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ABSTRACT

The debt capacity of an asset is the maximum amount that can be borrowed using the
asset as collateral. We model a sudden collapse in the debt capacity of good collateral. We
assume short term debt that must be frequently rolled over, a small transaction cost of selling
collateral in the event of default, and a small probability of meeting a buy-to-hold investor.
We then show that a small change in the asset’s fundamental value can be associated with a

catastrophic drop in the debt capacity, the kind of market freeze observed during the crisis
of 2007-08.
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One of the many striking features of the crisis of 2007-09 has been the sudden freeze
in the market for the rollover of short-term debt. From an institutional perspective, the
inability to borrow overnight against high-quality but long-term assets was a market failure
that effectively led to the demise of a substantial part of investment banking in the United
States. More broadly, it led to the collapse, in the United States, the United Kingdom,
and other countries, of banks and other financial institutions that had relied on significant
maturity mismatch between assets and liabilities, and, in particular, on the rollover of short-
term wholesale debt in the asset-backed commercial paper (ABCP) and overnight sale and
repurchase (repo) markets.

In this paper, we are interested in developing a model of a sudden collapse in the ability to
borrow short-term against long-lived assets in the absence of obvious problems of asymmetric
information or fears about the value of collateral. We refer to this phenomenon as a “market
freeze.” More precisely, a market freeze occurs when the debt capacity, the maximum amount
of collateralized borrowing that can be supported by an asset, is a small fraction of the
fundamental value, the economic value measured by the NPV of the stream of returns. An
extreme form of a market freeze occurs when the fundamental value is close to the maximum
possible value of the asset and the debt capacity is close to the minimum possible value of
the asset. We develop a model of debt capacity and provide sufficient conditions for the
occurrence of this extreme form of market freeze.

Three assumptions are crucial for our results:

(i) the debt has a much shorter tenor than the assets and needs to be rolled over
frequently;

(ii) in the event of default by the borrower, the collateral is sold by the creditors and
there is a (small) liquidation cost;

(iii) the probability of meeting an unconstrained buyer for the collateral, that is, a
buyer who does not rely on short-term debt finance, is sufficiently low.

We take these features as given, without attempting to rationalize them as the result of
equilibrium behavior. For example, we take the (short) tenor of the debt as exogenous.
There is ample empirical evidence that financial institutions relied heavily on short-term
finance prior to the crisis, but we do not attempt to explain why this was soE] We also take

2Using data on outstanding repurchase agreements of the US primary dealers (source: Federal Reserve
Bank of New York), Morris and Shin (2009) document that during 2003—2007, term repo remained steady
around $1.5 trillion, whereas overnight repo contracts doubled from $1.5 trillion to $3 trillion; both shrank by
over a trillion dollars by 2009. Acharya, Schnabl and Suarez (2009) show that outstanding ABCP typically
had a maturity of less than one week and rose from $650 billion to over $1.2 trillion between 2004 and 2Q
2007, only to revert back to its 2004 level by 1Q 2009.



as given the liquidation costs incurred by the sellers of the assets. More precisely, we assume
the costs are either fixed or proportional to debt capacity, but in either case the costs are
exogenous. Finally, it is important to note that the tenor of the debt and the liquidation
costs are assumed to be the same for all market participants. In particular, in our benchmark
model, as the tenor of the debt becomes shorter for the owner of the asset, it also becomes
shorter for the potential buyers. In an extension, we allow for buy-to-hold investors; our
results continue to hold as long as the likelihood of finding such buyers is sufficiently small.

In efficient markets, the debt capacity of an asset is equal to its NPV or “fundamental”
value. If there are liquidation costs and a positive probability of default, the debt capacity
would naturally be expected to be somewhat less than the fundamental value. In our model
we can derive the much stronger result that the gap between the fundamental value and the
debt capacity can be significantly large even if the liquidation cost incurred in the event of
default is tiny. More precisely, when the tenor of the debt is sufficiently short, other things
being equal, the debt capacity can equal the minimum possible future value of the asset.

The intuition for the result is as follows. When the tenor of the debt is short, the
probability of receiving good news about the asset before the next roll-over date is very
small. Then it is very likely that the next refinancing will be undertaken with the same
information as in the current period. The maximum amount that can be borrowed without
a substantial risk of default is equal to the debt capacity at the next rollover date, assuming
good news does not arrive in the interim. The borrower will choose to avoid a substantial
risk of default because he wants to avoid the liquidation costs. This means that today’s debt
capacity is less than or equal to the debt capacity at the next rollover date. Applying this
argument repeatedly shows that today’s debt capacity must be less than or equal to the debt
capacity at the maturity of the assets, assuming no arrival of good news.

We have described the market freeze as resulting from the lack of arrival of good news
about the fundamental value of the debt when the tenor of the debt is very short and
constant. We can also interpret the market freeze as resulting from a sudden shortening in
the tenor of the debt. If the arrival of bad news, that perhaps signals a small change in the
fundamental value of the assets, also causes lenders to restrict the tenor of the debt they
are willing to hold, the fall in the debt capacity will be substantial as we have characterized.
Thus, it is not necessary to assume that banks choose short-term finance from the outset.
The freeze may result from lenders suddenly shortening the tenor of the paper they are
willing to hold [

Our model captures some of the elements of the collapse in short-term asset-backed
financing witnessed during the crisis of 2007-09. The first such collapse occurred in the
summer of 2007. While many special purpose vehicles financed by ABCP had purchased
liquidity guarantees from third parties, the providers of these guarantees were themselves

3This interpretation was suggested to us by Arvind Krishnamurthy.



feared to be under-capitalized. The money market funds that provided ABCP thus faced the
risk of liquidating assets, many of which were asset-backed securities that had little trading
liquidity. Acharya, Schnabl and Suarez (2009) document a similar phenomenon in the case of
the case of bank-sponsored conduits[]] Goldsmith-Pinkham and Yorulmazer (2010) analyze
a similar episode in which financing of long-term mortgages with short-term wholesale debt
led to the near failure of Northern Rock in the United Kingdom in September 2007F] The
failure of Bear Stearns due to sudden fall in its ability to roll over overnight repo financing
in mid-March 2008 is another example of a market freeze. In his analysis of the failure of
Bear Stearns, the Federal Reserve Chairman Ben Bernanke observed that “repo markets
could be severely disrupted when investors believe they might need to sell the underlying
collateral in illiquid markets” (Remarks to the Risk Transfer Mechanisms and Financial
Stability Workshop at the Bank for International Settlements, May 29, 2008)ﬂ

In addition to helping us understand this recent past, our model may suggest ways to
increase the stability of the financial system. Understanding the causes of market freezes
is a necessary step toward creating a more stable and efficient financial system for the
future. Following the crisis, the parallel (“shadow”) banking system, consisting of special
purpose vehicles such as SIVs and conduits, securities lending, repo financing etc., has shrunk
significantly and reduced the financial system’s lending capacity by several trillion dollars.
While some of this collapse was driven by concerns regarding the quality of the assets,
liquidity issues relating to the heavy reliance of a large part of the financial sector on short-
term rollover debt also played an important role. Restoring the parallel banking system is
seen by many as an important step in the reconstruction of the financial system to provide
credit ] Our paper highlights the need to address the problem of rollover risk in short-term
financing of long-term assets in order to avoid the instability of the past.

The rest of the paper is organized as follows. Section [I| provides an introduction to the

4There was a reduction in the rollover of ABCP, the cost of rolling over rose from 10 basis points relative
to the Federal Funds rate prior to August 7, 2007, to over 150 bps, and many conduits had to be taken back
by banks onto their balance-sheets.

Northern Rock had a balance-sheet featuring significant maturity mismatch. Soon after Northern Rock’s
woes, other UK banks such as HBOS, Alliance and Leicester, and Bradford and Bingley, that had relied
primarily on short-term wholesale debt, suffered too.

6Bear Stearns relied day-to-day on its ability to obtain short-term finance through repo borrowing. At
this time, Bear was reported to be financing $85 billion of a pool of assets, mostly mortgage- and asset-backed
securities, on the overnight market (Cohan, 2009). Beginning late Monday, March 10, even though Bear
Stearns continued to have high quality collateral, counterparties became unwilling to lend on customary
terms, likely fearing the cost of liquidating the collateral in an illiquid market. At the end of the week,
the Federal Reserve stepped in and helped arrange a takeover bid by J.P. Morgan Chase. (Securities and
Exchange Commission, 2008).

"In addition, many of these assets are now held directly by central banks or by commercial and investment
banks relying on lending facilities provided by the central banks. Some day these holdings will have to find
another home and the most likely place would be a revitalized and more stable parallel banking system.



model and results in terms of a simple numerical example. Section [2| derives the main result
for the special case of the model with two states. It also illustrates, in terms of a numerical
example, that market freezes can occur even if the debt maturity is not as “short” as our
main result requires. Section |[3| provides a complete characterization of the debt capacity for
the general model and extends the limit result to an arbitrary number of states. The proof of
the limit result is relegated to Appendix A. Section [4] discusses the related literature. Section
[l concludes.

1 Model and results

In this section, we introduce the essential ideas in terms of a numerical example. For con-
creteness, consider the case of a bank that wishes to repo an asset. The question we ask
is: What is the maximum amount of money that the bank can borrow using the asset as
collateral? There are two ways to interpret this exercise. We can imagine that a value max-
imizing bank is trying to maximize its return on equity by minimizing the amount of capital
needed to finance the assets it owns. In this case, every bank that purchases the asset is
assumed to have the same motive for maximizing leveragef| Alternatively, we can simply
see our exercise as establishing a bound on the amount that can be borrowed, assuming that
other buyers in the market are limited by a similar bound.

Time is represented by the unit interval [0, 1]. The asset is purchased at the initial date
t = 0. The asset has a finite life (e.g., mortgages) which we normalize to one unit. To keep
the analysis simple, we assume that the asset has a terminal value at ¢ = 1, but generates
no income at the intermediate dates 0 < ¢t < 1. We also assume that the risk-free interest
rate is 0 and that all market participants are risk neutral.

The arrival of information is modeled as a continuous-time stochastic process. For sim-
plicity, let us assume that there are two states, a low state L and a high state H. At any
point in time, the state is publicly observed. Transitions between states are governed by
a stationary Markov chain. Transition probabilities depend on the period of time during
which the transition occurs, but not the dates. If we are considering a transition during the
period [0, ¢], the transition probability matrix is denoted by

prr (t) pro(t)

Pt = purL (t) pum (1)

8This seems consistent with the evidence of Adrian and Shin (2010) that asset growth (shrinkage) of
broker-dealers is coincident with equivalent growth (shrinkage) in their leverage, especially so for repo fi-
nancing. Acharya, Schnabl and Suarez (2009) also describe how conduits had little equity of their own
and were largely financed with extremely short-term ABCP. They also explain why the conduit activity is
consistent with minimizing capital of sponsor banks.



where pp g (t) is the probability of a transition between the low state at time 0 and the high
state at time ¢ and pgy () is the probability of the transition from the high state at time 0
and the low state at time . We assume that the transition matrix takes the form

= (At)”
P(t)zeAt:Z( k') ’
k=0
where the matrix A is the generator. Since the transition probabilities in any state must
sum to 1 the rows of A must sum to 0. The crucial feature of the transition matrix is that
the probability of a change of state converges to 0 as t — 0. That is, as t — 0, P (¢) — I,
where I is the identity matrix.
The terminal value of the asset depends on the state of the economy at the terminal date
t = 1. The terminal value of the asset is v in the high state and v* in the low state, where
vl > ol > 0.
We assume that the asset will be financed by debt that has to be rolled over repeatedly.
The debt is assumed to have a fixed maturity, denoted by 0 < 7 < 1, so that the debt must

be rolled over N times, where
1

T = NIl
The unit interval is divided into intervals of length 7 by a series of dates denoted by ¢,, and
defined by

t,=n7, n=20,1,...., N + 1,

where t is the date the asset is purchased, ¢, is the date of the n-th rollover (forn =1, ..., N),
and tx 1 is the final date at which the asset matures and the terminal value is realized. This
time-line is illustrated in Figure 1.

— Figure 1 here —

If the bank is forced to default, the lenders will seize and liquidate the collateral. In this
event, we assume that the lenders incur a small liquidation cost, so that the net amount
recovered is a fraction A € [0, 1] of the sale price. This assumption has several components.
In the first place, it implies that the seized collateral is liquidated, i.e., sold to another buyer.
Secondly, the new buyers are also finance constrained so that the sale price is equal to the
maximum amount of finance that can be raised using the asset as collateral. Thirdly, the
process of seizing and disposing of collateral is not costless. For concreteness, we can think
of the liquidation cost 1 — A as a transaction cost (legal costs, commissions, fees, time delay,
etc.), although other interpretations are possible (see Pedersen, 2009, for a discussion of
variety of transactions costs and illiquidity in markets). Note that similar results could be
obtained with a fixed liquidation cost (see the online appendix).



As an example, suppose that a bank has borrowed 90 and, when it comes time to refi-
nance, finds that it can only raise 87 using the assets as collateral. The lender, say a Money
Market Fund, cannot hold the collateral and is forced to dispose of it. A finance constrained
buyer can borrow 87 using the assets as collateral, so this is the maximum that it can pay
for the assets. However, the amount received by the lender will be a smaller amount, say,
86, because transaction costs have to be subtracted from the sale price.

It is crucial for our argument that the recovery rate A is applied to the sale price rather
than to the fundamental value of the assets. If the buyer of the assets were a wealthy
investor who could buy and hold the assets until maturity, the fundamental value would
be the relevant benchmark. The investor might well be willing to pay some fraction of the
fundamental value, although he would presumably try to get the assets for less, recognizing
the lender’s eagerness to dispose of the collateral. What we are assuming here, by contrast,
is that the buyer of the assets is another financial institution that must also issue short-term
debt in order to finance the purchase. (We discuss an extension to allow for the presence
of buy-to-hold investors in Section Also see the online appendix). Hence, the buyer is
constrained by the same forces that determined the debt capacity in the first place. Note
that the buyer’s subjective valuation of the assets might be much greater than the debt
capacity, but the finance constraint prevents him from offering to pay his full value.

1.1 A numerical example

To illustrate the method of calculating debt capacity in the presence of rollover risk, we
use the following parameter values: the recovery rate is A = 0.90, the tenor of the repo is
7 = 0.01, the values of the asset are v’ = 100 and v* = 50 in the high and low states,
respectively, and the generator is

a5 W

To illustrate intuitively how the generator A might arise, consider an alternative formu-
lation in which information events occur at discrete intervals. The arrival of an information
event is governed by a Poisson process with parameter o« > 0. That is, the probability that
an information event occurs in a short time interval [t,t + At] is a«At. When an information
event occurs, the state of the economy changes randomly according to a fixed probability

P:|:pLL pLH:|’
PHL DPHH

transition matrix

where pry (pmr) represents the probability of switching from state L (H) to state H (L)
at an information event, and pr; (pyp) represents the probability of staying in state L
(H). Note that the occurrence of an information event is itself random, so the number of

7



information events in a given time interval is random and affects the probability of observing
a transition from one state to another.
When the Poisson parameter is o« = 10 and the probability transition matrix is given as

~[0.20 0.80
1 0.01 0.99 |’

we obtain the same transition probability matrix for any time interval with length 7 € (0, 1]
as in the stationary Markov chain formulation with the generator matrix A given in ﬂ
The transition probability matrix for an interval of unit length can be calculated to be

(2)

P(1) = [ 0.01265 0.98735 } .

0.01234 0.98766

At time 1, the fundamental values are 100 in state H and 50 in state L by assumption.
So the fundamental values at time 0 can be calculated by using the terminal values and the
transition probabilities in the matrix P (1). The fundamental value in state H at time 0 is

Vi = 0.98766 x 100 + 0.01234 x 50 = 99.383

since, starting in state H at time 0, there is a probability 0.98766 of being in state H and a
probability 0.01234 of being in state L at time 1. Similarly, the fundamental value in state
L at time O is

ViF = 0.98735 x 100 + 0.01265 x 50 = 99.367.

Note that the fundamental values are nearly identical. In spite of this, we shall find that the
debt capacity of the asset, defined to be the maximum amount that can be borrowed using
the asset as collateral, can be very different in the two states.

Whereas the fundamental value only depends on the state, debt capacity is determined
by equilibrium in the repo market and has to be calculated for every one of the dates,
to, ..., tog, at which repo contracts mature. To do this, we first have to calculate the transition
probabilities over an interval of length 7 = 0.01, that is, the length of the period between
rollover dates. We find that

0.92315 0.07685

P (0.01) = .
( ) {0.00096 0.99904

(3)

In particular, the probability transition matrix for a time interval of length 7 is given as P (1) =

k
—ar k
Y oreo {(ek(,‘”)) [gzi ﬁIL{Z ] } . For the numerical example, we approximate this as P (1) =

2o, [ (ot 0.20 0.80 1"
k=0 k! 0.01 0.99 '



Notice that the initial state has a much larger impact on the transition probabilities in
P (0.01) than it does in P (1). For example, the probability of ending up in state H after an
interval 0.01 has passed is almost 1 if you start in state H but is close to 0.077 if you start
in state L. This is because the interval is so short that the state is unlikely to change before
the next rollover date.

Consider now the debt capacities at the last rollover date t99 = 0.99. In what follows, we
let D denote the face value of the debt issued and denote the value of D that maximizes the
market value of debt at date t,, in state s by D;. It is never desirable to choose D > 100
because this leads to default in both states, with associated liquidation costs, but without
any increase in the payoff. For values of D between 50 and 100 or less than 50, the expected
value of the debt is increasing in D holding constant the probability of default. Then it is
clear that the relevant face values of debt (D) to consider are 50 and 100. For any other face
value we could increase D without changing the probability of default.

If we set D = 50, the debt can be paid off at date 1 in both states and the expected value
of the payoff is 50. So the market value of the debt with face value 50 is exactly 50.

Now suppose we set D = 100. There will be default in state L, but not in state H, at
time t = 1. The payoff in state H will be 100 but the payoff in state L will be (0.9) 50 = 45.0,
because the recovery rate after default is 0.90. The market value of the debt at time tg9 will
depend on the state at time tg9, because the transition probabilities depend on the state.
We can easily calculate the expected payoffs in each state:

state H : 0.99904 x 100 + 0.00096 x 0.9 x 50 = 99.947;
state L : 0.07685 x 100 4 0.92315 x 0.9 x 50 = 49.226.

For example, if the state is H at date tg9, then with probability 0.99904 the state is H at
date 1 and the debt pays off 100 and with probability 0.00096 the state is L at date 1, the
asset must be liquidated and the creditors only realize 45.

Comparing the market values of the debt with the two different face values, we can see
that the face value that maximizes the market value of debt will depend on the state. In
state H, the expected value of the debt when D = 100 is 99.947 > 50, so that D{ = 100.
In state L, on the other hand, the expected value of the debt with face value D = 100 is
only 49.226 < 50, so the face value that achieves the debt capacity is D&, = 50. Thus, if we
use the notation B; to denote the debt capacity in state s at date ¢,,, we have shown that
Bl =99.947 and Bf, = 50.

Next, consider the debt capacities at date tos = 0.98. Now, the relevant face values to
consider are 50 and 99.9470 (since these are the maximum amounts that can be repaid in
each state at date tg99 without defaulting and incurring the associated liquidation costs).

If D = 50, the expected payoff is 50 too, since the debt capacity at date tg9 is greater
than or equal to 50 in both states and, hence, the debt can always be rolled over. In contrast,



if D =99.947, the debt cannot be rolled over in state L at date tg9 and the liquidation cost
is incurred. Thus, the expected value of the debt depends on the state at date tog:

state H : 0.99904 x 99.9470 + 0.00096 x 0.9 x 50 = 99.894,
state L : 0.07685 x 99.9470 + 0.92315 x 0.9 x 50 = 49.222.

Comparing the expected value corresponding to different face values of the debt, we see that
the face value that achieves the debt capacity is DL = 99.947 in state H and D& = 50
in state L, so that the debt capacities are B, = 99.894 and Bl = 50. In fact, we did not
really need to do the calculation again to realize that Bl; = 50. The only change from
the calculation we did at tg9 is that the payoff in state H has gone down, so the expected
payoff from setting D = 99.947 must have gone down too and, a fortiori, the face value that
maximizes the market value of debt must be 50.

It is clear that we can repeat this argument indefinitely in state L. At each date t,,, the
debt capacity in the high state is lower than it was at )1 and the debt capacity in the low
state is the same as it was at ty,1. These facts tells us that if the face value that achieves
the debt capacity at t,41 is D%, = 50, then a fortior: it will be DL = 50 at date t,. Thus,
the debt capacity is equal to 50 at each date ¢,,, including the first date ¢, = 0.

What is the debt capacity in state H at ty? The probability of staying in the high state
from date 0 to date 1 is (0.99904)'% = 0.90842 and the probability of hitting the low state
at some point is 1 — 0.90842 = 0.09158 so the debt capacity at time 0 is

BE' =0.90842 x 100 + 0.09158 x 0.9 x 50 = 94.9603.

So the fall in debt capacity occasioned by a switch from the high to the low state at time
018 94.963 —50 = 44.963 compared to a change in the fundamental value of 99.383 —99.367 =
0.016. This fall is illustrated sharply in Figure 2, which shows that, while fundamental values
in states H and L will diverge sharply at maturity, they are essentially the same at date
0. Nevertheless, debt capacity in state L is simply the terminal value in state L. Thus, a
switch to state L from state H produces a sudden drop in debt capacity of the asset.

— Figure 2 here —

1.2 Discussion

The intuition for the market freeze result can be explained in terms of the tradeoff between
the costs of default and the face value of the debt. Suppose we are in the low information state
at date t,. If the period length 7 is sufficiently short, it is very likely that the information
state at the next rollover date t,,.; will be the low state. Choosing a face value of the debt
greater than Bl ,, the debt capacity in the same state at date ¢,1, will increase the payoff

10



to the creditors if the state switches to H at the next date, but it will also lead to default
if the state remains L. Since there is a liquidation (transaction) cost, issuing debt with face
value greater than the debt capacity is always unattractive if the probability of switching to
state H is sufficiently small. Then, the best the borrower can do is to issue debt with a face
value equal to the debt capacity assuming the state remains L. But this implies that the
debt capacity in the low state is v* at every date. In other words, no matter how high the
fundamental value is in state L, the borrower is forced to act as if the asset is only worth v*
in order to avoid default.

In the remainder of this section, we consider the role of the different assumptions of the
model in driving the limit result on market freezes.

Credit risk If v¥ = v, the terminal value of the asset is equal to the fundamental with
probability one, so we can set the face value of the debt equal to v# = v* without any risk
of default. In this case, the debt capacity must be equal to the fundamental value regardless
of any other assumptions. So one necessary assumption is the existence of credit risk, that
is, a positive probability that the terminal value of the asset will be less than the initial
fundamental value. However, this credit risk can be arbitrarily small, as we illustrated in
the numerical example where, at time 0, the probability that the asset’s terminal value is 50
is less than 0.01. We could obtain the same results for even smaller values of credit risk at
the cost of increasing the number of rollovers.

Liquidation cost We need a liquidation cost in order to have a market freeze. If the
recovery ratio is A = 1, then regardless of the credit risk, the debt capacity will equal the
fundamental value. To see this, simply put the face value of the debt equal to 100 at each
date. The market value of the debt will equal the fundamental value of the asset, which
must equal the debt capacity. So a necessary condition of the market freeze is A < 1. The
liquidation cost does not need to be large, however. In the numerical example, the loss ratio

was 0.1 and it could be made even smaller with an appropriate reduction in the maturity of
the debt.

Debt finance Among the key assumptions of our model, we take as given that asset
purchases are entirely debt-financed, not just for the initial owner of the assets but for all
potential buyers. In particular, this assumption rules out the presence of any long-term or
buy-to-hold investors. However, this assumption can be relaxed.

Suppose that, when assets are being liquidated, the buyer found by the liquidating cred-
itors is, with probability 1 — [, short-term debt financed and, with probability 3, he is
financed by long-term debt or equity. We can think of the buyer with long-term finance as
a buy-to-hold investor, such as Warren Buffett, who is willing and able to pay a fraction,
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possibly 100%, of the fundamental value. With this modification, we show in the online
appendix that a market freeze occurs under the usual assumptions if the probability ( is not
too large. Intuitively, if liquidating creditors are certain to find a buyer who can pay the
fundamental value of the asset, then our backward induction mechanism fails and there can
be no market freeze. However, if such buyers are scarce, because the extent of free long-term
capital in the financial sector is limited, then most buyers are also short-term debt financed
and our mechanism is back at work. We show in the online appendix that our main result on
the sharp drop in the debt capacity of the asset and the market freeze can easily be obtained
for a reasonable set of parameter values such as the probability of meeting a buy-to-hold
investor [ being less than 10%.

Short-term debt As a practical matter, many financial firms are indeed funded with
short-term rollover debt. There exist agency-based explanations in the literature (for exam-
ple, Flannery, 1986, Diamond, 1989, 1991, 2004, Calomiris and Kahn, 1991, and Diamond
and Rajan, 2001a, 2001b) for the existence of short-term debt as optimal financing in such
settings. In contrast to this literature, Brunnermeier and Oehmke (2009) consider a model
where a financial institution is raising debt from multiple creditors and argue that there may
be excessive short-term debt in equilibrium as short-term debt issuance dilutes long-term
debt values and creates among various creditors a “maturity rat race.” Other reasons for
the use of short-term debt are the attraction of betting on interest rates if bankers have
short-term horizons and choose to shift risk (see, for example, Allen and Gale, 2000, and
Acharya, Cooley, Richardson and Walter, 2009).

Rollover frequency We have highlighted the role of rollover risk and indeed our main
result requires that the rate of refinancing be sufficiently high in order to obtain a market
freeze. Figure 3 illustrates the role of rollover frequency on debt capacity in state L by
varying the number of rollovers as N = 10,50 and 100. Debt capacity with just 10 rollovers
is over 90, but falls rapidly to just above 60 with 50 rollovers, and 100 rollovers are sufficient
to obtain the limiting result that debt capacity is the terminal value of 50 in state L.

— Figure 3 here —

Even if the period length is longer than our result requires, so that the borrower sets the
face value greater than the debt capacity (in the same state at the next rollover date), it is
still possible that a market freeze occurs, as we show with a numerical example in Section [2]

Information structure The crucial property of the information structure is that P (1) —
I as 7 — 0, that is, the probability of a change in state in any rollover period gets smaller
as the period length gets smaller. Since the number of rollovers N determines the period
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length 7, in fact, 7 = as the number of rollovers increases, 7 gets smaller and information

N;_i_l7
arrives slowly relative to rollovers.

Note that we do not make any special assumptions about the generator A. In particular,
we can impose a substantial amount of symmetry if desired. For example, the information
state can be a symmetric random walk with reflecting barriers. The only essential property
is that the probability of a change in states converges to zero as the period length converges

to zero.

2 Debt capacity with two states

In this section we provide a proof for the market freeze result when there are two states. We
make the same assumptions as for the numerical example but the parameters are otherwise
arbitrary. For the time being, we treat the tenor of the commercial paper 7 and the number
of rollovers N as fixed. Later, we will be interested to see what happens when the tenor 7
becomes very small and the number of rollovers N becomes correspondingly large.

There are two states, a “low” state L and a “high” state H. Transitions occur between
the rollover dates t,, and are governed by a stationary transition probability matrix

| PrL (7') PLH (7')
P(T)i PHL(T) PHH(T)

?

where pgr (7) (pru (7)) is the probability of a transition from state H (L) at time ¢, to
state L (H) at time t,,1. The one requirement we impose on these probabilities is that the
shorter the period length 7, the more likely it is that there is no change in states before the
next rollover date:

lim prr, (1) = lim pra (r)=0.

The terminal value of the asset is v* if the terminal state is H and v” if the terminal state
is L, where 0 < v < v,

In the numerical example, we saw that the borrower chooses a low face value of the debt
in the low state and a high face value of the debt in the high state. Here we will provide
necessary and sufficient conditions under which choosing high and low face values in the
high and low states, respectively, will achieve the debt capacity in those states. We begin
by considering the low state.

The low state Suppose that the economy is in the low state at date t;, which is the last

of the rollover dates. Let D be the face value of the debt issued by the bank. If D > v, the
bank will default in both states at date ty.; and the creditors will receive Av" in the high
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state and Av* in the low state Clearly, the market value of the debt at date ¢ty would
be greater if the face value were D = v*, so the borrower will never choose D > vfl. Now
suppose that the bank issues debt with face value D, where v* < D < v, This will lead
to default in the low state at date ty.; and the creditors will receive D in the high state
and \v’” in the low state. Clearly, this is dominated by choosing a higher value of D. Thus,
either D = v or D < v’. An exactly similar argument shows that the borrower will never
choose D < v*, so we are left with only two possibilities, either D = vf or D = v, In the
first case, the market value of the debt is prz, (7) A’ + pry (1) v and in the second case it

is vL. A necessary and sufficient condition for D% to equal v’ is
prr (7) b + pr (1) v <ot (4)

This condition will clearly be satisfied for all 7 > 0 sufficiently small, but for the time being
we will simply assume that is satisfied.

Now suppose that is satisfied and that BL_; = v" for n’ = n,..., N. Consider what
happens in the low state at date t,,. By the usual argument, the only candidates for the face
value that maximizes the market value of debt are D = v and D = B}/, . If the face value
is D = v*, the creditors will receive v” in both states at date t,.; and the market value of
the debt at date ¢, will be v¥. On the other hand, if the face value of the debt is D = B,
the creditors receive B | in the high state and Av” in the low state, so the market value of
the debt at date ¢, is

prr (T) N + prg (1) Bily < prp (1) Ao + prg (1) o™,

since Brﬂl < vH. But implies that prr (7) AW + pry (1) vl < ol so the debt capacity
is BL = v, In fact, this induction argument shows that the debt capacity is BL = v’ for
alln=1,...,N.

The high state Now consider the high state. Again, our two candidates for the face value
of the debt at each date t,, are Bfﬂ and vr. Let us assume that at each date ¢,, the face
value of the debt is set equal to the future debt capacity Bfﬂa that is, we begin at date
ty by setting D = v# and BY = puy (7) v + pyr () Wl and then recursively define
DI = B! | and

Bl = pgu (1) By + paw (1) A",

forn =1,..., N — 1. It can easily be shown by backward induction that BY < B/, for any
n, so in order to show that this strategy will be chosen, it is necessary and sufficient to show

0To simplify the argument, we are assuming that there is a liquidation cost at date tx1, too. None of
the results depend on this.
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that BJ' > v'. By repeated substitution we can show that

Béq = DPHH (T) B{I +pHL (7') )\UL
= PHH (7’) {pHH (7’) BQH + (1 — PHH (7')) )\’UL} + (1 — PHH (T)) )\’UL
= (pur (7)) (By — M*) + Mo*

= (pu (1) (0" = xh) + Mot
Then the face value that achieves the debt capacity is D = B/ | for all n if and only if

(pru (T))N (vH — )\UL) + ol > ot

or W
,UH — )\’UL Z (]-_—)U]\T
(P (7))
We have thus proved the following proposition.

Proposition 1 Define { (B, DY, BL, DE) }520 by setting

D7IL{ = Bf—i—la (6)
Bl = pun (1) By +p (1) )", (7)

and
D} = By =", (8)

form=1,...,N. The values defined by (@-@ constitute a solution to the problem of achieving
debt capacity if and only if and (3) are satisfied.

The qualitative properties of the debt capacities characterized in Proposition [I| are the
same as in the numerical example in Section . In the low state, the debt capacity B
is constant and equal to the lowest possible terminal value, v*. The fundamental value of
the asset in the low state VL is greater than the debt capacity at every date ¢, except at
the terminal date, when they are both equal to v”. In the high state, the debt capacity B
is always less than the fundamental value V| except at the terminal date when both are
equal to v¥. We call this behavior of the debt capacity a “market freeze” since a switch in
the information state from high state to the low state can produce a sudden, sharp drop in
debt capacity that is much larger than the drop in the fundamental value associated with
the same switch.
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2.1 Satisfying the conditions for a market freeze

In the two-state model, there are two necessary and sufficient conditions for the existence of
an equilibrium in which there is a market freeze. The first condition ensures that the debt
capacity in the high state in the first period is achieved by setting the face value of the debt
equal to the next period’s debt capacity in the same state:

v — ot > (1_—/\)”;7
(pum (7))

(9)

where (pgy (7))" is the probability of remaining in the high state for N periods of length 7.
If ayy, denotes the arrival rate of a switch from the high to the low state, then the properties
of a Poisson process imply that (pyy (T))N > e~e1L A sufficient condition for @, therefore,
is

o — ot > (1—-2X) vhedHr,

which can be rewritten as . .

% > (1= \) (e®r —1). (10)
Each of the terms in this condition has an intuitive interpretation: the term on the left is
the (proportional) upside in the low state; the term 1 — X is the (proportional) liquidation
cost; and agy, is the arrival rate of a switch from the high state to the low state. The cost
of setting the face value high is the expected liquidation cost (the right hand side) and the
benefit is the upside that is captured if a switch does not occur (the left hand side). The
maximum value of ay; consistent with , is shown as a function of the liquidation cost

in the figure below for various values of the upside.
— Figure 4a—

For the range of values of interest for the liquidation cost, condition will be satisfied
as long as agyy, is less than 1.79. This is equivalent to saying that the probability of a switch
to the low state during the life of the asset is less than or equal to 0.83, a bound that seems
pretty loose.

It is clear that condition (10) will be satisfied, for given values of the upside and the
liquidation cost, if the arrival rate agy, is chosen sufficiently small. And since we want the
high state to be a situation in which investors are optimistic and the probability of anything
going wrong is very small, it is natural to think of ag; as a small number. Obviously, if
the liquidation cost is also small and/or if the upside is large, it is even easier to satisfy
condition (10). Thus, we can simply assume that apy, is sufficiently small to satisfy (10)).
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We also note that the parameter ay; does not enter into any of the other conditions that
we will be considering.
The second of the conditions referred to above is the inequality

PLL (7’) /\UL+pLH (7') UH S ’UL (11)

The expression on the left hand side of condition is the expected value of the debt in
the low state in the last period if the face value is set equal to v and the inequality tells
us that setting the face value equal to v” gives a higher market value than setting the face
value equal to v, To understand the constraint this condition puts on the parameters, it is

helpful to rewrite as follows:

prg (1) o —oF

L—pru (1) v
The term pry (1) / (1 — pry (7)) is the odds ratio of switching to the high state to remaining
in the low state. Condition requires that the odds ratio times the upside be less than
or equal to the liquidation cost.

Comparing and (12), we can see that an increase in the upside will make it easier
to satisfy but harder to satisfy . Conversely, an increase in the liquidation cost will
make it easier to satisfy but harder to satisfy (10). So there is a tension between the
two conditions; however, as noted above, can be satisfied for any given values of the

<1-A (12)

upside and the liquidation cost if the flow probability agy, is sufficiently small, as we assume.
So in what follows, we focus on the parameter values that satisfy (12).

The analysis of this case is more difficult because, in order to have a meaningful market
freeze, we want the drop in the debt capacity, caused by a switch from the high to the low
state at date 0, to be much greater than the change in the fundamental value. In other
words, we want the fundamental values in the high and low states to be close together and
close to vf. Since we want the probability of remaining in the high state to be high and
since condition is easily satisfied in any case, we can simplify the problem by assuming
that the high state is an absorbing state, that is, ay; = 0. This assumption makes it harder
to satisfy in two ways. First, it makes it more attractive to set the face value of the debt
high in the low state. Second, it makes it harder to satisfy the constraint on the fundamental
value.

When the high state is absorbing, the fundamental value in the low state beginning at
date 0 is

(1 — e_“LH) o 4 emarmgl = of 4 (1 — e_aLH) (UH — UL) ,

where apy is the flow probability of a switch from the low to the high state and, hence,
e~ “LH is the probability of remaining in the low state forever (i.e., from date 0 until date 1).
Then 1 — e %% is a good measure of the fundamental in the low state at date 0, because
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the fundamental will be close to v” if 1 — e %# ~ 0 and the fundamental will be close to v
if 1 — e ®# ~ 1. For the purposes of this exercise, we will assume that the gap between the
low-state fundamental and the high-state fundamental should be at most 10% of v — v’
so that e *£# < (.1 or

apg > —In(0.1) = 2.3026. (13)

So our task now is to characterize the parameters that satisfy and ((13)).
When 7 is small, pyy (7) is approximately equal to ayy/N. Substituting this expression
into the inequality (12)), we obtain

ar g v —v

N — arg UL
and substituting the smallest value of ary that satisfies into this inequality we get

2.3026 of — ol
<1-—A\. 14
N —2.3026 oL - (14)

So now we have a condition in terms of N, the number of rollovers, the upside and the

liquidation cost, that is,

ol — ol 1
N*=23026(14+ ——MM——
306<+ oL 1_/\>,

where N* is the smallest number of rollovers that satisfies the inequality . The figure
below shows the value of N* as a function of 1 — A for values of the upside equal to 0.5, 1.0
and 2.0.

— Figure 4b—

The characterization of the parameter values that are consistent with a market freeze
is complicated for several reasons, including the number of parameters and the number of
conditions that must be satisfied, and the condition that the fundamental values in the
high and the low states be close and sufficiently high to make the drop in debt capacity
large relative to the change in the fundamental when the state changes from high to low.
Nonetheless, the preceding analysis suggests that the critical trade off is between the number
of rollover dates N (equivalently, the length of the rollover period 7) and the liquidation cost
1 — A. If we fix the upside and the distance between the high and low fundamental as a
proportion of the upside, we are left with the relation illustrated in the figure above that
shows the minimum number of rollovers needed for any particular value of the liquidation
cost. To give a sense of how reasonable the required parameter values are, we present the
following concrete examples, where the upside is 1.0 and the gap between the low-state

fundamental and the high-state fundamental is 10% of v — v’.
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Example 2 The asset has a maturity of six months and is funded by overnight repos. So
the debt must be rolled over approximately 162 times. In order for the market to freeze in
the low state (debt capacity equal to v'), the value of the liquidation cost must be at least
1 — X =0.0144. or around 1.5% of the upside.

Example 3 The asset has a maturity of two years and s funded by short term loans that are
rolled over weekly. In total the debt must be rolled over 104 times. In order for the market
to freeze in the low state, the value of the liquidation cost must be at least 1 — X = 0.02264
or around 2.25% of the upside.

Example 4 The asset has a maturity of ten years and is funded by one month loans, so the
debt must be rolled over 120 times. In order for the market to freeze in the low state, the
value of the liquidation cost must be at least 1 — A = 0.01956 or around 2.0% of the upside.

In a similar way, we can use the formula above to explore the relationship between the
number of rollovers N and the size of the market freeze, defined as 1 — e™*.# | for a given
value of the liquidation cost. For example, suppose that the upside is 1.0 and the liquidation
cost is 1% of the upside. Then the minimum number of rollovers needed for a market freeze
is .

N*=a 1+1.0x — | =ary x 101,
i < 0.01) =
and the size of the market freeze is 1 — ¢4 = 1 — e~101. We plot this relationship in the
figure below, which shows that the size 1 — e7*Z# increases towards 1 as N* increases.

— Figure 4c—

2.2 Debt capacity with intermediate rollover risk

We can get similar results even if the period length is not short enough to generate the
result stated in Proposition [I} A simple adaptation of the numerical example will illustrate
a scenario in which a high face value of debt is chosen in the low state, with the result that
the bank faces a positive probability of default if the economy remains in the low state.
Suppose that the value of the asset in the low state is v/ = 40. All the other parameters
remain the same. Now the loss from default in the low state is less than the gain from a
high face value in the high state, so the face value of the debt that is equal to next period’s
debt capacity in the high state maximizes the market value of debt this period.

As before, we calculate the debt capacity, beginning with the last rollover date. The last
rollover date is tg9. The transition probabilities are given by equation as before. If the
face value of the debt is set equal to vy = 100 in the low state, the market value of the debt
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issued will be 0.07685 x 100 + 0.92315 x 0.90 x 40 = 40.918, which is higher than the face
value obtained by setting the face value equal to 40. Thus, the face value that maximizes
the market value of debt implies default if the economy remains in the low state. It is still
the case that DI = 100 in the high state, and the debt capacity is now B = 99.939.

As long as the face value of the debt is set equal to Bfﬂ in both states, the debt capacity
satisfies

H H
[ B; } _ { 0.99904 0.90 x 0.00096 1 [ Bl } . (15)

BE 0.07685 0.90 x 0.92315 BE

However, this assumes that the borrower chooses to default in the low state at every rollover
date, which is not necessarily true. Starting at the last rollover date, it can be shown that
the debt capacity in state L rises as we go back in time, reaches a maximum at tgy, and then
declines as we move to earlier and earlier dates (see Figure 5). The problem is that as the
debt capacity rises, the liquidation costs (which are proportional to the debt capacity) also
rise and eventually outweigh the upside potential of a switch to the high state[lT] At the point
where the maximum is reached, the borrower changes the face value of the debt from B,
to BY,, and avoid default in the low state. Then the debt capacity is given by the formula
above for n = 80, ...,99 and is given by BL = BL for n = 0, ...,80. We can use the formula
in equation to show that Bl, = 44.918 and BJ{ = 98.847. The gap between the debt
capacities in the two states is 94.469 — 44.918 = 49.551, compared to the negligible difference
in the fundamental values 99.2596 and 99.241 in the high and the low states, respectively.
Thus, even the borrower wants to capture the upside potential of a switch to the high state,
the debt capacity in the low state does not rise much above the minimum value of the asset,
i.e., it is 44.918 rather than 40.

— Figure 5 here —

In the rest of the paper, we explore the determinants of debt capacity in a richer model with
many states and a broad range of parameters.

3 Debt capacity in the general case

We allow for a finite number of information states or signals, denoted by S = {sy, ..., s7}. The
current information state is public information. Transitions among the states are governed
by a stationary Markov transition probability P (7) given as

p11(7') plI(T)
P(r) = A

pn(T) ce pH(T)

11Tt is also possible to extend this example to the case with fixed costs of liquidation. Details are available
from authors upon request.
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where 7 is the interval over which the transitions take place. We assume that the transition
matrix takes the form Ay
P (1) =" —Z%,
k=0
where the matrix A is the generator. The crucial feature of the transition matrix is that the
probability of a change of state converges to 0 as 7 — 0. That is, P (7) — T as 7 — 0.

The information state is a stochastic process {.S (¢)} but for our purposes all that matters
is the value of this process at the rollover dates. We let .S,, denote the value of the information
state S (t,) at the rollover date t,,.

The terminal value of the assets is a function of the information state at date t = 1. We
denote by v; the value of the assets if the terminal state is Sy.; = s; and assume that the
values {vy, ..., vr} satisfy

O<m <... <y

Let V! denote the fundamental value of the asset at date t, in state i. Then clearly the
values {V'} are defined by putting Vi, = v;, for i =1,..., I, and

I
Vni = Zpij (1—t,)v;, forn=0,..,Nandi=1,...1,
j=1

where p;; (1 —t,) is, of course, the (i,j) entry of P (1 —¢,) denoting the probability of a
transition from state ¢ at date ¢, to state j at date ty 1 = 1.

Figure 6 illustrates the fundamental values in a setup with [ = 6 states where terminal
values are v; = 40+110, for ¢ = 1, ...,6. The transition matrix P is described in Appendix B.
As in our two-state example, the fundamental values in different states are virtually identical
at date 0 though they diverge in steps of 10 at maturity.

— Figure 6 here —

Let B! denote the equilibrium debt capacity of the assets in state s; at date t,. By
convention, we set By, = v; for all i.

Proposition 5 The equilibrium values of { B} must satisfy

B, = max S pg(MABLL+ Y. pi(T)Bh,

{j:B§+1>Bi+1} {j:B§+1§Bi+1}

fori=1,...,1 andn=20,...,N.
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The result is immediate once we apply the now familiar backward induction argument
to show that the borrower sets D equal to B7 4 for some j. Although the result amounts
to little more than the definition of debt capacity, it is very useful because it allows us to
calculate the debt capacities by backward induction.

The main result on the downward bias of debt capacities is contained in the following
proposition.

Proposition 6 There exists 7 > 0 such that for all 0 < 7 < 7, for any n = 0,..., N and
any i =1,...,1, the borrower chooses D!, < B! _,. Thus,

B, = Z pij (T ))‘B]—H + Z pij (T )B’rlz-l—l
{j:BfL+1>Bfl+1} { n+17 n+1}

for some k such that BF, < Bi+1

Proof. See Appendix A. =

Several properties follow immediately from Proposition [6] whenever 0 < 7 < 7*. We
provide these results in the form of three corollaries. First, in the lowest state, s;, the debt
capacity is constant and equal to v;, the lowest possible terminal value.

Corollary 7 B! = v, for all n.

Proof. From the formula in Proposition [6], for some £,

B, = Z pij (T )AB]-H + Z pij (T )BZ-H

{j:Berl >BfL+1} { n+1— 7L+1}

< Zpij (T)Bé-‘rl B71H-17

since B¥, | < B!_,.
vy, it follows that B} < vy, for any n.

We can also show that B! > v;. To see this, note that By, = v; for all i. Moreover,
if the same condition holds for n + 1, it must be true that Bfl > v1, because we can always

Since this inequality holds for n = 0,..., N and, by convention, By, =

choose D! = v;.

Thus, we have shown that B! = v, for alln. m

Second, the debt capacity B! is monotonically non-decreasing in n, that is, debt capacity
increases as the asset matures, holding the state constant. This follows directly from the
fact that, if the face value of the debt equals B, the debt capacity B cannot be greater
than B! _,.
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Corollary 8 B, < B!, foranyi=1,...1 andn=0,...,N.
Proof. The inequality follows directly from the formula in Proposition [6}

B, = Z pij (T )ABJH + Z pij (T )Bﬁﬂ

{j:BfL+1>BZL+1} {j5B§+1§Bi+1}
< > py(n) B+ > p(n) By,
{j:B7kL+1>BfL+1} {j:B’§+1§BzL+1}

= Zpij (7) Bryy = Bn+17
=1

since Bn+1 < BnJrl < B!, implies that \B/ o <Bl.. =
Third, since By, = v; by convention, the preceding result immediately implies that the
debt capacity B is less than or equal to v;.

Corollary 9 B! <w; foralli=1,....,1 andn=0,...,N.

Finally, we can confirm that the debt capacity in state s; at any date ¢, is less than the
fundamental value V;!. This follows directly from the formula in Proposition [6|for n = N +1
and any ¢, so suppose that it holds for n+1,..., N and any ¢ = 1, ..., I. Then the formula in
Proposition @ implies that, if D! = Bf 41, say,

BZL = Z pij (T )AB]-H + Z pij (T )BZH

{j:Bﬁ+1>Bi+l} {j:BE+1SBZL+1}
< Z pij () Byiq + Z pij (T) By yy
{j:BfL+1>BZL+1} {j:BTI:CL-‘—lSBZL-‘—I}

S szj n+1 - vz

for any ¢+ = 1, ..., I, so by induction the claim holds for any n =0,..., N and any 2 =1, ..., I.

Some of these properties are illustrated in Figures 7a and 7b which s