-based VAR analysis

In Section 6.4 we estimated a VAR consisting of three variables, i.e.,
{
it,RIt , T It

}
, where it is a

proxy for the policy rate (the 3-month Eurodollar futures rate), and RIt , and T It are the daily

measures of the average NYSE stock return and turnover described in Sections 6.1 and 6.2.

In this section we follow the same methodology described in Section 6.4, but instead estimate

a separate VAR for each of the individual liquidity-based portfolios constructed as described

in Section 6.3. That is, for each portfolio i = 1, ..., 20, we estimate a VAR consisting of three

variables
{
it,Rit, T it

}
. The results from this exercise confirm and extend the findings of Section

6.3 and Section 6.4. To illustrate, for three liquidity-based portfolios, Figure 10 reports the

impulse responses of the daily portfolio return and turnover rate to a 1 bp unexpected increase

in the policy rate for a forecast horizon of 30 days. As in Section 6.3, we again find that on the

announcement day, the negative responses of returns and turnover to an unexpected increase

in the nominal rate tend to be larger in magnitude for portfolios with higher turnover liquidity.

However, here these responses appear to be estimated much more precisely than by the E-based

and H-based estimates reported in Table 2.48 Interestingly, Figure 10 also confirms that, as in

the quantitative theory, the dynamic responses of returns and turnover for more liquid portfolios

tend to be not only larger but also more persistent than for less liquid portfolios.

B.5 Extended sample: 1994-2007

We have focused our empirical analysis on the sample period 1994-2001. We chose to end the

sample period in 2001 because our theory abstracts from credit, and credit conditions in the

U.S. financial market appear to have eased dramatically in the six years leading up to the

2007 financial crisis.49 In this section, we report empirical results for the longer sample period,

1994-2007. The basic results on the announcement-day effects of monetary policy surprises on

returns and turnover are reported in Table 6 (this table is the analogue of Table 4).

48Aside from the fact that the VAR specification is more flexible than (21), our VAR estimation also relies on
the HFIV identification scheme. In fact, notice that even for the simple specification (21), Table 4 and Table 6
show that in general, the HFIV identification strategy by itself already delivers estimates that are more precise
and more statistically significant than the E-based and H-based estimates.

49For example, the private-label securitization market grew in issuance from under $500 billion to over $2
trillion in 2006, the year before the crisis, see e.g., Gorton and Metrick (2012).
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C Supplementary material: Theory

C.1 Examples

In this section we present two examples for which the basic model of Section 2 can be solved

in closed form.

Example 1 Suppose that the probability distribution over investor valuations is concentrated

on two points: εL with probability πL and εH with probability πH , with ε̄ = πHεH +πLεL. Then

(18) implies

ε∗ =


εH

1+ µ−β̄
αθβ̄(1−β̄δ)πH

if β̄ < µ ≤ µ̂

β̄αθ(1−β̄δ)πHεH−(µ−β̄)β̄δ(ε̄−αθπLεL)

β̄αθ(1−β̄δ)πH+(µ−β̄)[1−β̄δ(1−αθπL)]
if µ̂ < µ < µ̄

with

µ̂ = β̄

[
1 +

(
1− β̄δ

)
(1− αθ)αθπL (ε̄− εL)

ε̄− αθπLεL

]
and µ̄ = β̄

[
1 +

(
1− β̄δ

)
αθ (ε̄− εL)

β̄δε̄+
(
1− β̄δ

)
εL

]
.

Given ε∗, the closed-form expressions for the equilibrium allocation are given in Proposition 2.

Example 2 Suppose that the probability distribution over investor valuations is distributed

uniformly on [0, 1]. Then (18) implies

ε∗ =


αθ(1−β̄δ)+ι−

√
[αθ(1−β̄δ)+ι]

2−[αθ(1−β̄δ)]
2

αθ(1−β̄δ)
if β̄ < µ ≤ µ̂

(1−β̄δ)(αθ+ι)−
√

[(1−β̄δ)(αθ+ι)]
2−αθβ̄δ[1−β̄δ(1+ι)](ῑ−ι)

αθ[1−β̄δ(1+ι)]
if µ̂ < µ < µ̄

with

µ̂ = β̄

[
1 +

(
1− β̄δ

)
(1− αθ) (ε̂− 1/2)

ε̂

]
and µ̄ = β̄

[
1 +

αθ
(
1− β̄δ

)
β̄δ

]
and where ῑ ≡

(
µ̄− β̄

)
/β̄ and ε̂ = (1−

√
1− αθ)/ (αθ). Given ε∗, the closed-form expressions

for the equilibrium allocation are given in Proposition 2.

C.2 Equilibrium conditions for the general model

In this section we derive the equilibrium conditions for the general model, reported in Section

7. We specialize the analysis to recursive equilibria in which prices are time-invariant functions

of an aggregate state vector that follows a time-invariant law of motion. The state vector is

64



xt = (Amt , yt, µt) ∈ R3
+. Asset prices in a recursive equilibrium will be φst = φs (xt), φ̄

s
t = φ̄s (xt),

φmt = φm (xt), p
s
t = ps (xt), and εs∗t = εs∗ (xt). Let Amst denote the amount of money that

investors have available to trade asset s at the beginning of period t. The laws of motion for

the state variables Amt , yt, and µt are exogenous (as described above) while Amst = Ψs (xt),

where the decision rule Ψs is determined in equilibrium.

The investor’s value functions are

W I
(
(amst , ast )s∈N ,−kt;xt

)
=
∑
s∈N

[φm (xt) a
ms
t + φs (xt) a

s
t ]− kt + W̄ I (xt) ,

with

W̄ I (xt) ≡ T (xt) + max
(ãmt+1,(ã

s
t+1)s∈N)∈RN+1

+

{
− φm (xt) ã

m
t+1 −

∑
s∈N

φs (xt) ã
s
t+1

+ βE
[
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∣∣xt]},
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1) = max

(amst+1)s∈N∈RN+

∫
V I((amst+1, a

s
t+1)s∈N, ε;xt+1)dG(ε) (80)

s.t.
∑
s∈N

amst+1 ≤ ãmt+1,

and

V I((amst+1, a
s
t+1)s∈N, ε;xt+1) =

∑
s∈N

{
φm (xt+1) amst+1 + [εyt+1 + φs (xt+1)] ast+1

}
+
∑
s∈N

[
αsθ

ε− εs∗ (xt+1)

ps (xt+1)
yt+1I{εs∗(xt+1)<ε}a

ms
t+1

]
+
∑
s∈N

{
αsθ [εs∗ (xt+1)− ε] yt+1I{ε<εs∗(xt+1)}a

s
t+1

}
+ W̄ I (xt+1) ,

where T (xt) ≡ (µt − 1)φm (xt)A
m
t , and ast+1 ≡ δãst+1 + (1− δ)As. In writing V I (·) we have

used the fact that Lemma 1 still characterizes the equilibrium post-trade portfolios in the OTC

market. The following lemma characterizes the optimal partition of money across asset classes

chosen by an investor at the beginning of the period.

Lemma 5 The (amst+1)s∈N that solves (80) satisfies

∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

∂ãmt+1

≥ φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε), (81)

with “=” if amst+1 > 0.
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Proof. The objective function on the right side of (80) can be written as∫
V I((amst+1, a

s
t+1)s∈N, ε;xt+1)dG(ε) =

∑
s∈N

{
φm (xt+1) amst+1 + [ε̄yt+1 + φs (xt+1)] ast+1

}
+
∑
s∈N

αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)amst+1

+
∑
s∈N

αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)ast+1

+ W̄ I (xt+1) .

The Lagrangian for the maximization in (80) is

L
(
(amst+1)s∈N; ãmt+1,xt+1

)
=
∑
s∈N

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

]
amst+1

+
∑
s∈N

ζms (xt+1) amst+1 + ξ (xt+1)

(
ãmt+1 −

∑
s∈N

amst+1

)
, (82)

where ξ (xt+1) is the multiplier on the feasibility constraint in state xt+1 and (ζms (xt+1))s∈N

the multipliers on the nonnegativity constraints in state xt+1. The first-order conditions are

φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε) + ζms (xt+1)− ξ (xt+1) = 0,

for all s ∈ N. Finally, notice that ξ (xt+1) = ∂L/∂ãmt+1 = ∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)/∂ãmt+1.

The following lemma characterizes an investor’s optimal portfolio choice in the second sub-

period of any period with state xt.

Lemma 6 The portfolio (ãmt+1, (ã
s
t+1)s∈N) chosen by an investor in the second subperiod of

period t with state xt of a recursive equilibrium, satisfies

φs (xt) ≥ βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]

(83)

φm (xt) ≥ βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]

, (84)

where (83) holds with “=” if ãst+1 > 0 and (84) holds with “=” if amst+1 > 0.

Proof. The investor’s maximization problem in the second subperiod is

max
(ãmt+1,(ã

s
t+1)s∈N)∈RN+1

+

{
− φm (xt) ã

m
t+1 −

∑
s∈N

φs (xt) ã
s
t+1 + βE

[
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∣∣xt]},
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with

V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

= W̄ I (xt+1) + max
(amst+1)s∈N∈RN+

L
(
(amst+1)s∈N; ãmt+1,xt+1

)
+
∑
s∈N

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

]
ast+1,

where L
(
(amst+1)s∈N; ãmt+1,xt+1

)
is defined in the proof of Lemma 5. We then have,

∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

∂ast+1

= ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

∂ãmt+1

= ξ (xt+1) .

The first-order conditions for the investor’s maximization problem in the second subperiod are

−φs (xt) + βE

[
∂V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∂ãst+1

∣∣∣∣∣xt
]
≤ 0, with “ = ” if ãst+1 > 0

−φm (xt) + βE

[
∂V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∂ãmt+1

∣∣∣∣∣xt
]
≤ 0, with “ = ” if ãmt+1 > 0,

or equivalently,

φs (xt) ≥ βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt) ≥ βE [ξ (xt+1)|xt] ,

where the first condition holds with “=” if ãst+1 > 0 and the second condition holds with “=”

if ãmt+1 > 0. By Lemma 5, the second condition can be written as

φm (xt) ≥ βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]

with “=” if amst+1 > 0.

Definition 2 A recursive equilibrium for the multiple asset economy (in which only investors

can hold equity overnight) is a collection of functions, {φm (·) , {φs (·) , ps (·) , εs∗ (·) ,Ψs (·)}s∈N},
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that satisfy

φs (xt) = βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt) ≥ βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]

, with “ = ” if Amst+1 > 0

ps (xt) =
[1−G (εs∗ (xt))]A

ms
t

G (εs∗ (xt))As

εs∗ (xt) =
ps (xt)φ

m (xt)− φs (xt)

yt

Amt =
∑
s∈N

Amst ,

where Amst+1 =
∫
I a

ms
t+1di.

Suppose xt = (Amt , yt, µi) and focus on a recursive equilibrium with the property that real

prices are linear functions of the aggregate dividend. Then under the conjecture

φs (xt) = φsiyt (85)

φ̄s (xt) ≡ ps (xt)φ
m (xt) = φ̄siyt (86)

φm (xt)A
m
t = Ziyt (87)

Amst = Ψs (xt) = λsiA
m
t (88)

εs∗ (xt) ≡
φ̄s (xt)− φs (xt)

yt
= φ̄si − φsi ≡ εs∗i , (89)

the equilibrium conditions reduce to (23)-(26). Having found {φsi , εs∗i , Zi, λsi}i∈M,s∈N, for a given

xt = (Amt , yt, µi), φ
s (xt) is obtained from (85), φ̄s (xt) from (86) (with φ̄si = εs∗i + φsi ), φ

m (xt)

from (87), ps (xt) from (86), and Amst from (88).

C.3 Open-market operations

In order to provide a more realistic description of the implementation of monetary policy, in this

section we extend the model presented in Section 7 and allow the monetary authority to inject

or withdraw money via open-market operations modelled as follows. In the first subperiod

each investor can trade in a competitive market where the monetary authority sells Bt one-

period risk-free pure-discount nominal bonds (i.e., a bond issued in the first subperiod of t

yields one dollar with certainty in the following subperiod). The dollar price of a bond in this
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market is denoted qt. The bond market is segmented in the same way as the markets for equity

shares, i.e., at the beginning of period t, having observed the realization of the monetary policy

variables (but before knowing which equity classes he will be able to trade or his dividend

valuation), each investor chooses the amount of money he will have available to trade bonds

in the first subperiod of t, denoted ambt . The size of the bond issue, Bt, expressed relative

to the size of the beginning-of-period money supply, Amt , is denoted ωt. That is, if there are

Amt dollars outstanding at the beginning of period t, in the bond market of the first subperiod

t the government sells claims to Bt = ωtA
m
t dollars payable in the following subperiod. For

simplicity, in this section we assume dealers do not hold equity or money overnight.

The beginning-of-period money supply in this environment evolves according to Amt+1 =

[1 + (1− qt)ωt] µ̃tAmt , where µ̃t ∈ R++ denotes the growth rate of the money supply between

the end of period t and the beginning of period t+ 1 (implemented via lump-sum transfers in

the second subperiod of t). For example, µ̃t = µt/ [1 + (1− qt)ωt] implies Amt+1 = µtA
m
t , so the

monetary authority can implement any path {µt}∞t=1 of growth rates of the beginning-of-period

money supply despite the random changes in the money supply induced by the open-market

operations. The government budget constraint is Bt+Tt/φ
m
t = Amt+1− (Amt − qtBt), so the real

lump-sum transfer (expressed in terms of the second-subperiod consumption good) needed to

implement Amt+1 = µtA
m
t is Tt = [(µt − 1)− (1− qt)ωt]φmt Amt .

Let τ t ≡ (ωt, µt) and assume {τ t}∞t=1 follows a Markov chain with transition matrix σij =

Pr (τ t+1 = τ j |τ t = τ i), where τ i ≡ (ωi, µi) ∈ R2
++ and τ j ≡ (ωj , µj) ∈ R2

++ for all i, j ∈
M = {1, . . . ,M}. The realization of τ t is known at the beginning of period t. We specialize the

analysis to recursive equilibria in which prices are time-invariant functions of an aggregate state

vector that follows a time-invariant law of motion. The state vector is xt = (Amt , yt, τ t) ∈ R4
+.

Asset prices in a recursive equilibrium will be φst = φs (xt), φ̄
s
t = φ̄s (xt), φ

m
t = φm (xt),

pst = ps (xt), qt = q (xt), and εs∗t = εs∗ (xt). Let Amkt denote the amount of money that

investors have available to trade asset k ∈ N̄ ≡ N ∪ {b} at the beginning of period t (i.e., the

bond, if k = b, and equity, if k ∈ N). The laws of motion for the state variables Amt , yt, and

τ t are exogenous (as described above) while Amkt = Ψk (xt), where the decision rule Ψk, for

k ∈ N̄, is determined in equilibrium.
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The investor’s value functions are

W I(ambt , abt , (a
ms
t , ast )s∈N,−kt;xt) =

∑
s∈N

[φm (xt) a
ms
t + φs (xt) a

s
t ]

+ φm (xt) (ambt + abt)− kt + W̄ I (xt) ,

where abt denotes the quantity of bonds that the investor brings into the second subperiod of

period t, with

W̄ I (xt) ≡ T (xt) + max
(ãmt+1,(ã

s
t+1)s∈N)∈RN+1

+

{
− φm (xt) ã

m
t+1 −

∑
s∈N

φs (xt) ã
s
t+1

+ βE
[
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∣∣xt]},
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1) = max

(amkt+1)k∈N̄∈R
N+1
+

∫
V I(ambt+1, (a

ms
t+1, a

s
t+1)s∈N, ε;xt+1)dG(ε) (90)

s.t.
∑
k∈N̄

amkt+1 ≤ ãmt+1,

and

V I(ambt+1, (a
ms
t+1, a

s
t+1)s∈N, ε;xt+1) = φm (xt+1) {ambt+1 + [1− q (xt+1)] abt+1(ambt+1, q (xt+1)))}

+
∑
s∈N

{
φm (xt+1) amst+1 + [εyt+1 + φs (xt+1)] ast+1

}
+
∑
s∈N

[
αsθ

ε− εs∗ (xt+1)

ps (xt+1)
yt+1I{εs∗(xt+1)<ε}a

ms
t+1

]
+
∑
s∈N

{
αsθ [εs∗ (xt+1)− ε] yt+1I{ε<εs∗(xt+1)}a

s
t+1

}
+ W̄ I (xt+1) ,

where abt(a
mb
t , qt) is the bond demand of an agent who carries ambt dollars into the bond market

in state xt, and ast+1 ≡ δãst+1 + (1− δ)As. In writing V I (·) we have used the fact that Lemma

1 still characterizes the equilibrium post-trade portfolios in the OTC market. The following

lemma characterizes an investor’s demand in the bond market.

Lemma 7 Consider an investor who brings ambt dollars to the bond market of period t. The

bond demand, abt(a
mb
t , qt) and the post-trade bond-market cash holdings, āmbt (ambt , qt) = ambt −
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qta
b
t(a

mb
t , qt), are given by

abt(a
mb
t , qt) = χ (qt, 1) ambt /qt

āmbt (ambt , qt) = [1− χ (qt, 1)] ambt ,

where χ (·, ·) is the function defined in Lemma 1.

Proof. The investor’s problem in the bond market of period t is

max
(āmbt ,abt)∈R2

+

W I(āmbt , abt , (a
ms
t , ast )s∈N ,−kt;xt) s.t. āmbt + qta

b
t ≤ ambt .

This problem can be written as

max
abt∈[0,ambt /qt]

φm (xt)
[
(ambt + (1− qt) abt

]
+W I

(
(amst , ast )s∈N , 0, 0,−kt;xt

)
,

and the solution is as in the statement of the lemma.

The market-clearing condition for bonds is abt
(
Ambt , qt

)
= Bt, which implies the equilibrium

nominal price of a bond is qt = min
(
Ambt /Bt, 1

)
, or in the recursive equilibrium,

q (xt) = min

{
Ψb (xt)

ωtAmt
, 1

}
.

With Lemma 7, the investor’s value function in the first subperiod becomes

V I(ambt+1, (a
ms
t+1, a

s
t+1)s∈N, ε;xt+1) =

φm (xt+1)

q (xt+1)
ambt+1 + W̄ I (xt+1)

+
∑
s∈N

{
φm (xt+1) amst+1 + [εyt+1 + φs (xt+1)] ast+1

}
+
∑
s∈N

αsθ
ε− εs∗ (xt+1)

ps (xt+1)
yt+1I{εs∗(xt+1)<ε}a

ms
t+1

+
∑
s∈N

αsθ [εs∗ (xt+1)− ε] yt+1I{ε<εs∗(xt+1)}a
s
t+1.

The following lemma (a generalization of Lemma 5) characterizes the optimal partition of

money across asset classes chosen by an investor at the beginning of the period.

Lemma 8 The (amkt+1)k∈N̄ that solves (90) satisfies

∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

∂ãmt+1

≥ φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε) (91)

∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

∂ãmt+1

≥ φm (xt+1)

q (xt+1)
, (92)

where (91) holds with “=” if amst+1 > 0 and (92) holds with “=” if ambt+1 > 0.
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Proof. The objective function on the right side of (90) can be written as∫
V I(ambt+1, (a

ms
t+1, a

s
t+1)s∈N, ε;xt+1)dG(ε)

=
∑
s∈N

{
φm (xt+1) amst+1 + [ε̄yt+1 + φs (xt+1)] ast+1

}
+
∑
s∈N

αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)amst+1

+
∑
s∈N

αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)ast+1

+
φm (xt+1)

q (xt+1)
ambt+1 + W̄ I (xt+1) .

The Lagrangian for the maximization in (90) is

L̂((amst+1)s∈N̄; ãmt+1,xt+1) =
∑
s∈N

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

]
amst+1

+
φm (xt+1)

q (xt+1)
ambt+1 +

∑
k∈N̄

ζmk (xt+1) amkt+1 + ξ (xt+1)

ãmt+1 −
∑
k∈N̄

amkt+1

 ,

where ξ (xt+1) is the multiplier on the feasibility constraint in state xt+1 and (ζmk (xt+1))k∈N̄

the multipliers on the nonnegativity constraints. The first-order conditions are

φm (xt+1)

q (xt+1)
+ ζmb (xt+1)− ξ (xt+1) = 0

φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε) + ζms (xt+1)− ξ (xt+1) = 0,

for all s ∈ N. Finally, notice that ξ (xt+1) = ∂L̂/∂ãmt+1 = ∂V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)/∂ãmt+1.

The following lemma (a generalization of Lemma 6) characterizes an investor’s optimal

portfolio choice in the second subperiod of any period with state xt.

Lemma 9 The portfolio (ãmt+1, (ã
s
t+1)s∈N) chosen by an investor in the second subperiod of

period t with state xt of a recursive equilibrium, satisfies

φs (xt) ≥ βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt) ≥ βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt) ≥ βE
[
φm (xt+1)

q (xt+1)

∣∣∣∣xt] ,
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where the first condition holds with “=” if ãst+1 > 0, the second condition holds with “=” if

amst+1 > 0, and the third condition holds with “=” if ambt+1 > 0.

Proof. The investor’s maximization problem in the second subperiod is

max
(ãmt+1,(ã

s
t+1)s∈N)∈RN+1

+

{
− φm (xt) ã

m
t+1 −

∑
s∈N

φs (xt) ã
s
t+1 + βE

[
V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∣∣xt]},
with

V̄ I(ãmt+1, (a
s
t+1)s∈N;xt+1)

= W̄ I (xt+1) + max
{amkt+1}k∈N̄∈R

N+1
+

L̂((amst+1)s∈N̄; ãmt+1,xt+1)

+
∑
s∈N

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

]
ast+1,

where L̂
(
(amst+1)s∈N; ãmt+1,xt+1

)
is defined in the proof of Lemma 8. We then have,

∂V̄ I(ãmt+1,(a
s
t+1)s∈N;xt+1)

∂ast+1
= ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∂V̄ I(ãmt+1,(a
s
t+1)s∈N;xt+1)

∂ãmt+1
= ξ (xt+1) .

The first-order conditions for the investor’s optimization problem in the second subperiod are

−φm (xt) + βE

[
∂V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∂ãmt+1

∣∣∣∣∣xt
]
≤ 0, with “ = ” if ãmt+1 > 0

−φs (xt) + βE

[
∂V̄ I(ãmt+1, (a

s
t+1)s∈N;xt+1)

∂ãst+1

∣∣∣∣∣xt
]
≤ 0, with “ = ” if ãst+1 > 0,

or equivalently,

φm (xt) ≥ βE [ξ (xt+1)|xt] , with “ = ” if ãmt+1 > 0

φs (xt) ≥ βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]
,

with “=” if ãst+1 > 0, for s ∈ N. By Lemma 8, the first condition can be written as

φm (xt) ≥ βE
[
φm (xt+1)

q (xt+1)

∣∣∣∣xt] ,
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with “=” if ambt+1 > 0, or as

φm (xt) ≥ βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]
,

with “=” if amst+1 > 0, for s ∈ N.

Definition 3 A recursive monetary equilibrium for the multiple asset economy with open-

market operations (in which only investors can hold equity overnight) is a collection of functions,

{φm (·) , q (·) ,Ψb (·) , {φs (·) , ps (·) , εs∗ (·) ,Ψs (·)}s∈N}, that satisfy

φs (xt) = βδE

[
ε̄yt+1 + φs (xt+1) + αsθ

∫ εs∗(xt+1)

εL

[εs∗ (xt+1)− ε] yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt) = βE

[
φm (xt+1) + αsθ

∫ εH

εs∗(xt+1)

ε− εs∗ (xt+1)

ps (xt+1)
yt+1dG(ε)

∣∣∣∣∣xt
]

φm (xt)

q (xt)
= φm (xt) + αsθ

∫ εH

εs∗(xt)

ε− εs∗ (xt)

ps (xt)
ytdG(ε)

q (xt) = min[Ambt /(ωtA
m
t ), 1]

ps (xt) =
[1−G (εs∗ (xt))]A

ms
t

G (εs∗ (xt))As

εs∗ (xt) =
ps (xt)φ

m (xt)− φs (xt)

yt

Amkt = Ψk (xt) , for k ∈ N̄

Amt =
∑
k∈N̄

Amkt .

Suppose xt = (Amt , yt, ωi, µi) and focus on a recursive equilibrium with the property that

real prices are linear functions of the aggregate dividend. Then under the conjecture

φs (xt) = φsiyt (93)

φ̄s (xt) = φ̄siyt (94)

φm (xt)A
m
t = Ziyt (95)

Amkt = Ψk (xt) = λkiA
m
t (96)

φ̄s (xt) ≡ ps (xt)φ
m (xt) (97)

q (xt) = min(λbi/ωi, 1) ≡ qi (98)

εs∗ (xt) ≡
φ̄s (xt)− φs (xt)

yt
= φ̄si − φsi ≡ εs∗i , (99)
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the equilibrium conditions reduce to

φsi = β̄δ
∑
j∈M

σij

[
ε̄+ φsj + αsθ

∫ εs∗j

εL

(εs∗j − ε)dG(ε)

]
(100)

Zi =
β̄

µi

∑
j∈M

σij

[
1 + αsθ

∫ εH

εs∗j

ε− εs∗j
εs∗j + φsj

dG(ε)

]
Zj (101)

max(ωi/λ
b
i , 1) = 1 + αsθ

∫ εH

εs∗i

ε− εs∗i
εs∗i + φsi

dG(ε) (102)

Ziλ
s
i =

G (εs∗i )As

1−G (εs∗i )
(εs∗i + φsi ) (103)

1− λbi =
∑
s∈N

λsi . (104)

This is a system of M (3N + 2) independent equations to be solved for the M (3N + 2) un-

knowns {φsi , εs∗i , Zi, λsi , λbi}i∈M,s∈N. Given {φsi , εs∗i , Zi, λsi , λbi}i∈M,s∈N, for a state xt = (Amt , yt, τ t)

with τ t = τ i = (ωi, µi), φ
s (xt) is obtained from (93), φ̄s (xt) from (94) (with φ̄si = εs∗i + φsi ),

φm (xt) from (95), Amkt from (96), ps (xt) from (97), and q (xt) from (98).

Notice that the economy of Section 7 corresponds to the special case of this economy with

ωt = 0 for all t (which in turn implies λbi = 0 for all i, so (102) is dropped from the set of

equilibrium conditions). The following result shows that the benchmark nominal interest rate

we used in the economy of Section 7 (obtained by pricing a hypothetical bond that is not

actually traded) can be interpreted as the equilibrium nominal interest rate of an economy with

explicit open-market operations.

Proposition 10 Let {φsi , εs∗i , Zi, λsi}i∈M,s∈N be the equilibrium of the economy without bonds

under monetary policy {σij , µi}i,j∈M. Let {φ̃si , ε̃s∗i , Z̃i, λ̃si , λ̃bi}i∈M,s∈N be the equilibrium of the

economy with open-market operations under monetary policy {σij , µi, ωi}i,j∈M, with

ωi = ω̄

[
1 + αsθ

∫ εH

εs∗i

ε− εs∗i
εs∗i + φsi

dG(ε)

]
for some ω̄ ∈ (0, 1) .

Then

{φ̃si , ε̃s∗i , Z̃i, λ̃si , λ̃bi}i∈M = {φsi , εs∗i , Zi/ (1− ω̄) , (1− ω̄)λsi , ω̄}i∈M .

Moreover, the inflation rate is identical in both economies and given by

Π (xt,xt+1) ≡ φm (xt)

φm (xt+1)
=
Zi
Zj

µi
γt+1

.
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The nominal interest rate in the economy with open-market operations is given by

r̃i ≡
1

qi
− 1 = αsθ

∫ εH

εs∗i

ε− εs∗i
εs∗i + φsi

dG(ε),

and for σii ≈ 1, it is the same as the nominal interest rate in the economy with no bonds.

Proof. It is easy to verify that given {σij , µi, ωi}i,j∈M, the allocation {φ̃si , ε̃s∗i , Z̃i, λ̃si , λ̃bi}i∈M
proposed in the statement of the proposition satisfies the equilibrium conditions (100)-(104).

The inflation rate is the same in both economies since (87) is the same as (95). The expression

for the nominal rate in the economy with open-market operations follows from the fact that

qi = λ̃bi/ωi. Finally, notice (101) can be written as

Zi =
β̄

µi

∑
j∈M

σij(1 + r̃j)Zj ,

which for σii ≈ 1 implies r̃i ≈ ri, where ri is the nominal rate corresponding the economy with

no bonds, given by (27).
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D Supplementary material: related literature

The empirical component of our paper (Section 6) is related to a large empirical literature

that studies the effect of monetary policy shocks on asset prices. Like many of these studies,

we identify monetary policy shocks by focusing on the reaction of asset prices in a narrow

time window around FOMC monetary policy announcements. Cook and Hahn (1989), for

example, use this kind of event-study identification strategy (with an event window of one

day) to estimate the effects of changes in the federal funds rate on bond rates. Kuttner (2001)

conducts a similar analysis but shows the importance of focusing on unexpected policy changes,

which he proxies for with federal funds futures data. Cochrane and Piazzesi (2002) estimate

the effect of monetary policy announcements on the yield curve using a one-day window around

the FOMC announcement and the daily change in the one-month Eurodollar rate to proxy for

unexpected changes in the federal funds rate target. Bernanke and Kuttner (2005) use daily

event windows around FOMC announcements to estimate the effect of unexpected changes in

the federal funds rate (measured using federal funds futures data) on the return of broad stock

indices. Gürkaynak, Sack and Swanson (2005) focus on intraday event windows around FOMC

announcements (30 minutes or 60 minutes wide) to estimate the effects on the S&P500 return

and several Treasury yields of unexpected changes in the federal funds target and “forward

guidance” (i.e., information on the future path of policy contained in the announcement). More

recently, Hanson and Stein (2015) estimate the effect of monetary policy shocks on the nominal

and real Treasury yield curves using a two-day window around the announcement. Nakamura

and Steinsson (2015) also estimate the effects of monetary policy shocks on the nominal and real

Treasury yield curves, but they use a 30-minute window around the announcement. Gertler and

Karadi (2015) also use a 30-minute window around the announcement to estimate the response

of bond yields and credit spreads to monetary policy shocks. Rigobon and Sack (2004) propose

a heteroskedasticity-based estimator to correct for possible simultaneity biases remaining in

these event-study regressions.

Relatively fewer papers have attempted to identify the precise mechanism through which

surprise increases in the federal funds rate lead to a reduction in stock prices. Bernanke and

Kuttner (2005), for example, take one step in this direction by analyzing the response of more

disaggregated indices, in particular 10 industry-based portfolios. They find that the precision of

their estimates is not sufficient to reject the hypothesis of an equal reaction for all 10 industries.
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Firms differ along many dimensions, however, and a number of studies have focused on how

these may be related to different responses of their stock prices to policy shocks. Ehrmann

and Fratzscher (2004), for example, find that firms with low cash flows, small firms, firms

with low credit ratings, firms with high price-earnings multiples, or firms with high Tobin’s q

exhibit a higher sensitivity to monetary policy shocks. Ippolito et al. (2013) find that the stock

prices of bank-dependent firms that borrow from financially weaker banks display a stronger

sensitivity to monetary policy shocks, while bank-dependent firms that hedge against interest

rate risk display a lower sensitivity to monetary policy shocks. Gorodnichenko and Weber (2016)

document that after monetary policy announcements, the conditional volatility of stock market

returns rises more for firms with stickier prices than for firms with more flexible prices. Relative

to this literature, our contribution is to document and offer a theory of the turnover-liquidity

transmission mechanism that channels monetary policy to asset prices.

From a theoretical standpoint, the model we develop in this paper bridges the search-

theoretic monetary literature that has largely focused on macro issues and the search-theoretic

financial OTC literature that focuses on microstructure considerations. Specifically, we embed

an OTC financial trading arrangement similar to Duffie et al. (2005) into a Lagos and Wright

(2005) economy. Despite several common ingredients with those papers, our formulation is

different from previous work along two important dimensions.

In the standard formulations of the Lagos-Wright framework, money (and sometimes other

assets) are used as payment instruments to purchase consumption goods in bilateral markets

mediated by search. We instead posit that money is used as a medium of exchange in OTC

markets for financial assets. In the standard monetary model, money and other liquid assets

help to allocate goods from producers to consumers, while in our current formulation, money

helps to allocate financial assets among traders with heterogeneous valuations. This shift in

the nature of the gains from trade offers a different perspective that delivers novel insights into

the interaction between monetary policy and financial markets. For example, from a normative

standpoint, the new perspective emphasizes a new angle on the welfare cost of inflation that is

associated with the distortion of the optimal allocation of financial assets across investors with

high and low valuations when real balances are scarce. From a positive perspective, it explains

the positive correlation between nominal bond yields and real equity yields, something that the

conventional formulation in which monetary or real assets are used to buy consumption goods

cannot do.
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As a model of financial trade, an appealing feature of Duffie et al. (2005) is its realistic OTC

market structure consisting of an interdealer market and bilateral negotiated trades between

investors and between investors and dealers. In Duffie et al. (2005), agents who wish to buy

assets pay sellers with linear-utility transfers. In addition, utility transfers from buyers to sellers

are unconstrained, so effectively there is no bound on what buyers can afford to purchase in

financial transactions. Our formulation keeps the appealing market structure of Duffie et al.

(2005) but improves on its stylized model of financial transactions by considering traders who

face standard budget constraints and use fiat money to purchase assets. These modifications

make the standard OTC formulation amenable to general equilibrium analysis and deliver a

natural transmission mechanism through which monetary policy influences asset prices and the

standard measures of financial liquidity that are the main focus of the microstructure strand of

the OTC literature.

Our theoretical work is related to several previous studies, e.g., Geromichalos et al. (2007),

Jacquet and Tan (2012), Lagos and Rocheteau (2008), Lagos (2010a, 2010b, 2011), Lester et

al. (2012), and Nosal and Rocheteau (2013), which introduce a real asset that can (at least to

some degree) be used along with money as a medium of exchange for consumption goods in

variants of Lagos and Wright (2005). These papers identify the liquidity value of the asset with

its usefulness in exchange and find that when the asset is valuable as a medium of exchange,

this manifests itself as a “liquidity premium” that makes the real asset price higher than the

expected present discounted value of its financial dividend. High anticipated inflation reduces

real money balances; this tightens bilateral trading constraints, which in turn increases the

liquidity value and the real price of the asset. In contrast, we find that real asset prices are

decreasing in the rate of anticipated inflation. There are some models that also build on Lagos

and Wright (2005) where agents can use a real asset as collateral to borrow money that they

subsequently use to purchase consumption goods. In those models, anticipated inflation reduces

the demand for real balances, which in turn can reduce the real price of the collateral asset

needed to borrow money (see, e.g., He et al., 2012, and Li and Li, 2012). The difference is

that in our setup, inflation reduces the real asset price by constraining the reallocation of the

financial asset from investors with low valuations to investors with relatively high valuations.50

50In the model that we have developed here, money is the only asset used as means of payment. It would be
straightforward, however, to enrich the asset structure so that investors may choose to carry other real assets
that can be used as means of payment in the OTC market, e.g., along the lines of Lagos and Rocheteau (2008)
or Lagos (2010a, 2010b, 2011). As long as money is valued in equilibrium, we anticipate that the main results
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We share with two recent papers, Geromichalos and Herrenbrueck (2016) and Trejos and

Wright (2016), the general interest in bringing models of OTC trade in financial markets within

the realm of modern monetary general equilibrium theory. Trejos and Wright (2016) offer an

in-depth analysis of a model that nests Duffie et al. (2005) and the prototypical “second

generation” monetary search model with divisible goods, indivisible money, and a unit upper

bound on individual money holdings (e.g., Shi, 1995 or Trejos and Wright, 1995). Trejos and

Wright (2016) emphasize the different nature of the gains from trade in both classes of models.

In monetary models, agents value consumption goods differently and use assets to buy goods,

while in Duffie et al. (2005), agents trade because they value assets differently, and goods that

are valued the same by all investors are used to pay for asset purchases. In our formulation,

there are gains from trading assets, as in Duffie et al. (2005), but agents pay with money, as

in standard monetary models. Another difference with Trejos and Wright (2016) is that rather

than assuming indivisible assets and a unit upper bound on individual asset holdings, as in Shi

(1995), Trejos and Wright (1995), and Duffie et al. (2005), we work with divisible assets and

unrestricted portfolios, as in Lagos and Wright (2005) and Lagos and Rocheteau (2009).

Geromichalos and Herrenbrueck (2016) extend Lagos and Wright (2005) by incorporating

a real asset that by assumption cannot be used to purchase goods in the decentralized market

(as usual, at the end of every period agents choose next-period money and asset portfolios in

a centralized market). The twist is that at the very beginning of every period, agents learn

whether they will want to buy or sell consumption goods in the subsequent decentralized market,

and at that point they have access to a bilateral search market where they can retrade money

and assets. This market allows agents to rebalance their positions depending on their need for

money, e.g., those who will be buyers seek to buy money and sell assets. So although assets

cannot be directly used to purchase consumption goods as in Geromichalos et al. (2007) or Lagos

and Rocheteau (2008), agents can use assets to buy goods indirectly, i.e., by exchanging them for

cash in the additional bilateral trading round at the beginning of the period. Geromichalos and

Herrenbrueck use the model to revisit the link between asset prices and inflation. Mattesini and

Nosal (2016) study a related model that combines elements of Geromichalos and Herrenbrueck

(2016) and elements of Lagos and Zhang (2015) but considers a new market structure for the

interdealer market.

The fact that the equilibrium asset price is larger than the expected present discounted value

emphasized here would continue to hold.
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that any agent assigns to the dividend stream is reminiscent of the literature on speculative

trading that can be traced back to Harrison and Kreps (1978). As in Harrison and Kreps

and more recent work, e.g., Scheinkman and Xiong (2003a, 2003b) and Scheinkman (2013),

speculation in our model arises because traders have heterogeneous asset valuations that change

over time: investors are willing to pay for the asset more than the present discounted value that

they assign to the dividend stream, in anticipation of the capital gain they expect to obtain

when reselling the asset to higher-valuation investors in the future. In terms of differences, in the

work of Harrison and Kreps or Scheinkman and Xiong, traders have heterogeneous stubborn

beliefs about the stochastic dividend process, and their motive for trading is that they all

believe (at least some of them mistakenly) that by trading the asset they can profit at the

expense of others. In our formulation, traders simply have stochastic heterogeneous valuations

for the dividend, as in Duffie et al. (2005). Our model offers a new angle on the speculative

premium embedded in the asset price, by showing how it depends on the underlying financial

market structure and the prevailing monetary policy that jointly determine the likelihood and

profitability of future resale opportunities. Through this mechanism, our theory can generate

a positive correlation between trade volume and the size of speculative premia, a key stylized

fact that the theory of Scheinkman and Xiong (2003b) also explains.

Piazzesi and Schneider (2016) also emphasize the general idea that the cost of liquidity can

affect asset prices. In their model, the cost of liquidity to end users depends on the cost of

leverage to intermediaries, while our model and our empirical work instead center on the role of

the nominal policy rate, which represents the cost of holding the nominal assets used routinely

to settle financial transactions (e.g., bank reserves, real money balances).
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