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1 Introduction

Observing asset returns should provide information about how future cash flows are dis-

counted. This is the fundamental insight of Hansen and Jagannathan (HJ, 1991), who

derived a minimum variance stochastic discount factor (SDF) bound. This SDF variance

bound proved extremely useful for diagnosing asset pricing models, return predictability,

variance spanning tests, and performance measurement. The SDF is obtained by a linear

projection of the observed payoffs of a set of basis securities, with the goal of pricing exactly

these assets. In Hansen and Jagannathan (1997), they extend the approach to measure the

distance of misspecified asset pricing models with respect to the family of such SDFs that

correctly price the basis assets. In both papers, they measure distance with a quadratic

norm that involves only the first two moments of observed payoffs or returns.

While very useful, pricing kernels obtained by linear projections may not be informative

enough to diagnose asset pricing models. Snow (1991) proposed SDF bounds that go beyond

the HJ quadratic norm and integrate information about moments of returns higher than

the variance. Snow (1991) derives bounds on the δth norm of a SDF m and shows that

setting a bound on the δth moment of m can be done by creating an option on a portfolio

of the payoffs x of the primitive assets such that the option payoff z raised to the (ρ − 1)

power correctly prices the asset payoffs: E[zρ−1x] = E[q], with 1
δ

+ 1
ρ

= 1. Note that

this imposes a positivity constraint on m. The methodology used by Snow (1991) imposes

a further constraint on the norm (δ > 1).1 These two constraints taken together often

introduce pricing errors in the primitive assets, which is at odds with the original idea of

HJ to derive the SDF bounds. Our first contribution is to propose a family of positive

SDFs that correctly prices the primitive assets and that incorporates information about

moments of returns higher than the variance.

Given a set of basis assets payoffs, we minimize general convex functions of SDFs called

Minimum Discrepancy (MD) measures (Corcoran, 1998) in order to obtain a projected

nonlinear SDF that prices exactly the selected basis assets2. We derive new bounds for the

SDF, called information bounds, that naturally extend the original HJ variance bounds and

the extended bounds proposed by Snow (1991). A well-known example of such discrepancy

measures is the Kullback-Leibler information criterion (KLIC). Stutzer (1995) diagnosed

1The δ > 1 constraint comes from the Holder inequality methodology used by Snow (1991) to solve the

problem. Bounds on the δth norm of m infE[mδ]
1
δ are formed using the ρth moments of asset returns

E(π(p)) ≤ E[mδ]
1
δE[p+ρ]

1
ρ , with 1

δ + 1
ρ = 1, with δ > 1.

2Minimum Discrepancy measures of the Cressie Read (1984) family have been recently adopted in the
econometric literature as one step alternatives to Generalized Method of Moments (GMM) estimators (see
Newey and Smith (2004), Kitamura (2006))

1



asset pricing models with information functions implied by this criterion3. We choose

a family of discrepancy functions that admits as particular cases the HJ (1991) quadratic

criterion and the KLIC, but offers other information criteria that have different implications

for diagnosing models and assessing their pricing properties.

The fact that the primitive assets are not well priced raises an important issue about the

validity of the obtained bounds. For example, take the HJ variance bound with positivity

constraint. If the implied SDF does not price well the primitive assets this bound will be

below the minimum variance HJ bound, obtained without the positivity constraint. Our

methodology provides a way to obtain a positive SDF with a variance bound that is closest

to the minimum variance HJ bound but with the advantage that it prices the basis assets

without error.

The solutions for these SDFs are obtained through dual problems that are easier to solve

than the primal problems and offer a nice economic interpretation. Each primal minimum

discrepancy problem corresponds to a dual optimal portfolio problem, with the maximiza-

tion of a specific utility function in the Hyperbolic Absolute Risk Aversion (HARA) family.

This duality has been stressed in HJ (1991) where maximizing the Sharpe ratio in the

space of excess returns corresponds to finding a minimum variance in the space of SDFs4.

The first-order conditions for these HARA optimization problems imply SDFs that are

nonlinear and positive, directly generalizing the linear SDF in HJ (1991) with positivity

constraints5. It also captures Snow (1991), who focused his analysis on specific moments on

the space of SDFs, as a particular case. Our approach considers combinations of moments

of SDFs.

Our implied nonlinear SDFs are related to a number of previous studies that feature

nonlinear SDFs. Bansal and Viswanathan (1993) propose a neural network approach to

construct a nonlinear stochastic discount factor that embeds specifications by Kraus and

Litzenberger (1976) and Glosten and Jagannathan (1994). Our approach provides a family

of SDFs given by different hyperbolic functions of basis assets returns implied by portfolio

problems. In Dittmar (2002), who also analyzes nonlinear pricing kernels, preferences re-

3Stutzer (1996) used the same information theoretical approach based on the entropy measure to extract
canonical probabilities, that is, risk-neutral probabilities that price consistently a set of options using
as basis assets the underlying asset or adding to it other traded options. Our methodology naturally
generalizes his approach to discrepancy measures other than the entropy measure.

4Our approach encompasses the exponential tilting (ET) criterion of Stutzer (1995) and its corre-
sponding optimum portfolio of a CARA investor, as well as the empirical likelihood (EL) criterion and
its corresponding log utility maximizing portfolio, denominated growth portfolio by Bansal and Lehmann
(1997).

5HJ (1991) consider two variance bounds, the first for the family of all admissible SDFs, the second
restricting that family to consider only strictly positive SDFs. We generalize the second HJ problem
because we are interested in implications compatible with arbitrage-free economies.
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strict the definition of the pricing kernel. Under the assumption of decreasing absolute risk

aversion, he finds that a cubic pricing kernel is able to best describe a cross-section of in-

dustry portfolios. Our nonparametric approach embeds such cubic nonlinearities implicitly.

Although not based on preferences, our pricing kernels are also consistent with dual HARA

utility functions that can exhibit decreasing absolute risk aversion and decreasing absolute

prudence6. Boyle et al. (2008) obtain robust prices for derivative securities based on SDFs

that cause minimum perturbations on prices of derivatives payoffs. Our methodology, if

used to price derivatives will provide pricing intervals based on the SDFs implied by our

chosen family of discrepancies.

From an econometric point of view, our implied SDFs are closely related to the so called

implied probabilities that appear in MD estimation problems. They are a set of proba-

bilities optimally chosen (on a discrepancy sense) such that they reweight the sampling

empirical probabilities in order to make the estimated model to satisfy a set of imposed

moment conditions. While Back and Brown (1993) derived implied probabilities for GMM

estimators, Owen (1988) provide implied probabilities for EL, Kitamura and Stutzer (1997)

for ET, Imbens et al. (1998) for Cressie Read, and Brown and Newey (2002) for Generalized

Empirical Likelihood (GEL) estimators. Smith (2004) shows how those probabilities can

be used to obtain efficient moment estimation as in Brown and Newey (1998). Our SDFs

represent a novel contribution to this literature since they can be seen as a scaled nonpara-

metric version of GEL implied probabilities constrained to be strictly positive under the

whole Cressie Read family7.

A significant literature aims at sharpening the variance bounds by conditioning on

information available to economic agents. Gallant, Hansen and Tauchen (1990) derive an

optimal variance bound when the first two conditional moments are known, while Bekaert

and Liu (2004) propose an optimally-scaled bound which is valid even when the first and

second conditional moments are misspecified. Chabi-Yo (2008) introduces higher moments

of returns in volatility bounds by finding the SDFs that are linear functions of payoffs

and squared payoffs (volatility contracts), linking these bounds to skewness and kurtosis

6Dittmar (2002) starts with an approximation of an unknown marginal utility function by a Taylor series
expansion but restricts the polynomial terms in the expansion by imposing decreasing absolute prudence
(Kimball, 1993). Therefore, the risk factor obtains endogenously from preference assumptions and is a sole
function of aggregate wealth. Our SDFs come from solutions to dual optimal HARA portfolio problems
that endogenously determine aggregate wealth as a linear combination of a predetermined set of basis
assets. These solutions potentially satisfy the desirable properties of decreasing absolute risk aversion
(Arditti, 1967) and decreasing absolute prudence.

7For the particular case of Euclidean Likelihood estimators, Antoine, Bonnal and Renault (2007) pro-
pose an alternative simple shrinkage of implied probabilities towards sampling empirical probabilities to
guarantee that they become positive.
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of returns8. In contrast, the discrepancy measures we propose in this paper put weights

on all moments of the distribution of returns in the dual optimization problem. Moreover,

by considering a family of discrepancy measures, we add robustness to our diagnosis since

each discrepancy puts different weights on the moments of returns. Another strand of

literature uses conditioning information to evaluate the performance of managed portfolios.

A representative example is the study by Farnsworth et al. (2002). They consider several

parametric models, both linear and nonlinear, to measure the investment performance

of fund managers. We extend the literature on conditional performance measurement by

producing conditional measures that take into account all conditional moments of the SDFs.

Conditional approaches have the potential advantage of having thinner-tailed condi-

tional distributions that control better the effect of extreme observations on the moments

of the asset returns. However, our generalized discrepancy measures, even taken uncondi-

tionally, are better able to capture the effect of these extreme observations because they

account for higher moments in the unconditional distribution of returns. This is especially

important when evaluating performance of managed portfolios since private information

on which fund managers condition their trades is unobservable. In this case only the po-

tentially fatter-tailed unconditional returns are observable. Our unconditional SDFs will

account for the effect of this unobservable information.

We propose three empirical applications to illustrate the usefulness of our approach. The

first involves diagnosing asset pricing models. We revisit the admissibility of consumption-

based asset pricing models (CCAPMs). We start by showing that for a large number of

information bounds, the traditional CCAPM with power utility only becomes admissible

with high risk-aversion coefficients (of the order of 30), reinforcing the classical results of

HJ9.

We also analyze the polynomial version of Chapman’s (1997) CCAPM considering two

different sets of basis assets returns. First, we adopt a traditional set of basis assets (the

one-year Treasury bill and the S&P 500) and conclude that the Chapman’s model lies in

the feasible region for a large number of discrepancies, especially when larger weights are

attributed to higher moments of returns. However, it is inadmissible for discrepancies in the

neighborhood of the KLIC criterion10. Then, we calibrate Chapman’s SDF taking as basis

8Balduzzi and Kallal (1997) add risk variables in addition to asset returns and obtain more stringent
bounds than the HJ bounds. Kan and Zhou (2006) tighten the HJ bound by assuming that the pricing
kernel is a reduced-form function of a finite set of state variables.

9The HJ bound showed clearly the inadmissibility of the basic CCAPM model with power utility for
reasonably low values of the risk aversion parameter, but more elaborate versions with non-separable
utility (Heaton, 1995), incomplete markets (Constantinides and Duffie, 1996) or polynomial pricing kernels
(Chapman, 1997) lied inside the feasible region defined by the bound.

10In this paper, we do not provide statistical tests based on the probability distribution of the information
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assets the returns on the three Fama and French (FF) factors. The HJ SDF with positivity

constraint implies large pricing errors for the FF factors. It means that the diagnosis about

the admissibility of Chapman’s model will be tainted. Our bounds identify nonlinear SDFs

that perfectly price the Fama and French factors and imply higher volatilities than the HJ

SDF with positivity constraint, which imposes a more stringent test on the admissibility

of the Chapman’s model.

In a second application, we examine the information structure of industry portfolios and

Fama and French portfolios through the lens of our family of nonlinear SDFs. Lewellen,

Nagel, and Shanken (2009) suggest that industry portfolios should be used in addition to

Fama and French portfolios to make more robust inference about asset pricing models. We

generate information frontiers based on these two sets of assets. For different discrepancies

in our family, industry portfolios consistently bring non-redundant information over and

above Fama and French portfolios under different ranges of SDF means. In particular,

for minimum-discrepancy estimators putting more weight on higher moments of returns,

industry portfolios generate frontiers above the frontiers generated by Fama and French

portfolios for an important range of SDF means.

In the last application, we evaluate the performance of hedge funds with the nonlinear

SDFs implied by the minimum-discrepancy estimators11. Hedge funds use dynamic trading

strategies that produce returns exhibiting nonlinear patterns. To capture nonlinearities

and measure the alpha performance of the funds, Agarwal and Naik (2004) use a linear

regression in which they introduce the returns on a portfolio of options along with the

other usual risk factors.12 Diez and Garcia (2009) estimate and test the presence of option-

like nonlinearities in hedge fund returns and determine whether hedge funds provide value

to investors. We exploit the generality of our family of nonlinear SDFs to evaluate the

performance of hedge funds and compare it to these two approaches. Our analysis accounts

explicitly for higher moments of returns induced by option-like strategies. Moreover, an

important feature of our discrepancy-based approach is the possibility to capture more

complex nonlinearities since options portfolios can be included as basis assets. We find that

the various SDFs almost always agree on the performance of the best and worst fund indices,

bounds. For the asymptotic distribution of our information bounds see Almeida and Garcia (2010); for the
asymptotic distribution of the HJ bounds see Hansen, Heaton and Luttmer (1995), and Kan and Robotti
(2007) for finite sample properties.

11The stochastic discount factor approach has been widely used to measure the performance of managed
portfolios. With this approach, abnormal performance is measured by the expected product of a portfolio’s
returns and a stochastic discount factor. The evaluation can proceed unconditionally or conditionally to a
set of lagged instruments. See for instance, Ferson and Siegel (2003), Farnsworth et at. (2002), and Bailey,
Li and Zhang (2004).

12See also Mitchell and Pulvino (2001) and Fung and Hsieh (2001) for characterizing hedge fund returns
as returns from option-based trading strategies.
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but that they differ in the ranking of the intermediate ones. Alpha valuations obtained

with the implied nonlinear SDFs are not always in line with performances exhibited when

introducing option factors linearly.

Our multiplicity of discrepancy measures allows us to conduct a robustness analysis

on the performance of hedge funds. In particular we search for a value of the parameter

indexing our family of discrepancy measures that produces a zero performance of the fund,

if any. In another robustness exercise, we use an estimator that averages across a range of

HARA functions, and solves the portfolio problem of this averaging function to obtain the

corresponding nonlinear SDF. Therefore, by combining functions, we extend the original

family, since a linear combination of HARA functions is not a HARA function.

The rest of the paper is organized as follows. In section 2, we describe how the min-

imum discrepancy SDFs are derived in a variety of contexts. Section 2.2 makes explicit

the corresponding dual optimal portfolio problems. Section 2.4 extends the analysis to

conditional settings. Section 2.5 considers two extensions of our nonparametric method-

ology: Minimum-discrepancey estimators of parametric models and assessment of model

misspecifications in the spirit of Hansen and Jagannathan (1997). In Section 3, we present

three empirical applications. First, we illustrate how the minimum discrepancy SDFs can

be used to provide robust diagnostics of asset pricing models. Then, we explore the dif-

ferences between various minimum discrepancy bounds to identify information contents in

Fama-French and industry portfolios. In the last empirical example, we analyze the prob-

lem of performance evaluation of hedge funds. We describe our nonparametric approach

to performance measurement and contrast it with the parametric approaches used in the

literature. Section 4 concludes.

2 Minimum Discrepancy Stochastic Discount Factors

We adopt the same setting as Hansen and Jagannathan (1991). Let R denote the vector

of returns of basis assets whose realizations are given by a time series {Ri}i=1,...,T in a

K-dimensional space. First, we are looking for admissible SDFs that are functions of these

returns.13 We make use of the definition of an admissible SDF as a set of moment conditions,

the Euler equations. For an arbitrary admissible SDF m the Euler equation holds for all

K basis assets returns:

E(mR) = 1K , (1)

13We are not making a complete markets assumption, in the sense that there exists an infinite number
of SDFs (or pricing kernels) that are admissible with respect to that set of basis assets (Duffie, 2001).
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where 1K represents a K-dimensional vector of ones. On its sample form, for a SDF with

mean a, the Euler equations become:

1

T

T∑
i=1

mi

(
Ri −

1

a
1K

)
= 0K . (2)

where 0K is a K-dimensional vector of zeros.

The next step is to restrict the set of admissible SDFs. Hansen and Jagannathan (1991)

find an admissible linear SDF with minimum variance, obtained by minimizing a quadratic

function in the space of admissible SDFs. Instead, given a convex and homogeneous dis-

crepancy function φ, we search for a Minimum Discrepancy (MD) SDF that solves the

following minimization problem in the same space of admissible SDFs:

m̂MD = arg min
{m1,...mT }

1
T

∑T
i=1 φ(mi),

subject to 1
T

∑T
i=1mi

(
Ri − 1

a
1K
)

= 0K ,
1
T

∑T
i=1 mi = a,mi > 0 ∀i.

(3)

In this optimization problem, restrictions to the space of admissible SDFs come directly

from the general discrepancy function φ14. The conditions
∑T

i=1mi

(
Ri − 1

a
1K
)

= 0K and
1
T

∑T
i=1mi = a must be obeyed by any admissible SDF m with mean a. In addition,

we explicitly impose a positivity constraint to guarantee that the implied MD SDF is

compatible with absence of arbitrage in an extended economy containing derivatives of

basis assets (Chen and Knez, 1996).

This minimization problem is based on the space of discrete SDFs with dimension T (the

dimension of the sample of data), which can become impractical. According to Borwein

and Lewis (1991), the minimization problem can be solved in a generally much smaller

dimensional space by using the following dual problem:

λ̂ = arg sup
α∈<,λ∈Λ

a ∗ α−
T∑
i=1

1

T
φ∗,+

(
α + λ′

(
Ri −

1

a
1K

))
, (4)

where Λ ⊆ RK and φ∗,+ denotes the convex conjugate of φ restricted to the positive real

line:

φ∗+(z) = sup
w>0

zw − φ(w). (5)

Note that any convex discrepancy function can be chosen to arrive at empirical esti-

mates of these minimum discrepancy SDFs. We choose the Cressie-Read (1984) family of

14Restrictions on the space of SDFs other than those imposed by variance have been analyzed by Snow
(1991), Stutzer (1995), Bansal and Lehmann (1997), Bernardo and Ledoit (2000), and Cerny (2003). Our
approach contains all these papers as particular cases.
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discrepancies defined as:

φγ(m) =
(m)γ+1 − aγ+1

γ(γ + 1)
, γ ∈ <, (6)

where each fixed value of γ implies one specific discrepancy function. This family embeds

as particular cases the SDFs derived by HJ (1991), Snow (1991), Stutzer (1995), Bansal

and Lehmann (1997) and Cerny (2003). In addition, it offers a nice economic motivation to

our information theoretic minimization problems since they are equivalent to dual HARA

utility maximization problems.15

Before we make explicit this equivalence, we show in the next sub-section how to solve

the dual problem and recover the restricted admissible SDF. We then derive SDF frontiers

to parallel the minimum-variance frontier of HJ (1991). We conclude this section with

several extensions to the basic methodology.

2.1 Finding the Optimal Admissible Minimum-Discrepancy (MD) SDF

In the following theorem, we provide the solution method to obtain an admissible SDF

that obeys the restrictions imposed by the discrepancy function. After solving the dual

problem, we recover the MD SDF by using the first-order conditions of this maximization

problem.

Theorem 1. Let the discrepancy function belong to the class of Cressie Read functions:

φ(m) = mγ+1−aγ+1

γ(γ+1)
with γ ∈ <. In this case, the optimization problem in equation (4)

specializes to:

λ̂γ = arg sup
λ∈ΛCR

1

T

T∑
i=1

(
aγ+1

γ + 1
− 1

γ + 1

(
aγ + γλ′

(
Ri −

1

a
1K

))( γ+1
γ

)
)
, (7)

where ΛCR = {λ ∈ RK , s.t. for i = 1, ..., T :
(
1 + γλ′

(
Ri − 1

a
1K
))
> 0}.

Proof: See Appendix A.

For each choice of γ we obtain a distinct set of estimates for λ (λ̂γ) that will lead to a

different MD stochastic discount factor (m̂γ
MD). The MD SDF m̂γ

MD is recovered via the

first-order conditions of Equation (7) with respect to λ, evaluated at the optimal Lagrange

Multipliers λ̂ that solve (7):

1

T

T∑
i=1

(
aγ + γλ̂′γ

(
Ri −

1

a
1K

)) 1
γ
(
Ri −

1

a
1K

)
= 0K (8)

By comparing Equation (8) to Equation (3) we obtain the MD SDF:

15In section 2.5, we will further support the choice of this family on econometric grounds.
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m̂i
MD = a

(
aγ + γλ̂′γ

(
Ri − 1

a
1K
)) 1

γ

1
T

∑T
i=1

(
aγ + γλ̂′γ

(
Ri − 1

a
1K
)) 1

γ

, i = 1, ..., T. (9)

Note that the population form for the SDF solving the MD bound problem will be a

hyperbolic function of the original returns R:

m̂MD(R) = a

(
aγ + γλ̂′γ

(
R− 1

a
1K
)) 1

γ

E

[(
aγ + γλ̂′γ

(
R− 1

a
1K
)) 1

γ

] . (10)

2.2 Interpretation as an Optimal Portfolio Problem

Problem (7) has an interesting economic interpretation as an optimal portfolio problem.

The solution for the MD bound for each Cressie Read estimator will correspond to an

optimal portfolio problem based on the following HARA-type utility function

u(W ) = − 1

γ + 1
(aγ − γW )( γ+1

γ
) , (11)

with a > 0 and W such that aγ−γW > 0, which guarantees that function u is well defined

for an arbitrary γ, is concave and strictly increasing.

Specific values of γ will specialize the optimal portfolio problems to widely adopted

utility functions. A value of −1 will correspond to a logarithmic utility function, 0 to the

exponential, and 1 to quadratic utility16. The corresponding SDFs will be:

m̂{γ=−1}(R) = µ ∗ 1

( 1
a
− λ̂′

(
R− 1

a
1K
)
)
; (12)

m̂{γ=0}(R) = µ ∗ eλ̂′(R−
1
a

1K); (13)

m̂{γ=1}(R) = µ ∗
(
a+ λ̂′

(
R− 1

a
1K

))
. (14)

where, in each case, µ is such that the SDF mean equals a.

Stutzer (1995) proposed an interpretation for the exponential case based on a standard

two-period model of optimal portfolio choices (see Huang and Litzenberger (1988)). We

extend this interpretation to the whole Cressie-Read family. Suppose an investor distributes

16For γ = 1, similarly to HJ, the optimal SDF will be a linear function of excess returns. Note that the
Lagrange Multipliers λγ=1 are restricted via the optimization domain (ΛCR) to guarantee a positive SDF,
exactly as in HJ with positivity constraint.
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his/her initial wealth W0 putting λj units of wealth on the risky asset Rj and the remaining

W0 −
∑K

j=1 λj in a risk-free asset paying rf = 1
a
. Terminal wealth is then W = W0 ∗ rf +∑K

j=1 λj ∗ (Rj − rf ). Assume in addition that this investor maximizes the HARA utility

function provided above in equation (11), solving the following optimal portfolio problem:

Ω = sup
λ∈Λ

E (u(W )) , (15)

where Λ = {λ : 1 − γW (λ) > 0}. Note that by scaling the original vector λ to be λ̃ =

−λ
(aγ− γW0

a )
, we can decompose the utility function in u(W ) = u(W0∗rf )∗

(
aγ + γλ̃

(
R− 1

a
1K
))( γ+1

γ
)

.

This decomposition essentially shows that solving the optimality problem in (7) will mea-

sure the gain achieved when switching from a total allocation of wealth to the risk-free

asset paying rf to an optimal (in the utility u sense) diversified allocation that includes

both risky assets and the risk-free asset.

2.3 Minimum Discrepancy SDF Frontier

To complete our characterization of MD SDFs, we provide an operational algorithm to

obtain such variables when there is no risk-free asset in the space of returns. Similarly to

HJ, the idea is to propose a grid of possible meaningful values for the SDF mean, say fixing

a set A = {a1, a2, ..., aJ}, and to solve the optimization problem in (7) for each al ∈ A,

obtaining a corresponding optimal weights vector λ̂γ(al) for each SDF mean. The SDF

frontier is given by the following expression:

IP (al, γ) =
aγ+1
l

1 + γ
+

1

T

T∑
i=1

− 1

γ + 1

(
aγl + γλ̂γ(al)

′
(
Ri −

1K
al

))( γ+1
γ

)

, l = 1, 2, ..., J. (16)

Alternatively, we can go back to the basic definition of the bound as a minimum discrep-

ancy problem, and write the solution by first obtaining the implied MD SDFs appearing

in Equation (9) m̂i
MD,al

, and substitute it in the sampled divergence function φ, obtaining

the MD SDF frontier17:

IMD(al, γ) =
1

T

T∑
i=1

(m̂i
MD,al

)γ+1 − aγ+1
l

γ(γ + 1)
, l = 1, 2, ..., J. (17)

17Expressions in (16) and (17) should be equivalent, but this may not be the case in some empirical
applications where part of the implied MD SDFs could potentially become negative, if not restricted to be
positive. In such cases forcing a positive solution could generate different solutions for the primal and dual
problems, with larger MD primal values. See Borwein and Lewis (1991) for some mathematical examples.
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2.3.1 HJ with Positivity Constraint as a Particular Case

When we choose γ = 1 on the Cressie Read family, the discrepancy function becomes

φ(m) = m2−a2
2

, and we are solving the following MD SDF bound:

m̂MD(γ=1) = arg min
{m1,...mT }

1
T

∑T
i=1

m2
i−a2
2

,

subject to 1
T

∑T
i=1mi

(
Ri − 1

a
1K
)

= 0, 1
T

∑T
i=1mi = a,mi > 0 ∀i.

(18)

for SDFs with a fixed mean value equal to a.

This equation represents, apart from a normalization factor of 1
2
, the HJ (1991) variance

bound with a positivity constraint.

2.3.2 Snow (1991) Moment Specific Approach as a Particular Case

Snow (1991) solved moment specific problems of the type inf
m>0

E[mδ]
1
δ , for δ > 1, where m

is an admissible SDF. They correspond, apart from an affine transformation, to Cressie

Read discrepancies where γ > 0. However, they do not include important cases like ET

(γ = 0) and EL (γ = −1) whose discrepancies are respectively φ(m) = mln(m) and

φ(m) = −ln(m). Moreover, Cressie Read discrepancies with γ ≤ 0 include interesting

cases of minimization of SDF moments with power smaller than one and also the special

cases of discrepancies considering negative moments of SDFs whose Taylor expansions

reveal combinations of SDF moments. As stressed before, in contrast to Snow (1991), our

approach gives a robust treatment to diagnostics of models and trading strategies, and

in addition deals with discrepancies that consider combinations of moments of SDFs that

are economically motivated. As will be clear in the empirical examples, the implied SDFs

from Snow (1991) in most cases present pricing errors for primitive assets, while SDFs

that are implied by minimization of Cressie Read discrepancies with γ ≤ 0 in general price

primitive assets without pricing errors, perfectly satisfying the moment conditions implied

by the Euler equations.

2.4 Conditioning Information

An important extension of our methodology considers conditioning information when solv-

ing the MD bounds and obtaining the corresponding implied SDFs. This can be naturally

implemented by introducing conditional expectations on Equation (1)

E(mt+1Rt+1|It) = 1K , (19)

where It is the information set at time t.
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Bekaert and Liu (BL, 2004) discuss three types of variance bounds using conditioning

information: the naive approach, the Gallant, Hansen and Tauchen (GHT, 1990) efficient

conditioning bound, and their optimally scaled bound (OS). The three approaches use the

concept of a scaled return R̃t+1 = z′tRt+1, where the scale is given by an It−measurable

K-dimensional random variable zt, with K being the dimension of the basis assets return

vector. The idea is to assume that the conditional expectation in (19) could be substituted

by an infinity of unconditional expectations of the type:

E(mt+1ztRt+1) = 1′Kzt. (20)

The BL methodology consists in finding the instrument zt that maximizes the HJ volatil-

ity bound for the scaled returns R̃. BL show that the OS bound is superior to the naive

approach since it finds the optimal scaling instrument instead of testing all possible com-

binations of instrumental It−measurable variables. They also show that the OS bound

coincides with the GHT bound when the first and second conditional moments of returns

are known. Moreover, their approach delivers a valid bound even when a misspecification

of the conditional moments invalidates the GHT bound. Due to the superiority of BL’s

approach we dedicate this section to deriving, from a theoretical point of view, optimally

scaling Minimum Discrepancy bounds that consider all Cressie Read MD functions instead

of a variance bound. The naive approach is obtained as a by-product of our calculations,

being a particular case of the OS case.

Let the vector yt represent the set of (Markovian) conditioning variables of the economy

such that It = σ(yt), where σ(.) represents the σ−algebra generated by (.). Given an

instrument zt, consider the one-dimensional scaled payoff space Pzt = {αz′tRt+1, α ∈ <}.
It should be clear that the infinitely many It-measurable instruments zt define a family of

scaled payoff spaces indexed by zt. Note that for each member in the Cressie Read family

(γ), there is a MD bound associated with each scaling vector zt, which only depends on the

unconditional moments of the scaled return ztRt+1. A small but important difference from

the approach in Section 2 is that scaled returns ztRt+1have prices 1′Kzt instead of 1. To

deal with this case, we have to solve a slightly more general version of Equation (4) that

deals with prices different from unity (see Borwein and Lewis (1991)):

λ̂ = arg sup
α∈<,λ∈Λ

a ∗ α +
T∑
t=1

λ1′Kzt−1 −
1

T
φ∗,+

(
α + λ

(
z′t−1Rt −

1

a

))
, (21)

where Λ ⊆ RK . Note that this is a one-dimensional problem in the Lagrange Multiplier

λ since the scaled return is a transformation from <k to <. Applying this equation to a

member of the Cressie Read family φ(m) = mγ+1−aγ+1

γ(γ+1)
we obtain:
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λ̂γ(z) = arg sup
λ∈ΛCR

1

T

T∑
t=1

(
aγ+1

γ + 1
+ λ1′Kzt−1 −

1

γ + 1

(
aγ + γλ

(
z′t−1Rt −

1

a

))( γ+1
γ

)
)
, (22)

where ΛCR = {λ ∈ R, s.t. for i = 1, ..., T :
(
1 + γλ

(
z′i−1Ri − 1

a

))
> 0}.

The first-order conditions of this problem with respect to λ indicate that the MD SDF

for a fixed instrument zt is:

m̂t
MD(z) = a

(
aγ + γλ̂γ(z)

(
zt−1Rt − 1

a

)) 1
γ

1
T

∑T
t=1

(
aγ + γλ̂γ(z)

(
zt−1Rt − 1

a

)) 1
γ

, t = 1, ..., T. (23)

According to Equation (17), the corresponding MD naive bound is given by:

IMD(a, γ, zt) =
1

T

T∑
t=1

(m̂t
MD(z))γ+1 − aγ+1

γ(γ + 1)
. (24)

We define then the optimally scaled MD bound to be:

IOSB(a, γ) = sup
zt

IMD(a, γ, zt) (25)

Note that we are not able to explicitly derive the optimal instrument as BL since there

are no analytical formulas for the Lagrange multiplier λ̂γ(z) that depend on the particular

instrument zt.
18

2.5 Extensions of the Basic Minimum-Discrepancy SDF Methodology

The problem of finding a minimum discrepancy SDF in section 2 can be cast in a more

general setting where the moment conditions include a candidate parametric asset pricing

model as follows: E[g(zi, β)] = 0, i = 1, ..., T , where {zi}i=1,...,T represents a stationary and

ergodic series of random vectors, g(., β) is a vector in Rm, and β is an unknown vector of

parameters on a set B ∈ RK . In such a generalized context, MD Estimators seek to estimate

β by finding a set of probabilities π that will reweight the sample empirical probabilities 1
T

to satisfy the moment conditions exactly (see Corcoran (1998)). The discrepancy between

the empirical probabilities 1
T

and π is measured through a convex divergence function φ.19

18However, if we decide to approximate the Lagrange multiplier by a parametric function of z, we could
obtain an explicit solution for the optimal instrument. We leave this topic for future research.

19See Kitamura (2006) for the formulation of the population problem.
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The parameter vector β and the probability measure π are estimated by:

{
β̂MD, π̂MD

}
= arg min

β∈B,{π1,...πT }

1

T

T∑
i=1

φ(Tπi), subj. to
T∑
i=1

πig(zi, β) = 0K ,
T∑
i=1

πi = 1 (26)

By solving this problem one essentially obtains a point estimate β̂MD for the vector of

parameters that satisfies the moment conditions and minimizes the discrepancy φ between

the implied probabilities π̂MD and the uniform weights 1
T

. Moreover, these implied proba-

bilities (Back and Brown (1993)) can be used to obtain an efficient estimation of moment

conditions and probability distribution functions via bootstrapping schemes (Brown and

Newey (1998)).

Newey and Smith (2004) showed that under the Cressie Read (1984) family of discrep-

ancies, given by φ(π) = (π)γ+1−1
γ(γ+1)

, the solution of the optimization problem (26) can be

obtained by looking at its dual version:20

{
β̂GEL, λ̂GEL

}
= arg min

β∈B
sup
λ∈Λ(β)

1
T

∑T
i=1−

1
γ+1

(1 + γλ′g(zi, β))( γ+1
γ

)

= arg min
β∈B

sup
λ∈Λ(β)

∑T
i=1M(λ′g(zi, β))

(27)

Theorem 2.2 in Newey and Smith (2004) states that the solutions to problems (26) and

(27) are coincident under the Cressie Read family, meaning that β̂MD = β̂GEL. Moreover,

the theorem shows how to recover the implied probabilities π̂MD via the first derivatives of

the function M , evaluated at the optimal set of parameters β̂GEL and Lagrange Multipliers

λ̂GEL that solve (27):

π̂iMD =
M1(λ̂′GELg(zi, β̂GEL))∑T
j=1M1(λ̂′GELg(zj, β̂GEL))

(28)

with M1(v) = dM(v)
dv

.

The dual optimization problem for MD Cressie Read estimators defines the important

class of Generalized Empirical Likelihood (GEL) estimators proposed by Smith (1997).

This class encompasses a large set of one-step estimators that are alternative to the two-

step GMM estimator, including EL (Owen (1988), Imbens (1997)), ET (Kitamura and

Stutzer (1997)), and Continuously Updating Estimator (CUE, Hansen, Heaton, and Yaron

(1996)), among others.

Our MD SDFs from Section 2 are obtained by making the parametric model to be a

constant and noting that each SDF m with mean a can be associated with a corresponding

20In fact, any convex discrepancy function defines a Generalized Minimum Contrast estimator whose
solution can be obtained through its dual portfolio-type problem (see Kitamura (2006)).
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risk-neutral probability measure π(m) (Cochrane, 2000), via a simple linear transformation

π(m) = m
T∗a , assuming that the risk-free rate is constant and equal to 1

a
, and that the

discrete physical probabilities are equal to the empirical probability 1
T

. The risk neutral

probabilities π(m) are precisely the implied probabilities by Back and Brown (1993).

Instead of assuming that there exists a true parametric model, we can adopt the point

of view of Hansen and Jagannathan (1997) and argue that all models are approximations

and therefore are misspecified. Hansen and Jagannathan (1997) compare misspecified as-

set pricing models based on least-square projections on a family of admissible stochastic

discount factors. Almeida and Garcia (2010) extend their fundamental contribution by

considering MD projections where misspecification is measured by convex functions that

can explicitly take into account combinations of moments of asset returns.

Given a proxy asset pricing model y, and a convex discrepancy function φ, the idea

posed by the MD problem is to find a positive admissible SDF which is as close as possible

to y in the φ discrepancy sense:

δMD(θ) = min
m∈L2

E{φ(1 +m− y(θ))} subject to E(mx) = q, ,m > 0. (29)

This problem should be of interest when the underlying primitive securities include assets

with non-Gaussian returns.

These two extensions complete the generalization of the approach developed by Hansen

and Jagannathan (1991, 1997) with a quadratic objective function.

3 Empirical Applications of the Minimum-Discrepancy SDF

We have explained how to generalize HJ volatility bounds to information bounds account-

ing for higher moments of the return distribution of basis assets. We now need to show

that this generalization matters in important ways in the main financial applications of the

HJ bounds. Among the most prominent ones is the use of the bounds to verify admissi-

bility of asset pricing models. Therefore, as a motivating example, we start by diagnos-

ing consumption-based asset pricing models, first diagnosing the canonical CCAPM as in

Hansen and Jagannathan (1991), and then examining the model of Chapman (1997) with a

polynomial SDF in consumption growth. In a second application, based on a variety of in-

formation bounds, we analyze how the information embedded in industry portfolios differs

from the information in Fama-French factors. Finally, since we recover a non-parametric

SDF taking into account higher moments of returns, it seems appropriate to use it to eval-

uate the performance of hedge funds, since their return distributions exhibit both skewness

and kurtosis.
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3.1 Diagnosing Asset Pricing Models

Hansen and Jagannathan (1991) illustrated the usefulness of their volatility bound by

plotting the mean-variance pairs of the canonical consumption-based asset pricing model

of Breeden (1979) for various values of the preference parameters. The CCAPM SDF is

given by:

mt = β

(
Ct
Ct−1

)−α
. (30)

Given a time series of consumption growth rates, one can compute the values of the mean

and the variance of the SDF given values for the parameters β and α. Hansen and Ja-

gannathan (1991) used the annual (1891- 1985) time-series data on stocks and bonds of

Campbell and Shiller (1988). We use a similar dataset updated to 2009 available on Shiller’s

website21 to illustrate their main point reaffirming the equity premium puzzle. The dataset

contains S&P 500 returns and both one-year nominal and real U.S. interest rates. In our

empirical applications we adopt S&P 500 returns representing stocks and either one-year

nominal or real U.S. interest rates representing the risk-free asset, depending on the partic-

ular application22. The average value for the nominal one-year rate was 4.67% and 1.91%

for the corresponding real rate. If adopted as the risk-free asset, those two rates will imply

SDF means equal to 0.9813 and 0.9554, respectively. Figure 2 plots the annual time series

of those two interest rates from 1890 to 2009.

When testing the CCAPM, the MD values for the consumption model are obtained by

using Equation (17). We verify that for a large range of CR discrepancy functions (γ ∈
[−5,−3,−1, 0, 1, 1.5]), the classic result that a high value of the risk aversion parameter is

needed to place the model in the admissible region is maintained. In other words, even for a

nonlinear SDF of the market return, the equity premium puzzle remains. This is consistent

with a number of results obtained in the literature. For instance, adopting equity and

risk-free data, Snow (1991) identified that frontiers for moments of the SDF smaller than

two become more restrictive (than variance bounds) with respect to the CCAPM model.

Based on Shiller’s dataset over the period 1890-1995, Julliard and Ghosh (2010) adopted

entropic estimators to estimate the CCAPM under disaster risk, obtaining a coefficient of

risk aversion of 32. Almeida and Garcia (2010) analyze in details the estimation of the

CCAPM model under a whole range of CR estimators, obtaining risk-aversion coefficients

21http://www.econ.yale.edu/ shiller/data.htm.
22For the diagnostic of the CCAPM models below we adopt the real interest rate as the risk-free asset.

On the other hand, when analyzing the HJ SDF with positivity constraint with Fama and French factors
as basis assets, we adopt both real and nominal rates to define an acceptable region for SDF means.
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higher than 30 for all adopted estimators.

Our next example considers, in the spirit of Chapman (1997), a consumption-based

model with polynomial consumption-growth terms. Under a fixed set of calibrated param-

eters, we compare the HJ variance bound to several MD bounds.

The stochastic discount factor of the nonlinear consumption model is given by:

mchap
t = θ0P0(xt) + θ1P1(xt) + θ2P2(xt), (31)

where xt is time t consumption growth, and Pi are the Legendre polynomials:

P0(x) =
√

(
1

2
),

P1(x) =
√

(
3

2
)x,

P2(xt) =
√

(
5

2
)0.5(3x2 − 1).

We choose values of the parameters (θ0 = 6.88,θ1 = −6.8,θ2 = 5.5) that make the consump-

tion model admissible according to the HJ variance bound. In the top panel of Table 1, we

can see that the SDF variance is within the HJ frontier with a ratio of variance to the HJ

bound of 1.0303. The SDF mean is equal to 0.982 what corresponds to an average annual

risk-free rate of 1.83%, and skewness and kurtosis values indicate that the SDF distribu-

tion is non-normal. Since the HJ diagnosis of such model puts zero weight on skewness and

kurtosis, the variance bound may be insufficient to declare the model admissible or not.23.

In the bottom panel, we compute the ratios of the discrepancies of the Chapman SDF

to the CR bounds for various values of the Cressie Read discrepancy parameter γ. First,

we can observe that these ratios achieve higher values (greater than one) for larger absolute

values of the discrepancy parameter γ. These high ratio values under high CR discrepancy

parameters indicate that the consumption model becomes more easily admissible under CR

bounds that weight more heavily higher moments of market returns (see Figure 1). On

the other hand, for low values of the discrepancy parameter, specially for the ones close to

zero, the consumption model becomes slightly non-admissible, achieving discrepancy ratios

around 0.985. CR bounds that have a discrepancy parameter close to zero have a similar

behavior to the entropic bounds obtained by Stutzer (1995). They generate SDFs that

are approximately exponential on the basis assets returns putting low but non negligible

weights on skewness and kurtosis of market returns. In summary, we see that when higher

23In Figure 1 we can see that the CR estimator with γ = 1 that corresponds to HJ with positivity
constraint puts zero weight on skewness and kurtosis.
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moments are not taken into account at all, corresponding to the HJ case, the consumption

model is slightly admissible, when higher moments are strongly taken into account (CR

estimators with high γ) the model becomes strongly admissible and for intermediate cases

where skewness and kurtosis matter in a moderate way (estimators similar to the ET

estimator), the model becomes slightly non-admissible.

The two examples above illustrate that accounting for higher moments of the distribu-

tion of returns with the CR discrepancy measures can change the diagnosis based on the

HJ frontier. Ultimately the answer will depend on the basis assets returns, the discrepancy

parameters, and the asset pricing model data and parameters. Moreover, the examples il-

lustrate the importance of a more robust diagnostic. For instance, given the results above,

one may be comforted in adopting the Chapman’s CCAPM since it appears admissible

under a large sub-family of Cressie Read discrepancy bounds, at least when basis assets

are the Treasury one year rate and a stock index.

Our last example considers model diagnostics when the HJ linear SDF with positivity

constraint (HJ SDF w.p.c.) entails mispricing of the basis assets. Apparently it is strange

to imagine that the HJ SDF w.p.c. will not perfectly price a set of basis assets. However,

as shown by HJ (1991), given a certain SDF mean it is not always possible to find a positive

admissible SDF that is a linear combination of returns. In such a case, diagnosing asset

pricing models based on the variance bound implied by the HJ SDF w.p.c. may not be

appropriate. The main reason is that depending on the magnitude of the pricing errors, the

HJ SDF w.p.c. may produce a volatility smaller than that obtained from an unrestricted

HJ bound, which sets the minimum that any admissible SDF should satisfy. Therefore, an

asset pricing model may enter in the feasible region while not being actually admissible.

In this context, we will show that admissible SDFs implied by the minimum discrepancy

measures will provide more reliable variance bounds than the HJ bound w.p.c.

To illustrate the issue cited above, we construct variance bounds based on the annual

time series of the three Fama and French factors (size, book to market, and market) from

1927 to 2004. In order to construct an economically meaningful variance bound, we make

use of the average nominal and real U.S. interest rates between 1927 and 2004 to give us

approximate limits for the region of acceptable SDF means. The average nominal rate was

4.65% and the average real rate 1.49%. If either one of those two rates is adopted as the

risk-free asset, we obtain the following interval for SDF means: [0.955, 0.985]. Therefore,

we generate variance frontiers for SDF means between 0.95 and 0.985, considering a large

number of estimators: CR(γ = −2), CR(γ = −1.5), CR(γ = −1) (EL estimator), CR(γ =

0) (KLIC), CR(γ = 0.3), CR(γ = 0.5), traditional HJ (1991), CR(γ = 1) (HJ w.p.c.), and

CR(γ = 2).
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Table 2 presents the pricing errors and variances of the different implied SDFs when we

solve the MD problems for a fixed SDF mean equal to 0.985. In this table the SDF mean

is compatible with a risk-free rate equal to 1.49%, precisely the average real rate from 1927

to 200424.

From the table we observe that the pricing errors increase with γ. In particular, as

the discrepancy measures get close to the HJ SDF w.p.c. (γ = 1) pricing errors are very

high, while they decrease down to zero for estimators close to the KLIC criterion (γ = 0).

In particular, the SDFs in the region analyzed by Snow (1991) (corresponding to Cressie

Read γ’s equal to 0.5, 1 and 2) present the largest pricing errors. On the other hand, for

values of γ < 0, all the implied SDFs present practically zero pricing errors. The clear

contrast between SDFs analyzed by Snow (1991) and those in the CR family that we are

first presenting in this work represents one of our important contributions in this paper.

First because our analysis allows for a deeper understanding on the issues that involve

the higher moment bounds proposed by Snow (1991). Second, and most importantly, we

improve Snow’s work by providing new bounds that take into account higher order moments

of SDFs based on implied SDFs that perfectly price the basis assets returns.

The results in Table 2 extend to different SDF means. Figure 3 presents the pricing

errors (in basis points) obtained from the Euler Equations applied to each estimator when

pricing the market (RM), size (SMB), and book to market (HML) returns, for all SDF

means25. Note that for values of γ ≤ 0, the implied SDFs again present practically zero

pricing errors. In contrast, the HJ SDF w.p.c. presents large pricing errors for SDF

means higher than 0.97. Those errors occur because a nonnegative SDF that is a linear

combination of returns does not exist in such cases. The consequence is a volatility for the

implied HJ SDF w.p.c. that is much smaller than the minimum volatility suggested by the

HJ traditional bound (see Figure 4).

Figure 4 illustrates the small variance issue when the pricing errors are large. For

the sake of clarity we present only the variance of four of the estimators above26: ET,

CR(γ = 0.3), HJ, and HJ with positivity constraint. For each estimator (apart from HJ)

and fixed SDF mean we obtain the implied SDFs from the first-order conditions of the

discrepancy problems solved above, and calculate the variance of the implied SDFs. Note

that for SDF means larger than 0.97 the HJ SDF w.p.c. breaks and its variance becomes

smaller than the minimum acceptable variance. Normally, the HJ bound w.p.c. should

24Pricing errors for the HJ SDF are not reported since it prices the basis assets by construction.
25We do not include the estimator CR(γ = 2) since its pricing errors are too large (for most SDF means)

and would distort the results. Those errors are available upon request.
26The estimator CR(γ = −1.5) presents variance larger than 0.4 for all considered SDF means. CR(γ =

0.5) has a very similar variance behavior to CR(γ = 0.3).
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be above the HJ bound. Here we observe the contrary, which means that forcing the

linear SDF to be positive produces large pricing errors on the basis assets and reduces the

variance. Relying on the HJ bound w.p.c. to diagnose models in this region of SDF means

would be an issue. In such cases, where the restricted HJ SDF does not work, adopting

the traditional HJ bounds could be an option but it is important to stress that they are

based on SDFs that in general achieve negative values in at least one state of nature. In

constrast, our CR estimators present variances higher than the traditional HJ bound and

either small or null pricing error depending on the discrepancy parameter γ.

Now, suppose that a researcher is willing to adopt a sharper bound than the traditional

HJ bound to diagnose asset pricing models. How should he/she proceed? We will suggest

to make use of CR estimators to generate the most conservative variance bound that is

sharper than HJ. For this reason we will make use of a number of important observations

with respect to the CR SDFs. First, and most importantly, note that the CR implied

SDFs are a continuous function of γ. This allows us to approximate the variance bound

by trying to choose the CR SDF with γ as close as possible to one that at the same time

presents small or null pricing errors. Table 2 and Figures 3 and 4 indicate that either the

KLIC SDF (γ = 0) or the CR(γ = 0.3) appear to be appropriate candidates to generate

reliable variance bounds. Those SDFs are positive, approximately admissible, and offer

bounds that are sharper than the traditional HJ bounds. This example indicates that our

methodology can also be adopted to improve variance bounds, especially in the presence

of pricing errors on the Euler equations of basis assets returns.

3.2 Do industry portfolios add non-redundant pricing information to Fama-
French Factors?

Lewellen Nagel, and Shanken (LNS, 2009) suggest that when basis assets have a very strong

factor structure, as it is the case for FF factors, they help (linear) asset pricing models to

achieve positive results in diagnostic tests more frequently than desirable. LNS (2009)

criticize a number of asset pricing models and suggest several prescriptions to improve the

way those models are tested. One of these suggestions is to include as test assets not only the

Fama-French portfolios but also other portfolios that would help in mitigating the strong

factor structure of the FF portfolios. In particular, they show that industry portfolios have

a covariance structure sufficiently different from the FF portfolios. Therefore making use of

industry portfolios as basis assets makes it more difficult for asset pricing models to achieve

the admissible region in HJ variance bounds and distance.

LNS (2009) indirectly showed how important it is to understand the relative information

gain of including new basis assets in diagnosing asset pricing models, especially when the
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former set of basis assets has a strong factor structure. Given that information in their

case was measured by variances and covariances, a natural extension of this idea is to

consider more general ways of measuring information when comparing pairs of sets of basis

assets. Our discrepancy measures provide a precise way of measuring more general forms

of information, since these discrepancies give different weights to moments of returns when

finding the implied admissible SDF that achieves the MD frontier. Therefore, we analyze

the relative information gain of including industry portfolios as basis assets, instead or in

addition to the FF portfolios. We will measure information by the frontiers obtained with

the discrepancy measures.

For a fixed discrepancy function in the Cressie Read family, we compare pairs of MD

frontiers obtained with two different sets of basis assets. The first set includes only the

FF factors and the second set includes only the industry portfolios. As each MD measure

puts a different set of weights on moments of returns, the corresponding implied SDFs are

obtained through distinct nonlinear functions of the basis assets. By contrast, for the HJ

methodology, the implied SDF is a linear function of the basis assets.

Figure 5 shows pairs (FF and Industry) of frontiers of information for six different

estimators: HJ, and Cressie Read (CR) with curvature parameters γ of -3, -1, 0, 1, and 3.

In each panel of the figure, there is a solid line (FF frontier) and a dashed line (industry

frontier). As the number of admissible SDFs is reduced when the frontier gets higher, we

can interpret higher frontiers as containing more information than lower frontiers, especially

if the goal is to diagnose asset pricing models. Note that the HJ picture (middle right panel)

indicates that there is a region (SDF means between 0.995 and 0.998) where the industry

portfolios produce a higher variance bound than the FF portfolios. This result supports the

suggestion of LNS (2009). In a relevant region of the SDF mean, testing an asset pricing

model with industry portfolios would be more challenging. It is even more the case for the

two CR estimators with extreme γ’s (-3,3) since the information gain increases significantly

in magnitude and for a larger set of the SDF means. These extreme estimators are the ones

that put more weight on skewness and kurtosis (see Figure 1). We can therefore conclude

that considering the information contained in higher moments of returns makes industry

portfolios even more informative.

In Figure 6 we adopt a more direct measure of the information gain. We plot the ratio

of the frontier obtained when both FF factors and industry portfolios are used as basis

assets, over the frontier obtained when only FF factors are basis assets. Note that for most

estimators, the ratios are above 1.8. It means that including the industry portfolios as

additional basis assets to the FF factors make these frontiers go up by around 80%. Also,

the highest gains for most estimators appear precisely in the region of SDF means between
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0.992 and 0.999.

3.3 Performance Evaluation of Hedge Funds

Chen and Knez (1996) have rationalized a stochastic discount factor approach to assess the

performance of mutual funds. The stochastic discount factor can be based on parametric

asset pricing models such as the CAPM, APT or consumption-based models27 or rely on

reference portfolios as in Hansen and Jagannathan (1991). A main drawback of the first

approach is that the measures do not assign zero performance to the reference portfolios,

contrary to the second approach that correctly prices, by construction, the basis portfolios

used for finding the minimum variance SDF. However, the data-based SDF approach has

potentially an infinite number of measures that can be obtained if markets or information is

limited28. Indeed, the minimum-variance SDF is just one possible measure that in fact may

not be appropriate for evaluating the performance of hedge funds since their returns exhibit

non-normalities and nonlinearities, as we argued earlier. The proposed Cressie-Read family

to capture these nonlinear patterns restricts somewhat the number of possible measures29.

To detect the presence of nonlinearities in hedge fund returns, most papers have used

option-like functions in an otherwise linear regression on several risk factors30. Extending

earlier work by Fung and Hsieh (2001) and Mitchell and Pulvino (2001), Agarwal and

Naik (2004) show that a wide range of equity-oriented hedge fund strategies exhibit a

relationship with option-based risk factors that consist of returns obtained by buying,

and selling one month later, liquid put and call options on the Standard & Poor’s (S&P)

500 index. An important improvement with the discrepancy-based SDF approach is to

include more elaborate nonlinearities. First, the approach entails nonlinear exposures to

all included factors while the former option-based approach is limited to a few factors.

Second,in the discrepancy-based approach, one can include options portfolios as reference

portfolios, adding nonlinearities on these option-like exposures.

The SDF approach has the distinct advantage of valuing these complex nonlinearities

without relying on a particular asset pricing model. Indeed, the performance of a hedge

27See in particular Farnworth et al. (2002) and the numerous references therein.
28See on this point a recent paper by Ahn, Cao and Chrétien (2009) that proposes a bounds approach

to limit the number of performance measures.
29Of course there is a continuous domain of γ, the parameter of the discrepancy function, but for each

γ it identifies a unique solution. In the last section we discuss possible choices among these solutions.
30Glosten and Jagganathan (1994) have suggested to include such option-like functions as basis functions

to characterize a potentially nonlinear SDF. For performance evaluation they use the Black-Scholes model
to value these option-like functions.
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fund, that we will designate by αHF , will be given by:

αHF = E[mCRRHF − 1], (32)

where RHF refers to the returns on a particular hedge fund and mCR to the SDF series

implied by a particular Cressie-Read discrepancy measure. We should emphasize that the

expected discounted returns are evaluated unconditionally. In other words, we want to

evaluate an average performance over a certain period without accounting for some poten-

tial public information that could have helped produce the hedge fund returns. In mutual

fund performance evaluation a conditional evaluation is most often performed to verify that

a positive performance is not simply the reflection of some publicly available information

and is really attributable to the ability or superior information of the manager31.

Several reasons explain our choice of an unconditional measure. First and foremost, our

primary goal is to illustrate the usefulness of our discrepancy-based SDF for evaluating the

performance of portfolios exhibiting returns with potentially high skewness and kurtosis.

Whether the return distributions are conditional or unconditional is of secondary impor-

tance for this purpose. A second point, consistent with our goal, is that we will apply

our methodology to a set of hedge fund indices and not to individual hedge funds. This

will allow us to compare the results obtained with our methodology to previous studies of

hedge fund nonlinear returns that have essentially been conducted with indices. A third

reason comes from the model-free and nonparametric nature of our approach. When an

asset pricing model is at the center of the performance evaluation it may be justified to

account for economic or financial factors deemed important but left out of the model. In

our approach we choose the number of risk factors that appear to affect hedge fund returns

and include them in our reference portfolios. Our discrepancy function explores linear and

nonlinear exposure to these factors32.

31Dahlquist and Soderlind (1999) provide a thorough analysis of the SDF approach suggested by Chen
and Knez (1996) with conditional and unconditional assessments of performance.

32Other more econometric or statistical reasons may be invoked to use an unconditional approach.
Dahlquist and Soderlind (1999) point out difficulties associated with conditional tests. They report that the
power of the tests decreases with the conditioning information and that numerical problems are encountered
when one wants to maintain the positivity of the SDF in a conditional setting. Second, the conditional
approach refers to managed portfolios but the conditioning information is always public since the true
private information, which is in fact used to actually manage the portfolios, is unobservable. Therefore,
with respect to this private information, we observe the portfolio returns always unconditionally. It means
in particular that this absence of conditioning will generate fatter tails (see Garcia, Renault and Tsafack,
2007). Our unconditional SDFs are incorporating higher moments, which helps better capture the effect
of this unobservable private information.
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3.3.1 Stochastic Discount Factors Implied by Risk Factors

Previous studies that have characterized hedge fund returns have typically used a number

of linear and nonlinear (option return portfolios) factors. Hasanhodzic and Lo (2007)

show that five factors provide a reasonable set of risk exposures for a typical hedge fund.

Therefore, we include the following five factors: i) CRSP value-weighted NYSE, AMEX,

and NASDAQ combined index as a stock market measure; ii) equally weighted portfolio of

British, German and Japanese one-month eurocurrency deposits to capture any exposure

to an exchange rate (FX) factor; iii) Lehman U.S. Corporate AA Intermediate Bond Index

to capture bond market risk; iv) return of the Lehman U.S. Corporate BAA Intermediate

Bond Index in excess of the return on the Lehman U.S. Treasury index to capture a credit

risk factor; and v) Goldman Sachs Commodity index33. For the nonlinear exposures to

risk factors, we include four option factors used in Agarwal and Naik (2004), one out-

of-the-money put factor (OTM put), one out-of-the-money call factor (OTM call), one

at-the-money put factor (ATM put) and one at-the-money call factor (ATM call)34.

The first step in our performance evaluation experiment is to compute the stochastic

discount factor. In order to obtain the implied SDF for different values of γ in our CR

discrepancy function, we must solve an optimal portfolio problem under the particular

utility function defined by a particular value of γ on the dual space. We choose to estimate

SDFs for γ ∈ {−3,−1, 0, 1, 3}, a set that includes the HJ linear SDF with positivity

constraint (γ = 1), a pair of SDFs that give mild weights to skewness and kurtosis (γ =

−1, 0), and a pair of SDFs that give large weights to skewness and kurtosis (γ = −3, 3)

(see Figure 1). Negative γ’s imply SDFs that are more volatile and produce larger peaks

than positive γ’s, compatible with the fact that risk aversion, on each state, is an increasing

function of gamma.

Table 3 presents the optimal weights given by each Cressie Read estimator to the five

risk factors described above. Numbers between parentheses represent the percentage of the

optimal portfolio allocated to each factor. Interestingly, in absolute values, the optimal

weights for most CR estimators given to the Credit Risk factor are the highest among

all risk factors, followed by the Bond factor. Those two factors cover around 85% of the

optimal portfolio allocations of all estimators. Note that, according to the table, all the CR

estimators are actually heavily selling U.S. Treasury and Corporate bonds. In addition,

commodities represent only tiny portions of their optimal portfolios, while the S&P index

33Our sample is comprised of monthly time-series from January 1996 to March 2004. These dates are
determined by considerations on the hedge fund data that we explain in section 3.3.2.

34For a discussion of the option features in the characterization of hedge fund returns see Diez and Garcia
(2009).
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is bought (around 5% of the portfolios allocations), and the weighs are not too different on

the currency factor. While investors with γs of -3 , -1 and 0 will buy the currency index,

the ones with higher γs will sell it.

Table 4 presents the optimal weights given by each CR estimator once the option factors

are added to the five risk factors. Overall, the weights attributed to the original risk

factors are not very distinct from the no-options case. However, put options appear to

be especially important in the optimal portfolios, being responsible for around 4% of the

total allocation of all estimators, except for γ = 1. For this estimator, which the HJ

mean-variance estimator with positivity constraint, options do not appear to be important

since they represent overall only 1% of the portfolio. This is consistent with the idea that

once kurtosis and skewness are significantly weighted in the utility function, then options

become more important in the optimal portfolio (see Appendix B).

In principle, all SDFs implied from our HARA optimization problems should be admis-

sible. However, the imposition of a positivity constraint may introduce pricing errors in

the Euler equations of some basis assets returns. This was already the case for the HJ SDF

with positivity constraint that presented large pricing errors when pricing the returns on

the three Fama and French factors (see Section 3.1). Here the problem of pricing errors is

exarcebated due to a larger number of basis assets (five as opposed to three), and especially

when we introduce returns on calls and puts, that in addition to being very volatile and of

large magnitude, contribute to an even larger number of basis assets.

Tables 5 and 6 present the pricing errors for the five different implied SDFs (γ ∈
{−3,−1, 0, 1, 3}) when the basis assets are respectively the five initially chosen risk factors

(stock, currency, bond, credit and commodity), and those same factors with the inclusion

of the four option factors (ATM call, OTM call, ATM put, OTM put). Note that the two

SDFs with negative γ present zero pricing errors in both tables for all basis assets, implying

that they are in fact admissible SDFs under both groups of basis assets. The KLIC SDF

(γ = 0) has zero pricing error when the risk assets don’t include option factors and, once

option factors are included, it presents a pricing error of one basis point for the two put

option returns. This indicates that it is an admissible SDF for the first group of risk assets

and that its pricing errors are negligible once option factors are included in the set of risk

assets. On the other hand, the implied SDFs with positive γ’s present considerable pricing

errors even when options are not included as risk factors, with errors around 10 to 20

basis points. And when options are included as factors (see Table 6), both implied SDFs

(γ = 1, 3) present very large errors when pricing the option factors (errors ranging from

100 to 1000 basis points). In particular, the HJ SDF with positivity constraint (γ = 1)

prices the two put option returns with errors of -278 and -421 basis points respectively for
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ATM and OTM returns. Those errors indicate that we should be cautious when analyzing

the performance of hedge funds with the HJ SDF with positivity constraint, and more

generally with implied SDFs with large positive γ’s.

Figures 7 and 8 exhibit the sample paths of most SDFs implied by the optimal portfolio

weights35, with and without the option factors. The estimators for γ = 0 and γ = −1

in Figure 7 provide very similar patterns for the dynamics of the SDFs with coinciding

peaks and troughs, but the variance obtained for γ = −1 is higher than the variance of

the γ = 0 SDF. The option factors change the SDFs significantly only at specific points

in time associated with particular market conditions. These differences are more subdued

with the HJ and γ = 1 estimators as shown in Figure 8.

We summarize the relative information gain for the various estimators when options are

included in Figure 9. It is observed that the relative gain is a declining function of the CR

curvature parameter, which can be interpreted as an average risk-aversion coefficient in the

HARA utility function36. Also, the relative gains increase with the mean of the SDFs.

While previous pictures showed historical sample paths of implied SDFs, it will be

interesting to also observe SDFs as a function of aggregate wealth. This is possible if we

use the two-period optimal portfolio interpretation of subsection 2.2. There, final wealth

is obtained as a linear combination of an investment of W0 −
∑

j λ
opt
CR,j(γ) units in the risk

free asset (with return rf ), and λoptCR,j(γ) units in the jth risky asset (either bond, credit,

commodity, stock, or currency)37. W0 represents initial wealth, and λoptCR(γ) is the optimal

portfolio vector obtained from each specific Cressie Read estimator (γ = −1, 0, 1, 3). Figure

10 shows these Cressie Read implied SDFs. Observe that the SDFs exhibit hyperbolic

shapes as a function of wealth, precisely as described by the theoretical relationship in

Equation (10). Dittmar (2002) has shown that nonlinearities on SDFs are very important

to explain the cross-section of returns for industrial portfolios, and in accordance to his

results, we find implied CR SDFs that are highly nonlinear under some specific discrepancies

(γ = −1, 0). On the other hand, the SDF obtained with γ = 1 is a non-negative SDF which

is a linear function of the risk factors, that is, the HJ SDF with positivity constraint. Note

also that all the implied SDFs are strictly positive and decrease with wealth satisfying an

important economic property: decreasing absolute risk aversion. It means that under the

particular set of risk factors adopted here, our implied nonlinear SDFs are admissible and

35We don’t present the CR SDF with γ=-3 because it has a very similar shape to the one with γ=-1,
except for some slightly higher peaks.

36By also observing the time series of each implied SDF, it is noticed that the SDFs variances also decline
with risk aversion.

37We have also obtained the implied SDFs as functions of wealth when options are included as factors.
Due to the similarity to the SDFs without options we decided not to include them.
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are globally decreasing functions of wealth.

Figure 10 also reveals that SDFs with smaller γ’s are defined for larger ranges of final

wealth. This is related to how the optimal portfolio solutions produce more volatile returns

for smaller γ’s, while for higher γ’s, the positivity restriction constraints the solutions to be

less volatile. Implied SDFs coming from smaller gammas also achieve more extreme values,

especially for bad events.

3.3.2 Computing the Alphas of Hedge Fund Indices

We now use these SDFs to assess the performance of several indices of hedge funds built

from the TASS database. As of 2004, the last year of our sampling period, it provided

monthly returns and net asset value data on 4,606 funds beginning in February 1977. For

building these hedge fund indexes, our sample starts in January 1996 and ends in March

200438. The individual funds are classified into nine categories: 1) convertible arbitrage; 2)

fixed-income arbitrage; 3) event driven; 4) equity market neutral; 5) long-short equity; 6)

global macro; 7) emerging markets; 8) dedicated short bias; 9) managed futures.39.

To obtain the αHF performance measure defined in Equation (32) we use the respective

implied SDFs and the returns on the hedge fund indices. In Table 7, we report the average

alphas associated with the various estimators, with and without the option factors. For

comparison we also report the performance evaluation corresponding to a linear model of

the risk factors, a model where the Agarwal and Naik (2004) put and call option factors

are added to the five risk factors that enter linearly, and the nonlinear model in Diez and

Garcia (2009). In the latter the option factors are estimated using a threshold approach

and valued according to the Black and Scholes model.

In general, the estimators agree on the two extreme categories, the best (convertible

arbitrage, C1) and the worst (managed futures, C9), but exhibit more variation across the

other categories. However the results are relatively robust regarding the positive or negative

assessment of performance. The presence of options can change this sign from positive to

negative as in the long-short equity hedge (C5). It suggests that if nonlinearities are present

they may just reflect the use of derivatives that hedge funds pay for on the market and not

the timing strategies of hedge fund managers.

For some categories such as equity market neutral (C4), we notice an important dif-

ference between the assessment of the CR estimators and all the previous estimators. It

is consistently negative for the CR estimators, while it is slightly positive for the other

38The starting date is chosen to obtain a reasonable representation for all categories of funds. The end
date is set so we can compare our results to previous studies that have introduced nonlinearities in the
form of options.

39For a description of the typical strategies followed in each category, see the book of L’habitant (2004)
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estimators except for the high volatility one40.

3.3.3 Robustness

We have shown how different values of γ could affect the conclusions of our analysis. In

this section we want to focus on the robustness concepts that can be invoked to address

this question. First, it seems natural to start when evaluating performance to determine

for which value of γ, if any, the measure goes to zero. If the performance stays positive

for high positive γ’s, one can be pretty confident that even very risk averse investors will

be ready to buy this portfolio. A second approach will be to build a robust measure of

performance with a SDF that results from averaging across a range of HARA functions

before solving the portfolio optimization problem.

(a) Searching for Zero Performance We want to determine whether any value of γ

can be found that will reduce the performance value to zero. We conduct this analysis for

a range of values for γ between -8 and 541 and by considering the five risk factors defined

in the previous section. The variation will be enough to give us information about the

performance behavior of the various categories of funds. We plot the results of the analysis

in Figure 11. It comes out very clearly that some categories (C1, C3, and C7) exhibit a

positive performance across the board. However, while convertible arbitrage (C1) appears

very stable, the emerging markets (C7) category is much more variable, getting close to zero

as γ increases. Similarly, one can clearly identify the bad performance categories. Equity

market neutral (C4), dedicated short bias (C8) and managed futures (C9) are staying

below zero. Equity market neutral is an interesting category since the finding says that it

may be neutral in terms of correlation with the market but not neutral to movements in

the risk factors that affect higher moments of the return distribution (see Patton (2008)).

The remaining categories involve a change of sign in the average performance. Also the

performance line of two categories can cross. This requires a more refined measure of

robustness.

Given this range of performance values, one can also determine if one category uni-

formly dominates another category, or if the minimum or the maximum of one category is

40Adopting distinct concepts to define neutrality (i.e. “mean”, “correlation”, “variance”, “tail” and
“complete”), Patton (2008) showed that around one quarter of market neutral hedge funds are not neutral
with respect to market risks. Similarly in spirit, by capturing higher-order risks on market returns, our
CR estimators deliver negative risk adjusted performance alphas for the equity market neutral category
suggesting non-neutrality for those funds.

41For values of γ above 1, we are introducing some pricing errors for the reference portfolios by imposing
positivity constraints on the SDF. This region of the parameter space is still interesting to explore to build
measures corresponding to high risk aversion.
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below or above another category. This is the robustness approach emphasized in Ahn, Cao

and Chrétien (2009) for evaluating the performance of mutual funds. Their work can be

characterized as a robust Chen and Knez (1996) approach that involves a quadratic norm

to bound the performance measure. They interpret different admissible SDFs (the ones

that price the basis assets) as the marginal utility of different classes of investors42. Since

our values of γ index the curvature of a HARA utility function, similarly to them, we can

associate a value of γ with an average risk aversion over the sample period of performance

evaluation. However, our performance measures are designed for evaluating portfolios that

involve return distributions with non negligible higher moments such as hedge funds.

(b) A Robust Measure of Performance As a possible robust measure of perfor-

mance, we suggest the use of an estimator that averages across a range of HARA functions,

and solves the portfolio optimization problem of this averaging function. This should im-

ply a SDF that takes into account different γ curvatures (or degrees of risk aversion in our

interpretation). In addition, it emphasizes the fact that our methodology is not limited

to the Cressie Read family, since a linear combination of HARA functions is not a HARA

function. Using the 5 initial risk factors adopted in the Hedge Funds experiment, we solve

this problem for an average of all HARA functions with γ ∈ {−6,−2,−1.1, 0.1, 2, 4}:

sup
λ∈ΛCRaver

1

6

6∑
j=1

E

[
− 1

γj + 1
(1 + γj ∗ λ′(R− rf ))

γj+1

γj

]
(33)

where ΛCRaver = {λ ∈ RK , s.t. for i = 1, ..., T : min
j

(1 + γjλ
′ (Ri − rf )) > 0}. Figure

12 presents the implied SDF. Note that it is less volatile than the implied Cressie Read

SDFs (see Figures 7 and 8) in both good and bad states. This could be expected since

it is solving an averaging problem. It is important to make clear that this SDF is not

an average of the previously obtained SDFs but a new SDF implied from a completely

different portfolio problem. Moreover, calculating the convex conjugate of the negative of

the function appearing in Equation (33), we could obtain the exact discrepancy function

that we are minimizing in this averaging case43.

Interestingly, for some categories of Hedge Funds, the average estimator produces per-

formance values that differ from the average of the performances obtained by each corre-

sponding Cressie Read estimator for γ ∈ {−6,−2,−1.1, 0.1, 2, 4}. In particular, for the

42Note however that due to their focus in obtaining robust intervals of performance for managed funds,
their algorithm does not provide the admissible SDFs themselves.

43The discrepancy function of the average estimator does not present a closed-form formula since it is
a nonlinear function of the zero of a nonlinear equation implied by the convex conjugation problem. The
calculation is numerically performed in Matlab and is available from the authors upon request.
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convertible arbitrage (C1) funds the average estimator and the average of Cressie Read es-

timators almost coincide. While the average estimator suggests an annualized performance

of 3.74%, the average of CR estimators produces 3.67%. The proximity in the values is an

additional indication that the positive performance of this category is robust. On the other

hand, for the Equity market neutral (C4) category the average estimator is more optimistic

than the average of CR estimators. While the average of CR estimators gives a -2.03%

annualized performance, the average estimator produces -0.66%, a value that is higher than

any individual CR estimator performance obtained for C4 (see Figure 11). This example

indicates that making use of the average estimator can be especially useful for categories

whose performance exhibit too much variation across different CR estimators. This sug-

gests also a closer look at the results of category C9, that of managed futures. By looking

at Figure 11 its performance exhibits a large variability of negative values across CR es-

timators. In this case, the average of the CR estimators for γ ∈ {−6,−2,−1.1, 0.1, 2, 4}
gives a performance of -4.17%, while the average estimator gives -6.46% a much worse num-

ber. Like this average estimator we can produce other functions to aggregate Cressie Read

discrepancies under a unified metric, as long as the final discrepancy function is convex.

Alternatively, this aggregation of metrics can be proposed directly in the dual space (as we

have done with the average estimator), as long as the final utility function is concave.

4 Conclusion

We extend results on stochastic discount factor variance bounds of Hansen and Jagannathan

(1991) by proposing more general Minimum Discrepancy (MD) bounds based on the mini-

mization of discrepancy convex functions. Solutions to these MD problems naturally imply

nonparametric and nonlinear SDFs that take into account higher moments of the distri-

butions of assets returns. We relate the problem of finding general MD bounds to that

of solving an optimal portfolio problem, therefore generalizing the duality between SDF

frontiers and optimal portfolio frontiers put forward in Hansen and Jagannathan (1991).

When specializing to the Cressie Read family of discrepancies, our bounds are obtained as

solutions to optimal portfolio problems based on HARA utility functions. We point to the

special cases corresponding to the logarithmic, exponential and quadratic utility functions.

We showed how the implied SDFs can be used in three empirical applications. First, we

use the new SDF frontiers to bring a new perspective on diagnosing asset pricing models.

Then, building on a discussion in Lewellen, Nagel and Shanken (2009) we use our discrep-

ancy measures to analyze if industry portfolios contain nonredundant pricing information

when compared to Fama-French factors. In a third application, we analyzed hedge fund

performance evaluation with different metrics based on our implied SDFs. Our results indi-
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cate that this new class of higher-order SDF frontiers has a strong potential to be used in a

large number of financial problems, specially those involving assets with nonlinear payoffs.

In this paper, we have voluntarily left aside the important issue of estimating the pa-

rameters of the asset pricing models under scrutiny and limited ourselves to a diagnosis as

in the original paper of Hansen and Jagannathan (1991). In Almeida and Garcia (2010),

we are assessing specification errors in stochastic discount factor models with our new met-

rics to generalize the quadratic-norm evaluation methodology developed in Hansen and

Jagannathan (1997). Given the general formulation of the discrepancy problem presented

in Section 2.5, where the moment conditions involved a β vector of model parameters, this

generalization appears as a natural extension of the SDF frontier investigation conducted

in the current paper.
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Appendix A - Proof of Theorem 1

Under the Cressie Read family, the convex conjugate of φ is given by:

φ∗+(z) =
(γz)

γ+1
γ

γ + 1
+

aγ+1

γ(γ + 1)
(34)

The optimization problem becomes:

λ̂ = arg sup
α∈<,λ∈Λ

a ∗ α−
T∑
i=1

1

T

(γ
(
α + λ′

(
Ri − 1

a
1K
))

)
γ+1
γ

γ + 1
− aγ+1

γ(γ + 1)
, (35)

In order to concentrate α out of the optimization problem in equation (35) let Γ(α) =

a ∗ α− (γα)
γ+1
γ

γ+1
. Then the optimal concentrated α should solve:

dΓ(α)

dα
= 0⇒ α̂ =

aγ

γ
(36)

Substituting α̂ on Equation (35) gives the desired result.

Appendix B - Taylor Expansion of the HARA Utility Function Implied by

the Cressie Read Estimators

For simplicity let us assume that there is only one risky asset with return R. According

to the optimal portfolio interpretation section (subsection 2.2), the utility function that is

maximized to obtain the solution of the Cressie Read Bounds and their implied SDFs is

given by:

u(v) = − 1

γ + 1
(1− γv)

γ+1
γ (37)

where v = λ∗(R− 1
a
), and a represents the SDF mean. The solution of the HARA portfolio

problem gives the optimal lambdas λopt that will be used to define the Cressie Read bound

and the corresponding implied SDF, both obtained at v0 = λopt ∗ E[(R− 1
a
)].

Now, we are interested in performing a Taylor expansion around the optimal λ-scaled

expected excess return of the risky asset v0 that will represent the aggregate risky in the

economy. The goal is to analyze how the coefficient of risk aversion γ will affect the weights

given to skewness and kurtosis in the specific solutions of our HARA-utility problems. To

that end, we use the corresponding second, third, and fourth derivatives of u in a fourth

order Taylor expansion, and take expected values of both sides:

E[u(v)] ≈ u(v0) + 1
2
u2(v0)λ2

opt ∗ E(R− E(R))2+
1
6
u3(v0)λ3

opt ∗ E(R− E(R))3 + 1
24
u4(v0)λ4

opt ∗ E(R− E(R))4 (38)

Those derivatives are respectively given by:
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u2(v) = −(1− γv)−1+ 1
γ (39)

u3(v) = (1− γ)(1− γv)−2+ 1
γ (40)

u4(v) = −(1− γ)(1− 2γ)(1− γv)−3+ 1
γ (41)

Looking at the third derivative of u we see that skewness could be weighed negatively

for Cressie Read estimators with γ > 1. However, according to the Taylor expansion, the

optimal lambda gives an extra degree of flexibility for the sign of the third moment. For

instance, a negative lambda for estimators with γ > 1 will provide a positive weight to

skewness. This flexibility guarantees that for the whole range of γs our utility function

can potentially satisfy the concept of decreasing absolute risk aversion from Arditti (1967)

(λ3
optu3(v0) > 0).

In Figure 1 we provide pictures with the sensitivity of our estimators to skewness and

kurtosis. They plot the third and fourth derivatives as functions of γ. Note that we

chose optimal lambdas compatible with decreasing absolute risk aversion. The derivative

functions are depicted for small positive, zero, and small negative v0, which corresponds to

the lambda-scaled expected excess return of the risky asset. As in principle v0 may achieve

any arbitrary value being a solution to the HARA portfolio problem, it becomes clear the

richness with which the CR estimators can weight skewness and kurtosis.

Note that skewness weights are always positive and they increase when γ goes away

from the quadratic case (γ = 1). For instance, EL (γ = −1) puts higher weights than ET

(γ = 0), CUE (CR(γ = 1)) gives zero weight, and CR(γ = 3) gives weights comparable to

EL ones. Regarding the fourth derivative, except for the region of 0.5 < γ < 1, kurtosis

is a non-positive and concave function of γ indicating that all CR estimators outside that

region satisfy the concept of decreasing absolute prudence proposed by Kimball (1993)

(λ4
optu4 < 0). Limiting cases including the quadratic utility (CUE, γ = 1) and the cubic

utility (CR γ = 0.5) put zero weight to kurtosis. Note that Cressie Read estimators with

positive γ’s give more (negative) weight to kurtosis than the corresponding estimators with

negative γ’s. For instance, EL (γ = −1) weights kurtosis on the interval [-12,-10], while

CR(γ = 3) weights it on the interval [-20,-10], for the particular values of v0 that we chose.
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Table 1: Information Bounds and Consumption Models.
The first panel on this table presents statistics for a Chapman’s (1997) type polynomial SDF

mChap(ct) =
∑2

i=0 θi ∗ Pi(ct), where ct is consumption growth at time t, and Pi is the ith normalized Legendre
polynomial. Parameters values are (θ0 = 6.88,θ1 = −6.8,θ2 = 5.5). The HJ Bound is obtained from returns on
the S&P 500 and a risk-free rate as in Campbell and Shiller (1989). Data is annual over the period 1891 to 2004.
In the second panel, the first column indicates different discrepancy functions of the Cressie Read family

φ(π) = πγ+1−1
(γ+1)γ . The second column presents CR bounds based on returns from S&P 500 and a risk-free rate as

in Campbell and Shiller (1989). Data is annual over the period 1891 to 2004. Cressie Read estimators solve dual
utility maximization problems based on HARA functions parameterized by γ. The third column presents the
discrepancy of the polynomial CCAPM model described in the previous panel. For each fixed discrepancy (γ),
model discrepancy is obtained by normalizing the polynomial SDF πChap =

mChap
E(mChap) , and calculating φ(πChap).

CCAPM SDF Descriptive Statistics

Mean Variance Skewness Kurtosis HJ Bound Ratio Variance/HJ Bound

0.982 0.0818 0.75 4.63 0.0794 1.0303

CR γ CR Bound Model Discrepancy Ratio

-3 0.0354 0.0575 1.623
-2 0.0385 0.0480 1.245
-1 0.0406 0.0428 1.054

-0.5 0.0419 0.0414 0.988
-0.3 0.0416 0.0410 0.986
-0.1 0.0413 0.0407 0.985
0 0.0419 0.0413 0.986

0.1 0.0409 0.0404 0.988
0.3 0.0405 0.0403 0.995
0.5 0.0401 0.0403 1.005
0.8 0.0392 0.0404 1.031
1 0.0401 0.0406 1.013

1.2 0.0396 0.0408 1.030
1.5 0.0388 0.0414 1.067
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Table 2: Pricing Errors for Implied SDFs when basis assets are the Fama and French Factors.
The first column indicates different discrepancy functions of the Cressie Read family φ(π) = πγ+1−1

(γ+1)γ . The second

column presents the variance of Cressie Read implied SDFs from the first-order conditions of the dual HARA
problems with the three Fama and French factors (market, size, and book to market) as basis assets. Data is
annual over the period 1927 to 2004. The last three columns present pricing errors (in bps) achieved by each CR
implied SDF when pricing each Fama and French Factor. The SDF mean is equal to 0.985 which corresponds to
an average real interest equal to 1.49%.

CR γ Variance Pricing Error Market Pricing Error SMB Pricing Error HML

-2 0.942 0.0 0.0 0.0
-1.5 0.839 0.0 0.0 0.0
-1 0.681 0.0 -0.1 0.0
0 0.398 0.2 0 0

0.3 0.360 5.0 0.3 2.1
0.5 0.344 8.1 0.5 3.3
1 0.245 154.2 109.2 140.6
2 0.084 502.3 74.8 271.2
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Table 3: Optimal Portfolio Weights for Cressie Read Estimators.
Risk factors are composed by monthly returns over the period 1996:1 to 2004:3. The Bond and Credit risk
factors are represented respectively by the Lehman U.S. Corporate AA and BAA Intermediate Bond
Indexes. The stock market factor is represented by the CRSP value-weighted NYSE, AMEX, and NASDAQ
combined index. The FX factor is represented by an equally-weighted portfolio of British, German and
Japanese one-month Eurocurrency deposits. The commodity factor is captured by the Goldman Sachs
Commodity Index. Cressie Read estimators solve HARA utility maximization problems whose portfolios are
linear combinations of the listed risk factors. A fixed SDF mean equal to 0.9962 is adopted.

CR Estimators Risk Factors

Bond Credit Commodity Stocks Currency

Cressie Read (γ = −3) -20.0(47.9%) -14.4(34.5%) -0.7(1.6%) 1.8(4.3%) 4.9(11.7%)

Cressie Read (γ = −1) -35.8(43.7%) -34.6 (42.3%) -0.7(0.9%) 3.7(4.5%) 7.1(8.6%)

Cressie Read (γ = 0) -39.8 (37.8%) -56.2 (53.5%) 0.1 (0.1%) 5.7 (5.4%) 3.4(3.2%)

Cressie Read (γ = 1) -23.3(29.9%) -44.4(56.8%) 1.2(1.6%) 3.8(4.8%) -5.4 (6.9%)

Cressie Read (γ = 3) -7.9(28.0%) -15.1(53.8%) 0.9(3.1%) 1.9(6.6%) -2.4(8.5%)

Table 4: Optimal Portfolio Weights for CR Estimators with Option Factors.
Risk factors are composed by monthly returns over the period 1996:1 to 2004:3. The Bond and Credit risk factors are represented
respectively by the Lehman U.S. Corporate AA and BAA Intermediate Bond Indexes. The stock market factor is represented by
the CRSP value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is represented by an equally-weighted
portfolio of British, German and Japanese one-month Eurocurrency deposits. The commodity factor is captured by the Goldman
Sachs Commodity Index. The four option factors come from Agarwal and Naik (2004) and are represented by two call options
(C.) and two put options (P.), each one either at-the-money (ATM) or out-of-the-money (OTM). Cressie Read estimators solve
HARA utility maximization problems whose portfolios are linear combinations of the listed risk factors. A fixed SDF mean equal
to 0.9962 is adopted.

Estim. Risk Factors

Bnd Cred. Comm. Stoc. Curr. ATM C. OTM C. ATM P. OTM P.

CR (-3) -16.4(33.4%) -21.6 (44.0%) -1.4(2.9%) 3.2(6.5%) 3.4(7.0%) 0.7 (1.4%) -0.8(1.6%) 0.8(1.6%) -0.8(1.6%)

CR (-1) -32.7(33.4%) -45.7(46.7%) -1.0(1.0%) 8.9(9.1%) 3.6(3.7%) 0.9(0.9%) -1.2(1.3%) 1.9(2.0%) -1.8(1.9%)

CR (0) -36.7(29.4%) -65.6(52.6%) 0.2(0.1%) 12.8(10.2%) 3.2(2.5%) 0.4(0.3%) -0.9(0.7%) 2.6(2.1%) -2.6(2.1%)

CR (1) -18.8(27.2%) -41.3(59.8%) 0.6(0.9%) 6.2(8.9%) -1.5(2.2%) 0.1(0.1%) -0.5(0.6%) -0.2 (0.2%) -0.0 (0.1%)

CR (3) -7.1(27.0%) -16.5 (63.3%) 0.3(1.1%) 1.1(4.0%) 0.1(0.2%) 0.0 (0.1%) -0.2(0.8%) -0.5(2.0%) 0.4(1.4%)
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Table 5: Pricing Errors for implied SDFs.
This table presents pricing errors (in basis points) achieved by implied SDFs when pricing five risk factors
adopted as basis assets. Risk factors are composed by monthly returns over the period 1996:1 to 2004:3.
The Bond and Credit risk factors are represented respectively by the Lehman U.S. Corporate AA and BAA
Intermediate Bond Indexes. The stock market factor is represented by the CRSP value-weighted NYSE,
AMEX, and NASDAQ combined index. The FX factor is represented by an equally-weighted portfolio of
British, German and Japanese one-month Eurocurrency deposits. The commodity factor is captured by the
Goldman Sachs Commodity Index. Cressie Read estimators solve HARA utility maximization problems
whose portfolios are linear combinations of the listed risk factors. A fixed SDF mean equal to 0.9962 is
adopted.

CR Estimators Risk Factors

Bond Credit Commodity Stocks Currency

Cressie Read (γ = −3) 0 0 0 0 0
Cressie Read (γ = −1) 0 0 0 0 0
Cressie Read (γ = 0) 0 0 0 0 0
Cressie Read (γ = 1) -8 -9 -18 28 21
Cressie Read (γ = 3) -22 -29 -31 11 2

Table 6: Pricing Errors for implied SDFs with Option Factors.
This table presents pricing errors (in basis points) achieved by implied SDFs when pricing nine risk factors adopted as basis
assets. Risk factors are composed by monthly returns over the period 1996:1 to 2004:3. The Bond and Credit risk factors are
represented respectively by the Lehman U.S. Corporate AA and BAA Intermediate Bond Indexes. The stock market factor is
represented by the CRSP value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is represented by an
equally-weighted portfolio of British, German and Japanese one-month Eurocurrency deposits. The commodity factor is captured
by the Goldman Sachs Commodity Index. The four option factors come from Agarwal and Naik (2004) and are represented by
two call options (C.) and two put options (P.), each one either at-the-money (ATM) or out-of-the-money (OTM). Cressie Read
estimators solve HARA utility maximization problems whose portfolios are linear combinations of the listed risk factors. A fixed
SDF mean equal to 0.9962 is adopted.

Estim. Risk Factors

Bnd Cred. Comm. Stoc. Curr. ATM C. OTM C. ATM P. OTM P.

CR (-3) 0 0 0 0 0 0 0 0 0
CR (-1) 0 0 0 0 0 0 0 0 0
CR (0) 0 0 0 0 0 0 0 1 1
CR (1) -9 -13 -16 15 10 136 141 -278 -421
CR (3) -22 -23 -13 39 -1 -99 -191 -803 -985
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Table 7: Hedge Funds Performance Evaluation under Different Estimators.
This table contains the alphas of different Hedge Fund categories (listed in Appendix A) obtained with implied
SDFs from different Cressie Read estimators. Risk factors are composed by monthly returns over the period 1996:1
to 2004:3. The Bond and Credit risk factors are represented respectively by the Lehman U.S. Corporate AA and
BAA Intermediate Bond Indexes. The stock market factor is represented by the CRSP value-weighted NYSE,
AMEX, and NASDAQ combined index. The FX factor is represented by an equally-weighted portfolio of British,
German and Japanese one-month eurocurrency deposits. The commodity factor is captured by the Goldman Sachs
Commodity Index. The four option factors come from Agarwal and Naik (2004) and are represented by two call
options (C.) and two put options (P.), each one either at-the-money (ATM) or out-of-the-money (OTM). Cressie
Read estimators solve HARA utility maximization problems whose portfolios are linear combinations of the listed
risk factors. A fixed SDF mean equal to 0.9962 is adopted.

CR Estimators Hedge Funds Categories

C1 C2 C3 C4 C5 C6 C7 C8 C9

Cressie Read (γ = −3) 3.89 0.88 1.71 -2.65 1.18 0.05 3.37 -2.23 -1.93
CR (γ = −3) with Options 4.04 2.46 2.89 -2.43 0.23 -1.27 3.81 -3.11 -4.87
Cressie Read (γ = −1) 3.77 0.84 1.75 -2.19 0.66 0.23 2.22 -0.48 -2.71
CR (γ = −1) with Options 3.93 2.00 2.46 -2.22 -0.28 -0.45 2.05 -1.09 -4.28
Cressie Read (γ = 0) 4.29 1.00 2.02 -2.11 0.14 -0.19 2.29 -0.48 -4.26
CR (γ = 0) with Options 4.06 1.71 1.78 -2.15 -1.05 -0.28 0.38 0.63 -4.30
Hansen and Jagannathan 4.55 2.04 2.43 -1.52 -0.10 0.03 2.46 0.08 -5.39
HJ with Options 3.92 2.66 1.19 -1.58 -1.62 0.06 -0.71 2.58 -4.36
Cressie Read (γ = 1) 4.39 0.92 2.39 -1.09 1.54 -1.09 3.31 -4.16 -5.79
CR (γ = 1) with Options 3.35 1.10 1.06 -1.44 -0.80 -1.15 -0.41 -1.01 -4.71
Cressie Read (γ = 3) 3.60 0.27 1.62 -0.54 0.86 -3.10 0.45 -2.70 -6.71
CR (γ = 3) with Options 3.58 0.10 1.90 -0.74 2.15 -2.66 2.55 -5.82 -6.70

Previous Estimators Hedge Funds Categories

C1 C2 C3 C4 C5 C6 C7 C8 C9

Linear Factor Model 3.72 0.35 1.66 0.02 0.49 -1.51 -0.50 1.10 -4.15
Diez and Garcia σ = 5% 5.72 2.09 4.71 2.25 2.84 1.29 8.18 -0.82 -8.10
Diez and Garcia σ = 15% 4.78 0.57 2.24 0.51 0.93 -1.32 1.90 0.79 -6.04
Diez and Garcia σ = 25% 2.44 -2.67 -1.45 -1.40 -1.91 -7.63 -4.78 3.71 -1.73
Agarwal and Naik 3.58 0.40 1.59 0.22 0.98 -1.58 -1.03 1.30 -3.96
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Figure 1: Skewness and Kurtosis Weights on Cressie Read Estimators
This picture presents the third and fourth derivatives of the HARA function

− 1
γ+1(1 + γv)

γ+1
γ evaluated at an arbitrary value of v. Based on a Taylor expansion

argument, by parameterizing v = λ(R− 1
a) where R is a vector of returns, a is the SDF

mean, and λ is a vector of weights, the third and fourth derivatives of the HARA function
will indicate the weights given to skewness and kurtosis of the linear combination of
returns.
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Figure 2: Nominal and Real U.S. One-Year Interest Rate
This picture presents both nominal and real U.S. one-year interest rates from 1890 to 2009
updated from Campbell and Shiller’s (1988) dataset.
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Figure 3: Euler Equation Errors for Different Estimators with Fama and
French Factors as Basis Assets
This picture presents pricing errors obtained for the estimators CR(γ = −1.5), KLIC,
CR(γ = 0.3), CR(γ = 0.5), and CR(γ = 1) (HJ w.p.c.). The SDFs are obtained from
first-order conditions of HARA utility maximization problems when the basis assets are
the three Fama and French Factors (market, size, and book to market). Fama and French
Factors data are annually from 1927 to 2004.
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Figure 4: Sharpening Variance Bounds with Fama and French Factors as
Basis Assets
This picture presents variance bounds derived for the following estimators: HJ, HJ with
positivity constraint, KLIC, and CR(γ = 0.3). The KLIC, CR(γ = 0.3), and the HJ SDF
with positivity constraint are obtained from first-order conditions of HARA utility
maximization problems when the basis assets are the three Fama and French Factors
(market, size, and book to market). Fama and French Factors data are annually from
1927 to 2004.
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Figure 5: Comparing Information available in Fama French Factors and
Industry Portfolios.
This picture presents CR bounds based on monthly returns on Fama-French factors and
ten industry portfolios over the period 1963:1 to 2008:12. The solid line is obtained with
the three Fama-French factors. The dotted line is obtained with the ten industry
portfolios.
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Figure 6: Information Gain when Industry Portfolios are Included as Basis
Assets
This picture presents ratios of HJ and CR frontiers based on monthly returns on Fama
and French factors and ten industry portfolios over the period 1963:1 to 2008:12. Each γ
indicates a different discrepancy function on the Cressie Read family φ(π) = πγ+1−1

(γ+1)γ . For
each fixed SDF mean, the Cressie Read bounds are obtained via dual utility maximization
problems based on HARA functions parameterized by γ. The HJ bound is obtained by
linearly projecting a generic admissible SDF on the subspace of observed returns. For each
estimator, each line is obtained by the ratio of the bound values obtained including all
basis assets (three FF factors and ten industry portfolios) over the bound values obtained
including only FF factors.
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Figure 7: CR Exponential and Logarithmic Stochastic Discount Factors
Extracted from Market Risk Factors
This picture presents CR stochastic discount factors based on monthly returns on a set of
9 risk factors over the period 1996:1 to 2004:3. The CR exponential SDF minimizes the
discrepancy φ(π) = πlogπ and is achieved via the first-order conditions of the dual utility
maximization problem based on an exponential function. The CR logarithmic SDF
minimizes the discrepancy φ(π) = −logπ and is achieved via the first-order conditions of
the dual utility maximization problem based on a logarithimic function. The SDFs have a
fixed mean at 0.996. The Bond and Credit risk factors are respectively the Lehman U.S.
Corporate AA and BAA Intermediate Bond Indexes. The stock market factor is the
CRSP value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is an
equally-weighted portfolio of British, German and Japanese one-month eurocurrency
deposits. The commodity factor is the Goldman Sachs Commodity Index. The four option
factors come from Agarwal and Naik (2004) and represent at-the-money and
out-of-the-money call and put options. The solid SDFs include the first 5 risk factors
while the dashed ones include also the 4 additional option factors.
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Figure 8: HJ and Other CR Stochastic Discount Factors Extracted from
Market Risk Factors
This picture presents HJ and CR stochastic discount factors based on monthly returns on
a set of 9 risk factors over the period 1996:1 to 2004:3. Each γ indicates a different
discrepancy function on the Cressie Read family φ(π) = πγ+1−1

(γ+1)γ . The Cressie Read SDFs
are obtained via the first-order conditions of dual utility maximization problems based on
HARA functions parameterized by γ. The HJ SDF is obtained by linearly projecting a
generic admissible SDF on the subspace of observed returns. The SDFs have a fixed mean
at 0.996. The Bond and Credit risk factors are respectively the Lehman U.S. Corporate
AA and BAA Intermediate Bond Indexes. The stock market factor is the CRSP
value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is an
equally weighted portfolio of British, German and Japanese one-month eurocurrency
deposits. The commodity factor is the Goldman Sachs Commodity Index. The four option
factors come from Agarwal and Naik (2004) and represent at-the-money and
out-of-the-money call and put options. The solid SDFs include the first 5 risk factors
while the dashed ones include also the 4 additional option factors.
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Figure 9: Informational Gain When Options Are Traded
This picture presents ratios of HJ and CR bounds based on monthly returns on 9 risk
factors over the period 1996:1 to 2004:3. Each γ indicates a different discrepancy function
on the Cressie Read family φ(π) = πγ+1−1

(γ+1)γ . The Cressie Read bounds are obtained via
dual utility maximization problems based on HARA functions parameterized by γ. The
HJ bound is obtained by linearly projecting a generic admissible SDF on the subspace of
observed returns. The Bond and Credit risk factors are respectively the Lehman U.S.
Corporate AA and BAA Intermediate Bond Indexes. The stock market factor is the
CRSP value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is an
equally-weighted portfolio of British, German and Japanese one-month eurocurrency
deposits. The commodity factor is the Goldman Sachs Commodity Index. The four option
factors come from Agarwal and Naik (2004) and represent at-the-money and
out-of-the-money call and put options. For each CR estimator, each line is obtained by
the ratio of the bound value estimated with all 9 risk factors including options over the
bound value estimated with only the first 5 risk factors (bond, credit, stock, currency and
commodities).
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Figure 10: CR Stochastic Discount Factors as a Function of Aggregate
Wealth
This picture presents CR stochastic discount factors based on monthly returns on a set of
5 risk factors over the period 1996:1 to 2004:3. Each γ indicates a different discrepancy
function on the Cressie Read family φ(π) = πγ+1−1

(γ+1)γ . The Cressie Read SDFs are obtained
via the first-order conditions of dual utility maximization problems based on HARA
functions parameterized by γ. The SDFs have a fixed mean at 0.996. The Bond and
Credit risk factors are respectively the Lehman U.S. Corporate AA and BAA Intermediate
Bond Indexes. The stock market factor is the CRSP value-weighted NYSE, AMEX, and
NASDAQ combined index. The FX factor is an equally weighted portfolio of British,
German and Japanese one-month eurocurrency deposits. The commodity factor is the
Goldman Sachs Commodity Index. The SDFs are plotted as a function of aggregate
wealth defined by W = W0 ∗ rf + λoptCR(R− rf ), where (R− rf ) represents a vector with
excess returns of the 5 risk factors, and W0 is the initial wealth, arbitrarily chosen to be 2.
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Figure 11: Hedge Fund Alphas for various Discrepancy Measures
This picture contains the alphas of different Hedge Fund categories (listed in Appendix A)
obtained with implied SDFs from different Cressie Read estimators. Risk factors are
composed by monthly returns over the period 1996:1 to 2004:3. The Bond and Credit risk
factors are represented respectively by the Lehman U.S. Corporate AA and BAA
Intermediate Bond Indexes. The stock market factor is represented by the CRSP
value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is
represented by a equally-weighted portfolio of British, German and Japanese one-month
eurocurrency deposits. The commodity factor is captured by the Goldman Sachs
Commodity Index. Cressie Read estimators solve HARA utility maximization problems
whose portfolios are linear combinations of the listed risk factors. A fixed SDF mean equal
to 0.9962 is adopted.
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Figure 12: A SDF implied by a weighted HARA-utility maximization
Problem
This picture presents a CR stochastic discount factor based on monthly returns on a set of
5 risk factors over the period 1996:1 to 2004:3. The Cressie Read SDF is obtained via the
first-order conditions of a utility maximization problem based on the average of a set of
HARA functions parameterized by γ = {−6,−2,−1.1, 0.1, 2, 4}. The SDF has a fixed
mean at 0.996. The Bond and Credit risk factors are respectively the Lehman U.S.
Corporate AA and BAA Intermediate Bond Indexes. The stock market factor is the
CRSP value-weighted NYSE, AMEX, and NASDAQ combined index. The FX factor is an
equally-weighted portfolio of British, German and Japanese one-month eurocurrency
deposits. The commodity factor is the Goldman Sachs Commodity Index.
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