The Paradox of Risk-Sharing

Viral V Acharya and Rangarajan K Sundaram

> NYU Stern February 2012

Can risk increase due to risk-sharing?

- Financial crisis of 2007-09
 - Variety of markets and contracts aimed at risksharing appeared central in bringing about a collapse of the entire financial system
- Example I : <u>Credit Derivatives</u>
- Example II : Securitization
- The paradox of risk-sharing
- An explanation
 - Incentive effects of risk-sharing

Example I : Credit default swaps (CDS)

- CDS are meant to help hedge credit risk
- Credit risk is inherently aggregate or cyclical
- Many CDS contracts sold are on financial firms, CLOs, AAA-tranches of pools of mortgages, etc.
- When contracts had to be honored, protection sellers did not have adequate liquidity
- <u>A.I.G. Financial Products</u> is a leading example

A.I.G. FP's liquidity needs

	2007-1	2007-2	2007-3	2007-4
Marginal Call Reports				
Additional Collateral for One-notch Downgrade Rating ⁽⁴⁾	\$902	\$847	\$830	\$1,390
Additional Collateral for Two-notch Downgrade Rating				
Additional Collateral for Three-notch Downgrade Rating				
Additional Collateral for Multi-notch Downgrade Rating				
	2009_1	2000.2	2000.2	A
	2000-1	2008-2	2008-3	Actual
Marginal Call Reports	2008-1	2008-2	2008-3	Actual
Marginal Call Reports Additional Collateral for One-notch Downgrade Rating ⁽⁴⁾	\$1,800	\$1,200	\$1,800	Actual
Marginal Call Reports Additional Collateral for One-notch Downgrade Rating ⁽⁴⁾ Additional Collateral for Two-notch Downgrade Rating	\$1,800	\$1,200	\$1,800 \$9,800	Actual Moody's/Fit
Marginal Call Reports Additional Collateral for One-notch Downgrade Rating Additional Collateral for Two-notch Downgrade Rating Additional Collateral for Three-notch Downgrade Rating	\$1,800	\$1,200	\$1,800 \$9,800 \$20,000	Actual Moody's/Fit S&P

• A.I.G. (Q3 2008):

Two-notch downgrade = \$9.8bln; Three-notch = \$20bln (est), \$32bln (realized) Cash = \$2.5bln in March 2008 (\$18.6bln post-intervention Sep 08, due to \$61bln Fed borrowings) Margin-risk coverage ratio < 1 for two-notch downgrade

Example II : Securitized assets

- Pool and diversify risks
- If risks are idiosyncratic, incur average losses
- If risks are partly systematic, then unexpected losses can be larger than average losses
- Yet, those who held large portions of such securitized assets (MBS, ABS) held little in terms of reserves to manage systematic risk
- Explains a large part of the financial crisis

Pooling of risks and loss outcomes

Loan Loss Distribution with p = 1.5%, $\rho = 12\%$ and 0.6%

Holdings of US Residential Real Estate Exposure (Lehman Brothers, June '08)

	Loans	HELOC	Agency	Non-Agency AAA	CDO	Non CDO	Total	
			MBS		Subord	Subord		
Banks & Thrifts	2,020	869	852	383	90		4,212	39%
GSEs & FHLB	444		741	308			1,493	14%
Brokers/dealers			49	100	130	24	303	3%
Financial Guarantors		62			100		162	2%
Insurance Companies			856	125	65	24	1,070	10%
Overseas			689	413	45	24	1,172	11%
Other	461	185	1,175	307	46	49	2,268	21%
Total	2,925	1,116	4,362	1,636	476	121	10,680	
	27%	10%	41%	15%	4%	1%		

The Paradox of Risk-Sharing

- Why does there appear to be greater aggregate risk when there are financial innovations to share risks amongst agents?
- Why have bank capital and liquidity in the financial sector declined steadily over time?
- Rajan (2005) "Has Financial Development Made the World Riskier?"
- Acharya, Cooley, Richardson and Walter (2010) "Manufacturing Tail Risk"

History of Banking Capital Ratios in US and UK

(Alessandri and Haldane, 2009)

Source: US: Berger, A, Herring, R and Szegö, G (1995). UK: Sheppard, D.K (1971), BBA, published accounts and Bank of England calculations.

An Explanation

- Autarky
 - No possibility to share risks
 - Shocks to investments must be met by firms through individual cash holdings
 - If firms find it desirable to hedge the shocks, the liquidity held hedges aggregate risk too
 - Overall outcome
 - Greater liquidity/reserves, lower investments
 - Low incidence of idiosyncratic defaults
 - Low incidence of aggregate "crises"

Explanation (continued)

- Risk-sharing via financial innovations
 - Idiosyncratic shocks can be managed better through inter-firm transfers of liquidity
 - Each firm requires to hold less liquidity as they can "free ride" on liquidity in the system
 - Holding liquidity to deal with low-likelihood aggregate shocks ("tail risks") becomes prohibitively expensive
 - Overall outcome
 - <u>Smaller liquidity/reserves, greater investments</u>
 - Low incidence of idiosyncratic defaults
 - Greater incidence of aggregate "crises"

A Simple Model

Figure 1: The Risky Investment Opportunity

Autarky

Alpha, the likelihood of liquidity shock

Risk-sharing (assume independence)

State	Probability	Risky Projects Outcome
1	p_1	Neither project requires refinancing
2	p_2	Only Bank 2 needs refinancing
3	p_3	Only Bank 1 needs refinancing
4	p_4	Both banks need refinancing

$$p_1 = (1 - \alpha)^2$$
$$p_2 = \alpha(1 - \alpha)$$
$$p_3 = \alpha(1 - \alpha)$$
$$p_4 = \alpha^2$$

Risk-sharing outcomes

Alpha, the likelihood of liquidity shock

Risk-sharing leads to un-hedged aggregate risk

Alpha, the likelihood of liquidity shock

An analogy from economics

- Do seat belts in cars reduce or increase the incidence of car accidents and deaths?
- Direct effect
 - All else equal, reduce accidents
- Incentive (or insurance) effect:
 - Drivers drive faster once there are seat belts
 - This tends to increase accidents
- Overall welfare effect: Ambiguous
- The insurance effect of financial innovations is not sufficiently appreciated

Welfare effects of risk-sharing

- If aggregate defaults lead to significant externalities or spillovers that are costly
 - Reinhart and Rogoff (2008) "This Time is Different"
 - Banks to households
 - Banks to the real economy
 - Banks to governments
- Then, there can be a case for reserve or capital requirements against aggregate risks
 - More relevant when there is risk-sharing
 - Else, firms will hedge the risk themselves