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ABSTRACT

The debt capacity of an asset is the maximum amount that can be borrowed using the
asset as collateral. We model a sudden collapse in the debt capacity of good collateral. We
assume short term debt that must be frequently rolled over, a small transaction cost of selling
collateral in the event of default, and a small probability of meeting a buy-to-hold investor.
We then show that a small change in the asset�s fundamental value can be associated with a
catastrophic drop in the debt capacity, the kind of market freeze observed during the crisis
of 2007-08.
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One of the many striking features of the crisis of 2007-09 has been the sudden freeze
in the market for the rollover of short-term debt. From an institutional perspective, the
inability to borrow overnight against high-quality but long-term assets was a market failure
that e¤ectively led to the demise of a substantial part of investment banking in the United
States. More broadly, it led to the collapse, in the United States, the United Kingdom,
and other countries, of banks and other �nancial institutions that had relied on signi�cant
maturity mismatch between assets and liabilities, and, in particular, on the rollover of short-
term wholesale debt in the asset-backed commercial paper (ABCP) and overnight sale and
repurchase (repo) markets.
In this paper, we are interested in developing a model of a sudden collapse in the ability to

borrow short-term against long-lived assets in the absence of obvious problems of asymmetric
information or fears about the value of collateral. We refer to this phenomenon as a �market
freeze.�More precisely, a market freeze occurs when the debt capacity, the maximum amount
of collateralized borrowing that can be supported by an asset, is a small fraction of the
fundamental value, the economic value measured by the NPV of the stream of returns. An
extreme form of a market freeze occurs when the fundamental value is close to the maximum
possible value of the asset and the debt capacity is close to the minimum possible value of
the asset. We develop a model of debt capacity and provide su¢ cient conditions for the
occurrence of this extreme form of market freeze.
Three assumptions are crucial for our results:

(i) the debt has a much shorter tenor than the assets and needs to be rolled over
frequently;

(ii) in the event of default by the borrower, the collateral is sold by the creditors and
there is a (small) liquidation cost;

(iii) the probability of meeting an unconstrained buyer for the collateral, that is, a
buyer who does not rely on short-term debt �nance, is su¢ ciently low.

We take these features as given, without attempting to rationalize them as the result of
equilibrium behavior. For example, we take the (short) tenor of the debt as exogenous.
There is ample empirical evidence that �nancial institutions relied heavily on short-term
�nance prior to the crisis, but we do not attempt to explain why this was so.2 We also take

2Using data on outstanding repurchase agreements of the US primary dealers (source: Federal Reserve
Bank of New York), Morris and Shin (2009) document that during 2003�2007, term repo remained steady
around $1.5 trillion, whereas overnight repo contracts doubled from $1.5 trillion to $3 trillion; both shrank by
over a trillion dollars by 2009. Acharya, Schnabl and Suarez (2009) show that outstanding ABCP typically
had a maturity of less than one week and rose from $650 billion to over $1.2 trillion between 2004 and 2Q
2007, only to revert back to its 2004 level by 1Q 2009.
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as given the liquidation costs incurred by the sellers of the assets. More precisely, we assume
the costs are either �xed or proportional to debt capacity, but in either case the costs are
exogenous. Finally, it is important to note that the tenor of the debt and the liquidation
costs are assumed to be the same for all market participants. In particular, in our benchmark
model, as the tenor of the debt becomes shorter for the owner of the asset, it also becomes
shorter for the potential buyers. In an extension, we allow for buy-to-hold investors; our
results continue to hold as long as the likelihood of �nding such buyers is su¢ ciently small.
In e¢ cient markets, the debt capacity of an asset is equal to its NPV or �fundamental�

value. If there are liquidation costs and a positive probability of default, the debt capacity
would naturally be expected to be somewhat less than the fundamental value. In our model
we can derive the much stronger result that the gap between the fundamental value and the
debt capacity can be signi�cantly large even if the liquidation cost incurred in the event of
default is tiny. More precisely, when the tenor of the debt is su¢ ciently short, other things
being equal, the debt capacity can equal the minimum possible future value of the asset.
The intuition for the result is as follows. When the tenor of the debt is short, the

probability of receiving good news about the asset before the next roll-over date is very
small. Then it is very likely that the next re�nancing will be undertaken with the same
information as in the current period. The maximum amount that can be borrowed without
a substantial risk of default is equal to the debt capacity at the next rollover date, assuming
good news does not arrive in the interim. The borrower will choose to avoid a substantial
risk of default because he wants to avoid the liquidation costs. This means that today�s debt
capacity is less than or equal to the debt capacity at the next rollover date. Applying this
argument repeatedly shows that today�s debt capacity must be less than or equal to the debt
capacity at the maturity of the assets, assuming no arrival of good news.
We have described the market freeze as resulting from the lack of arrival of good news

about the fundamental value of the debt when the tenor of the debt is very short and
constant. We can also interpret the market freeze as resulting from a sudden shortening in
the tenor of the debt. If the arrival of bad news, that perhaps signals a small change in the
fundamental value of the assets, also causes lenders to restrict the tenor of the debt they
are willing to hold, the fall in the debt capacity will be substantial as we have characterized.
Thus, it is not necessary to assume that banks choose short-term �nance from the outset.
The freeze may result from lenders suddenly shortening the tenor of the paper they are
willing to hold.3

Our model captures some of the elements of the collapse in short-term asset-backed
�nancing witnessed during the crisis of 2007-09. The �rst such collapse occurred in the
summer of 2007. While many special purpose vehicles �nanced by ABCP had purchased
liquidity guarantees from third parties, the providers of these guarantees were themselves

3This interpretation was suggested to us by Arvind Krishnamurthy.
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feared to be under-capitalized. The money market funds that provided ABCP thus faced the
risk of liquidating assets, many of which were asset-backed securities that had little trading
liquidity. Acharya, Schnabl and Suarez (2009) document a similar phenomenon in the case of
the case of bank-sponsored conduits.4 Goldsmith-Pinkham and Yorulmazer (2010) analyze
a similar episode in which �nancing of long-term mortgages with short-term wholesale debt
led to the near failure of Northern Rock in the United Kingdom in September 2007.5 The
failure of Bear Stearns due to sudden fall in its ability to roll over overnight repo �nancing
in mid-March 2008 is another example of a market freeze. In his analysis of the failure of
Bear Stearns, the Federal Reserve Chairman Ben Bernanke observed that �repo markets
could be severely disrupted when investors believe they might need to sell the underlying
collateral in illiquid markets� (Remarks to the Risk Transfer Mechanisms and Financial
Stability Workshop at the Bank for International Settlements, May 29, 2008).6

In addition to helping us understand this recent past, our model may suggest ways to
increase the stability of the �nancial system. Understanding the causes of market freezes
is a necessary step toward creating a more stable and e¢ cient �nancial system for the
future. Following the crisis, the parallel (�shadow�) banking system, consisting of special
purpose vehicles such as SIVs and conduits, securities lending, repo �nancing etc., has shrunk
signi�cantly and reduced the �nancial system�s lending capacity by several trillion dollars.
While some of this collapse was driven by concerns regarding the quality of the assets,
liquidity issues relating to the heavy reliance of a large part of the �nancial sector on short-
term rollover debt also played an important role. Restoring the parallel banking system is
seen by many as an important step in the reconstruction of the �nancial system to provide
credit.7 Our paper highlights the need to address the problem of rollover risk in short-term
�nancing of long-term assets in order to avoid the instability of the past.
The rest of the paper is organized as follows. Section 1 provides an introduction to the

4There was a reduction in the rollover of ABCP, the cost of rolling over rose from 10 basis points relative
to the Federal Funds rate prior to August 7, 2007, to over 150 bps, and many conduits had to be taken back
by banks onto their balance-sheets.

5Northern Rock had a balance-sheet featuring signi�cant maturity mismatch. Soon after Northern Rock�s
woes, other UK banks such as HBOS, Alliance and Leicester, and Bradford and Bingley, that had relied
primarily on short-term wholesale debt, su¤ered too.

6Bear Stearns relied day-to-day on its ability to obtain short-term �nance through repo borrowing. At
this time, Bear was reported to be �nancing $85 billion of a pool of assets, mostly mortgage- and asset-backed
securities, on the overnight market (Cohan, 2009). Beginning late Monday, March 10, even though Bear
Stearns continued to have high quality collateral, counterparties became unwilling to lend on customary
terms, likely fearing the cost of liquidating the collateral in an illiquid market. At the end of the week,
the Federal Reserve stepped in and helped arrange a takeover bid by J.P. Morgan Chase. (Securities and
Exchange Commission, 2008).

7In addition, many of these assets are now held directly by central banks or by commercial and investment
banks relying on lending facilities provided by the central banks. Some day these holdings will have to �nd
another home and the most likely place would be a revitalized and more stable parallel banking system.
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model and results in terms of a simple numerical example. Section 2 derives the main result
for the special case of the model with two states. It also illustrates, in terms of a numerical
example, that market freezes can occur even if the debt maturity is not as �short�as our
main result requires. Section 3 provides a complete characterization of the debt capacity for
the general model and extends the limit result to an arbitrary number of states. The proof of
the limit result is relegated to Appendix A. Section 4 discusses the related literature. Section
5 concludes.

1 Model and results

In this section, we introduce the essential ideas in terms of a numerical example. For con-
creteness, consider the case of a bank that wishes to repo an asset. The question we ask
is: What is the maximum amount of money that the bank can borrow using the asset as
collateral? There are two ways to interpret this exercise. We can imagine that a value max-
imizing bank is trying to maximize its return on equity by minimizing the amount of capital
needed to �nance the assets it owns. In this case, every bank that purchases the asset is
assumed to have the same motive for maximizing leverage.8 Alternatively, we can simply
see our exercise as establishing a bound on the amount that can be borrowed, assuming that
other buyers in the market are limited by a similar bound.
Time is represented by the unit interval [0; 1]. The asset is purchased at the initial date

t = 0. The asset has a �nite life (e.g., mortgages) which we normalize to one unit. To keep
the analysis simple, we assume that the asset has a terminal value at t = 1, but generates
no income at the intermediate dates 0 � t < 1. We also assume that the risk-free interest
rate is 0 and that all market participants are risk neutral.
The arrival of information is modeled as a continuous-time stochastic process. For sim-

plicity, let us assume that there are two states, a low state L and a high state H. At any
point in time, the state is publicly observed. Transitions between states are governed by
a stationary Markov chain. Transition probabilities depend on the period of time during
which the transition occurs, but not the dates. If we are considering a transition during the
period [0; t], the transition probability matrix is denoted by

P (t) =

�
pLL (t) pLH (t)

pHL (t) pHH (t)

�
;

8This seems consistent with the evidence of Adrian and Shin (2010) that asset growth (shrinkage) of
broker-dealers is coincident with equivalent growth (shrinkage) in their leverage, especially so for repo �-
nancing. Acharya, Schnabl and Suarez (2009) also describe how conduits had little equity of their own
and were largely �nanced with extremely short-term ABCP. They also explain why the conduit activity is
consistent with minimizing capital of sponsor banks.
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where pLH (t) is the probability of a transition between the low state at time 0 and the high
state at time t and pHL (t) is the probability of the transition from the high state at time 0
and the low state at time t. We assume that the transition matrix takes the form

P (t) = eAt =
1X
k=0

(At)k

k!
;

where the matrix A is the generator. Since the transition probabilities in any state must
sum to 1 the rows of A must sum to 0. The crucial feature of the transition matrix is that
the probability of a change of state converges to 0 as t ! 0. That is, as t ! 0, P (t) ! I,
where I is the identity matrix.
The terminal value of the asset depends on the state of the economy at the terminal date

t = 1. The terminal value of the asset is vH in the high state and vL in the low state, where
vH > vL > 0.
We assume that the asset will be �nanced by debt that has to be rolled over repeatedly.

The debt is assumed to have a �xed maturity, denoted by 0 < � < 1, so that the debt must
be rolled over N times, where

� =
1

N + 1
:

The unit interval is divided into intervals of length � by a series of dates denoted by tn and
de�ned by

tn = n�; n = 0; 1; :::; N + 1;

where t0 is the date the asset is purchased, tn is the date of the n-th rollover (for n = 1; :::; N),
and tN+1 is the �nal date at which the asset matures and the terminal value is realized. This
time-line is illustrated in Figure 1.

� Figure 1 here �

If the bank is forced to default, the lenders will seize and liquidate the collateral. In this
event, we assume that the lenders incur a small liquidation cost, so that the net amount
recovered is a fraction � 2 [0; 1] of the sale price. This assumption has several components.
In the �rst place, it implies that the seized collateral is liquidated, i.e., sold to another buyer.
Secondly, the new buyers are also �nance constrained so that the sale price is equal to the
maximum amount of �nance that can be raised using the asset as collateral. Thirdly, the
process of seizing and disposing of collateral is not costless. For concreteness, we can think
of the liquidation cost 1� � as a transaction cost (legal costs, commissions, fees, time delay,
etc.), although other interpretations are possible (see Pedersen, 2009, for a discussion of
variety of transactions costs and illiquidity in markets). Note that similar results could be
obtained with a �xed liquidation cost (see the online appendix).
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As an example, suppose that a bank has borrowed 90 and, when it comes time to re�-
nance, �nds that it can only raise 87 using the assets as collateral. The lender, say a Money
Market Fund, cannot hold the collateral and is forced to dispose of it. A �nance constrained
buyer can borrow 87 using the assets as collateral, so this is the maximum that it can pay
for the assets. However, the amount received by the lender will be a smaller amount, say,
86, because transaction costs have to be subtracted from the sale price.
It is crucial for our argument that the recovery rate � is applied to the sale price rather

than to the fundamental value of the assets. If the buyer of the assets were a wealthy
investor who could buy and hold the assets until maturity, the fundamental value would
be the relevant benchmark. The investor might well be willing to pay some fraction of the
fundamental value, although he would presumably try to get the assets for less, recognizing
the lender�s eagerness to dispose of the collateral. What we are assuming here, by contrast,
is that the buyer of the assets is another �nancial institution that must also issue short-term
debt in order to �nance the purchase. (We discuss an extension to allow for the presence
of buy-to-hold investors in Section 1.2. Also see the online appendix). Hence, the buyer is
constrained by the same forces that determined the debt capacity in the �rst place. Note
that the buyer�s subjective valuation of the assets might be much greater than the debt
capacity, but the �nance constraint prevents him from o¤ering to pay his full value.

1.1 A numerical example

To illustrate the method of calculating debt capacity in the presence of rollover risk, we
use the following parameter values: the recovery rate is � = 0:90, the tenor of the repo is
� = 0:01, the values of the asset are vH = 100 and vL = 50 in the high and low states,
respectively, and the generator is

A =

�
�8:0 8:0

0:1 �0:1

�
: (1)

To illustrate intuitively how the generator A might arise, consider an alternative formu-
lation in which information events occur at discrete intervals. The arrival of an information
event is governed by a Poisson process with parameter � > 0. That is, the probability that
an information event occurs in a short time interval [t; t+�t] is ��t. When an information
event occurs, the state of the economy changes randomly according to a �xed probability
transition matrix

P =

�
pLL pLH
pHL pHH

�
;

where pLH (pHL) represents the probability of switching from state L (H) to state H (L)
at an information event, and pLL (pHH) represents the probability of staying in state L
(H). Note that the occurrence of an information event is itself random, so the number of
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information events in a given time interval is random and a¤ects the probability of observing
a transition from one state to another.
When the Poisson parameter is � = 10 and the probability transition matrix is given as

P =

�
0:20 0:80

0:01 0:99

�
;

we obtain the same transition probability matrix for any time interval with length � 2 (0; 1]
as in the stationary Markov chain formulation with the generator matrix A given in (1).9

The transition probability matrix for an interval of unit length can be calculated to be

P (1) =

�
0:01265 0:98735

0:01234 0:98766

�
: (2)

At time 1, the fundamental values are 100 in state H and 50 in state L by assumption.
So the fundamental values at time 0 can be calculated by using the terminal values and the
transition probabilities in the matrix P (1). The fundamental value in state H at time 0 is

V H0 = 0:98766� 100 + 0:01234� 50 = 99:383

since, starting in state H at time 0, there is a probability 0:98766 of being in state H and a
probability 0:01234 of being in state L at time 1. Similarly, the fundamental value in state
L at time 0 is

V L0 = 0:98735� 100 + 0:01265� 50 = 99:367:

Note that the fundamental values are nearly identical. In spite of this, we shall �nd that the
debt capacity of the asset, de�ned to be the maximum amount that can be borrowed using
the asset as collateral, can be very di¤erent in the two states.
Whereas the fundamental value only depends on the state, debt capacity is determined

by equilibrium in the repo market and has to be calculated for every one of the dates,
t0; :::; t99, at which repo contracts mature. To do this, we �rst have to calculate the transition
probabilities over an interval of length � = 0:01, that is, the length of the period between
rollover dates. We �nd that

P (0:01) =

�
0:92315 0:07685

0:00096 0:99904

�
: (3)

9In particular, the probability transition matrix for a time interval of length � is given as P (�) =P1
k=0

(�
e��� (��)k

k!

�� pLL pLH
pHL pHH

�k)
: For the numerical example, we approximate this as P (�) =

P200
k=0

(�
e�10� (10�)k

k!

�� 0:20 0:80

0:01 0:99

�k)
:
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Notice that the initial state has a much larger impact on the transition probabilities in
P (0:01) than it does in P (1). For example, the probability of ending up in state H after an
interval 0:01 has passed is almost 1 if you start in state H but is close to 0:077 if you start
in state L. This is because the interval is so short that the state is unlikely to change before
the next rollover date.
Consider now the debt capacities at the last rollover date t99 = 0:99. In what follows, we

let D denote the face value of the debt issued and denote the value of D that maximizes the
market value of debt at date tn in state s by Ds

n. It is never desirable to choose D > 100

because this leads to default in both states, with associated liquidation costs, but without
any increase in the payo¤. For values of D between 50 and 100 or less than 50, the expected
value of the debt is increasing in D holding constant the probability of default. Then it is
clear that the relevant face values of debt (D) to consider are 50 and 100. For any other face
value we could increase D without changing the probability of default.
If we set D = 50, the debt can be paid o¤ at date 1 in both states and the expected value

of the payo¤ is 50. So the market value of the debt with face value 50 is exactly 50.
Now suppose we set D = 100. There will be default in state L, but not in state H, at

time t = 1. The payo¤ in state H will be 100 but the payo¤ in state L will be (0:9) 50 = 45:0,
because the recovery rate after default is 0:90. The market value of the debt at time t99 will
depend on the state at time t99, because the transition probabilities depend on the state.
We can easily calculate the expected payo¤s in each state:

state H : 0:99904� 100 + 0:00096� 0:9� 50 = 99:947;
state L : 0:07685� 100 + 0:92315� 0:9� 50 = 49:226:

For example, if the state is H at date t99, then with probability 0:99904 the state is H at
date 1 and the debt pays o¤ 100 and with probability 0:00096 the state is L at date 1, the
asset must be liquidated and the creditors only realize 45.
Comparing the market values of the debt with the two di¤erent face values, we can see

that the face value that maximizes the market value of debt will depend on the state. In
state H, the expected value of the debt when D = 100 is 99:947 > 50, so that DH

99 = 100.
In state L, on the other hand, the expected value of the debt with face value D = 100 is
only 49:226 < 50, so the face value that achieves the debt capacity is DL

99 = 50. Thus, if we
use the notation Bsn to denote the debt capacity in state s at date tn, we have shown that
BH99 = 99:947 and B

L
99 = 50:

Next, consider the debt capacities at date t98 = 0:98. Now, the relevant face values to
consider are 50 and 99:9470 (since these are the maximum amounts that can be repaid in
each state at date t99 without defaulting and incurring the associated liquidation costs).
If D = 50, the expected payo¤ is 50 too, since the debt capacity at date t99 is greater

than or equal to 50 in both states and, hence, the debt can always be rolled over. In contrast,
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if D = 99:947, the debt cannot be rolled over in state L at date t99 and the liquidation cost
is incurred. Thus, the expected value of the debt depends on the state at date t98:

state H : 0:99904� 99:9470 + 0:00096� 0:9� 50 = 99:894;
state L : 0:07685� 99:9470 + 0:92315� 0:9� 50 = 49:222:

Comparing the expected value corresponding to di¤erent face values of the debt, we see that
the face value that achieves the debt capacity is DH

98 = 99:947 in state H and DL
98 = 50

in state L, so that the debt capacities are BH98 = 99:894 and B
L
98 = 50: In fact, we did not

really need to do the calculation again to realize that BL98 = 50. The only change from
the calculation we did at t99 is that the payo¤ in state H has gone down, so the expected
payo¤ from setting D = 99:947 must have gone down too and, a fortiori, the face value that
maximizes the market value of debt must be 50.
It is clear that we can repeat this argument inde�nitely in state L. At each date tn, the

debt capacity in the high state is lower than it was at tN+1 and the debt capacity in the low
state is the same as it was at tN+1. These facts tells us that if the face value that achieves
the debt capacity at tn+1 is DL

n+1 = 50, then a fortiori it will be D
L
n = 50 at date tn. Thus,

the debt capacity is equal to 50 at each date tn, including the �rst date t0 = 0.
What is the debt capacity in state H at t0? The probability of staying in the high state

from date 0 to date 1 is (0:99904)100 = 0:90842 and the probability of hitting the low state
at some point is 1� 0:90842 = 0:09158 so the debt capacity at time 0 is

BH0 = 0:90842� 100 + 0:09158� 0:9� 50 = 94:9603:

So the fall in debt capacity occasioned by a switch from the high to the low state at time
0 is 94:963�50 = 44:963 compared to a change in the fundamental value of 99:383�99:367 =
0:016. This fall is illustrated sharply in Figure 2, which shows that, while fundamental values
in states H and L will diverge sharply at maturity, they are essentially the same at date
0. Nevertheless, debt capacity in state L is simply the terminal value in state L. Thus, a
switch to state L from state H produces a sudden drop in debt capacity of the asset.

� Figure 2 here �

1.2 Discussion

The intuition for the market freeze result can be explained in terms of the tradeo¤ between
the costs of default and the face value of the debt. Suppose we are in the low information state
at date tn. If the period length � is su¢ ciently short, it is very likely that the information
state at the next rollover date tn+1 will be the low state. Choosing a face value of the debt
greater than BLn+1, the debt capacity in the same state at date tn+1, will increase the payo¤
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to the creditors if the state switches to H at the next date, but it will also lead to default
if the state remains L. Since there is a liquidation (transaction) cost, issuing debt with face
value greater than the debt capacity is always unattractive if the probability of switching to
state H is su¢ ciently small. Then, the best the borrower can do is to issue debt with a face
value equal to the debt capacity assuming the state remains L. But this implies that the
debt capacity in the low state is vL at every date. In other words, no matter how high the
fundamental value is in state L, the borrower is forced to act as if the asset is only worth vL

in order to avoid default.

In the remainder of this section, we consider the role of the di¤erent assumptions of the
model in driving the limit result on market freezes.

Credit risk If vH = vL, the terminal value of the asset is equal to the fundamental with
probability one, so we can set the face value of the debt equal to vH = vL without any risk
of default. In this case, the debt capacity must be equal to the fundamental value regardless
of any other assumptions. So one necessary assumption is the existence of credit risk, that
is, a positive probability that the terminal value of the asset will be less than the initial
fundamental value. However, this credit risk can be arbitrarily small, as we illustrated in
the numerical example where, at time 0, the probability that the asset�s terminal value is 50
is less than 0:01. We could obtain the same results for even smaller values of credit risk at
the cost of increasing the number of rollovers.

Liquidation cost We need a liquidation cost in order to have a market freeze. If the
recovery ratio is � = 1, then regardless of the credit risk, the debt capacity will equal the
fundamental value. To see this, simply put the face value of the debt equal to 100 at each
date. The market value of the debt will equal the fundamental value of the asset, which
must equal the debt capacity. So a necessary condition of the market freeze is � < 1. The
liquidation cost does not need to be large, however. In the numerical example, the loss ratio
was 0:1 and it could be made even smaller with an appropriate reduction in the maturity of
the debt.

Debt �nance Among the key assumptions of our model, we take as given that asset
purchases are entirely debt-�nanced, not just for the initial owner of the assets but for all
potential buyers. In particular, this assumption rules out the presence of any long-term or
buy-to-hold investors. However, this assumption can be relaxed.
Suppose that, when assets are being liquidated, the buyer found by the liquidating cred-

itors is, with probability 1 � �, short-term debt �nanced and, with probability �, he is
�nanced by long-term debt or equity. We can think of the buyer with long-term �nance as
a buy-to-hold investor, such as Warren Bu¤ett, who is willing and able to pay a fraction,
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possibly 100%, of the fundamental value. With this modi�cation, we show in the online
appendix that a market freeze occurs under the usual assumptions if the probability � is not
too large. Intuitively, if liquidating creditors are certain to �nd a buyer who can pay the
fundamental value of the asset, then our backward induction mechanism fails and there can
be no market freeze. However, if such buyers are scarce, because the extent of free long-term
capital in the �nancial sector is limited, then most buyers are also short-term debt �nanced
and our mechanism is back at work. We show in the online appendix that our main result on
the sharp drop in the debt capacity of the asset and the market freeze can easily be obtained
for a reasonable set of parameter values such as the probability of meeting a buy-to-hold
investor � being less than 10%.

Short-term debt As a practical matter, many �nancial �rms are indeed funded with
short-term rollover debt. There exist agency-based explanations in the literature (for exam-
ple, Flannery, 1986, Diamond, 1989, 1991, 2004, Calomiris and Kahn, 1991, and Diamond
and Rajan, 2001a, 2001b) for the existence of short-term debt as optimal �nancing in such
settings. In contrast to this literature, Brunnermeier and Oehmke (2009) consider a model
where a �nancial institution is raising debt from multiple creditors and argue that there may
be excessive short-term debt in equilibrium as short-term debt issuance dilutes long-term
debt values and creates among various creditors a �maturity rat race.�Other reasons for
the use of short-term debt are the attraction of betting on interest rates if bankers have
short-term horizons and choose to shift risk (see, for example, Allen and Gale, 2000, and
Acharya, Cooley, Richardson and Walter, 2009).

Rollover frequency We have highlighted the role of rollover risk and indeed our main
result requires that the rate of re�nancing be su¢ ciently high in order to obtain a market
freeze. Figure 3 illustrates the role of rollover frequency on debt capacity in state L by
varying the number of rollovers as N = 10; 50 and 100. Debt capacity with just 10 rollovers
is over 90, but falls rapidly to just above 60 with 50 rollovers, and 100 rollovers are su¢ cient
to obtain the limiting result that debt capacity is the terminal value of 50 in state L.

� Figure 3 here �

Even if the period length is longer than our result requires, so that the borrower sets the
face value greater than the debt capacity (in the same state at the next rollover date), it is
still possible that a market freeze occurs, as we show with a numerical example in Section 2.

Information structure The crucial property of the information structure is that P (�)!
I as � ! 0, that is, the probability of a change in state in any rollover period gets smaller
as the period length gets smaller. Since the number of rollovers N determines the period

12



length � , in fact, � = 1
N+1

, as the number of rollovers increases, � gets smaller and information
arrives slowly relative to rollovers.
Note that we do not make any special assumptions about the generator A. In particular,

we can impose a substantial amount of symmetry if desired. For example, the information
state can be a symmetric random walk with re�ecting barriers. The only essential property
is that the probability of a change in states converges to zero as the period length converges
to zero.

2 Debt capacity with two states

In this section we provide a proof for the market freeze result when there are two states. We
make the same assumptions as for the numerical example but the parameters are otherwise
arbitrary. For the time being, we treat the tenor of the commercial paper � and the number
of rollovers N as �xed. Later, we will be interested to see what happens when the tenor �
becomes very small and the number of rollovers N becomes correspondingly large.
There are two states, a �low�state L and a �high�state H. Transitions occur between

the rollover dates tn and are governed by a stationary transition probability matrix

P (�) =

�
pLL (�) pLH (�)

pHL (�) pHH (�)

�
;

where pHL (�) (pLH (�)) is the probability of a transition from state H (L) at time tn to
state L (H) at time tn+1. The one requirement we impose on these probabilities is that the
shorter the period length � , the more likely it is that there is no change in states before the
next rollover date:

lim
�!0

pHL (�) = lim
�!0

pLH (�) = 0:

The terminal value of the asset is vH if the terminal state is H and vL if the terminal state
is L, where 0 < vL < vH .
In the numerical example, we saw that the borrower chooses a low face value of the debt

in the low state and a high face value of the debt in the high state. Here we will provide
necessary and su¢ cient conditions under which choosing high and low face values in the
high and low states, respectively, will achieve the debt capacity in those states. We begin
by considering the low state.

The low state Suppose that the economy is in the low state at date tN , which is the last
of the rollover dates. Let D be the face value of the debt issued by the bank. If D > vH , the
bank will default in both states at date tN+1 and the creditors will receive �vH in the high
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state and �vL in the low state.10 Clearly, the market value of the debt at date tN would
be greater if the face value were D = vH , so the borrower will never choose D > vH . Now
suppose that the bank issues debt with face value D, where vL < D < vH . This will lead
to default in the low state at date tN+1 and the creditors will receive D in the high state
and �vL in the low state. Clearly, this is dominated by choosing a higher value of D. Thus,
either D = vH or D � vL. An exactly similar argument shows that the borrower will never
choose D < vL, so we are left with only two possibilities, either D = vH or D = vL. In the
�rst case, the market value of the debt is pLL (�)�vL + pLH (�) vH and in the second case it
is vL. A necessary and su¢ cient condition for DL

N to equal v
L is

pLL (�)�v
L + pLH (�) v

H � vL: (4)

This condition will clearly be satis�ed for all � > 0 su¢ ciently small, but for the time being
we will simply assume that (4) is satis�ed.
Now suppose that (4) is satis�ed and that BLn0+1 = v

L for n0 = n; :::; N . Consider what
happens in the low state at date tn. By the usual argument, the only candidates for the face
value that maximizes the market value of debt are D = vL and D = BHn+1. If the face value
is D = vL, the creditors will receive vL in both states at date tn+1 and the market value of
the debt at date tn will be vL. On the other hand, if the face value of the debt is D = BHn+1,
the creditors receive BHn+1 in the high state and �v

L in the low state, so the market value of
the debt at date tn is

pLL (�)�v
L + pLH (�)B

H
n+1 � pLL (�)�vL + pLH (�) vH ;

since BHn+1 � vH . But (4) implies that pLL (�)�vL + pLH (�) vH � vL, so the debt capacity
is BLn = v

L. In fact, this induction argument shows that the debt capacity is BLn = v
L for

all n = 1; :::; N .

The high state Now consider the high state. Again, our two candidates for the face value
of the debt at each date tn are BHn+1 and vL. Let us assume that at each date tn the face
value of the debt is set equal to the future debt capacity BHn+1, that is, we begin at date
tN by setting DH

N = vH and BHN = pHH (�) v
H + pHL (�)�v

L and then recursively de�ne
DH
n = B

H
n+1 and

BHn = pHH (�)B
H
n+1 + pHL (�)�v

L;

for n = 1; :::; N � 1. It can easily be shown by backward induction that BHn � BHn+1 for any
n, so in order to show that this strategy will be chosen, it is necessary and su¢ cient to show

10To simplify the argument, we are assuming that there is a liquidation cost at date tN+1, too. None of
the results depend on this.
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that BH0 � vL. By repeated substitution we can show that

BH0 = pHH (�)B
H
1 + pHL (�)�v

L

= pHH (�)
�
pHH (�)B

H
2 + (1� pHH (�))�vL

	
+ (1� pHH (�))�vL

= (pHH (�))
2 �BH2 � �vL�+ �vL

� � �
= (pHH (�))

N �vH � �vL�+ �vL:
Then the face value that achieves the debt capacity is DH

n = B
H
n+1 for all n if and only if

(pHH (�))
N �vH � �vL�+ �vL � vL

or

vH � �vL � (1� �) vL

(pHH (�))
N
: (5)

We have thus proved the following proposition.

Proposition 1 De�ne
��
BHn ; D

H
n ; B

L
n ; D

L
n

�	N
n=0

by setting

DH
n = B

H
n+1; (6)

BHn = pHH (�)B
H
n+1 + p (�)�v

L; (7)

and
DL
n = B

L
n = v

L; (8)

for n = 1; :::; N . The values de�ned by (6-8) constitute a solution to the problem of achieving
debt capacity if and only if (4) and (5) are satis�ed.

The qualitative properties of the debt capacities characterized in Proposition 1 are the
same as in the numerical example in Section 1.1. In the low state, the debt capacity BLn
is constant and equal to the lowest possible terminal value, vL. The fundamental value of
the asset in the low state V Ln is greater than the debt capacity at every date tn except at
the terminal date, when they are both equal to vL. In the high state, the debt capacity BHn
is always less than the fundamental value V Hn , except at the terminal date when both are
equal to vH . We call this behavior of the debt capacity a �market freeze�since a switch in
the information state from high state to the low state can produce a sudden, sharp drop in
debt capacity that is much larger than the drop in the fundamental value associated with
the same switch.
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2.1 Satisfying the conditions for a market freeze

In the two-state model, there are two necessary and su¢ cient conditions for the existence of
an equilibrium in which there is a market freeze. The �rst condition ensures that the debt
capacity in the high state in the �rst period is achieved by setting the face value of the debt
equal to the next period�s debt capacity in the same state:

vH � �vL � (1� �) vL

(pHH (�))
N
; (9)

where (pHH (�))
N is the probability of remaining in the high state for N periods of length � .

If aHL denotes the arrival rate of a switch from the high to the low state, then the properties
of a Poisson process imply that (pHH (�))

N � e�aHL : A su¢ cient condition for (9), therefore,
is

vH � �vL � (1� �) vLeaHL ;

which can be rewritten as
vH � vL
vL

� (1� �) (eaHL � 1) : (10)

Each of the terms in this condition has an intuitive interpretation: the term on the left is
the (proportional) upside in the low state; the term 1 � � is the (proportional) liquidation
cost ; and aHL is the arrival rate of a switch from the high state to the low state. The cost
of setting the face value high is the expected liquidation cost (the right hand side) and the
bene�t is the upside that is captured if a switch does not occur (the left hand side). The
maximum value of aHL consistent with (10), is shown as a function of the liquidation cost
in the �gure below for various values of the upside.

�Figure 4a�

For the range of values of interest for the liquidation cost, condition (10) will be satis�ed
as long as aHL is less than 1:79. This is equivalent to saying that the probability of a switch
to the low state during the life of the asset is less than or equal to 0:83, a bound that seems
pretty loose.
It is clear that condition (10) will be satis�ed, for given values of the upside and the

liquidation cost, if the arrival rate aHL is chosen su¢ ciently small. And since we want the
high state to be a situation in which investors are optimistic and the probability of anything
going wrong is very small, it is natural to think of aHL as a small number. Obviously, if
the liquidation cost is also small and/or if the upside is large, it is even easier to satisfy
condition (10). Thus, we can simply assume that aHL is su¢ ciently small to satisfy (10).
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We also note that the parameter aHL does not enter into any of the other conditions that
we will be considering.
The second of the conditions referred to above is the inequality

pLL (�)�v
L + pLH (�) v

H � vL (11)

The expression on the left hand side of condition (11) is the expected value of the debt in
the low state in the last period if the face value is set equal to vH and the inequality tells
us that setting the face value equal to vL gives a higher market value than setting the face
value equal to vH . To understand the constraint this condition puts on the parameters, it is
helpful to rewrite (11) as follows:

pLH (�)

1� pLH (�)
vH � vL
vL

� 1� �: (12)

The term pLH (�) = (1� pLH (�)) is the odds ratio of switching to the high state to remaining
in the low state. Condition (12) requires that the odds ratio times the upside be less than
or equal to the liquidation cost.
Comparing (10) and (12), we can see that an increase in the upside will make it easier

to satisfy (10) but harder to satisfy (12). Conversely, an increase in the liquidation cost will
make it easier to satisfy (12) but harder to satisfy (10). So there is a tension between the
two conditions; however, as noted above, (10) can be satis�ed for any given values of the
upside and the liquidation cost if the �ow probability aHL is su¢ ciently small, as we assume.
So in what follows, we focus on the parameter values that satisfy (12).
The analysis of this case is more di¢ cult because, in order to have a meaningful market

freeze, we want the drop in the debt capacity, caused by a switch from the high to the low
state at date 0, to be much greater than the change in the fundamental value. In other
words, we want the fundamental values in the high and low states to be close together and
close to vH . Since we want the probability of remaining in the high state to be high and
since condition (10) is easily satis�ed in any case, we can simplify the problem by assuming
that the high state is an absorbing state, that is, aHL = 0. This assumption makes it harder
to satisfy (12) in two ways. First, it makes it more attractive to set the face value of the debt
high in the low state. Second, it makes it harder to satisfy the constraint on the fundamental
value.
When the high state is absorbing, the fundamental value in the low state beginning at

date 0 is �
1� e�aLH

�
vH + e�aLHvL = vL +

�
1� e�aLH

� �
vH � vL

�
;

where aLH is the �ow probability of a switch from the low to the high state and, hence,
e�aLH is the probability of remaining in the low state forever (i.e., from date 0 until date 1).
Then 1 � e�aLH is a good measure of the fundamental in the low state at date 0, because
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the fundamental will be close to vL if 1� e�aLH � 0 and the fundamental will be close to vH
if 1� e�aLH � 1. For the purposes of this exercise, we will assume that the gap between the
low-state fundamental and the high-state fundamental should be at most 10% of vH � vL,
so that e�aLH � 0:1 or

aLH � � ln (0:1) = 2:3026: (13)

So our task now is to characterize the parameters that satisfy (12) and (13).
When � is small, pLH (�) is approximately equal to aLH=N . Substituting this expression

into the inequality (12), we obtain

aLH
N � aLH

vH � vL
vL

� 1� �;

and substituting the smallest value of aLH that satis�es (13) into this inequality we get

2:3026

N � 2:3026
vH � vL
vL

� 1� �: (14)

So now we have a condition in terms of N , the number of rollovers, the upside and the
liquidation cost, that is,

N� = 2:3026

�
1 +

vH � vL
vL

1

1� �

�
;

where N� is the smallest number of rollovers that satis�es the inequality (14). The �gure
below shows the value of N� as a function of 1� � for values of the upside equal to 0:5; 1:0
and 2:0.

�Figure 4b�

The characterization of the parameter values that are consistent with a market freeze
is complicated for several reasons, including the number of parameters and the number of
conditions that must be satis�ed, and the condition that the fundamental values in the
high and the low states be close and su¢ ciently high to make the drop in debt capacity
large relative to the change in the fundamental when the state changes from high to low.
Nonetheless, the preceding analysis suggests that the critical trade o¤ is between the number
of rollover dates N (equivalently, the length of the rollover period �) and the liquidation cost
1 � �. If we �x the upside and the distance between the high and low fundamental as a
proportion of the upside, we are left with the relation illustrated in the �gure above that
shows the minimum number of rollovers needed for any particular value of the liquidation
cost. To give a sense of how reasonable the required parameter values are, we present the
following concrete examples, where the upside is 1:0 and the gap between the low-state
fundamental and the high-state fundamental is 10% of vH � vL.
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Example 2 The asset has a maturity of six months and is funded by overnight repos. So
the debt must be rolled over approximately 162 times. In order for the market to freeze in
the low state (debt capacity equal to vL), the value of the liquidation cost must be at least
1� � = 0:0144: or around 1:5% of the upside.

Example 3 The asset has a maturity of two years and is funded by short term loans that are
rolled over weekly. In total the debt must be rolled over 104 times. In order for the market
to freeze in the low state, the value of the liquidation cost must be at least 1 � � = 0:02264
or around 2:25% of the upside.

Example 4 The asset has a maturity of ten years and is funded by one month loans, so the
debt must be rolled over 120 times. In order for the market to freeze in the low state, the
value of the liquidation cost must be at least 1� � = 0:01956 or around 2:0% of the upside.

In a similar way, we can use the formula above to explore the relationship between the
number of rollovers N and the size of the market freeze, de�ned as 1 � e�aLH , for a given
value of the liquidation cost. For example, suppose that the upside is 1:0 and the liquidation
cost is 1% of the upside. Then the minimum number of rollovers needed for a market freeze
is

N� = aLH

�
1 + 1:0� 1

0:01

�
= aLH � 101;

and the size of the market freeze is 1 � e�aLH = 1 � e�N�
101 : We plot this relationship in the

�gure below, which shows that the size 1� e�aLH increases towards 1 as N� increases.

�Figure 4c�

2.2 Debt capacity with intermediate rollover risk

We can get similar results even if the period length is not short enough to generate the
result stated in Proposition 1. A simple adaptation of the numerical example will illustrate
a scenario in which a high face value of debt is chosen in the low state, with the result that
the bank faces a positive probability of default if the economy remains in the low state.
Suppose that the value of the asset in the low state is vL = 40. All the other parameters
remain the same. Now the loss from default in the low state is less than the gain from a
high face value in the high state, so the face value of the debt that is equal to next period�s
debt capacity in the high state maximizes the market value of debt this period.
As before, we calculate the debt capacity, beginning with the last rollover date. The last

rollover date is t99. The transition probabilities are given by equation (3) as before. If the
face value of the debt is set equal to vH = 100 in the low state, the market value of the debt
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issued will be 0:07685 � 100 + 0:92315 � 0:90 � 40 = 40:918; which is higher than the face
value obtained by setting the face value equal to 40. Thus, the face value that maximizes
the market value of debt implies default if the economy remains in the low state. It is still
the case that DH

99 = 100 in the high state, and the debt capacity is now B
H
99 = 99:939:

As long as the face value of the debt is set equal to BHn+1 in both states, the debt capacity
satis�es �

BHn
BLn

�
=

�
0:99904 0:90� 0:00096
0:07685 0:90� 0:92315

� �
BHn+1
BLn+1

�
: (15)

However, this assumes that the borrower chooses to default in the low state at every rollover
date, which is not necessarily true. Starting at the last rollover date, it can be shown that
the debt capacity in state L rises as we go back in time, reaches a maximum at t80, and then
declines as we move to earlier and earlier dates (see Figure 5). The problem is that as the
debt capacity rises, the liquidation costs (which are proportional to the debt capacity) also
rise and eventually outweigh the upside potential of a switch to the high state.11 At the point
where the maximum is reached, the borrower changes the face value of the debt from BHn+1
to BLn+1 and avoid default in the low state. Then the debt capacity is given by the formula
above for n = 80; :::; 99 and is given by BLn = B

L
80 for n = 0; :::; 80. We can use the formula

in equation (15) to show that BL80 = 44:918 and B
H
80 = 98:847. The gap between the debt

capacities in the two states is 94:469�44:918 = 49:551, compared to the negligible di¤erence
in the fundamental values 99:2596 and 99:241 in the high and the low states, respectively.
Thus, even the borrower wants to capture the upside potential of a switch to the high state,
the debt capacity in the low state does not rise much above the minimum value of the asset,
i.e., it is 44:918 rather than 40.

� Figure 5 here �

In the rest of the paper, we explore the determinants of debt capacity in a richer model with
many states and a broad range of parameters.

3 Debt capacity in the general case

We allow for a �nite number of information states or signals, denoted by S = fs1; :::; sIg. The
current information state is public information. Transitions among the states are governed
by a stationary Markov transition probability P (�) given as

P(�) =

264 p11(�) � � � p1I(�)
...

. . .
...

pI1(�) � � � pII(�)

375 ;
11It is also possible to extend this example to the case with �xed costs of liquidation. Details are available

from authors upon request.
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where � is the interval over which the transitions take place. We assume that the transition
matrix takes the form

P (�) = eA� =
1X
k=0

(A�)k

k!
;

where the matrix A is the generator. The crucial feature of the transition matrix is that the
probability of a change of state converges to 0 as � ! 0. That is, P (�)! I as � ! 0.
The information state is a stochastic process fS (t)g but for our purposes all that matters

is the value of this process at the rollover dates. We let Sn denote the value of the information
state S (tn) at the rollover date tn.
The terminal value of the assets is a function of the information state at date t = 1. We

denote by vi the value of the assets if the terminal state is SN+1 = si and assume that the
values fv1; :::; vIg satisfy

0 < v1 < : : : < vI :

Let V in denote the fundamental value of the asset at date tn in state i. Then clearly the
values fV ing are de�ned by putting V iN+1 = vi, for i = 1; :::; I, and

V in =
IX
j=1

pij (1� tn) vj; for n = 0; :::; N and i = 1; :::; I;

where pij (1� tn) is, of course, the (i; j) entry of P (1� tn) denoting the probability of a
transition from state i at date tn to state j at date tN+1 = 1.
Figure 6 illustrates the fundamental values in a setup with I = 6 states where terminal

values are vi = 40+ i10, for i = 1; :::; 6. The transition matrix P is described in Appendix B.
As in our two-state example, the fundamental values in di¤erent states are virtually identical
at date 0 though they diverge in steps of 10 at maturity.

� Figure 6 here �

Let Bin denote the equilibrium debt capacity of the assets in state si at date tn. By
convention, we set BiN+1 = vi for all i.

Proposition 5 The equilibrium values of fBing must satisfy

Bin = max
k=1;:::;I

8><>:
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

9>=>;
for i = 1; :::; I and n = 0; :::; N .
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The result is immediate once we apply the now familiar backward induction argument
to show that the borrower sets Di

n equal to B
j
n+1 for some j. Although the result amounts

to little more than the de�nition of debt capacity, it is very useful because it allows us to
calculate the debt capacities by backward induction.
The main result on the downward bias of debt capacities is contained in the following

proposition.

Proposition 6 There exists � � > 0 such that for all 0 < � < � �, for any n = 0; :::; N and
any i = 1; :::; I, the borrower chooses Di

n � Bin+1. Thus,

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1:

for some k such that Bkn+1 � B
j
n+1.

Proof. See Appendix A.
Several properties follow immediately from Proposition 6 whenever 0 < � < � �. We

provide these results in the form of three corollaries. First, in the lowest state, s1, the debt
capacity is constant and equal to v1, the lowest possible terminal value.

Corollary 7 B1n = v1 for all n.

Proof. From the formula in Proposition 6, for some k,

B1n =
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
IX
j=1

pij (�)B
1
n+1 = B

1
n+1;

since Bkn+1 � B1n+1. Since this inequality holds for n = 0; :::; N and, by convention, B1N+1 =
v1, it follows that B1n � v1, for any n.
We can also show that B1n � v1. To see this, note that BiN+1 = v1 for all i. Moreover,

if the same condition holds for n + 1, it must be true that Bin � v1, because we can always
choose Di

n = v1.
Thus, we have shown that B1n = v1 for all n.
Second, the debt capacity Bin is monotonically non-decreasing in n, that is, debt capacity

increases as the asset matures, holding the state constant. This follows directly from the
fact that, if the face value of the debt equals Bin+1, the debt capacity B

i
n cannot be greater

than Bin+1.
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Corollary 8 Bin � Bin+1, for any i = 1; :::; I and n = 0; :::; N .

Proof. The inequality follows directly from the formula in Proposition 6:

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
X

fj:Bkn+1>Bjn+1g
pij (�)B

i
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
i
n+1

=

IX
j=1

pij (�)B
i
n+1 = B

i
n+1;

since Bjn+1 < B
k
n+1 � Bin+1 implies that �B

j
n+1 < B

i
n+1.

Third, since BiN+1 = vi by convention, the preceding result immediately implies that the
debt capacity Bin is less than or equal to vi.

Corollary 9 Bin � vi for all i = 1; :::; I and n = 0; :::; N .

Finally, we can con�rm that the debt capacity in state si at any date tn is less than the
fundamental value V in. This follows directly from the formula in Proposition 6 for n = N +1
and any i, so suppose that it holds for n+ 1; :::; N and any i = 1; :::; I. Then the formula in
Proposition 6 implies that, if Di

n = B
k
n+1, say,

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
X

fj:Bkn+1>Bjn+1g
pij (�)B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
j
n+1

�
IX
j=1

pij (�)V
j
n+1 = V

i
n;

for any i = 1; :::; I, so by induction the claim holds for any n = 0; :::; N and any i = 1; :::; I.
Some of these properties are illustrated in Figures 7a and 7b which show the debt ca-

pacities in the six states of our numerical example for N = 10 and N = 100 rollovers,
respectively. For 10 rollovers, � is not su¢ ciently small to obtain our limit result even in
the worst state and debt capacity in each state is in fact higher than the terminal value in
that state. Nevertheless, it is still the case that there is a drop in debt capacity of between 5
and 10 as the state changes to the next worse one, without much change in the fundamental
value. By contrast, with 100 rollovers, the limit result is obtained and in fact debt capacity
in the two worst states (states 1 and 2) is (essentially) the minimum possible value of the
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asset which is 50. Furthermore, as we go from the best state (state 6) to the second-best
state (state 5), debt capacity falls roughly by a magnitude of 25 even though the fundamen-
tal value (Figure 6) has hardly changed. Thus, the market freeze is substantially worse with
100 rollovers compared to 10.

� Figure 7a and 7b here �

Proposition 6 shows that, when the period length is su¢ ciently short (the rollover rate
is su¢ ciently high), there is a downward bias in the debt capacity, because the face value
of the debt is bounded above by the future debt capacity in the same state. This is an
important step toward proving the existence of a market freeze but two further requirements
are needed. First, we need to show that the fundamental values are uniformly high and that
the debt capacities are high in some states and low in others.
Consider the debt capacities �rst. The proposition shows that B1n = v1 for all n =

0; :::; N so it is enough to show that the debt capacity is high in some states. The following
proposition does just that.

Proposition 10 The initial debt capacity in the highest state, I, satis�es the inequality

BI0 � e��vI +
�
1� e��

�
�v1;

where � =
P

j 6=I aIj.

So, as long as � is su¢ ciently small, the debt capacity in the high state will be close to
vI . We know that the fundamental value V I0 lies between B

I
0 and vI , so the fundamental

value will also be close to vI . Then in order to show that a market freeze is possible it is
only necessary to ensure that the fundamental value for the lowest state, V 10 , is also close
to vI . This will be true as long as the probability of a transition from the lowest to the
highest state is high enough. In general, this probability will depend on the entire matrix A
so it is hardly worth trying to write down a su¢ cient condition in terms of the individual
parameters, but the numerical examples have illustrated that this is clearly possible.

4 Related research

At a general level, our result on market freezes can be considered a generalization of the
Shleifer and Vishny (1992) and Allen and Gale (1994) results that when potential buyers
of assets of a defaulted �rm are themselves �nancially constrained, there is a reduction
in the ex-ante debt capacity of the industry as a whole. We expand on their insight by
considering short-term debt �nancing of long-term assets with rollovers to be met mostly by
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new short-term �nancing or liquidations to other buyers also �nanced mostly through short-
term debt. Our �market freeze�result can be considered as a particularly perverse dynamic
arising through the Shleifer and Vishny (1992) and the Allen and Gale (1994) channel at
each rollover date, that through backward induction, can in the worst case drive short-term
debt capacity of an asset to its minimum possible cash �ow.
More speci�cally, our paper is related to the literature on freezes and runs in �nancial

markets. Rosenthal andWang (1993) use a model where owners occasionally need to sell their
assets for exogenous liquidity reasons through auctions with private information. Because of
the informational rents earned by the privately informed bidders, sellers may not be able to
extract the full value of the asset and this liquidation cost gets built into the market price
of the asset, making the market price systematically lower than the fundamental value. In
our model, the reason for the debt capacity being lower than the fundamental value is not
the private information of potential buyers, rather it is the rollover risk and the liquidation
cost associated with defaults.
He and Xiong (2009) consider a model of dynamic debt runs in which creditors have

supplied debt maturing at di¤ering maturities and each creditor faces the risk, at the time of
rolling over the debt, that fundamentals may deteriorate before the remaining debt matures,
causing a �re sale of assets. In their model, the volatility of fundamentals plays a key role in
driving the runs, even when the average value of fundamentals has not been a¤ected. Our
model is complementary to theirs and somewhat di¤erent in the sense that both average
value and uncertainty about fundamentals are held constant in our model. It is the rate at
which information arrives relative to the rollovers that determines whether there is rollover
risk in short-term debt.
Huang and Ratnovski (2008) model the behavior of short-term wholesale �nanciers who

prefer to rely on noisy public signals such as market prices and credit ratings, rather than
producing costly information about the institutions they lend to. Hence, wholesale �nanciers
run on other institutions based on imprecise public signals, triggering potentially ine¢ cient
runs. While their model is about runs in the wholesale market, as is ours, their main focus
is to challenge the peer-monitoring role of wholesale �nanciers, whereas our main focus is
the role of rollover and liquidation risk in generating such runs.
An alternative modelling device to generate market freezes is to employ the notion of

Knightian uncertainty (see Knight, 1921) and agents�overcautious behavior towards such
uncertainty. Gilboa and Schmeidler (1989) build a model where agents become extremely
cautious and consider the worst-case among the possible outcomes, that is, agents are uncer-
tainty averse and use maxmin strategies when faced with Knightian uncertainty. Dow and
Werlang (1992) apply the framework of Gilboa and Schmeidler (1989) to the optimal portfolio
choice problem and show that there is an interval of prices within which uncertainty-averse
agents neither buy nor sell the asset. Routledge and Zin (2004) and Easley and O�Hara
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(2009, 2010) use Knightian uncertainty and agents that use maxmin strategies to generate
widening bid-ask spreads and freeze in �nancial markets. Caballero and Krishnamurthy
(2008) also use the framework of Gilboa and Schmeidler (1989) to develop a model of �nan-
cial crises: During periods of increased Knightian uncertainty, agents refrain from making
risky investments and hoard liquidity, leading to �ight to quality and freezes in markets for
risky assets. While ambiguity aversion leads to a market freeze in these models, in our model
agents maximize expected utility and the main source of the market freeze is rollover and
liquidation risk.
We regard our approach as complementary to Knightian uncertainty. Knightian uncer-

tainty is appropriate when investors have very limited information about the nature of the
risks they face. We are interested, by contrast, in explaining the drying up of liquidity in the
absence of obvious problems of asymmetric information or fears about the value of collateral.
For this purpose, it would seem to be an advantage to appeal to standard assumptions about
preferences and beliefs.

5 Conclusion

In this paper, we have attempted to provide a simple information-theoretic model for freezes
in the market for short-term �nancing of �nitely lived assets. The key ingredients of our
model were rollover risk, liquidation risk, rapid rate of re�nancing relative to the arrival
of news, and similarity of �nancial institutions in their degree of maturity mismatch. In
particular, our model could be interpreted as a micro-foundation for the funding risk arising
in capital structures of �nancial institutions or special purpose vehicles that have extreme
maturity mismatch between assets and liabilities.
In future work, it would be interesting to embed an agency-theoretic role for short-term

debt, which we assumed as given, and see how the desirability of such rollover �nance is
a¤ected when information problems can lead to complete freeze in its availability. While
we took the release of information about the underlying asset as ordained by nature, it
seems worthwhile to re�ect on its deeper foundations, and thereby assess whether a strategic
disclosure of information by agents in charge of the asset can alleviate (or aggravate) the
problem of freezes.

Appendix A: Proofs

We can solve for the equilibrium debt capacities in the model of Section 3 by backward
induction. Let D denote the face value of the debt issued in state si at date tn. This debt
will pay o¤ D in state sj at date tn+1 if D � Bjn+1 and �B

j
n+1 otherwise. In other words,
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the market value of the debt is given by the formulaX
Bjn+1<D

pij (�)�B
j
n+1 +

X
Bjn+1�D

pij (�)D

and the debt capacity is given by

Bin = max
D

8><>:
X

Bjn+1<D

pij (�)�B
j
n+1 +

X
Bjn+1�D

pij (�)D

9>=>; :
Let Di

n denote the face value of the debt that maximizes the market value of debt in state
i at date tn. It is clear that the market value of the debt is maximized by setting the face
value D = Bjn+1, for some value of j = 1; :::; I. Thus, we can write the equilibrium condition
as

Bin = max
k=1;:::;I

8><>:
X

fj:Bkn+1>Bjn+1g
pij (�)�B

j
n+1 +

X
fj:Bkn+16Bjn+1g

pij (�)B
k
n+1

9>=>; ;
for i = 1; :::; I and n = 0; :::; N .

Proof of Proposition 6: For a �xed but arbitrary date tn and state si, we compare the
strategy of setting D = Bin+1 with the strategy of setting D = Bkn+1, where B

k
n+1 > B

j
n+1.

Consider the di¤erence in the expected values of the debt:X
fj:Bin+1>Bjn+1g

pij (�)�B
j
n+1 +

X
fj:Bin+16Bjn+1g

pij (�)B
i
n+1

�
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fj:Bkn+1>Bjn+1g
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j
n+1 �
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j
n+1

�
+

X
fj:Bkn+16Bjn+1g

pij (�) (B
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n+1 �Bkn+1)

= pii (�)
�
Bin+1 � �Bin+1

�
+

X
fj:Bin+1<Bjn+1<Bkn+1g

pij (�)
�
Bin+1 � �B

j
n+1

�
+

X
fj:Bkn+16Bjn+1g

pij (�) (B
i
n+1 �Bkn+1)

� pii (�) (1� �) v1 +
X

fj:Bin+1<Bjn+1<Bkn+1g
pij (�) (v1 � vI) +

X
fj:Bkn+16Bjn+1g

pij (�) (v1 � vI)

= pii (�) (1� �) v1 +
X

fj:Bin+1<Bjn+1g
pij (�) (v1 � vI) :
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since Bin+1 � v1, Bin+1 � �B
j
n+1 � Bin+1 � B

j
n+1 � (v1 � vI) for j = i + 1; :::; I and Bin+1 �

Bkn+1 � v1 � vI . Then it is clear that, for � su¢ ciently small (i.e., pii (�) su¢ ciently close to
1), the last expression above is positive. Since the last expression is independent of n, the
bound is uniform, i.e., there exists a constant � � > 0 such that, for � < � �, Di

n = B
i
n+1, for

all i and n.
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Appendix B: Numerical parameters for the example with I = 6 states 

The terminal values for the 6 states are chosen as 10iv i= , for {5,...,10}i∈ . The generator matrix A and 
the unconditional transition matrices P ( 10)N = and P ( 100)N = that is, the transition matrices with 10 
and 100 rollovers, respectively, are given below. 

 

                  

8 8 0 0 0 0
1 10 9 0 0 0
0 1 10 9 0 0
0 0 1 10 9 0
0 0 0 1 10 9
0 0 0 0 0.1 0.1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

 

 

 

0.498446 0.328747 0.129744 0.034727 0.007006 0.00133
0.041093 0.432477 0.341745 0.138156 0.037333 0.009196
0.001802 0.037972 0.433411 0.342035 0.13748 0.0473

5.36x10‐5 0.001706 0.038004 0.433336 0.338412 0.188488

1.20x10‐6 5.12x10‐5 0.001697 0.037601 0.420155 0.540494

2.53x10‐9 1.40x10‐7 6.49x10‐6 0.000233 0.006005 0.993755

P(N = 10) =   

 

 

 

0.923483 0.073136 0.00328 9.82x10‐5 2.21x10‐6 4.04x10‐8

0.009142 0.905609 0.081471 0.003666 0.00011 2.52x10‐6

4.56x10‐5 0.009052 0.905652 0.081472 0.003665 0.000113

1.52x10‐7 4.53x10‐5 0.009052 0.905652 0.081461 0.003789

3.79x10‐10 1.51x10‐7 4.53x10‐5 0.009051 0.905287 0.085617

7.69x10‐14 3.85x10‐11 1.55x10‐8 4.68x10‐6 0.000951 0.999044

P(N = 100) =   
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Figures 

 

Figure 1: Timeline (illustrating N+1 state transitions and N rollovers). 

 

 

Figure 2:  Fundamental value (V) and debt capacity (B) in high (vH=100) and low (vL=50) states as a function of time 

 

 

 

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (tn)

V (low state)

V (high state)

B (low state)

B (high state)

second 
transition 

first 
transition 

last 
transition 

1 1
( 1)
Nt
N τ
+ = =
+

0 0t =   1t τ= 2 2t τ=   nt nτ=   Nt
Nτ
=. . .  . . . 

last 
rollover 

first 
rollover 

second 
rollover 



33 
 

Figure 3:  Fundamental value (V) and debt capacity (B) in low (vL=50) state for different number of rollovers (N) 

 

 

Figure 4a:  aHL as a function of liquidation cost 
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Figure 4b:  N* as a function of liquidation cost 

 

Figure 4c:  Size of market freeze as a function of N* for different liquidation cost 
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Figure 5: Debt capacity (B) in high (vH=100) and low (vL=40) states as a function of time 

 

 

 

Figure 6:  Fundamental values (V) as a function of time 
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Figure 7a: Debt capacity (B) as a function of time for rollover frequency N=10 

 

 

 

Figure 7b: Debt capacity (B) as a function of time for rollover frequency N=100 
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The appendix provides two extensions of the benchmark model: (i) extension with buy-
to-hold investors; and (ii) extension with a �xed cost of liquidation.

1Viral Acharya, Douglas Gale, and Tanju Yorulmazer, 20XX, Internet Appendix to �Rollover Risk and
Market Freezes,� Journal of Finance [Vol. #], [pages], http://www.afajof.org/IA/[year].asp. Please note:
Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied
by the authors. Any queries (other than missing material) should be directed to the authors of the article.
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1 Extension with buy-to-hold investors

In this extension, we analyze the case where, in the event of default, with probability � the
asset can be sold to a buy-to-hold investor who holds the assets until maturity, whereas with
probability (1 � �) the asset must be sold to an investor �nanced by short-term debt, as
in the benchmark case. We show that for reasonable parameter values our results in the
benchmark case hold. While the fundamental values in the high and the low states are high
and very close to each other, we observe a signi�cant di¤erence in the debt capacities in the
high and the low states, and the debt capacity in the low state can be as low as the minimum
value of the assets.
We assume that the buy-to-hold investors arrive in the market randomly according to a

Poisson process with parameter b > 0. Hence, the probability � of one or more buy-to-hold
investor(s) arriving in a time-interval [t; t+ � ] is

�
1� e��b

�
: Note that the probability of a

buy-to-hold investor arriving is increasing in the tenor � .
We assume that when the borrower meets a buy-to-hold investor, she can sell the assets

to the buy-to-hold investor without any transaction cost.2 Furthermore, we assume that the
seller can extract the fundamental value of the asset from the buy-to-hold investor, as long
as there is at least one buy-to-hold investor in the market.3 Note that these two assumptions
increase the debt capacity and make it harder to get a market freeze.
As in the benchmark case, we can calculate the debt capacity starting from the last

rollover date going backwards. To simplify the notation in the following analysis, we use
p(�) instead of pHL(�); and q(�) instead of pLH(�). We make the reasonable assumption
(A1) that q(�) < 1� p(�) so that the state is more likely to be high at date tn+1 when it is
high at date tn as opposed to it is being low at date tn. Formally, fp(�); 1 � p(�)g strictly
dominates f1� q(�); q(�)g in the sense of �rst order stochastic dominance.
In addition, we make the following two assumptions:

A2) p < p� = vH�vL
vH��vL :

A3) q < q� =
V Ln �BLn+1

maxfV Ln+1;BHn+1g�BLn+1 :
4

Before we derive the expressions for the debt capacities in the high and the low states,
we show that the following four inequalities hold for all n = 1; :::; N :

1) V Hn > V Ln so that the fundamental value is higher in state H than in state L.

2) V Hn > BHn so that the fundamental value is higher than the debt capacity in state H.

2Alternatively, one can assume that there is a transaction cost associated with sales to buy-to-hold
investors. This would make our results only stronger.

3When there is only one (or few) buy-to-hold investor(s), this may create some market power for the
buy-to-hold investors, where they can acquire the asset at a price lower than the fundamental value. Hence,
this assumption biases the results against a market freeze.

4Note that for su¢ ciently short period length � both assumptions are easily satis�ed.
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3) V Ln > B
L
n so that the fundamental value is higher than the debt capacity in state L:

4) BHn > B
L
n so that the debt capacity is higher in state H than in state L.

First, we show that V Hn > V Ln for all n = 0; :::N .5 We prove the result by induction. At
date tN , we have

V HN = pvL + (1� p)vH > (1� q)vL + qvH = V LN ;
since q < 1� p: Now, suppose V Hk > V Lk for all k = n+ 1; :::N . Then we obtain

V Hn = pV Ln+1 + (1� p)V Hn+1 > (1� q)V Ln+1 + qV Hn+1 = V Ln :

Next, we show that the fundamental value will be higher than the debt capacity in
each state and the debt capacity is higher in the high state than in the low state, that is,
V Hn > BHn ; V

L
n > B

L
n and B

H
n > B

L
n for all n = 0; :::N . We prove the result by induction.

At date tN , we have

V HN = pvL + (1� p)vH > max
�
vL;
�
p�vL + (1� p)vH

�	
= BHN ; and

V LN = (1� q)vL + qvH > max
�
vL;
�
(1� q)�vL + qvH

�	
= BLN ;

for � 2 [0; 1); and by assumptions A1 and A2,

BHN = p�v
L + (1� p)vH > max

�
vL;
�
(1� q)�vL + qvH

�	
= BLN :

Hence, the inequalities hold for the last rollover date tN . Now, suppose that the inequalities
hold for all the dates tn+1 through tN . Next, we will show that the inequalities hold for date
tn.

Using the same argument as in the benchmark model, we can eliminate a wide range of
values for the face value of debt at date tn, which leaves us with four candidates: V Hn+1; V

L
n+1;

BHn+1; B
L
n+1. We analyze each case below:

(i) D = V Hn+1: Note that V
H
n+1 is the highest of the four candidates. Hence, the borrower

will be able to pay the face value at date tn+1 when it is the high state and she meets
a buy-to-hold investor. In all other states, the borrower will default. However, by
assumption, if the state is low and the borrower meets a buy-to-hold investor, there is
no transaction cost. Hence, we obtain:

BLn = �
�
qV Hn+1 + (1� q)V Ln+1

�
+ (1� �)

�
q�BHn+1 + (1� q)�BLn+1

�
BHn = �

�
(1� p)V Hn+1 + pV Ln+1

�
+ (1� �)

�
(1� p)�BHn+1 + p�BLn+1

�
:

5Note that at date tN+1, the result is obvious.
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(ii) D = V Ln+1: We have V
H
n+1 > V Ln+1 > BLn+1: However, we do not know the relation

between V Ln+1 and B
H
n+1:

For V Ln+1 > BHn+1, we obtain:

BLn = �
�
qV Ln+1 + (1� q)V Ln+1

�
+ (1� �)

�
q�BHn+1 + (1� q)�BLn+1

�
= �V Ln+1 + (1� �)

�
q�BHn+1 + (1� q)�BLn+1

�
BHn = �

�
(1� p)V Ln+1 + pV Ln+1

�
+ (1� �)

�
(1� p)�BHn+1 + p�BLn+1

�
= �V Ln+1 + (1� �)

�
(1� p)�BHn+1 + p�BLn+1

�
:

For V Ln+1 < B
H
n+1, we obtain:

BLn = �
�
qV Ln+1 + (1� q)V Ln+1

�
+ (1� �)

�
qV Ln+1 + (1� q)�BLn+1

�
= [� + (1� �)q]V Ln+1 + (1� �)(1� q)�BLn+1

BHn = �
�
(1� p)V Ln+1 + pV Ln+1

�
+ (1� �)

�
(1� p)V Ln+1 + p�BLn+1

�
= [� + (1� �)(1� p)]V Ln+1 + (1� �)p�BLn+1:

(iii) D = BHn+1: We have V
H
n+1 > BHn+1 > BLn+1: However, we do not know the relation

between V Ln+1 and B
H
n+1:

For BHn+1 > V
L
n+1, we obtain:

BLn = �
�
qBHn+1 + (1� q)V Ln+1

�
+ (1� �)

�
qBHn+1 + (1� q)�BLn+1

�
= qBHn+1 + (1� q)

�
�V Ln+1 + (1� �)�BLn+1

�
BHn = �

�
(1� p)BHn+1 + pV Ln+1

�
+ (1� �)

�
(1� p)BHn+1 + p�BLn+1

�
= (1� p)BHn+1 + p

�
�V Ln+1 + (1� �)�BLn+1

�
:

For BHn+1 6 V Ln+1, we obtain:

BLn = �
�
qBHn+1 + (1� q)BHn+1

�
+ (1� �)

�
qBHn+1 + (1� q)�BLn+1

�
= [� + (1� �)q]BHn+1 + (1� �)(1� q)�BLn+1

BHn = �
�
(1� p)BHn+1 + pBHn+1

�
+ (1� �)

�
(1� p)BHn+1 + p�BLn+1

�
= [� + (1� �)(1� p)]BHn+1 + (1� �)p�BLn+1:

(iv) D = BLn+1: We obtain:

BLn = BLn+1
BHn = BLn+1:
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At each date tn one of the four candidates for the face value of debt is chosen to achieve
the debt capacities BLn and B

H
n :

First, we show that V Hn > BHn : From the expressions in (i)-(iv), we have

BHn 6 �
�
(1� p)V Hn+1 + pV Ln+1

�| {z }
=V Hn

+ (1� �)
�
(1� p)max

�
V Ln+1; B

H
n+1

	
+ pBLn+1

�| {z }
<V Hn

< V Hn :

Second, we show that V Ln > B
L
n : From the expressions in (i)-(iv), we have

BLn < �
�
qV Hn+1 + (1� q)V Ln+1

�| {z }
=V Ln

+ (1� �)
�
qmax

�
V Ln+1; B

H
n+1

	
+ (1� q)BLn+1

�
:

Using assumption A3, we obtain

BLn < �V
L
n + (1� �)

�
qmax

�
V Ln+1; B

H
n+1

	
+ (1� q)BLn+1

�
< V Ln :

Finally, from the expressions in (i)-(iv), using assumption A1, we can easily see that
BHn > B

L
n : This completes our proof by induction so that the debt capacities in the high and

the low states (BHn and B
L
n ) are given as in the expressions (i)-(iv) for all n = 1; :::N:

We can show that the debt capacity BLn in cases (i), (ii) and (iii) satis�es:

BLn 6 �
�
qV Hn+1 + (1� q)V Ln+1

�
+ (1� �)

�
qBHn+1 + (1� q)�BLn+1

�
:

We observe a market freeze in state L at date tn when

�
�
qV Hn+1 + (1� q)V Ln+1

�
+ (1� �)

�
qBHn+1 + (1� q)�BLn+1

�
6 vL:

Starting from the last rollover date tN , going backwards, we can �nd the threshold probability
of meeting a buy-to-hold investor ��n such that for

� 6 ��n =
vL � qBHn+1 � (1� q)�BLn+1

q
�
V Hn+1 �BHn+1

�
+ (1� q)

�
V Ln+1 � �BLn+1

� ;
we observe a market freeze at date tn. Furthermore, for � < �

� = min
n=0;:::;N

f��ng; we observe a
market freeze in state L for all dates and the face value of debt is set equal to vL, the lowest
possible value of the asset.6

Note that the debt capacities BLn and B
H
n are increasing in the probability � of meeting a

buy-to-hold investor. Hence, a su¢ cient condition for setting the face value of debt greater
than vL in the high state at date tn is vH�vL > (1��)vL

(1�p(�))N (the same condition as in Proposition
1, where � = 0).

6From the benchmark model (� = 0), we know that for su¢ ciently short period lenght � , we obtain a
market freeze where the debt capacity is equal to vL in state L. Note that the debt capacity is continous
and (weakly) increasing in � so that for su¢ ciently short period lenght � ; we obtain �� > 0:
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Proposition 1 Let � 6 �� and vH � vL > (1��)vL
(1�p(�))N . For n = 0; :::; N , the debt capacities in

the low and the high states satisfy:

BLn = vL;

BHn > �
�
(1� p)BHn+1 + pmin

�
BHn+1; V

L
n+1

	�
+ (1� �)

�
(1� p)BHn+1 + p�BLn+1

�
:

Next, we provide numerical analysis and �gures to show that for reasonable parameter
values our results hold. Unless we state otherwise, in the following analysis we use the
following values for the parameters of the model: vH = 100, vL = 50, � = 0:9 and � =
0:01: The fundamental values in states H and L at t = 0 are V H0 = 99:3829 and V L0 =
99:3677, respectively. Note that only changes in the parameters vH and vL and the transition
probabilities have an e¤ect on the fundamental value. Figures A1-A5 provide debt capacities
in the high and the low states at t = 0 for various parameter values.
Figure A1 uses the benchmark values and shows that �� = 0:0192 (that is b� = 1:936

for the Poisson process that governs the arrival of buy-to-hold investors). For � = 0:019 the
debt capacities in the high and the low states at t = 0 are BH0 = 94:9946 and BL0 = 50,
respectively. Furthermore, for � = 0:05 and 0:10, even though the debt capacity in the low
state is higher than 50, we still observe large di¤erences between the debt capacities in the
low and the high states (BL0 = 57:1207 (65:7564) and B

H
0 = 95:5946 (96:3507) for � = 0:05

(0:10)).

�Figure A1 �

In the following �gures, we change various parameters of the model and show that our
market freeze result holds. Figure A2 provides the debt capacities for � = 0:8: We can see
that for � = 0:10; the debt capacities in the high and the low states at t = 0 areBH0 = 94:9284
and BL0 = 50, respectively.

�Figure A2 �

Figure A3 shows the case with vL = 60: In this case, the fundamental value in the high
and the low states are at t = 0 are V H0 = 99:5063 and V L0 = 99:4942, respectively. We
calculate the debt capacities in the low and the high states to be BL0 = 60 (65:8774) and
BH0 = 95:9271 (96:4541) for � = 0:05 (0:10).

�Figure A3 �

Figure A4 illustrates the debt capacities for � = 0:005. We calculate the debt capacities
in the low and the high states to be BL0 = 50 (59:7402) and BH0 = 95:0599 (95:8739) for
� = 0:05 (0:10).

�Figure A4 �
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In Figure A5 we alter the transition probabilities in the low state where the generator
matrix is

A =

�
5 5
0:1 �0:1

�
:

The debt capacities in the low and the high states are BL0 = 50 (60:8361) and B
H
0 = 95:0453

(95:8385) for � = 0:05 (0:10), respectively.

�Figure A5 �

The numerical analysis and the �gures show that our theoretical result on market freeze
holds for reasonable parameter values even in the presence of buy-to-hold investors who are
willing to pay their fundamental value for the assets. In particular, while the fundamental
values in the high and the low states are high, with only a miniscule di¤erence between the
two, the di¤erence between debt capacities in states H and L is large. We also show that for
reasonable parameter values the debt capacity in the low state is equal to the lowest possible
terminal value of the asset.
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Figure A1: Debt capacities for benchmark values

 

 

Figure A2: Debt capacities (λ=0.8)
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Figure A3: Debt capacities (vL=60)

 

 

Figure A4: Debt capacities (τ=0.005)

 

 

50

60

70

80

90

100
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

D
eb

t c
ap

ac
it
ie
s

β

Debt capacities as a function of β (vL=60)

BL

BH

β=0.05 β=0.10

40

50

60

70

80

90

100

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

D
eb

t c
ap

ac
it
ie
s

β

Debt capacities as a function of β (τ=0.005)

BL

BH

β=0.05 β=0.10



 

10 
 

Figure A5: Debt capacities for different transition probabilities 
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2 Extension with Fixed Cost

2.1 Numerical example with �xed cost

Here, we provide a numerical example with constant liquidation cost, where c = 4:25 so
that each time there is a default and the assets are liquidated, there is a �xed liquidation
cost of 4.25. As in the example in the text with proportional cost of liquidation, we use the
following parameter values: the tenor of the repo is � = 0:01, the values of the asset are
vH = 100 and vL = 50 in the high and low states, respectively,7 and the generator is

A =

�
�8:0 8:0
0:1 �0:1

�
:

The transition probability matrix for an interval of unit length can be calculated to be

P (1) =

�
0:01265 0:98735
0:01234 0:98766

�
: (1)

Note that, we can calculate the fundamental values as in the numerical example with pro-
portional liquidation cost so that we obtain V H0 = 99:383 and V L0 = 99:367.
As in the numerical example in the text, we obtain

P (0:01) =

�
0:92315 0:07685
0:00096 0:99904

�
: (2)

Consider now the debt capacities at the last rollover date t99 = 0:99. If we set D = 50,
the debt can be paid o¤ at date 1 in both states and the expected value of the payo¤ is 50.
So the market value of the debt with face value 50 is exactly 50.
Now suppose we set D = 100, there will be default in state L but not in state H at time

1. The payo¤ in state H will be 100 but the payo¤ in state L will be 50�4:25 = 45:75. Then
the market value of the debt at time t99 will depend on the state at time t99, because the
transition probabilities depend on the state. We can easily calculate the expected payo¤s in
each state:

state H : 0:99904� 100 + 0:00096� (50� 4:25) = 99:948;
state L : 0:07685� 100 + 0:92315� (50� 4:25) = 49:919:

For example, if the state is H at date t99, then with probability 0:99904 the state is H at
date 1 and the debt pays o¤ 100 and with probability 0:00096 the state is L at date 1, the
asset must be liquidated and the creditors only realize 45:25.
Comparing the market values of the debt with the two di¤erent face values, we can see

that the face value that maximizes the market value of debt will depend on the state. In

7The numerical example with the constant liquidation for vL = 40 is omitted. We obtain qualitatively
similar results to the results with proportional liquidation cost as in the paper. However, we provide Figure
A7 to illustrate the debt capacities for the case with constant liquidation and vL = 40.
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state H, the expected value of the debt when D = 100 is 99:948 > 50, so that DH
99 = 100. In

state L, on the other hand, the expected value of the debt with face value D = 100 is only
49:919 < 50, so that DL

99 = 50. Thus, if we use the notation B
s
n to denote the debt capacity

in state s at date tn, we have shown that BH99 = 99:948 and B
L
99 = 50:

Next, consider the debt capacities at date t98 = 0:98. Now, the relevant face values to
consider are 50 and 99:948.
If D = 50, the expected payo¤ is 50 too, since the debt capacity at date t99 is greater

than or equal to 50 in both states and, hence, the debt can always be rolled over. In contrast,
if D = 99:948, the debt cannot be rolled over in state L at date t99 and the liquidation cost
is incurred. Thus, the expected value of the debt depends on the state at date t98:

state H : 0:99904� 99:948 + 0:00096� (50� 4:25) = 99:896;
state L : 0:07685� 99:948 + 0:92315� (50� 4:25) = 49:915:

Comparing the expected value corresponding to di¤erent face values of the debt, we see that
the face value that achieves the debt capacity is DH

98 = 99:948 in state H and DL
98 = 50 in

state L, so that the debt capacities are BH98 = 99:896 and B
L
98 = 50:

At each date tn, the debt capacity in the high state is lower than it was at tN+1 and
the debt capacity in the low state is the same as it was at tN+1. These facts tells us that if
DL
n+1 = 50 at tn+1, then a fortiori D

L
n = 50 at date tn. Thus, the debt capacity is equal to

50 at each date tn, including the �rst date t0 = 0.
What is the debt capacity in state H at t0? The probability of staying in the high state

from date 0 to date 1 is (0:99904)100 = 0:90842 and the probability of hitting the low state
at some point is 1� 0:90842 = 0:09158 so the debt capacity at time 0 is

BH0 = 0:90842� 100 + 0:09158� (50� 4:25) = 95:032:

So the fall in debt capacity occasioned by a switch from the high to the low state at time 0
is 95:032� 50 = 45:032 compared to a change in the fundamental value of 99:383� 99:367 =
0:016. This fall is illustrated sharply in Figure A6 which shows that while fundamental
values in states H and L will diverge sharply at maturity, they are essentially the same at
date 0. Nevertheless, debt capacity in state L is simply the terminal value in state L. Thus,
a switch to state L from state H produces a sudden drop in debt capacity of the asset.

� Figure A6 here �

2.2 Debt capacity with two states

In this section we provide a proof for the market freeze result when there are two states. We
make the same assumptions as for the numerical example but the parameters are otherwise
arbitrary. For the time being, we treat the tenor of the commercial paper � and the number
of rollovers N as �xed. Later, we will be interested to see what happens when the tenor �
becomes very small and the number of rollovers N becomes correspondingly large.
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There are two states, a �low�state L and a �high�state H. Transitions between states
occur at the dates tn and are governed by a stationary transition probability matrix

P (�) =

�
pLL (�) pLH (�)
pHL (�) pHH (�)

�
;

where pHL (�) (pLH (�)) is the probability of a transition from state H (L) at time tn to
state L (H) at time tn+1. The one requirement we impose on these probabilities is that the
shorter the period length, the more likely it is that there is no change in the information
state before the next rollover date:

lim
�!0

pHL (�) = lim
�!0

pLH (�) = 0:

The terminal value of the asset is vH if the terminal state is H and vL if the terminal state
is L, where 0 < vL < vH .
In the numerical example, we saw that the borrower chose a low face value of the debt

in the low state and a high face value of the debt in the high state. Here we will provide
necessary and su¢ cient conditions under which choosing high and low face values in the high
and the low states, respectively, will achieve the debt capacity in those states. We begin by
considering the low state.

The low state Suppose that the economy is in the low state at date tN , which is the last
of the rollover dates. Let D be the face value of the debt issued by the bank. If D > vH , the
bank will default in both states at date tN+1 and the creditors will receive

�
vH � c

�
in the

high state and
�
vL � c

�
in the low state.8 Clearly, the market value of the debt at date tN

would be greater if the face value were D = vH , so the borrower will never choose D > vH .
Now suppose that the bank issues debt with face value D, where vL < D < vH . This will
lead to default in the low state at date tN+1 and the creditors will receive D in the high state
and �vL in the low state. Clearly, this is dominated by choosing a higher value of D. Thus,
either D = vH or D � vL. An exactly similar argument shows that a face value D < vL will
not be chosen, so we are left with only two possibilities, either D = vH or D = vL. In the
�rst case, the market value of the debt is pLL (�)

�
vL � c

�
+ pLH (�) v

H and in the second
case it is vL. A necessary and su¢ cient condition for DL

N to equal v
L is

pLL (�)
�
vL � c

�
+ pLH (�) v

H � vL: (3)

This condition will clearly be satis�ed for all � > 0 su¢ ciently small, but for the time being
we will simply assume that (3) is satis�ed.
Now suppose that (3) is satis�ed and that BLn0+1 = v

L for n0 = n; :::; N . Consider what
happens in the low state at date tn. By the usual argument, the only candidates for the
face value that achieves the debt capacity are D = vL and D = BHn+1. If the face value is

8To simplify the argument, we are assuming that there is a liquidation cost at date tN+1, too. None of
the results depend on this.
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D = vL, the creditors will receive vL in both states at date tn+1 and the market value of the
debt at date tn will be vL. On the other hand, if the face value of the debt is D = BHn+1, the
creditors receive BHn+1 in the high state and

�
vL � c

�
in the low state, so the market value

of the debt at date tn is

pLL (�)
�
vL � c

�
+ pLH (�)B

H
n+1 � pLL (�)

�
vL � c

�
+ pLH (�) v

H ;

since BHn+1 � vH . But (3) implies that pLL (�)
�
vL � c

�
+ pLH (�) v

H � vL, so the debt
capacity is BLn = v

L for all n = 1; :::; N .

The high state Now consider the high state. Again, our two candidates for the face value
of the debt at each date tn are BHn+1 and vL. Let us assume that at each date tn the face
value of the debt is set equal to the future debt capacity BHn+1, that is, we begin at date tN
by setting DH

N = vH and BHN = pHH (�) v
H + pHL (�)

�
vL � c

�
and then recursively de�ne

DH
n = B

H
n+1 and

BHn = pHH (�)B
H
n+1 + pHL (�)

�
vL � c

�
;

for n = 1; :::; N � 1. It can easily be shown by backward induction that BHn � BHn+1 for any
n, so in order to show that this strategy will be chosen, it is necessary and su¢ cient to show
that BH0 � vL. By repeated substitution we can show that

BH0 = pHH (�)B
H
1 + pHL (�)

�
vL � c

�
= pHH (�)

�
pHH (�)B

H
2 + [1� pHH (�)]

�
vL � c

�	
+ [1� pHH (�)]

�
vL � c

�
= pHH (�)

2 �BH2 � �vL � c��+ �vL � c�
� � �
= (pHH (�))

N �vH � �vL � c��+ �vL � c� :
Then DH

n = B
H
n+1 for all n if and only if

(pHH (�))
N �vH � �vL � c��+ �vL � c� � vL

or
vH � vL + c � c

(pHH (�))
N
: (4)

We have proved the following proposition.

Proposition 2 De�ne
��
BHn ; D

H
n ; B

L
n ; D

L
n

�	N
n=0

by setting

DH
n = B

H
n+1; (5)

BHn = pHH (�)B
H
n+1 + pHL (�)

�
vL � c

�
; (6)

and
DL
n = B

L
n = v

L; (7)

for n = 1; :::; N . The values de�ned by (5-7) constitute a solution to the problem of achieving
the debt capacity if and only if (3) and (4) are satis�ed.
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The qualitative properties of the debt capacities characterized in Proposition 2 are the
same as in the numerical example in Section 2.1. In the low state, the debt capacity BLn
is constant and equal to the lowest possible terminal value, vL. The fundamental value of
the asset in the low state V Ln is greater than the debt capacity at every date tn except at
the terminal date, when they are both equal to vL. In the high state, the debt capacity BHn
is always less than the fundamental value V Hn , except at the terminal date when both are
equal to vH . We call this behavior of the debt capacity a �market freeze�since a switch in
the information state from high state to the low state can produce a sudden, sharp drop in
debt capacity that is much larger than the drop in fundamental value associated with the
switch.

2.3 Debt capacity in the general case

We allow for a �nite number of information states or signals, denoted by S = fs1; :::; sIg. The
current information state is public information. Transitions among the states are governed
by a stationary Markov transition probability P (�) given as

P(�) =

264 p11(�) � � � p1I(�)
...

. . .
...

pI1(�) � � � pII(�)

375 ;
where � is the interval over which the transitions take place. We assume that the transition
matrix takes the form

P (�) = eA� =
1X
k=0

(A�)k

k!
;

where the matrix A is the generator. The crucial feature of the transition matrix is that the
probability of a change of state converges to 0 as � ! 0. That is, P (�)! I as � ! 0.
The information state is a stochastic process fS (t)g but for our purposes all that matters

is the value of this process at the rollover dates. We let Sn denote the value of the information
state S (tn) at the rollover date tn.
The terminal value of the assets is a function of the information state at date t = 1. We

denote by vi the value of the assets if the terminal state is SN+1 = si and assume that the
values fv1; :::; vIg satisfy

0 < v1 < : : : < vI :

Let V in denote the fundamental value of the asset at date tn in state i. Then clearly the
values fV ing are de�ned by putting V iN+1 = vi, for i = 1; :::; I, and

V in =
IX
j=1

pij (1� tn) vj; for n = 0; :::; N and i = 1; :::; I;

15



where pij (1� tn) is, of course, the (i; j) entry of P (1� tn) denoting the probability of a
transition from state i at date tn to state j at date tN+1 = 1.
Let Bin denote the equilibrium debt capacity of the assets in state si at date tn. By

convention, we set BiN+1 = vi for all i.

Proposition 3 The equilibrium values of fBing must satisfy

Bin = max
k=1;:::;I

8><>:
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

9>=>;
for i = 1; :::; I and n = 0; :::; N .

The result is immediate once we apply the now familiar backward induction argument
to show that the borrower sets Di

n equal to B
j
n+1 for some j. Although the result amounts

to little more than the de�nition of debt capacity, it is very useful because it allows us to
calculate the debt capacities by backward induction.
The main result on the downward bias of debt capacities is contained in the following

proposition.

Proposition 4 There exists � � > 0 such that for all 0 < � < � �, for any n = 0; :::; N and
any i = 1; :::; I, the borrower chooses the face value Di

n � Bin+1. Thus,

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1:

for some k such that Bkn+1 � Bin+1:

Proof. See Appendix A.
Several properties follow immediately from Proposition 4 whenever 0 < � < � �. We

provide these results in the form of three corollaries. First, in the lowest state, s1, the debt
capacity is constant and equal to v1, the lowest possible terminal value.

Corollary 5 B1n = v1 for all n.

Proof. From the formula in Proposition 4, for some k,

B1n =
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
IX
j=1

pij (�)B
1
n+1 = B

1
n+1;

16



since Bkn+1 � B1n+1. Since this inequality holds for n = 0; :::; N and, by convention, B1N+1 =
v1, it follows that B1n � v1, for any n.
We can also show that B1n � v1. To see this, note that BiN+1 = v1 for all i. Moreover,

if the same condition holds for n + 1, it must be true that Bin � v1, because we can always
choose Di

n = v1.
Thus, we have shown that B1n = v1 for all n.
Second, the debt capacity Bin is monotonically non-decreasing in n, that is, debt capacity

increases as the asset matures, holding the state constant. This follows directly from the
fact that, if the face value of the debt equals Bin+1, the debt capacity B

i
n cannot be greater

than Bin+1.

Corollary 6 Bin � Bin+1, for any i = 1; :::; I and n = 0; :::; N .

Proof. The inequality follows directly from the formula in Proposition 4:

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
X

fj:Bkn+1>Bjn+1g
pij (�)B

i
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
i
n+1

=

IX
j=1

pij (�)B
i
n+1 = B

i
n+1;

since Bjn+1 < B
k
n+1 6 Bin+1 implies that Bjn+1 � c < Bin+1.

Third, since BiN+1 = vi by convention, the preceding result immediately implies that the
debt capacity Bin is less than or equal to vi.

Corollary 7 Bin � vi for all i = 1; :::; I and n = 0; :::; N .

Finally, we can con�rm that the debt capacity in state si at any date tn is less than the
fundamental value V in. This follows directly from the formula in Proposition 4 for n = N +1
and any i, so suppose that it holds for n+ 1; :::; N and any i = 1; :::; I. Then the formula in
Proposition 4 implies that, if Di

n = B
k
n+1, say,

Bin =
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+1�Bjn+1g

pij (�)B
k
n+1

�
X

fj:Bkn+1>Bjn+1g
pij (�)B

j
n+1 +

X
fj:Bkn+1�Bjn+1g

pij (�)B
j
n+1

�
IX
j=1

pij (�)V
j
n+1 = V

i
n;
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for any i = 1; :::; I, so by induction the claim holds for any n = 0; :::; N and any i = 1; :::; I.

Proposition 4 shows that, when the period length is su¢ ciently short (the rollover rate
is su¢ ciently high), there is a downward bias in the debt capacity, because the face value
of the debt is bounded above by the future debt capacity in the same state. This is an
important step toward proving the existence of a market freeze but two further requirements
are needed. First, we need to show that the fundamental values are uniformly high and that
the debt capacities are high in some states and low in others.
Consider the debt capacities �rst. The proposition shows that B1n = v1 for all n =

0; :::; N so it is enough to show that the debt capacity is high in some states. The following
proposition does just that.

Proposition 8 The initial debt capacity in the highest state, I, satis�es the inequality

BI0 � e��vI +
�
1� e��

�
(v1 � c) ;

where � =
P

j 6=I aIj.

So, as long as � is su¢ ciently small, the debt capacity in the high state will be close to
vI . We know that the fundamental value V I0 lies between B

I
0 and vI , so the fundamental

value will also be close to vI . Then in order to show that a market freeze is possible it is
only necessary to ensure that the fundamental value for the lowest state, V 10 , is also close
to vI . This will be true as long as the probability of a transition from the lowest to the
highest state is high enough. In general, this probability will depend on the entire matrix A
so it is hardly worth trying to write down a su¢ cient condition in terms of the individual
parameters. However, note that the numerical examples in the main text for the case with
the proportional liquidation cost have illustrated that this is clearly possible.

2.4 Proofs

We can solve for the equilibrium debt capacities in the model of Section 2.3 by backward
induction. Let D denote the face value of the debt issued in state si at date tn. This debt
will pay o¤ D in state sj at date tn+1 if D � Bjn+1 and �B

j
n+1 otherwise. In other words,

the market value of the debt is given by the formulaX
Bjn+1<D

pij (�)
�
Bjn+1 � c

�
+

X
Bjn+1�D

pij (�)D

and the debt capacity is given by

Bin = max
D

8><>:
X

Bjn+1<D

pij (�)
�
Bjn+1 � c

�
+

X
Bjn+1�D

pij (�)D

9>=>; :
18



Let Di
n denote the face value that maximizes the market value of debt in state i at date

tn. It is clear that the market value of the debt is maximized by setting the face value
D = Bjn+1, for some value of j = 1; :::; I. Thus, we can write the equilibrium condition as

Bin = max
k=1;:::;I

8><>:
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
+

X
fj:Bkn+16Bjn+1g

pij (�)B
k
n+1

9>=>; ;
for i = 1; :::; I and n = 0; :::; N .

Proposition 9 For some � � > 0 and all � < � �, Di
n � Bin+1 for all i = 1; :::; I and

n = 0; :::; N .

Proof. For a �xed but arbitrary date tn and state si, we compare the strategy of setting
D = Bin+1 with the strategy of setting D = Bkn+1, where B

k
n+1 > Bjn+1. Consider the

di¤erence in the expected values of the debt:X
fj:Bin+1>Bjn+1g

pij (�)
�
Bjn+1 � c

�
+

X
fj:Bin+16Bjn+1g

pij (�)B
i
n+1

�
X

fj:Bkn+1>Bjn+1g
pij (�)

�
Bjn+1 � c

�
�

IX
fj:Bkn+16Bjn+1g

pij (�)B
k
n+1

=
X

fj:Bin+16Bjn+1<Bkn+1g
pij (�)

�
Bin+1 �

�
Bjn+1 � c

��
+

X
fj:Bkn+16Bjn+1g

pij (�) (B
i
n+1 �Bkn+1)

= pii (�)
�
Bin+1 �

�
Bjn+1 � c

��
+

X
fj:Bin+1<Bjn+1<Bkn+1g

pij (�)
�
Bin+1 �

�
Bjn+1 � c

��
+

X
fj:Bkn+16Bjn+1g

pij (�) (B
i
n+1 �Bkn+1)

� pii (�) c+
X

fj:Bin+1<Bjn+1<Bkn+1g
pij (�) (v1 � vI) +

X
fj:Bkn+16Bjn+1g

pij (�) (v1 � vI)

= pii (�) c+
X

fj:Bin+1<Bjn+1g
pij (�) (v1 � vI) :

since Bin+1 � v1, Bin+1 �
�
Bjn+1 � c

�
� Bin+1 � B

j
n+1 � (v1 � vI) for j = i + 1; :::; I and

Bin+1 �Bkn+1 � v1 � vI . Then it is clear that, for � su¢ ciently small (i.e., pii (�) su¢ ciently
close to 1), the last expression above is positive. Since the last expression is independent of
n, the bound is uniform, i.e., there exists a constant � � > 0 such that, for � < � �, Di

n = B
i
n+1

for all i and n.
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Figure A6: Fundamental value (V) and debt capacity (B) in high (vH=100) and low (vL=50) states as a function of time 
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Figure A7: Debt capacity (B) in high (vH=100) and low (vL=40) states as a function of time 
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