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Cross-country labor productivity differences are larger in agriculture than in non-agriculture.

We propose a new explanation for these patterns in which the self-selection of heterogeneous

workers determines sector productivity. We formalize our theory in a general equilibrium Roy

model with preferences featuring a subsistence food requirement. In the model, subsistence re-

quirements induce workers that are relatively unproductive at agriculture work to nonetheless

select into the agriculture sector in poor countries. When parameterized, the model predicts

that agriculture productivity differences are twice as large as those in non-agriculture even

when economies differ by an economy-wide efficiency term that affects both sectors uniformly.
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1. Introduction

Cross-country labor productivity differences are much larger in agriculture than in the non-

agriculture sector (Caselli (2005), Restuccia, Yang, and Zhu (2008)). Because developing coun-

tries have most of their workers in agriculture, their low productivity in agriculture accounts

for nearly all of their low productivity in the aggregate. This implies that understanding why

productivity differences in agriculture are so large compared to those of the non-agriculture

sector is at the heart of understanding world income inequality.1

In this paper we propose a new explanation for these productivity patterns in which the self-

selection of heterogeneous workers determines sector productivity. We start from the well-

known idea that in poor countries, where economy-wide efficiency is low, most people must

work in the agriculture sector in order to satisfy subsistence consumption needs. This is what

Schultz (1953) famously called the “food problem.” Our insight is that precisely because the

majority of workers in poor countries are employed in agriculture, many of these workers must

be relatively unproductive at agricultural work. In contrast in rich countries, where economy-

wide efficiency is high, those few workers selecting into agriculture must be those who are rel-

atively most productive at agriculture work. Thus, two economies that differ in economy-wide

efficiency will have even larger measured differences in agriculture productivity. By the same

mechanism, they will have even smaller measured non-agriculture productivity differences.

Our theory has two main ingredients. The first is non-homothetic preferences, and in particular

a subsistence consumption requirement in the agricultural good. This leads to an income elas-

ticity of demand for agricultural goods less than one. The second ingredient is heterogeneity

in individual (worker) productivity in each sector, combined with the assumption that workers

choose where to supply their labor. This is the Roy (1951) model of self-selection based on com-

parative advantage. We combine these features into a two-sector general equilibrium version

of the Roy model. Countries differ only in an economy-wide efficiency term; preferences and

the distribution of individual productivity are taken to be identical across countries.

Within this economic environment, we provide a general condition on the heterogeneity in in-

dividual productivity that leads to productivity differences that are larger in agriculture than

non-agriculture when countries differ only by an economy-wide efficiency term. The key condi-

tion is simple and economically meaningful: that comparative advantage aligns with absolute

advantage. As long as workers who have a comparative advantage in a given sector have an

absolute advantage (on average) in that sector, then our model qualitatively replicates the larger

cross-country productivity differences in agriculture and smaller differences in non-agriculture.

1Versions of this argument have been made by Caselli (2005), Restuccia, Yang, and Zhu (2008), Chanda and
Dalgaard (2008), Vollrath (2009).
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To measure the quantitative importance of selection in explaining the sector productivity pat-

terns at hand, we make flexible parametric assumptions on the distribution of individual pro-

ductivity. In particular, we assume that sector productivities are drawn from dependent Fréchet

distributions, where the dependence is captured parsimoniously using a copula. These as-

sumptions allow us to calibrate the distribution parameters using simple moments from the

cross-sectional distribution of wages in the United States, namely the variance of log wages in

each sector and the ratio of sector average wages.

Our main quantitative finding is that selection leads to roughly twice as much variation in

agriculture productivity than in non-agriculture productivity across rich and poor countries.

In the data, there is just over ten times as much productivity variation in agriculture than

non-agriculture. This implies that selection accounts for around one-fifth of the greater cross-

country productivity variation in agriculture. We reach this conclusion using our benchmark

model, which features only labor as an input to production, and our main quantitative exper-

iment, which varies economy-wide efficiency to match the difference in aggregate GDP per

worker between the ninetieth and tenth percentile countries of the world income distribution,

and then computes the model’s implications for sector productivity differences.

We extend the model to include capital and land, and find that these forces increase the overall

explanatory power of the model while leaving the importance of the selection channel largely

unchanged. When calibrated, the extended model produces four times as much variation in

productivity in agriculture as non-agriculture. The improved performance comes from the well

known role that land plays as a fixed factor in agriculture (see e.g. the models of Restuccia,

Yang, and Zhu (2008), Adamopoulos and Restuccia (2010) and Herrendorf and Teixeira (2011)).

While the importance of selection is similar in magnitude as in the benchmark model, decom-

posing the results into the contribution from land versus selection shows that selection is as

important or more than the effects from land alone.

We find that, in either version of the model, the quantitative predictions are consistent with

other important features of the data not targeted directly. In particular, both versions predict

a large wage gap between agriculture and non-agricultural workers, as in the data. This is

in contrast to other papers in the literature, which reconcile this wage gap using some sort

of exogenous barrier to workers moving out of agriculture (e.g. Caselli and Coleman (2001),

Restuccia, Yang, and Zhu (2008), Adamopoulos and Restuccia (2010), Tombe (2011) and Her-

rendorf and Teixeira (2011)). Both versions of our model are also quantitatively consistent with

the higher employment shares in agriculture in poor countries, and the higher relative prices of

agriculture goods in poor countries.

To illustrate how our theory works in practice, we provide one concrete example of how agri-

culture workers in developing countries are on average less productive at agriculture work
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than their counterparts in rich countries. Specifically, we cite evidence that women are less pro-

ductive at men on average in agricultural work, and use cross-country data to document that

women form a much larger fraction of all agricultural workers in developing countries than

they do in richer countries. Putting these together implies that poor countries have lower mea-

sured productivity in agriculture in part because they employ more workers with relatively low

productivity in at agriculture work, just as our theory predicts.

Our paper is the first to propose and assess the role of selection in understanding why pro-

ductivity differences in agriculture are so much larger than in other sectors. This mechanism is

distinct from previous explanations in the literature, most of which focus on distortions that are

specific to the agriculture sector. For example, Restuccia, Yang, and Zhu (2008) argue that the

larger productivity differences in agriculture are due partly to barriers to the adoption of inter-

mediate goods in agriculture; Adamopoulos and Restuccia (2010) focus on the role of policies

that misallocate farm land in developing countries.

One key difference is that our paper can in part reconcile the sector productivity patterns even

when distortions in poor countries do not disproportionately affect agriculture. Instead, they

can arise from general factors, such as weak institutions, as emphasized by e.g. Hall and Jones

(1999) and Acemoglu, Johnson, and Robinson (2001, 2002), plus the selection channel studied

in the current paper. The policy implications of our paper differ as well. The emphasis on

agriculture-specific distortions in the previous literature suggests that the focus in poor coun-

tries should be on removing distortions that are specific to agriculture. Under our view, this

implication may be misguided.

Still, it is worth emphasizing that our explanation and previous ones in the literature are com-

plements, in the sense that selection forces along with distortions of either a general or sector-

specific nature lead to measured productivity differences in agriculture that are larger than

they otherwise would be, and non-agriculture differences that are smaller than they otherwise

would be. This observation is important because it is unlikely that one story alone can com-

pletely explain why there is so much more productivity variation in agriculture than in other

sectors, given the enormous magnitude of the difference.

2. Motivating Evidence

In this section, we review the evidence that cross-country labor productivity differences are

much larger in agriculture than in the non-agriculture sector. We then provide new calcula-

tions, and discuss existing evidence, suggesting that these sector labor productivity differences

largely reflect sector TFP differences.
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Table 1: Sector Labor Productivity and Employment Shares

Agriculture Aggregate Non-Agriculture Ag/Non-Ag Ratio

90-10 Labor Productivity
Differences

45 22 4 10.7

Employment Share
90th Percentile Country

3 — 97 —

Employment Share
10th Percentile Country

78 — 22 —

Source: Caselli (2005)

Table 1 reproduces the findings of Caselli (2005), who constructs Purchasing Power Parity

(PPP)-adjusted measures of labor productivity in the agriculture and non-agriculture sectors

of 79 countries. His calculations combine PPP-adjusted GDP per worker data from the Penn

World Tables with PPP-adjusted agriculture value-added-per-worker data from the Food and

Agriculture Organization (FAO) constructed by Rao (1993).

The first row of Table 1 reports that the ratio of aggregate output per worker in the 90th to 10th

percentile of the world income distribution is a factor 22. In agriculture, this ratio is a factor 45,

while in non-agriculture it is a factor of just 4. Thus, agriculture productivity differences across

countries are much larger than those of non-agriculture.2 The last column shows that the ratio

of agriculture to non-agriculture productivity differences is 10.7. In other words, there is more

than ten times as much variation in agriculture productivity across countries than there is in

non-agricultural productivity.

The second and third rows report the percent of employment in agriculture in the 90th and

10th percentile countries. In the 90th percentile country, just 3 percent of labor is in agriculture,

while the other 97 percent is in the non-agricultural sector. In the 10th percentile country, in

contrast, 78 percent of workers are in agriculture, compared to 22 percent in non-agriculture.

In short, a key distinction between rich and poor countries is that agriculture employs most

people in the poorest countries and virtually nobody in the richest countries.

Simple accounting exercises show that the divide between agriculture and non-agriculture ac-

counts for much of aggregate productivity differences. Caselli (2005) computes the hypothetical

90-10 ratio of aggregate output per worker by giving the agricultural productivity level of the

90th percentile country to all countries. He finds that the 90-10 ratio would be a factor of 1.6,

2 In independent work, Restuccia, Yang, and Zhu (2008) arrive at a very similar conclusion.
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down from the actual factor of 22! Similarly, by hypothetically giving an agricultural employ-

ment share of 3 percent, as in the 90th percentile country, to all countries, the 90-10 ratio would

be just a factor 4.2.

One simple explanation of these sector labor productivity patterns is that developing countries

use much less capital per worker in agriculture than in rich countries, and use only modestly

less capital per worker in non-agriculture. The main challenge to testing this hypothesis is the

limited data on capital stocks by sector across countries. Caselli (2005) addresses this limitation

by making the plausible assumption that rates of return to capital are equated across sectors,

and then using aggregate capital stock data to allocate capital to each sector. For a set of 65

countries for which comparisons can be made, he finds that capital explains 15 percent of cross-

country productivity differences in agriculture, and 59 percent in non-agriculture. Thus, his

calculations suggest capital differences are indeed important in both sectors, but there are still

bigger residual productivity differences in agriculture even after taking capital into considera-

tion.

To complement these findings, we conducted our own accounting exercises for a smaller set of

countries using data on agricultural capital stocks constructed by Butzer, Mundlak, and Larson

(2010). These data contain the values of machinery, equipment, livestock and tree stock used in

agriculture production in a set of 28 countries from all income levels. As we detail in Appendix

B, we combine these data with estimates of the aggregate capital stocks constructed by the PWT

to create estimates of the non-agricultural capital stocks in each country. The resulting sector

capital data allow us to conduct accounting exercises in the same manner as Caselli (2005).

We find that using these new data, capital accounts for 22 percent of cross-country productiv-

ity differences in agriculture, and 29 percent in non-agriculture. Thus, these exercises largely

corroborate the findings of Caselli (2005). While both sets of calculations have their limitations,

both suggest that capital-per-worker differences are important in both sectors, but unlikely to

be the main cause of the larger differences in agriculture labor productivity across countries. In

this sense, our findings are consistent with those of Chanda and Dalgaard (2008) and Vollrath

(2009), who conclude that low agriculture (and aggregate) labor productivity in the developing

world largely reflects their low TFP in agriculture.

3. Model of Agricultural and Non-Agricultural Productivity

In this section we formalize our model economy and characterize its equilibrium. The model

predicts, under conditions that we describe, that exogenous differences in economy-wide effi-

ciency across economies lead to even larger differences in agriculture productivity, and smaller

differences in non-agriculture productivity.
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3.1. Preferences and Endowments

There are measure one of workers, indexed by i, who differ in productivity, as explained below.

Preferences are given by

U i = log(cia − ā) + ν log(cin), (1)

where cia is agricultural good (food) consumption, cin is non-agricultural good consumption, ā

is a parameter representing a subsistence consumption requirement, and ν governs the relative

taste for non-agriculture consumption. These “Stone-Geary” preferences ensure that Engel’s

Law holds, namely that the income elasticity of demand for food is less than one.

Each worker is endowed with one unit of time which she supplies inelastically to the labor mar-

ket. Each worker is also endowed with a vector of “individual productivities,” denoted {zia, z
i
n},

which represent the efficiency of one unit of labor in sectors a and n. Individual productivities

are drawn from a distribution G(za, zn) with support on the positive reals. The budget con-

straint of worker i is

pac
i
a + cin ≤ yi, (2)

where yi is labor income (described in more detail below), pa is the relative price of agriculture,

and the non-agricultural good is taken to be the numeraire.

3.2. Production

There is a competitive market in both sectors, and each has its own aggregate production func-

tion. Both sector technologies are freely available and operated by competitive entrepreneurs.

The technologies are given by

Ya = ALa and Yn = ALn, (3)

where A is exogenous and captures “economy-wide efficiency” of production, and La and Ln

represent the total number of effective labor units employed in the two sectors. Economies

differ only in A, and we assume that each economy is closed.3

Let Ωa and Ωn denote the sets of workers choosing to work in agriculture and non-agriculture.

The sector aggregate labor inputs La and Ln are defined as

La ≡

∫

i∈Ωa

zia dGi and Ln ≡

∫

i∈Ωn

zin dGi

3In Section 5.4 we discuss how opening the economy to trade would change our results. See also Gollin,
Lagakos, and Waugh (2011b) for more on the open-economy implications of selection in multi-sector models, and
Tombe (2011) for a theory of the lack of agriculture imports by developing countries.
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and represent the sum of all individual productivity employed in the sectors. The total number

of workers in each sector are defined as

Na ≡

∫

i∈Ωa

dGi and Nn ≡

∫

i∈Ωn

dGi.

3.3. Optimization and Equilibrium

An equilibrium of the economy consists of a relative agriculture price, pa, wages per efficiency

unit of labor in each sector, wa and wn, and allocations for all workers, such that all workers

optimize and both labor markets and output markets clear. Measured labor productivity in

equilibrium is denoted by Ya/Na in agriculture and Yn/Nn in non-agriculture, and represent the

physical quantity of output produced per worker in each sector.

Workers take prices and wages as given when they optimize. The problem for a worker is first

to choose which sector to supply their labor, and then to maximize her utility, (1), subject to her

budget constraint, (2). Because of competition, the wages per efficiency unit of labor are

wa = paA and wn = A.

A simple cutoff rule in relative individual productivity, or comparative advantage, determines the

optimal occupational choice for each worker. Working in non-agriculture is optimal for worker

i if and only if
zin
zia

≥ pa. (4)

Thus, the workers that enter non-agriculture are those whose productivity is sufficiently high

relative to their productivity in agriculture. Labor income under the optimal sector choice is

defined as yi ≡ max{ziawa, z
i
nwn}.

The remainder of the worker’s problem is standard, and optimal demands are:

cia =
yi + āpaν

pa(1 + ν)
and cin =

ν(yi − āpa)

1 + ν
. (5)

Due to the subsistence consumption requirement, workers consume relatively more agricul-

tural goods when their income is lower. The lower is ν, the higher is the ratio of agriculture to

non-agriculture consumption.

3.4. Qualitative Features of Equilibrium

We now show that, in equilibrium, economy-wide efficiency determines the relative price of

agriculture, which in turn determines the selection of workers and productivity in each sector.
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The Relative Price of Agriculture Goods is Higher in Poorer Economies

The first important result is that in equilibrium, the relative price of agriculture is higher in

economies with lower economy-wide efficiency. We formalize this result as:

Proposition 1 Consider two economies, rich and poor, with efficiency terms AR and AP such that

AR > AP . In equilibrium, the relative price of agriculture is higher in the poor economy: pPa > pRa .

The intuition is that a higher price of agricultural goods is needed in the poor economy in order

to induce workers to work in the agriculture sector. To see this, let pRa be the equilibrium relative

price in rich economy. If pRa were the equilibrium price in the poor economy as well, then by

(4), the sector labor-supply cutoffs would be the same in both countries, and so would the share

of workers in agriculture. But because of the subsistence consumption requirement, the poor

economy demands a much larger fraction of agricultural goods, and thus there would be excess

demand for food in the poor economy. It follows that the relative price of agriculture could not

be the same in the two economies, and in fact must be higher in the poor economy.

Individual Productivity Distribution and Sectoral Productivity Differences

We now turn to the link between the distribution of individual productivity and sector aggre-

gate productivity in equilibrium. Proposition 2 describes conditions on the individual produc-

tivity distribution that are sufficient for economy-wide efficiency differences to lead to larger

differences in agriculture labor productivity and smaller differences in non-agriculture labor

productivity.

Proposition 2 Consider two economies with efficiency terms AR and AP such that AR > AP . Let the

individual productivity distribution be such that E(za|za/zn > x) and E(zn|zn/za > x) are increasing

in x. Then equilibrium sector labor productivities are such that

Y R
a /NR

a

Y P
a /NP

a

>
AR

AP
and

Y R
n /NR

n

Y P
n /NP

n

<
AR

AP
.

Intuitively, Proposition 2 says that as long as workers who have a comparative advantage in a

given sector have an absolute advantage (on average) in that sector, then productivity differ-

ences will be larger in agriculture than non-agriculture across the two economies. The reason is

as follows. As A rises, the relative price of agriculture falls (by Proposition 1), and only workers

with a greater comparative advantage in agriculture (i.e. a higher za/zn ratio) choose to work
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in agriculture. Then, since workers with a greater comparative advantage also have a greater

absolute advantage, it follows that agriculture sector productivity increases. The second part

of Proposition 2 says that, for a similar reason, non-agricultural productivity differences are

smaller than A differences if workers with a greater comparative advantage in non-agriculture

have a higher expected productivity in that sector.

Note that both heterogeneity in worker productivity and non-homothetic preferences are nec-

essary for Proposition 2 to hold. When all workers are identical in productivity, then changes

in A induce changes in the share of workers in agriculture but (trivially) do not change the av-

erage individual productivity by sector. When preferences are homothetic, relative prices and

hence the allocation of workers by sector are independent of A. Thus, in each sector, average

individual productivity is identical across countries.

At least one of the conditions of Proposition 2 must hold (see Heckman and Honoré (1990)).

Thus, at the very least, our theory qualitatively delivers productivity differences in one sector

that differ from the aggregate in a way consistent with the data. Of course, it can also explain the

patterns of both sectors. We now turn to an example where both conditions on the individual

productivity distributions are satisfied, and in which simple analytical expressions help provide

intuition for how the model works.4

3.5. Simple Analytical Model: Independent Fréchet Individual Productivities

In this section, we illustrate the mechanics of the theory using a simple analytical version of

the model which assumes independent Fréchet distributions on individual productivity. This

example helps demonstrate how the size of the mechanism’s effects depend on (i) the vari-

ance in individual productivity, and (ii) differences in the sector employment shares across the

economies being compared. Furthermore, this example is a special case of the individual pro-

ductivity distribution used for quantitative analysis in Section 4.

Assumption 1 Let za and zn be drawn independently from Fréchet distributions:

G(za) = e−z−θ
a and G(zn) = e−z−θ

n .

4One can show that both conditions of Proposition 2 hold whenever individual productivities are independent
across sectors and distributed log-concave in each sector. Prominent examples are Normal, Pareto and Uniform
distributions. However, none has the analytic tractability productivity of independent Fréchet distributions that
we focus on below.
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The parameter θ controls the dispersion of individual productivity in each sector, with a smaller

θ implying more productivity dispersion across individuals and a higher θ meaning less disper-

sion.5 This distributional assumption conveniently relates equilibrium employment shares in

agriculture, the relative price of agriculture, and parameter θ. The equilibrium share of workers

in agriculture is

πa = Prob
{

Azin ≤ paAz
i
a

}

=
1

p−θ
a + 1

. (6)

By (6), one can see that as pa rises, the share of workers in agriculture rises as well. Furthermore,

the responsiveness of the share of workers in agriculture to pa depends on the productivity-

dispersion parameter θ. Manipulating (6), and a similar equation for non-agriculture, yields a

log-linear relationship in the ratio of the agriculture to non-agriculture worker shares (πn) and

the relative price of agricultural goods:

log (πa/πn) = θ log(pa). (7)

Intuitively, with a low θ, meaning high productivity dispersion across workers, large changes

in the relative price of agriculture are needed to induce workers to switch sectors. On the other

hand, a higher θ, meaning small productivity dispersion, implies that only small changes in the

relative price of agriculture are needed to induce workers to switch sectors.

Both conditions on the productivity distribution in Proposition 2 hold in this example. That is,

expected worker productivity in a sector is larger when its workers have a greater comparative

advantage in that sector. To see this note that expected individual productivity in the two

sectors are

E(za|za/zn > 1/pa) = γ π
−1

θ
a , and E(zn|zn/za > pa) = γπ

−1

θ
n , (8)

where the constant γ is the Gamma function evaluated at (θ − 1)/θ. Equation (8) relates ex-

pected individual productivity to the share of workers in a sector and through equation (7) the

relative price. A decrease in the relative price of agriculture decreases the share of workers in

agriculture. This then leaves a more selected set of workers in agriculture with higher average

agricultural productivity. Similarly, because the share of workers increases in non-agriculture,

non-agriculture productivity decreases. The magnitude of these changes depends on the pa-

rameter θ.

Differences in A across economies will lead to relative price differences (Proposition 1). This

then leads to differences in employment shares (equation (7)) and hence to larger productivity

5This distribution has been used by Eaton and Kortum (2002) and others to analytically solve multi-country
Ricardian models of international trade. To our knowledge, we are the first to exploit the analytical properties of
this distribution to study the Roy model.
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differences in agriculture and smaller ones in non-agriculture across economies. We formalize

this as:

Corollary 1 Consider two economies with efficiency terms AR and AP , such that AR > AP , and let

Assumption 1 hold. Then, the ratios of sector labor productivities are

Y R
a /NR

a

Y P
a /NP

a

=

(

πP
a

πR
a

)
1

θ
(

AR

AP

)

>
AR

AP
and

Y R
n /NR

n

Y P
n /NP

n

=

(

πP
n

πR
n

)
1

θ
(

AR

AP

)

<
AR

AP
. (9)

Dispersion in individual productivity controls the magnitude of the sector productivity differ-

ence from the aggregate. A lower θ leads agriculture productivity to be larger than the aggre-

gate (since πR
a < πP

a in equilibrium). As θ approaches infinity, heterogeneity in individual pro-

ductivity disappears, selection effects are diminished, and the ratio of agriculture productivity

converges downward toward the aggregate productivity ratio. A similar argument illustrates

that the non-agriculture productivity difference is smaller than the difference in A, with the

magnitude of the difference again shrinking to zero as individual productivity dispersion is

reduced to zero.

With large cross-country differences in employment shares these effects can be potent. Con-

sider for example the countries at the 10th and 90th percentile of the world income distribution,

which have 78 and 3 percent of their workforce in agriculture. With a θ of 5, these differences

in agriculture employment shares amplify the underlying A differences by a factor of two. In

contrast, for countries that do not differ dramatically in agriculture employment shares, these

effects will be more modest.

4. Quantitative Analysis

We now present a richer model that we calibrate and use to assess the quantitative importance

of the mechanism. This richer model differs from the simple analytical model of the previ-

ous section by allowing for correlation between individual productivity draws and different

degrees of productivity dispersion in the two sectors.

Introducing these richer features is important for two reasons. First, it allows our theory to fail.

In particular, there is nothing inherent in the richer model that assures both assumptions on the

individual productivity distribution in Proposition 2 hold. Whether both conditions hold will

be dictated by the data in the calibration. Second, it allows for greater flexibility in matching

the data, and hence a more accurate assessment of the quantitative importance of the theory.
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4.1. Dependent Fréchet Individual Productivity Distribution

We set the joint distribution of individual productivities to be

G(za, zn) = C[F (za), H(zn)],

where F (za) = e−z−θa
a and H(zn) = e−z−θn

n ,

and C[u, v] =
−1

ρ
log

{

1 +
(e−ρu − 1)(e−ρv − 1)

e−ρ − 1

}

.

The function C[F (za), H(zn)] is a Frank copula, which allows for dependence between draws

from distributions F (za) and H(zn).
6 The parameter ρ ∈ (−∞,∞)\{0} determines the extent of

dependence, with a positive (negative) value of ρ representing positive (negative) dependence

between the draws.7 The marginal distributions themselves are Fréchet, with dispersion pa-

rameters θa and θn and the means are normalized to be the same. The lower are θa and θn, the

higher is the variation in individual productivity in agriculture and non-agriculture.

This parameterization introduces two dimensions of richness relative to the analytical example

of Section 3.5. First, individual productivity draws are no longer independent across sectors.

This allows for characteristics that make a worker more productive in both types of activity.

Second, dispersion in individual productivity is no longer the same in each sector. Since non-

agriculture work is a stand-in for many different types of economic activities, one might expect

that individual productivity dispersion is larger in non-agriculture than in agriculture. This

parameterization allows for this possibility.

We choose this functional form for our quantitative analysis for several reasons. First, it allows

for a transparent calibration of the distribution parameters, while also allowing for dependence

and differing sector dispersion in individual productivity. As we show in the following section,

the three parameters of the distribution (θa, θn and ρ) are disciplined by three simple moments

calculated from a single cross section of wages.8

6A copula is a function that allows for the creation of multivariate distributions out of arbitrary univariate
distributions; see e.g. Nelsen (2006). The Frank copula generates dependence between draws that is radially
symmetric, i.e. not systematically stronger when closer to the right or left tails of the distribution. Other copulae,
such as the Clayton or the Gumbel copula, do not have this feature.

7When ρ = 0, C[u, v] is defined as u · v.
8Individual productivity distributions in the Roy model cannot be identified from cross-sectional wage data

without making assumptions about the functional form of the distributions (see Heckman and Honoré (1990)).
Because one observes only the maximum of each worker’s draws, but not both draws themselves, if individual
productivity distributions are allowed to take on an arbitrary form, there are many distributions that can generate
a given set of observations on wages and sector choices by individuals.
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Second, the choice of Fréchet distributions for individual productivity in each sector contains

a sensible economic interpretation, which is as follows. The Fréchet distribution is an extreme-

value distribution, representing the distribution of the maximum of independent draws from

some underlying distribution.9 Thus, the draw zin can be thought of as the maximum of worker

i’s individual productivity draws in a large set of distinct non-agricultural tasks. A similar

interpretation can be given to zia.10

4.2. Calibration of Individual Productivities

To calibrate the individual-productivity distribution parameters, our strategy uses cross-sectional

wage data from the United States. Formally, we jointly calibrate θa, θn and ρ to match three mo-

ments: the standard deviations of log wages in agriculture and non-agriculture (adjusted as we

describe below) and the ratio of average wages in agriculture and non-agriculture.

While all three parameters are jointly determined, each has an intuitive relationship with one of

the moments picked. The parameters θa and θn are disciplined by cross-sectional wage variation

in agriculture and non-agriculture. Because a worker’s wage in the model equals the value of

her marginal product, variation in individual productivity maps into variation in wages across

workers.

The dependence parameter ρ is disciplined by the ratio of average wages in agriculture to aver-

age wages in non-agriculture, with a lower ratio implying a higher ρ. The intuition is as follows.

For high values of ρ, workers tend to get either two high draws or two low ones. Because of

the higher variance in non-agricultural productivity (implied by the calibration procedure, as

we explain below), those with the high draws are more likely to have a comparative advantage

in non-agriculture. This implies that most of the high-wage workers are in the non-agricultural

sector, and that the ratio of average wages is low. For low values of ρ, in contrast, each sector

employs worker with high sector-specific skills, and higher wage individuals are more equally

distributed across sectors. Hence, the ratio of average wages is higher.

Our cross-sectional wage data comes from the U.S. Current Population Survey (CPS) for 2010,

which is the most recent year available. Our sample includes all individuals who have non-

missing data on income and hours worked, including both self-employed and salaried work-

ers. We calculate each individual’s wage as the sum of salary income, business income and

9By the extreme value theorem, the maximum of independent draws from any distribution converges in dis-
tribution (once properly normalized) to one of three extreme value distributions: the Fréchet, the Gumbel, or the
Weibull.

10Yet another advantage of Fréchet distributions is that they produce wage distributions with fat right tails, as
in the data, while other prominent distributions fail in this dimension. For example, we find that a version of our
model with log normal individual-productivity distributions generates tails that are too thin compared to the data.
Heckman and Sedlacek (1985) arrive at a similar conclusion. Details of our calculations are available on request.
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farm income in the previous year divided by hours worked in the previous year. We restrict

the sample to include only those earning at least the Federal minimum wage. We define agri-

cultural workers to be those whose primary industry of employment is agriculture, forestry or

fishing, and non-agricultural workers to be all other workers.11

We then adjust the variation in wages to keep only the “permanent” component of wages,

rather than the “transitory” component. We do so because wage variation in the model arises

only from productivity differences across workers, whereas wage variation in the data may

include other factors unrelated to productivity. Following Guvenen and Kuruscu (2009), we

subtract off estimates of the transitory component of wages using the estimates of Guvenen

(2009), who calculates that the variance of the transitory component of log wages is 0.14. We

end up with adjusted standard deviations of log wages in agriculture and non-agriculture of

0.33 and 0.46, which we target in our calibration.

The ratio of average wages in agriculture to average wages in non-agriculture is the final mo-

ment we target in our calibration. Using the CPS data, we calculate this ratio to be 0.69.12

These moments imply parameter values of θa = 5.5, θn = 2.8 and ρ = 2.2. The estimates

of θa and θn mean that there is more variation in individual productivity in non-agriculture

work than in agricultural work, which seems reasonable given that non-agriculture work en-

compasses more types of economic activities. While ρ itself is hard to interpret, the associated

Spearman rank correlation coefficient is 0.24 and the linear correlation coefficient is 0.31. This

suggests that there is a modest amount of positive correlation in individual productivities: if an

worker is productive in one sector, she is likely to be productive in the other as well.

4.3. Calibration of Preference Parameters

For the preference parameters, we pick ν and ā to jointly match two moments from U.S. data.

The first moment we target is the fraction of workers in agriculture from U.S. data, which is

just below two percent. The second is a long-run agriculture expenditure share of 0.5 percent,

which has been used by others in the literature, in particular Restuccia, Yang, and Zhu (2008).

The resulting parameter ā is consistent with independent estimates of the size of the subsis-

tence consumption requirement in developing countries. Rosenweig and Wolpin (1993) and

Atkeson and Ogaki (1996), both of which use panel data from a sample of rural households in

11We find that our results are similar when using other plausible sample selection criteria, such as that of Heath-
cote, Perri, and Violante (2009), who further restrict the sample to include only those aged between 25 and 60 years
old and working at least 35 hours per week. See Appendix C for more on the cross-sectional data we employ.

12If the cost of living is lower in rural areas, then the ratio of real average wages would be higher. Adjusting for
this implies that we would infer a lower ρ in our calibration, which would strengthen our results. We skip such an
adjustment however, as data on prices in rural areas in the United States are not systematically collected.
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Table 2: 90-10 Productivity Differences, Data and Benchmark Model

Agriculture Aggregate Non-Agriculture Ag/Non-Ag Ratio

Data 45 22 4 10.7

Model 32 22 14 2.3

Without Selection 20 20 20 1.0

Note: The aggregate productivity difference is the ratio of GDP per worker expressed at Gheary-Khamis
international prices between the 90th and 10th percentile countries.

India, estimate a subsistence consumption need of around 33 percent of the average income of

Indian villagers. When we compute the the subsistence consumption requirement in our model

economy with A calibrated to mimic India’s per capita GDP relative to the U.S. we find that ā

is 30 percent of average income.

4.4. Quantitative Predictions for Sector Productivity Differences

To explore the quantitative implications of our model, we perform the following experiment.

Beginning with a value of A normalized to one for the benchmark economy (calibrated to the

U.S.), we lower A to match GDP per worker for a country in the 90th percentile of the income

distribution, and then for a country in the 10th percentile. We then compare the model’s pre-

dictions for sector labor productivity in the 10th and 90th percentile countries to those of the

data.

Table 2 shows the the results of the experiment. By construction, the gap in aggregate labor

productivity is a factor 22 in both the model and data. This gap is generated with a difference

in A of 20.13 At the sector level, the model predicts a factor 32 difference in agriculture produc-

tivity, and a factor 14 difference in non-agriculture. In the data, the differences are a factor 45 in

agriculture and a factor 4 in non-agriculture. Thus, the selection channel in the model generates

quantitatively large differences between sector and aggregate productivity differences, but not

quite as large as in the data.

To provide a more concrete metric for the overall quantitative importance of selection, the last

column of Table 2 shows the ratio of the productivity differences in agriculture to those of

13Aggregate labor productivity is expressed as GDP per worker at Gheary-Khamis international prices. The
difference between the A difference and GDP per worker difference comes from the higher relative price of agri-
culture goods in the poorer countries, which our model generates endogenously as workers with progressively
lower agriculture productivity are induced to enter agriculture.
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Table 3: Selection and Individual Productivity

Country Agriculture, E(za|za/zn>pa)
E(za)

Non-Agriculture, E(zn|zn/za>pa)
E(zn)

90th Percentile 1.62 1.01

10th Percentile 1.02 1.48

Ratio 1.58 0.68

non-agriculture in the model, which is 2.3. The implication is that if selection were the only

phenomenon at work, agriculture productivity differences would be 2.3 times as large as pro-

ductivity differences in non-agriculture. The equivalent figure in the data is 10.7. Thus, this

experiment implies that selection accounts for roughly a factor of two of the cross-country

variation in agriculture productivity compared to non-agriculture. For illustration, the bot-

tom row presents the model’s predictions without selection, i.e. when worker heterogeneity is

shut down. In this case the ratio is 1.0, as the productivity gaps are the same in each sector as

the A differences themselves.

Another way of gauging the quantitative importance of selection is consider the effect on each

sector separately. For agriculture, the model predicts that productivity differences that are

roughly 60 percent larger than the underlying A differences (32 versus 20). Similarly, in non-

agriculture, selection amplifies down the A differences by roughly 30 percent (14 versus 20).

Note that the combined impact on the ratio of agriculture to non-agriculture productivity dif-

ferences, which is 2.3, can be computed by taking the amplification factor in agriculture (1.6)

and dividing by the amplification factor in non-agriculture (0.7).

Table 3 provides more insight about where the selection effects come from. For each country,

the table reports the expected individual productivity of workers in each sector relative to the

population mean (unconditional expected productivity). In the 90th percentile country, the av-

erage agriculture worker is 1.62 times as productive as the population mean. Recall that the

90th percentile country in the model has a small fraction of workers in agriculture. What the

model predicts is that this small set of workers are in fact much more productive in agriculture

than a worker taken at random from the population. In the 10th percentile country, in con-

trast, agriculture workers are just 1.02 times as productive as the population mean. Essentially,

agriculture workers in the poor country are roughly comparable to the population mean. The

ratio of average productivity of agriculture workers in the two countries is 1.58. Note that this

corresponds exactly to the amplification factor in agriculture discussed above.

In non-agriculture, selection forces works in the opposite direction. In the 90th percentile coun-

try, non-agriculture workers are just 1.01 times as productive as the population mean. This is
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not surprising as 97 percent of workers are employed in the non-agriculture sector in this coun-

try. In the 10th percentile country, with 22 percent of workers employed in non-agriculture

sector, non-agricultural workers are 1.48 times as productive as the population mean. Taking a

ratio of the 90th to 10th percentile of the country income distribution gives 0.68, which corre-

sponds to the non-agriculture amplification factor.

These observations imply that workers with a comparative advantage in agriculture (non-

agriculture) also have an absolute advantage in agriculture (non-agriculture.) This means that

both conditions on the individual-productivity distribution of Proposition 2 hold. We note that

there was nothing in our calibration strategy that guaranteed this outcome. Indeed, there exist

parameter combinations for which one of the conditions fails. The sensitivity analysis of Sec-

tion 5.2 provides one such example, and illustrates the dimensions on which it is counterfactual

to the data.

4.5. Assessment of Calibrated Model’s Cross-Country Implications

The model has a variety of other predictions for the cross section of countries. Below we high-

light some of its other main quantitative implications and compare them to cross-country data.

Agriculture Wage Gaps. One novel prediction of our model is that average wages are much

lower in agriculture than non-agriculture even though there there are no barriers to workers

moving between sectors (as in the models of Caselli and Coleman (2001), Restuccia, Yang, and

Zhu (2008), Herrendorf and Teixeira (2011), Adamopoulos and Restuccia (2010), and Tombe

(2011)). In our model, this agricultural wage gap is driven entirely by selection: in equilibrium,

most of the high-wage individuals are those who possess a comparative advantage in non-

agriculture production and self select into that sector (see Section 4.2). Figure 1 plots the ratio

of average wages in agriculture to non-agriculture against GDP per worker using wage data

from the ILO and the predictions from our model. In the data, virtually all countries exhibit a

large agricultural wage gap, with ratios of average wages below one in countries at all levels of

the income distribution and substantially less than one in the poorest countries. The model also

predicts a ratio less than one in all countries, with a slight decline as GDP per worker declines.

The success of our model on this dimension is important because new evidence suggests sev-

eral prominent explanations are unable to account for these wage gaps. Using new data from

a large set of developing countries, Gollin, Lagakos, and Waugh (2011a) find that even after

adjusting for human capital differences between sectors, as emphasized by Caselli and Cole-

man (2001), lower costs of living in agricultural areas, as documented by Ravallion, Chen, and

Sangraula (2009), and hours worked differences, there are still large residual wage gaps in agri-

culture in developing countries.14 They find that the average real wage in agriculture is roughly

14There, we refer to this agricultural wage gap synonymously as the “agricultural productivity gap.”
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Figure 1: Average Wage in Agriculture Relative to Non-agriculture, Data and Model

one-half of the average wage in non-agriculture in the typical developing country, and argue

that some other force besides these three must be behind these gaps.

The current paper suggests an alternative explanation, which is that selection forces induce

higher wage workers to be disproportionately in the non-agriculture sector. Still, the model

predicts that wages are roughly two-thirds as high in agriculture as non-agriculture, compared

to the one-half number found by Gollin, Lagakos, and Waugh (2011a). This suggests that selec-

tion explains part but not all of the lower relative wages in agriculture in developing countries.

Wage Inequality. We now ask whether our model’s predictions for income inequality and

the income level are consistent with cross-country data. In the model, wage inequality in-

creases slightly in income per capita. The reason is that as countries become richer, their work-

ers move out of agriculture—a sector which has relatively low productivity variation across

individuals—and into non-agriculture, which has higher productivity variation.

In the data, this relationship has been widely studied in the hunt for a Kuznets Curve, or hump

shape in inequality (as measured by a Gini coefficient) as a function of GDP per capita. Barro

(2000) summarizes the evidence by arguing that, while the cross-country data on income per

capita and Gini coefficients do support a Kuznets curve, the bulk of the relationship between

income level and income inequality remains unexplained by it. Thus, the model is in line with

these data, and consistent with the Kuznets (1955) argument that as a country develops, move-

ment out of agriculture activities will generate more inequality.
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Figure 2: Share of Employment in Agriculture, Data and Model

Share of Workers in Agriculture. The model’s non-homothetic preferences assure that the

share of workers in agriculture declines in income per capita. Here we ask whether the model’s

quantitative implications for the share of workers in agriculture is consistent with the data,

as is needed to accurately gauge the importance of the selection mechanism (see e.g. (9) in the

analytical version of the model). Figure 2 plots data on the percent of employment in agriculture

against GDP per worker data and the predictions from our calibrated model. In the data, the

country in the 10th percentile of the income distribution has an employment share in agriculture

of 78 percent, whereas the country in the 90th percentile of the income distribution has a share

of three percent. The model predicts that a country in the bottom 10th percentile in GDP per

worker should have around 63 percent of workers in agriculture, and that the percent declines

with increases in GDP per worker in a way that is quantitatively consistent with the data.

The Relative Price of Agriculture. As Proposition 1 shows, the model predicts that relative

agriculture prices are higher in poor countries than rich countries. Figure 3 plots the predic-

tions of our quantitative model, as well as data on the relative price of agriculture and GDP

per worker. Our data on relative agriculture prices are constructed using 2005 data from the

International Comparison Programme (ICP); Appendix C provides the complete details. Fig-

ure 3 shows that relative agriculture prices systematically decline in GDP per worker, with a

ratio of relative prices between countries in the 90th and 10th percentiles of GDP per worker of

2.5. The solid line in Figure 3 plots the model’s prediction. In the model, relative agriculture

prices also systematically decline with GDP per worker, and the ratio between the 90th and
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Figure 3: Relative Price of Agricultural Goods, Data and Model

10th percentiles is 2.3.15

One concern is that the data are based on the prices that consumers pay for goods, not the

price that producers receive. This distinction would reflect distribution margins that are not in

the model. If distribution margins vary systematically with the level of development (see for

example Adamopoulos (2009)), then the relationship in Figure 3 may not reflect differences in

relative agriculture-producer prices. To address this concern, we examined relative agriculture-

price data using producer prices constructed by Restuccia, Yang, and Zhu (2008). We find that,

by these measures, relative agriculture prices systematically decline in GDP per worker—as our

model predicts—and, in fact, the relationship is even stronger than for consumer prices.

4.6. Evidence Using Proxies for Individual Productivities

In this section we take a different approach to assessing the plausibility of the calibrated model.

In particular, we use two plausible proxies for agriculture and non-agriculture individual pro-

ductivity that are observable independent of the sector the worker selects and provide evidence

supporting key implications of our model.

15This fact is consistent with previous studies of variation in cross-country relative prices—e.g., Summers and
Heston (1991), Jones (1994), Restuccia and Urrutia (2001), and Hsieh and Klenow (2007). In particular, Herrendorf
and Valentinyi (2009), show that when partitioning ICP goods into agricultural and non-agricultural goods, the
relative price of agriculture is higher in poor countries. They also show that partitioning goods into tradeable and
non-tradeable goods implies a higher relative prices of tradeables in poor countries, and partitioning goods into
consumption and investment goods implies a higher relative price of investment goods in poor countries.
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The two proxies we use are height for agriculture and cognitive ability scores for non-agriculture.

The rationale is that height reflects the “physical vigor” (Steckel (1995)) useful in physically de-

manding jobs such as agricultural work (see Pitt, Rosenzweig, and Hassan (2010), Pitt, Rosen-

zweig, and Hassan (1990), Steckel (1995), and Strauss and Thomas (1998) plus the references

therein). Cognitive ability scores in turn plausibly capture the verbal, analytical or other non-

physical capabilities often valued in non-agriculture activities (see e.g. Case and Paxson (2008)

or Miguel and Hamory (2009)). While these proxies are certainly crude, they offer the advan-

tage of being observable whether or not someone works in a particular sector, and have been

(reasonably) widely measured in practice.

Using these proxies, we can compare the model’s correlation between individual productivities

and the correlation between the observed proxies. As discussed in Section 4.2, the model’s

correlation is positive, but modest in magnitude, with a linear correlation coefficient of 0.31.

This correlation is very much consistent with the correlations between height and cognitive

ability scores. Existing studies find correlations between height and cognitive ability in the

range of 0.10 to 0.30 (see Case and Paxson (2008) and the references therein).

Another important implication of the model is that agriculture workers in rich countries are

more productive in agriculture than the average worker (see e.g. Table 3). Using height as a

proxy for agriculture productivity, we should find that agriculture workers in rich countries are

taller than the average worker. To check this prediction, we draw on height data for U.S. adults

collected in the 2009 National Health Interview Survey, conducted by the Center for Disease

Control (CDC). We find that the average agriculture worker is 172.4 cm tall, while the average

worker is 170.0 cm tall. The difference of 2.4 cm, or roughly one inch, is statistically significant at

well below the 1 percent confidence level. Furthermore, it is economically significant: according

to the CDC, this difference is equivalent in magnitude to the overall increase in average height

in the U.S. from 1960 to 2009.

The developing country analog is that non-agriculture workers in poor countries are more pro-

ductive in non-agricultural tasks than the average worker (again see Table 3). Using cognitive

ability scores as a proxy for non-agriculture productivity, we should find that non-agriculture

workers in poor countries have higher cognitive ability scores than average. While cognitive

ability score data from developing countries are limited, the available evidence supports this

implication. Using a unique data set from Kenya, Miguel and Hamory (2009) find that among

rural Kenyan students, cognitive ability scores are a very strong predictor of who later migrates

out of agricultural areas to take non-agricultural employment. Their estimates suggest that stu-

dents that score one standard deviation higher on cognitive ability tests are roughly 17 percent

more likely to migrate out of agriculture areas after finishing school. In addition, other studies

have found that those with greater schooling attainment are far more likely to migrate to non-

agricultural areas (e.g. Lanzona (1998) and Beegle, De Weerdt, and Dercon (2011)). As schooling
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attainment is correlated with cognitive abilities, this evidence also supports the model’s predic-

tions that non-agriculture workers in developing countries have higher cognitive ability than

average.

We conclude that, when using height and cognitive ability scores as proxies for agricultural

and non-agricultural individual productivity, the available evidence is in fact consistent with

the model’s predictions. In particular, the correlation between the proxies does appear to be

positive but modest: agriculture workers in the U.S. do appear to be selected on height, and

non-agricultural workers in developing countries do appear to be selected on cognitive ability.

Of course given the crudeness of these proxies and limited availability of data, we take this

evidence as supportive rather than definitive.

5. Robustness Exercises

5.1. Model Predictions for Countries at Intermediate Income Levels

In this section we compute the predictions of the benchmark model for intermediate income

levels. We conclude that the role of selection is less important for understanding productivity

differences between rich and intermediate income countries than between rich and poor coun-

tries. The reason is that shares of employment in agriculture are much more similar in rich and

intermediate income countries, and hence differences in the average productivity of agriculture

workers are much less pronounced then they are between rich and poor countries.

Table 4 illustrates the model’s prediction for the 90th-50th ratio. As in the 90-10 experiment, A

differences are chosen to match the aggregate GDP per worker difference of a factor 3.1. The

model predicts a factor 3.8 gap in agriculture and a factor 3.0 gap in non-agriculture. In the

data, these gaps are a factor 11.1 in agriculture and 1.9 in non-agriculture. The last column

shows that for these countries there is 5.8 times as variation in agriculture productivity as non-

agriculture productivity. The model predicts just 1.3 times as much variation, or far smaller

than in the data.

Why does the model fare so poorly in this case? The reason is that the employment shares

in agriculture between the 90th and 50th percentile economies are not as different as they are

for the 90th and 10th percentile countries. The share of workers in agriculture in the 50th-

percentile country is 9 percent, compared to 3 percent in the 90th-percentile country. Thus,

agriculture workers are highly selected based on agriculture productivity in both countries,

and hence average worker productivity is only slightly lower in the 50th-percentile country.

In contrast, in the 10th-percentile country, 78 percent are in agriculture, so the average worker

has substantially lower productivity than the average agricultural worker in the 90th-percentile

country. Equation (9) from our analytical example illustrates this point: selection plays a larger

role when employment shares differ greatly, as they do between rich and poor countries, but

not between rich and middle-income countries.
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Table 4: 90-50 Productivity Differences, Data and Benchmark Model

Agriculture Aggregate Non-Agriculture Ag/Non-Ag Ratio

Data 11.1 3.1 1.9 5.8

Model 3.8 3.1 3.0 1.3

Without Selection 3.0 3.0 3.0 1.0

5.2. Sensitivity Analysis: Size of Correlation Between Individual Productivities

In this section we study the sensitivity of our results to the size of the correlation between

individual productivity draws. This is an important issue because the correlation parameter

helps determines the magnitude of the selection effects and when the conditions in Proposition

2 hold or not. Heckman and Honoré (1990) formalize this last point by showing that in the

Roy model, the correlation in individual productivities determines how average productivity

of workers in each sector relates to the unconditional averages, and in turn how comparative

advantage aligns with absolute advantage, i.e. the conditions in Proposition 2.16 Thus we

explore how varying the correlation affects our results.

To explore these issues, we recompute the results of our main experiment (of Table 2) under

a range of correlation coefficients running from 0.00 (independence) to 0.99 (near perfect cor-

relation) by varying the dependence parameter ρ. In each case, we re-calibrate θa and θn to be

consistent with the (adjusted) standard deviation of log wages in each sector and re-calibrate

the preference parameters as described in Section 4.3. We do not attempt to match the ratio

of average wages (since by varying ρ, we are no longer able to) but instead report the model’s

prediction for the sector wage ratio for each correlation value.

Table 5 shows the results of varying the model’s correlation parameter in individual produc-

tivity, with the calibrated model in the center column (and marked with a star). The first row

reports the Spearman rank correlation coefficient in each experiment. The second row reports

the ratio of average wages in agriculture to non-agriculture. The third and fourth rows report

the productivity differences between the 90th and 10th percentile countries in the two sectors.

The final row presents the ratio of sector productivity differences.

One prominent feature in Table 5 is that higher values of correlation in individual productivity

lead to smaller quantitative effects of selection. For example, starting with the calibrated model

16Heckman and Honoré (1990) refer to the case when comparative advantage aligns with absolute advantage as
the “standard case,” and the case when agents with a comparative advantage have an absolute disadvantage as
the “non-standard case.”
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Table 5: Sensitivity of Sector Productivity to Correlation

Correlation in individual productivity 0.00 0.10 0.20 0.24∗ 0.30 0.40 0.99

Ratio of average wage w̄a/w̄n 0.74 0.73 0.71 0.69∗ 0.66 0.61 0.48

Agriculture Productivity Difference 38.1 36.0 33.5 32.1∗ 30.3 27.3 19.5

Non-Agriculture Productivity Difference 10.9 11.8 13.0 13.8∗ 14.4 15.4 17.6

Ag/ Non-Ag Ratio 3.5 3.1 2.6 2.3∗ 2.1 1.8 1.1

and increasing the correlation to 0.3 and 0.4 leads to agriculture gaps of 30.3 and 27.3 down

from 32.1 in the calibrated model. Non-agriculture gaps rise to 14.4 and 15.4 up from 13.8.

Thus, the model performs modestly worse in this range, with the combined affect of selection

falling to a ratio 2.1 and 1.8 respectively. One challenge to correlation parameters in this range

is the ratio of average sector wages are counterfactually low at 0.66 and 0.61, respectively.

In contrast, lower values of the correlation parameter lead to larger quantitative effects. Low-

ering the correlation to 0.2 and 0.1 leads to larger agriculture gaps of 33.5 and 36.0, and smaller

non-agriculture gaps of 13.0 and 11.8. The combined effects rise to ratios of 2.6 and 3.1. The

ratio of average wages also rises above the level found in the data, to 0.71 and 0.73.

The first and last data columns present some extreme examples of correlation, namely no cor-

relation and near-perfect (0.99) correlation. In the zero-correlation case, the model performs

better than in the benchmark case, with agriculture and non-agriculture gaps of 38.1 and 10.9,

and an overall ratio of 3.5. The wage ratio is counterfactually high at 0.74. In the case of near-

perfect correlation, the agriculture differences are just a factor 19.5, which is smaller than the

underlying A difference of factor 20. The non-agriculture difference is still smaller, at 17.6.

The reason that the agriculture sector “flips” here is that in this case workers with a compar-

ative advantage in agriculture have an absolute disadvantage there, i.e. one of the conditions

in Proposition 2 does not hold. Thus, selection works in the opposite way as in the standard

case, and agriculture productivity differences are smaller than A differences. Of course a major

limitation of having such a high correlation is that the average wage in agriculture relative to

non-agriculture is strongly counterfactual, at 0.48.

5.3. Alternative Quantitative Experiment: Calibrate to Non-Agriculture Productivity Gaps

In this section we perform an alternative experiment that calibrates the model to target the

observed non-agriculture productivity difference while maintaining agriculture employment
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shares consistent with the data. The motivation is two-fold. First, it allows us to highlight a

key difference between our model and the existing literature, which is that our model requires

underlying productivity differences larger than those of non-agriculture in order to match mea-

sured non-agriculture productivity differences. Second, it illustrates that the quantitative im-

portance of selection does not depend on the assumption that the underlying productivity dif-

ferences are sector neutral; similar results arise when the underlying exogenous productivity

differences are larger in agriculture. Instead, what matters for the selection mechanism to work

is that employment shares in agriculture are very different across rich and poor countries, as in

the data.

To execute this experiment we will introduce one additional parameter, Aa, which allows agri-

culture efficiency to differ from non-agriculture efficiency. Formally, our agriculture production

function is now Ya = AaALa. As a result, it is optimal to work in non-agriculture if and only if
zin
zia

≥ paAa. This extra degree of freedom allows us to simultaneously target a non-agriculture

productivity difference of four and match agriculture employment shares in the poor country.

This last moment is important because an accurate measurement of the importance of selection

should be based on differences in employment shares across model economies that are the same

size as they are in the data for rich and poor countries.17

While we take this additional parameter Aa as exogenous, it has several possible motivations.

For one, it could represent agriculture-specific differences in land per worker or capital per

worker, which we currently abstract from, but explore in Section 6. It could also represent

the type of agriculture-specific distortion emphasized by the existing literature. For example

it could be distortions to the use of intermediate inputs in agriculture as studied by Restuc-

cia, Yang, and Zhu (2008), or restrictions on farm size, as emphasized in Adamopoulos and

Restuccia (2010).

Beginning from the benchmark model calibrated as in the main experiment, we normalize Aa

to be one in the United States. We then lower A and Aa to match a productivity difference of 4

in non-agriculture, as in the experiments of Restuccia, Yang, and Zhu (2008) and Adamopoulos

and Restuccia (2010), and an agriculture employment share of 78 percent, as in the 10th per-

centile country. We then compute the model’s predictions for aggregate GDP per worker and

agriculture productivity in the 90th and 10th percentile countries.

Table 6 presents the results of the alternate experiment. Note that the gap in non-agriculture

productivity is a factor of 4 in the model (as in the data) by construction. It is important to

understand that this requires an underlying A difference of 8 (and not 4). This is because the

17The analytical example of Section 3.5 illustrates this point. In equation (8) and (9), a key determinant of
selection’s role is the share of workers in a sector. Thus, if our quantitative model does not deliver employment
shares similar to the data, then we cannot provide an unbiased measurement of the role of selection.
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Table 6: Alternative Experiment, 90-10 Ratio, Data and Benchmark Model

Agriculture Aggregate Non-Agriculture Ag/Non-Ag Ratio

Data 45 22 4 10.7

Model 42 16 4 9.9

Without Selection 26 18 8 3.4

Note: A and Aa are picked to match non-agriculture difference of 4 and a 78 percent agriculture em-
ployment share in the poor country.

non-agriculture productivity differences delivered by the calibrated model are smaller than the

A differences themselves. In contrast, the experiments of Restuccia, Yang, and Zhu (2008) and

Adamopoulos and Restuccia (2010) require A differences of the exact same size as the non-

agriculture productivity differences. The gap in aggregate productivity is a factor 16, modestly

less than in the data, and agriculture productivity is now a factor of 42, largely on par with the

45 in the data. Overall, the model delivers productivity differences that are 9.9 times as large in

agriculture as non-agriculture, just slightly less than the data.

To measure the importance of selection, we re-solve the model without the selection channel,

i.e. with worker heterogeneity shut down. In this case the model predicts a slightly larger

aggregate difference of 18, a smaller agriculture difference of 26, and a non-agriculture differ-

ence of 8. Agriculture productivity is now just 3.4 times as variable across countries as non-

agriculture. Thus, the model with selection generates 2.9 times larger variation in sectoral pro-

ductivity than the model without selection (9.9/3.4). While this is a different exercise than the

experiment in Section 4.4, the quantitative importance of selection is roughly comparable to the

estimate of 2.3 computed in the main experiment.

5.4. Open-Economy Considerations

Up to this point we have treated each model economy as closed. This raises an important

question: how will the model’s predictions change if we allow for international trade? We

argue that as long as a model with international trade generates labor allocations consistent

with cross-country data, the model’s quantitative predictions for sector productivity differences

across countries will remain the same. This argument is clearly seen in the special case of our

model in equation (9): if an open-economy model supports the same allocation of workers in

agriculture and non-agriculture as the closed-economy model, then the open-economy model’s
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predictions for productivity differences are the same. The only distinction between the models

is how the relative price of agriculture is determined in equilibrium.

However, our model does have important implications for the impact from international trade.

In Gollin, Lagakos, and Waugh (2011b) we build on the framework in the current paper within

the Eaton and Kortum (2002) Ricardian model of trade. A key result is that the welfare gains

from a trade liberalization are smaller relative to the standard Eaton and Kortum (2002) frame-

work because of how labor productivity in each sector responds as workers reallocate following

the liberalization. Less productive workers are drawn into the non-agriculture sector reducing

a country’s comparative advantage in that sector and reducing the scope and hence gains from

trade. Thus, our model has important predictions for international trade in addition to its abil-

ity to explain the productivity patterns of Table 1.

6. Extended Model with Capital and Land

We now extend the model to include capital and land. Up to this point we abstracted from cap-

ital and land mainly for transparency. One concern with this abstraction is that capital and land

may interact with selection in ways that diminish the importance of selection. A second concern

is that, by ignoring capital and land, the calibration procedure may overestimate the amount

of wage variation that is attributable to productivity variation across individuals, which would

again lead to an overestimate of the importance of selection. As we show below, neither of these

concerns turn out to be warranted.

6.1. Production with Capital and Land

In this extension, each worker has access to technologies to produce either the agriculture good

or the non-agriculture good. The technologies are:

yia = Akφkℓφl(zia)
1−φ, with φ = φk + φl,

yin = Akα(zin)
1−α,

where k represents capital, and ℓ represents land. Note that we abstract from land as a factor of

production in the non-agriculture sector and allow for capital and labor’s shares to potentially

differ across sectors, as consistent with recent estimates (Valentinyi and Herrendorf (2008)).

To solve this model we work backwards by first characterizing the solution to the profit maxi-

mization problem given an occupational choice, and then characterizing the occupational choice.

Given the decision to work in agriculture, the profit maximization problem is

max
k,ℓ

{

paAk
φkℓφl(zia)

1−φ − rk − pℓℓ
}

.
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Workers rent capital and land to maximize profits. The price r is the cost of renting one unit

of capital, and pℓ is the price of renting one unit of land. Workers are the residual claimants

on earnings after payments to capital and land are made; we denote individual i’s earnings as

wi(zia).
18

Given the decision to work in non-agriculture, the profit maximization problem is

max
k

{

Akα(zin)
1−α − rk

}

.

Here workers rent only capital to maximize profits, and again serve as residual claimants on

earnings after payments to capital are made; we denote individual i’s earnings as wi(zin).

Occupational choice comes down to a comparison of potential wage earnings in both sectors.

These wages are

wi(zia) = zia(1− φ)(paA)
1

1−φ

(

φk

r

)

φk
1−φ

, and (10)

wi(zin) = zin(1− α)(A)
1

1−α

(α

r

)
α

1−α

. (11)

Combining equations (10) and (11) yields a simple cutoff rule in relative individual productivity

characterizing the optimal occupational choice for each worker. Working in non-agriculture is

optimal for worker i if and only if

zin
zia

≥ χp
1

1−φ
a A( 1

1−φ
− 1

1−α
)r(

α
1−α

−
φk
1−φ

)p
−φl
1−φ

ℓ , (12)

where χ is a collection of constants. While similar to the cutoff rule in equation (4) of the

benchmark model, this cutoff rule differers in two respects. First, the price of capital and the

price of land now factor into the decision where to work. Second, economy-wide efficiency

directly enters into the equation, with its impact determined by the difference in labor shares

between the two sectors (i.e. 1− φ vs. 1− α).

6.2. Optimization and Equilibrium

Optimal consumption decisions are the same as in the benchmark model. A worker’s income

now consists of her labor earnings plus an equal share of the aggregate payments to capital and

land.

18We model agriculture and non-agriculture workers as self-employed. Gollin (2008) provides evidence that
self-employment in both agriculture and non-agriculture sectors is a key feature of the data in poor countries.
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An equilibrium of the economy consists of an agriculture price, pa, a price of capital, r, a price

of land, pℓ, wages per efficiency unit of labor in each sector, wa and wn, and allocations for each

worker, such that workers optimize and all markets clear.

6.3. Calibration of Extended Model

We begin with the calibration of the individual productivity distribution. One important fea-

ture of this extended model is that capital and land do not affect the calibration results of the

dispersion parameters relative to the benchmark model. The reason is that in both models

log wage variation only reflects variation in log individual productivity, i.e. var(logwi(zia)) =

var(log zia). To see this in the extended model, equations (10) and (11) show that payments to

labor are proportional to individual productivity, and the degree of proportionality is common

across workers of different productivity. Hence, calibrating the model to the wage variance

targets described in Section 4.2 results in the same θa and θn values as in the benchmark model.

Furthermore, given that the calibration results in the same variances of individual productivi-

ties as in the benchmark model, the correlation parameter ρ must take on the same value as in

the benchmark calibration. In both models, the calibration procedure must set the cutoff value

in relative productivities in such a way to get two percent of workers in agriculture. Given that

this cutoff value is the same, the set of workers in agriculture is the same in both models, and

thus the ratio of average wages is the same. Hence, the value of ρ that matches the average

wage targeted in the data is the same here as in the benchmark model.

Incorporating capital and land adds several new parameters to calibrate: capital and land

shares in agriculture production, φk and φl, capital’s share in non-agriculture production, α,

and aggregate capital and land stocks, which we denote K and L. We use the evidence of

Valentinyi and Herrendorf (2008) on capital and land shares by sector in the U.S. to calibrate

φk, φl and α. They find values for capital and land’s share in agriculture production to be 0.36

and 0.18 which we assign φk and φl to take. While these values are for the U.S., they are also

consistent with observed share-cropping arrangements in poor countries, where workers typ-

ically earn around one-half of all output; see Gollin, Lagakos, and Waugh (2011a) for a more

detailed discussion. For non-agriculture, Valentinyi and Herrendorf (2008) find capital’s share

to be 0.33, which we assign α to take.

To calibrate the aggregate capital stock, K, we pick this value so the capital-output ratio in the

rich economy is 2.5, which is consistent with evidence from the U.S. To calibrate the aggregate

land endowment we follow Adamopoulos and Restuccia (2010) and pick units such that aver-

age land per worker equals 169.3 hectares as they find in the U.S. data. Finally, we calibrate the

preference parameters, ā and ν, as described in Section 4.3.
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Table 7: 90-10 Productivity Differences, Data and Extended Model

Agriculture Aggregate Non-Agriculture Ag/Non-Ag Ratio

Data 45 22 4 10.7

Model 41 22 10 3.9

Without Selection 36 21 17 2.1

Without Selection or Land 17 16 15 1.1

6.4. Results for Extended Model

To explore the quantitative implications of the extended model, we normalize A to equal one,

and choose K to match GDP per worker relative to the U.S. for a country in the 90th percentile

of the income distribution and a capital-output ratio of 2.5. We then lower A and K to match

the aggregate productivity difference of 22 between the 90th and 10th percentile countries, and

a capital-output ratio of 1.0 in the 10th percentile county, as consistent with the data.

Table 7 presents the results. The extended model generates a factor 41 difference in productivity

in agriculture and a factor 10 difference in non-agriculture. This amounts to 3.9 times as much

variation in agriculture productivity relative to non-agriculture productivity across countries.

This is higher than the 2.3 ratio found in the baseline experiment. Of course, the extended model

has several other factors contributing to the larger differences in agriculture. In particular, land

per worker is lower in the poor country, a feature that is present in other models with land as a

fixed factor, such as Restuccia, Yang, and Zhu (2008), Adamopoulos and Restuccia (2010), and

Herrendorf and Teixeira (2011). To measure the role of selection versus land, below we discuss

two decompositions that allow us to assess the importance of each factor.19

To compute one measure of the importance of selection, we re-compute the model’s predictions

without the selection channel (i.e. with worker heterogeneity shut down) leaving all else the

same. The third line in Table 7 reports the results. In this case the model predicts a lower

agriculture difference of a factor 36, an aggregate difference of 21, and a higher non-agriculture

difference of 17. The ratio of agriculture to non-agriculture productivity differences is now 2.1.

Thus, the model with selection generates 1.9 times larger variation in sectoral productivity than

19We find that the implications of this calibration for other cross-country observables not directly targeted, such
as the share of labor in agriculture and relative price of agriculture goods, are reasonable. One additional check of
the model is in the average size of a farm in the 10th percentile country. Our model predicts an average size of 5.4
hectares, which is quite close to the value of 5.0 hectares reported by Adamopoulos and Restuccia (2010).
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the model without selection (3.9/2.1). This shows that selection leads agriculture productivity

differences to be roughly twice as large as non-agriculture differences, or just below the 2.3 of

the main experiment.

As a frame of reference, consider the importance of land relative to selection. The fourth line

in Table 7 reports the results when we remove land from the model. Agriculture productivity

differences now fall to a factor 17, aggregate differences fall to a factor 16, and non-agriculture

differences fall to a factor 15. The ratio of agriculture to non-agriculture differences falls to 1.1.

Using the same logic as above, land-per-worker differences contribute a factor 1.9 (2.1/1.1) to

understanding the ratio of agriculture to non-agriculture productivity differences, which is the

same size as the selection channel.

One limitation of these experiments is that selection is not the only force that responds when the

selection channel is shut down. In particular, the capital allocation changes leaving the ratio of

capital per worker lower in agriculture and higher in non-agriculture in the poor country. This

leads, all else equal, to larger labor productivity differences in agriculture and smaller ones in

non-agriculture in the model without selection. Thus, this experiment understates the overall

effects of selection.

An alternative way to measure the importance of selection is to consider the following decom-

position of equilibrium output per worker in each sector. One can show that labor productivity

in equilibrium can be written as

Ya

Na

= (A)
1

1−φ

(

Ka

Ya

)

φk
1−φ

(

L

Ya

)

φl
1−φ

(

1

Na

∫

i∈Ωa

zia dGi

)

, and (13)

Yn

Nn
= A

1

1−α

(

Kn

Yn

)
α

1−α
(

1

Nn

∫

i∈Ωn

zin dGi

)

. (14)

where the last bracketed term in equations (13) and (14) represent the contribution from se-

lection. Expressing output in this way has the benefit of giving “credit” for variations in K

and L generated by selection and differences in A. For example, agents with higher individual

productivity optimally use more capital and land per unit of labor — but capital-output ratios

and land-output ratios only reflect aggregate scarcity of K and L. Klenow and Rodrı́guez-Clare

(1997) and Hall and Jones (1999) make a similar argument for working with capital-output ra-

tios rather than capital-labor ratios in the neoclassical growth model.

Taking a simple ratio of these bracketed terms in equations (13) and (14) across the rich and poor

country decomposes the importance of each factor in accounting for the sector productivity
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differences in the model. The selection term contributes a factor of 1.6 to agriculture differences

and 0.52 to non-agriculture differences. This implies that selection forces lead productivity

differences in agriculture to be 3.0 times as large as those in non-agriculture (1.6/0.52), which

is somewhat larger than in the main experiment.20

Together, these two decompositions establish bounds on the importance of selection in the ex-

tended model. The first decomposition suggests that selection leads to agriculture productivity

differences that are 1.9 times as large as those of non-agriculture. The second decomposition

suggests that selection leads to agriculture differences that are 3.0 times as large. Taken to-

gether, we conclude that the quantitative importance of selection is comparable in the extended

model and benchmark model.

7. Evidence: The Prevalence of Women in Agriculture Across Countries

According to our theory, part of the large cross-country productivity differences in agriculture

stem from poor countries having relatively more workers in agriculture who are unproductive

at agriculture work (see e.g. Table 3). In this section, we provide one concrete example of this

phenomenon. In particular, we cite evidence that women are less productive at agricultural

work than men on average, and we show that in cross-country data, women form a larger

fraction of agriculture workers in developing countries than in richer countries.

A large body of literature has found that women tend to earn lower wages than men in agricul-

tural work (see e.g. Rosenzweig and Evenson (1977), Rosenzweig (1978), Psacharopoulos and

Tzannatos (1992), and Horton (1996).)21 One widely proposed hypothesis for this gender wage

gap in agriculture is that women are less productive at agricultural work than men on average

(e.g. Goldin and Sokoloff (1982, 1984), Foster and Rosenzweig (1996), Pitt, Rosenzweig, and

Hassan (2010), and Alesina, Giuliano, and Nunn (2011).)

Several types of evidence support the hypothesis that women are less productive than men

at agriculture work on average. As one piece of direct support, Pitt, Rosenzweig, and Hassan

(2010) cite evidence from the U.S. and Bangladesh that men are physically stronger than women

as measured by their grip strength. In Bangladesh, for example, 40 percent of men in a random

20This decomposition suggests a limited role for land. Because land is fixed and agriculture output is lower in
the poor country than in the rich country, land-to-output ratios are actually slightly higher in the poor country
than in the rich country. This suggests that land plays no role in explaining agriculture productivity differences
other than through the selection channel. Put differently, the fixed quantity of land is not a limiting factor for
agriculture in poor countries given the low average productivity of their agriculture workers.

21Rosenzweig and Evenson (1977) and Rosenzweig (1978) document that, in India, women earn roughly 0.75 as
much as men in agriculture work. Psacharopoulos and Tzannatos (1992) document gender wage gaps in agricul-
ture of 0.92 in Colombia, 0.70 in Costa Rica, 0.76 in Guatemala, and 0.69 in Peru, and Horton (1996) documents
gaps of 0.89 in Thailand and 0.85 in the Philippines.
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Figure 4: Share of Agriculture Workers that are Women

sample of adults had a stronger grip than the strongest woman. This matters for productivity

since much of agriculture work, such as plowing, is strength-intensive. Further support comes

from the sexual division of labor in agriculture. Foster and Rosenzweig (1996) show that in

the agriculture sectors of many developing countries, most men are hired to do plowing, while

most women are hired to do weeding.22 Goldin and Sokoloff (1982, 1984) argue that a major

reason women earned less than men in agriculture in the early U.S. was that women were

generally less productive at plowing than men.23

Given evidence that women are relatively less productive in agriculture than men, we next

show that women comprise a relatively larger fraction of the agriculture workforce in develop-

ing countries. In order to measure the prevalence of women in agriculture across countries, we

draw on two independent sources of data. First, we use FAO data on the composition of agri-

culture workers by sex in 162 countries. The estimates come from a mix of labor force surveys

and censuses of population. Second, we use data from ?’s (?) Integrated Public Use Micro-

data Series (IPUMS) to compute the composition of agriculture workers by sex for 51 countries.

These data come exclusively from nationally representative censuses of population, which in

general have very large sample sizes. Using each data set we compute the fraction of each

22Alesina, Giuliano, and Nunn (2011) argue that, because women and children are less productive at plowing
then men, societies that adopted plow agriculture earlier had lower demands for female and child labor, and hence
have lower fertility rates today.

23Goldin and Sokoloff (1984) document a larger gender wage gap in agriculture in the North than the South,
and attribute it to the North’s predominance of hay and wheat farming, where plowing was required, compared
to the South’s focus on tobacco and cotton, for which a smaller stature was useful in harvesting.
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country’s agriculture workers that are women.

Figure 4 shows our calculations using the FAO data. We find that countries with higher shares

of workers in agriculture tend to have a higher fraction of agriculture workers that are women.24

For the countries with 70 percent or more of workers in agriculture, roughly 50 percent of agri-

culture workers are women. In contrast, in countries with 10 percent of workers in agriculture

or less, on average 30 percent of agriculture workers are women. A linear regression of the

share of agriculture workers that are women on the share of all workers in agriculture yields a

slope coefficient of 0.29 with a P-value of 0.01. The IPUMS data (not pictured) paints a similar

picture: a similar linear regression using the IPUMS data yields a slope coefficient of 0.33 with

a P-value of 0.01.25

Putting these pieces together — (i) women are the less productive and agriculture work and

(ii) women are more prevalent in agriculture in developing countries — provides a concrete

example of how agriculture productivity differences across countries depend on the average

productivity of workers in the agriculture sector as predicted by our theory.

8. Conclusion

We argue that cross-country productivity differences are larger in agriculture than in non-

agriculture in part because subsistence food requirements lead workers that are relatively un-

productive in agriculture work to nonetheless select into the agriculture sector in poor coun-

tries. In rich countries, in contrast, those few workers self-selecting into agriculture are those

who are relatively most productive at farm work. As a result, measured labor productivity gaps

are larger in agriculture than in the aggregate. Selection forces work in exactly the opposite way

in non-agriculture, and productivity differences are smaller than those of the aggregate.

We formalize our theory in a general equilibrium Roy model, and calibrate it using data on

the distribution of wages by sector. When calibrated, the model predicts that agriculture pro-

ductivity differences are twice as large as those in non-agriculture, even when economies differ

24Time series evidence from the development experiences of the U.S. and Britain paint a picture consistent with
our cross-country evidence. Goldin and Sokoloff (1982, 1984) show that as the U.S. grew in the 19th century,
women shifted out of agriculture and into manufacturing much more rapidly than men. In Britain, the evidence
of Allen (1994) shows that in 1700, 46 percent of adult agriculture workers were women, and by 1850 this fraction
had fallen to just 29 percent. Authors’ calculations using Allen (1994), Table 5.3.

25One alternative theory for why women are more prevalent in agriculture in developing countries is that higher
fertility rates in the developing world make work on the family farm — where childcare can be provided easily
— particularly attractive for women. One piece of evidence against this alternative theory is that the share of
women without children in agriculture also increases sharply in the agricultural share of employment. A linear
regression using our IPUMS data of the share of agriculture workers that are female without children under 5 on
the agriculture of share of employment yields a slope coefficient of 0.21 with a P-value of 0.01.
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only by an economy-wide efficiency term that affects both sectors uniformly. This result sug-

gest that the larger cross-country productivity differences in agriculture may not exclusively be

the result of distortions specific to agriculture in poor countries. Instead, they could be due to

the optimal decisions of workers faced with subsistence consumption needs and low economy-

wide efficiency. This low efficiency could in turn be due to weak institutions, poor protection

of property rights, or poor social infrastructure, as emphasized by a growing macroeconomics

literature (e.g. Hall and Jones (1999); Acemoglu, Johnson, and Robinson (2001, 2002)).
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A. Model Appendix

1.1. Proof of Proposition 1

Let pPa , Y P
a and Y P

n be the equilibrium relative price and quantities in an economy with economy-

wide efficiency AP . Denote by pRa , Y R
a and Y R

n the equilibrium of an economy with efficiency

AR.

Suppose that pRa = pPa , and that pRa clears the output market in the rich economy. Then by (4),

each worker i would choose to work in the same sector in the two economies. Thus output in

each sector would be scaled up by a factor equal to the ratio of the efficiency terms: Y R
a /Y P

a =

Y R
n /Y P

n = AR/AP . But by (5), we know that workers must demand a higher fraction of non-

agriculture goods in economy AR than AP . But this implies that Y R
n /Y P

n > Y R
a /Y P

a , which is a

contradiction. Thus pRa 6= pPa .

The only way to be consistent with the worker solutions, (5), is for more workers to supply

labor in the non-agriculture sector in economy AR than economy AP . By (4), this occurs if and

only if pRa < pPa . �

1.2. Proof of Proposition 2

Assume that E(za|za/zn > x) is increasing in x. By (4) we know that for any worker i with

individual productivities zia and zin, if i chooses to work in agriculture in country P then zia/z
i
n >

1/pPa , and if i chooses to work in agriculture in country R then zia/z
i
n > 1/pRa . By Proposition 1

we know that pPa > pRa . Hence, by our assumption, E(za|za/zn > 1/pPa ) < E(za|za/zn > 1/pRa ).

Thus
Y R
a /NR

a

Y P
a /NP

a

=
AR

AP
·
E(za|za/zn > 1/pRa )

E(za|za/zn > 1/pPa )
>

AR

AP
.

A similar result holds when E(zn|zn/za > x) is increasing in x. �

1.3. Deriving Analytical Results for Independent Fréchet Individual Productivities

The probability we want to derive is Prob{zn ≤ paza}. To do so, note that this probability is

represented by

πa =

∫ ∞

0

exp{− (paza)
−θ}g(za)dza,

where the first term in the integral is the cumulative distribution function for productivity in

non-agriculture evaluated at random variable paza, and the second term g(za) is the individual
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productivity distribution function in agriculture. The anti-derivative for this integral is given

by

1

p−θ
a + 1

× exp{−(p−θ
a + 1)zθa}.

Evaluating the integral yields

πa =
1

p−θ
a + 1

,

and similar arguments yields

πn =
p−θ
a

p−θ
a + 1

.

To compute the conditional average individual productivity in each sector, we make the fol-

lowing argument. First notice that the conditional productivity distribution for workers in

non-agriculture is

Prob {zn < z|zn > paza} =
Prob {zn < z, zn > paza}

Prob {zn > paza}
.

Then computing the probabilities in the numerator and the denominator we have

Prob {zn < z, zn > paza}

Prob {zn > paza}
= exp{−(pθa + 1)z−θ

n }.

Notice that the conditional productivity distribution of workers in non-agriculture is itself

Fréchet distributed with centering parameter (pθa + 1). Using this insight we can now com-

pute the average individual productivity of non-agriculture workers conditional on working in

non-agriculture to be

E(zn|paza < zn) = (pθa + 1)
1

θ γ.

where the constant γ is the gamma function evaluated at θ−1
θ

. Similar arguments imply that

average individual productivity of agriculture workers conditional on working in agriculture

is

E(za|paza > zn) = (p−θ
a + 1)

1

θ γ.
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B. Capital and Agriculture and Non-Agriculture Productivity Differences

To study the role of sector differences in capital per worker across countries, we use data on

agricultural capital stocks constructed by Butzer, Mundlak, and Larson (2010). The capital

stocks they construct represent estimates of the total value of machinery, structures, treestock

and livestock used in agricultural production. They have estimates for a set of 30 countries from

all levels of the world income distribution. One strength of this study is the effort to which the

authors go to construct measures that are internationally comparable, which is no easy task

given the data challenges inevitable in calculations of this nature. The main limitation is, as the

authors point out, that there are still reasons to be skeptical of the international comparability

of the data.

For our accounting calculations, we make use of their agricultural capital stock estimates from

1985, the year corresponding with the sector productivity data analyzed by Caselli (2005), and

we express the capital stocks in international prices using the investment price deflators from

the PWT. We construct the non-agricultural capital stocks by subtracting the agriculture capital

from the total capital stocks used by Caselli (2005). We end up with estimates of both output

and capital per worker, by sector, for 28 countries.

Table 8: Role of Capital in Accounting for Sector Productivity Differences

Source Sector success1 success2

Our calculations Agriculture 0.22 0.12

(n=28) Non-agriculture 0.29 0.50

Caselli (2005) Agriculture 0.15 0.09

(n=65) Non-agriculture 0.59 0.63

Note: Authors’ calculations using data from Butzer, Mundlak, and Larson (2010) and Caselli
(2005).

Table 8 reports our findings for the role of capital per worker differences in accounting for sector

productivity differences. Here we employ Caselli’s (2005) preferred metrics for the “success”

of capital per worker differences. The first, success1, is defined as the ratio of log variance in

output per worker in a world with only capital per worker differences, divided by the actual

log variance. The second, success2, is defined as the 90-10 ratio of output per worker in a world

with just capital per worker differences compared with the actual 90-10 ratio. The idea behind

both of these metrics is that the lower they are, the larger is the role for TFP differences in
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explaining output per worker differences. For comparison, we also reproduce the results of

Caselli (2005) (Table 5).

Our calculations suggest that TFP differences are the key component of output per worker

differences and they seem to play an even larger role in explaining agriculture productivity

differences across countries than in non-agriculture. As one can see in Table 8, by either met-

ric, capital per worker differences far from fully account for sector productivity differences in

either sector. For success1, we find a ratio of 0.22 in agriculture and 0.29 in non-agriculture. For

success2, we find an even lower 0.12 in agriculture and 0.50 in non-agriculture. These calcula-

tions paint a very similar picture to those of Caselli (2005), even though we employ different

methodology and a different set of countries.
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C. Data Appendix

3.1. Data Sources

• GDP Per Worker – From the Penn World Table version 6.2., variable “rgdpch”.

• Employment Share in Agriculture — From the (online) FAO Statistical Yearbook 2004.

• Agriculture Share in GDP — These data come from Table G.1 in the FAO Statistical Year-

book online edition.

• Relative Agriculture Prices — Derived from author’s calculations with original data from

the World Bank’s 2005 International Comparison Program online database. The sector

“agriculture” is defined to be food and non-alcoholic beverages, alcoholic beverages and

tobacco, codes (1101 and 1102). “Non-agriculture” is defined as all individual consump-

tion, code (11), gross fixed investment, code (15), minus food, non-alcoholic beverages,

alcoholic beverages and tobacco.

• U.S. Cross-sectional Wage Data — Our data come from the 2010 U.S. Current Population

Survey (CPS), which is the most recent available. Our sample includes all individuals

who have non-missing data on income and hours worked. We calculate each individual’s

wage as the sum of salary income, business income and farm income in the previous year

divided by hours worked in the previous year. We restrict the sample to include only

those earning at least the Federal minimum wage. We define agricultural workers to be

those whose primary industry of employment is agriculture, forestry or fishing, and non-

agricultural workers to be all other workers. All calculations are weighted using each

individual’s inverse probability of being sampled.

• U.S. Height Data — These data are taken from the 2009 National Health Interview Sur-

vey, a nationally representative survey of Americans conducted by the Center for Dis-

ease Control and Prevention (CDC). The data are freely available from the CDC website

(http://www.cdc.gov/datastatistics/).
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