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Abstract

Principal component analysis of equity options on Dow-Jones �rms reveals a strong factor

structure. The �rst principal component explains 77% of the variation in the equity volatility

level, 49% of the variation in the equity option skew and 57% of the implied volatility term

structure across equities. Furthermore, the �rst principal component has a 91% correlation

with S&P500 index option volatility, a 42% correlation with the index option skew, and a 74%

correlation with the index option term structure. Based on these �ndings we develop an equity

option valuation model that captures the cross-sectional market factor structure as well as sto-

chastic volatility through time. The model assumes a Heston (1993) style stochastic volatility

model for the market return but additionally allows for stochastic idiosyncratic volatility for

each �rm. The model delivers theoretical predictions consistent with the empirical �ndings in

Duan and Wei (2009). We provide a tractable approach for estimating the model on index

and equity option data. The model provides a good �t to a large panel of options on stocks in

the Dow-Jones index.
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1 Introduction

While factor models are standard for understanding equity prices, classic equity option valuation

models make no attempt at modeling a factor structure in the underlying equity prices. Typically,

a stochastic process is assumed for each underlying equity price and the option is priced on this

stochastic process ignoring any links the underlying equity price may have with other equity prices

through common factors. Seminal papers in this vein include Black and Scholes (1973), Wiggins

(1987), Hull and White (1987), and Heston (1993).

When considering a single stock option, ignoring an underlying equity factor structure may be

relatively harmless. However, in portfolio applications it is crucial to understand links between the

underlying stocks: Risk managers need to understand the total exposure to the underlying risk

factors in a portfolio of stocks and stock options. Equity portfolio managers who use equity options

to hedge large downside moves in individual stocks need to know their overall market exposure.

Dispersion traders who sell (expensive) index options and buy (cheaper) equity options to hedge

need to understand the market exposure of individual equity options. See for example, Driessen,

Maenhout and Vilkov (2009).

Our empirical analysis of about four hundred thousand index quotes and more than two million

equity option quotes reveals a very strong factor structure. We study three characteristics of option

prices: short-term implied volatility (IV) levels, the slope of IV curves across option moneyness,

and the slope of IV curves across option maturity.

First, we construct daily time series of short-term at-the-money implied volatility (IV) on the

stocks in the Dow Jones Industrials Average and extract their principal components. The �rst

common component explains roughly 77% of the cross-sectional variation in IV levels and the

common component has an 91% correlation with the short-term implied volatility constructed from

S&P500 index options. Short term equity option IV appears to have a very strong common factor.

Second, a principal component analysis of equity option IV moneyness (the option �skew�)

reveals a signi�cant common component as well. Roughly 49% of the variation in the skew across

equities is captured by the �rst principal component. Furthermore, this common component has a

correlation of 42% with the skew of market index options.

Third, when looking for a common component in the term structure of equity IV, we �nd that

57% of the variation is explained by the �rst principal component. This component has a correlation

of 74% with the term slope of the option IV from S&P500 index options.

We use the �ndings from the principal component analysis as guidance to develop a structural

model of equity option prices that incorporates a market factor structure. In line with well-known

empirical facts in the literature on index options (see for example Bakshi, Cao and Chen, 1997; Hes-
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ton and Nandi, 2000; Bates, 2000, and Jones, 2003), our model allows for mean-reverting stochastic

volatility and correlated shocks to return and volatility. Motivated by our principal component

analysis, we allow for idiosyncratic shocks to equity prices which also have mean-reverting stochas-

tic volatility and a separate leverage e¤ect. Individual equity returns are linked to the market index

using a standard linear factor model with a constant factor loading. Our model belongs to the a¢ ne

class which enables us to derive closed-form option pricing formulas. The model can be extended

to allow for market-wide and idiosyncratic jumps. Pan (2002), Broadie, Chernov and Johannes

(2007), and Bates (2008) among others have argued for the importance of modeling jumps in index

options.

We develop a convenient approach to estimating the model from option data. When estimating

the model on the �rms in the Dow we �nd that it provides a good �t to observed equity option

prices.

Market betas are central to both asset pricing and corporate �nance. Multiple applications

require estimates of beta such as cost of capital estimation, performance evaluation, portfolio selec-

tion, and abnormal return measurement. While it is not the focus of this paper, our model provides

option-implied estimates of beta, which is a topic of recent interest, studied by for example Chang,

Christo¤ersen, Jacobs, and Vainberg (2012), and Buss and Vilkov (2012).

Our paper is related to the recent empirical literature on equity options including Dennis and

Mayhew (2002), who investigate the ability of �rm characteristics to explain the variation in risk-

neutral skewness. Recent empirical work on equity option returns includes Goyal and Saretto

(2009), Vasquez (2011), and Jones and Wang (2012). Bakshi and Kapadia (2003) investigate the

volatility risk premium for equity options. Bakshi, Kapadia, and Madan (2003) derive a skew law

for individual stocks decomposing individual return skewness into a systematic and idiosyncratic

component and �nd that individual �rms display much less (negative) option-implied skewness than

the market index. Bakshi, Cao and Zhong (2012) investigate the performance of jump models for

equity option valuation. Engle and Figlewski (2012) develop time series models of implied volatilities

and study their correlation dynamics. Perhaps most relevant for our work, Duan and Wei (2009)

demonstrate empirically that systematic risk matters for the observed prices of equity options on

the �rm�s stock.

Our paper is also related to recent theoretical advances. Mo and Wu (2007) develop an inter-

national CAPM model which has features similar to our model. Elkamhi and Ornthanalai (2010)

develop a bivariate discrete-time GARCH model to extract the market jump risk premia implicit in

individual equity option prices. Finally, Serban, Lehoczky, and Seppi (2008) develop a non-a¢ ne

model to investigate the relative pricing of index and equity options.

The reminder of the paper is organized as follows. In Section 2 we describe the data set and
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present the principal components analysis. In Section 3 we develop the theoretical model. Section 4

highlights a number of implications of the model. In Section 5 we estimate the model and investigate

its �t to observed index and equity option prices. In Section 6 we explore the model�s implications

for expected option return and for portfolio risk management. Section 7 concludes.

2 Common Factors in Equity Option Prices

In this section we �rst introduce the data set used in our study. We then look for evidence of

commonality in three crucial features of the cross-section of equity options: Implied volatility levels,

moneyness slopes (or skews), and volatility term structures. We rely on a principal component

analysis (PCA) of the �rm-speci�c levels of short-term at-the-money implied volatility (IV), the

slope of IV with respect to option moneyness, and the slope of IV with respect to option maturity.

The results from this model-free investigation help identify desirable features of a structural model

of equity option prices.

2.1 Data

We rely on end-of-day option data from OptionMetrics starting on January 2, 1996 and ending on

October 29, 2010, which was the time span available at the time of writing. We use the S&P500

index to proxy for the market factor. For our sample of individual equities we choose the �rms in

the Dow Jones Industrial Average index. Of the 30 �rms in the index we excluded Kraft Foods for

which OptionMetrics only has data from 2001. We �lter out bid-ask option pairs with missing quotes

or zero bids, and options that violate standard arbitrage restrictions. For each option maturity,

interest rates are estimated by linear interpolation using zero coupon Treasury yields. Dividends

are obtained from OptionMetrics and are assumed to be known during the life of each option.

Our study focuses on medium-term options, i.e. options having more than 20 days and less than

365 days to maturity (DTM). Following Bakshi, Cao and Chen (1997), we use mid-quotes (average

bid-ask spread) in all computations, and eliminate options with moneyness (S=K) less than 0:9 and

greater than 1:1. We also �lter out quotes smaller than $3=8, with implied volatility greater than

150%, and for which the present value of dividends are larger than 4% of the stock price.

Table 1 presents the number of option contracts, the number of calls and puts, the average days-

to-maturity, and the average implied volatility. The S&P500 index has by far the greatest number

of option contracts. We have a total of 393; 429 index option quotes and 2; 370; 951 equity option

quotes across the 29 �rms. The average implied volatility for the market is 20:51% during the study

period. Cisco has the highest average implied volatility (40:78%) while Johnson & Johnson has the

4



smallest (22:90%). Table 1 also shows that our data set is balanced with respect to the number of

OTM calls and puts retained.

Table 2 reports the average, minimum, and maximum implied volatility, as well as the average

option vega. Note that apart from Cisco the average implied volatilities of OTM puts are always

higher than the average implied volatilities of OTM calls.

Figure 1 plots the daily average short-term (9 < DTM < 60) at-the-money (0:95 < S=K < 1:05)

implied volatility (IV) for six �rms (black lines) as well as for the S&P500 index (grey lines). Figure

1 shows that the variation in the short-term at-the-money (ATM) equity volatility for each �rm is

highly related to the S&P500 index

2.2 Methodology

We want to assess the extent to which the time-varying volatilities of equities share one or more

common components. In order to gauge the degree of commonality in risk-neutral volatilities, we

need daily estimates of the level and slope of the implied volatility curve, and slope of the term

structure of implied volatility for all �rms and the index. For each day t we run the following

regression for �rm j

IVj;l;t = aj;t + bj;t �
�
Sjt =Kj;l

�
+ cj;t � (DTMj;l) + �j;l;t (2.1)

where l denotes the contracts available for �rm j on day t and t� 1. We include the previous day�s
data in the sample to ensure that we have a su¢ cient number of contracts for each �rm to estimate

the regression coe¢ cients reliably. The regressors are standardized each day by subtracting the

mean and dividing by the standard deviation. We run the same regression on the index option IVs.

We interpret aj;t as a measure of the level of implied volatilities of �rm j on day t. Similarly, bj;t
captures the slope of implied volatility curve while cj;t proxies for the slope of the term structure of

implied volatility.

Once the regression coe¢ cients have been estimated on each day and for each �rm we run a

PCA analysis on each of the matrices faj;tg, fbj;tg, and fcj;tg. Tables 3-5 contain the results from
the PCA analysis and Figure 2-4 plot the �rst principal component as well as the corresponding

index option coe¢ cients, aI;t, bI;t, and cI;t.

2.2.1 Common Factors in the Levels of Implied Equity Volatility

Table 3 contains the results for implied volatility levels. We report the loading of each equity IV

on the �rst three components. At the bottom of the table we show the average, min and max
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loading across �rms for each component. We also report the total variation captured as well as the

correlation of each component with the S&P500 IV. The results in Table 3 are quite striking. The

�rst component captures 77% of the total cross-sectional variation in short-term IV and it has a

91% correlation with the S&P500 index IV. This suggests that the equity IVs have a very strong

common component highly correlated with index option IVs. Note that the loadings on the �rst

component are positive for all 29 �rms illustrating the pervasive nature of the common factor.

The top panel of Figure 2 shows the time series of short-term IV for index options. The bottom

panel plots the time series of the �rst PCA component of equity IV. The strong relationship between

the two series is readily apparent.

The second PCA component in Table 3 explains 13% of the total variation and the third compo-

nent explains 3%. The average loadings on these two components are close to zero and the loadings

take on a wide range of positive and negative values. The sizable second PCA component and

the wide range of loadings show the need for a second source of �rm speci�c variation in equity

volatility.

2.2.2 Common Factors in the Moneyness Slope

Table 4 contains the results for IV moneyness slopes. The moneyness slopes contain a signi�cant

degree of co-movement. The �rst principal component explains 49% of cross-sectional variation in

the moneyness slope. The second and third components explain 8% and 5% respectively. The �rst

component has positive loadings on all 29 �rms where as the second and third components have

positive and negative loadings across �rms, and average loadings very close to zero.

Table 4 also shows that the �rst principal component has a 42% correlation with the moneyness

slope of S&P500 implied volatility. The second and third components have correlations of 14% and

32% respectively. Equity moneyness slope dynamics clearly seem driven to a non-trivial extent by

the market moneyness slope.

Figure 3 plots the S&P500 index IV moneyness slope in the top panel and the �rst principal

component from the equity moneyness slopes in the bottom panel. The relationship between the

�rst principal component and the market slope coe¢ cient is clearly not as strong as for the volatility

level in Figure 2.

2.2.3 Common Factors in the Term Structure Slope

Table 5 contains the results for IV term structure slopes. The variation in the term slope captured

by the �rst principal component is 57%, which is lower than for spot volatility (Table 3) but higher

than for the moneyness slope (Table 4). The loadings on the �rst component are positive for all
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29 �rms. The correlation between the �rst component and the term slope of S&P500 index option

IV is 74%, which is again higher than for the moneyness slope in Table 4 but lower than for the

variance level in Table 3. The second and third components capture 9% and 5% of the variation

respectively and the wide range of loadings on this factor suggest a scope for �rm-speci�c variation

in the IV term structure for equity options.

Figure 4 plots the S&P500 index IV term structure slope in the top panel and the �rst principal

component from the equity term slopes in the bottom panel. Most of the spikes in S&P500 maturity

slopes are clearly evident in the �rst principal component as well. Comparing Figures 2 and 4 we

see that the term structure slope is close to zero when volatility is low and strongly negative when

volatility is high.

We conclude that while the market volatility term structure captures a substantial share of the

variation in equity volatility term structures, the scope for a persistent �rm-speci�c volatility factor

seems clear.

2.3 Other Stylized Facts in Equity Option Prices

The literature on equity options has documented a number of important stylized facts that are

complementary to our �ndings above.

Dennis and Mayhew (2002) �nd that option-implied skewness tends to be more negative for

stocks with larger betas. Bakshi, Kapadia and Madan (2003) show that the market index volatil-

ity smile is on average more negatively sloped than individual smiles. They also show that the

more negatively skewed the risk-neutral distribution, the steeper the volatility smile. Finally, they

�nd that the risk-neutral equity distributions are on average less skewed to the left than index

distributions.

Duan and Wei (2009) �nd that the level of implied equity volatility is related to the systematic

risk of the �rm and that the slope of the implied volatility curve is related to systematic risk as

well. Driessen, Maenhout and Vilkov (2009) �nd a large negative index variance risk premium, but

�nd no evidence of a negative risk premium on individual variance risk.

We next outline a structural equity option modeling approach that is able to capture these

well-know stylized facts, as well as the results from the PCA analysis outlined above.

3 Equity Option Valuation using a Single-Factor Structure

We model an equity market consisting of n �rms driven by a single market factor, It. The individual

stock prices are denoted by Sjt , for j = 1; 2; :::; n. Investors also have access to a risk-free bond
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which pays a return of r.

The market factor evolves according to the process

dIt
It
= (r + �I)dt+ �I;tdW

(I;1)
t (3.1)

where �I is the instantaneous market risk premium and where volatility is stochastic and follows

the standard square root process

d�2I;t = �I(�I � �2I;t)dt+ �I�I;tdW
(I;2)
t (3.2)

As in Heston (1993), �I denotes the long-run variance, �I captures the speed of mean reversion of

�2I;t to �I and �I measures volatility of volatility. The innovations to the market factor return and

volatility are correlated with coe¢ cient �I . Conventional estimates of �I are negative and large

capturing the so-called leverage e¤ect in aggregate market returns.

Individual equity prices are driven by the market factor as well as an idiosyncratic term which

also has stochastic volatility

dSjt

Sjt
� rdt = �jdt+ �j

�
dIt
It
� rdt

�
+ �j;tdW

(j;1)
t (3.3)

d�2j;t = �j(�j � �2j;t)dt+ �j�j;tdW
(j;2)
t (3.4)

where �j denotes the excess return and �j is the market beta of �rm j.

The innovations to idiosyncratic return and volatility are correlated with coe¢ cient �j. As

suggested by the skew laws derived in Bakshi, Kapadia, and Madan (2003), asymmetry of the idio-

syncratic return component is required to explain the di¤erences in the price structure of individual

equity versus market index options.

Note that our model of the equity market has a total of 2(n+ 1) innovations.

3.1 Risk Neutral Distribution

In order to use our model of the equity market to value derivatives we need to postulate a change

of measure from the physical (P -measure) distribution developed above to the risk-neutral (Q-

measure) distribution. Following the literature, we assume a change-of-measure of the exponential

form
dQ

dP
(t) = exp

�
�

tR
0

udWu �
1

2

tR
0


0

ud
D
W;W

0
E
u
u

�
(3.5)

8



where Wu is a vector containing the 2(n+1) innovations and u is a vector of market prices of risk.

The exact form of Wu and u are given in Appendix A.

In the spirit of Cox, Ingersoll, and Ross (1985) and Heston (1993) among others, we assume a

price of market variance risk of the form �I�I;t. We also assume that idiosyncratic variance risk is

not priced. These assumptions yield the following result.

Proposition 1 Given the change-of-measure in (3.5) the Q-process of the market factor is given
by

dIt
It

= rdt+ �I;td ~W
(I;1)
t (3.6)

d�2I;t = ~�I

�
~�I � �2I;t

�
dt+ �I�I;td ~W

(I;2)
t (3.7)

where ~�I = �I + �I�I ; and ~�I =
�I�I
~�I

(3.8)

and the Q-processes of the individual equities are given by

dSjt

Sjt
= rdt+ �j

�
dIt
It
� rdt

�
+ �j;td ~W

(j;1)
t (3.9)

d�2j;t = �j
�
�j � �2j;t

�
dt+ �j�j;td ~W

(j;2)
t (3.10)

where d ~Wt denotes the risk-neutral version of dWt

Proof. See Appendix A.
These propositions provide several insights. Note that the market factor structure is preserved

under Q. Consequently, the market beta is the same under the risk-neutral and physical distri-

butions. This is consistent with Serban, Lehoczky, and Seppi (2008), who document that the

risk-neutral and objective betas are economically and statistically close for most stocks.

It is also important to note that in our modeling framework, higher moments (variance, skewness,

and kurtosis) and their premiums, as de�ned by the di¤erence between the level of the moment

under Q with the level under P , are all a¤ected by the drift adjustment in the variance processes.

We will discuss this further below.

3.2 Closed-Form Option Valuation

Our model has been cast in an a¢ ne framework which implies that the characteristic function for

the log market value and the log equity price can both be derived analytically. The market index
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characteristic function will be exactly identical to that in Heston (1993). Consider now individual

equity options. We need the following proposition:

Proposition 2 The risk-neutral conditional characteristic function ~�
j

t;T (u) for the equity price, S
j
T ,

is given by

~�
j

t;T (u) � EQt
�
exp

�
iu ln

�
SjT
���

(3.11)

=
�
Sjt
�iu
exp

�
iur (T � t)� AI

�
�S; u

�
�BI

�
�S; u

�
�2I;t � Aj

�
�S; u

�
�Bj

�
�S; u

�
�2j;t
�

where the expressions for �S; AI
�
�S; u

�
, BI

�
�S; u

�
, Aj

�
�S; u

�
, and Bj

�
�S; u

�
are provided in

Appendix B.

Proof. See Appendix B.
Given the log spot price characteristic function under Q, the price of a European equity call

option with strike price K and maturity T � t is

Cjt (K;T � t) = Sjt�j1 �Ke�r(T�t)�
j
2 (3.12)

where the risk-neutral probabilities �j1 and �
j
2 are de�ned by

�j1 =
1

2
+
e�r(T�t)

�Sjt

1R
0

Re

"
e�iu lnK~�

j

t;T (u� i)
iu

#
du (3.13)

�j2 =
1

2
+
1

�

1R
0

Re

"
e�iu lnK~�

j

t;T (u)

iu

#
du (3.14)

While these integrals must be evaluated numerically, they are well-behaved and can be computed

quickly.

4 Model Predictions

In this section we derive a number of important implications from our model and assess if the model

captures the stylized facts observed in equity option prices in Section 2. For convenience we will

assume that beta is positive for each �rm below. This is not required by the model but it simpli�es

certain expressions.
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4.1 Equity Option Volatility Level

Duan and Wei (2009) show empirically that �rms having a higher systematic risk tend to have

a higher level of risk-neutral variance. We now investigate if our model is consistent with this

empirical �nding.

First, de�ne total spot variance for �rm j at time t

Vj;t � �2j�2I;t + �2j;t

and de�ne the expectations under P and Q of the corresponding integrated variance by

EPt [Vj;t:T ] � EPt
�Z T

t

Vj;sds

�
and EQt [Vj;t:T ] � EQt

�Z T

t

Vj;sds

�
By splitting up the P -expectation between the integrated market variance and the idiosyncratic

one, we have

EPt [Vj;t:T ] = �
2
jE

P
t [�

2
I;t:T ] + E

P
t [�

2
j;t:T ]

where �2I;t:T , and �
2
j;t:T correspond to the integrated variances from t to T .

Given our model, the expectation of the integrated total variance for equity j under Q is

EQt [Vj;t:T ] = �
2
jE

Q
t [�

2
I;t:T ] + E

Q
t [�

2
j;t:T ] = �

2
jE

Q
t [�

2
I;t:T ] + E

P
t [�

2
j;t:T ]

Note that the second equation holds as long as idiosyncratic risk is not priced (i.e. EPt [�
2
j;t:T ] =

EQt [�
2
j;t:T ]).

For any two �rms having the same level of expected total variance under the P -measure

(EPt [V1;t:T ] = E
P
t [V2;t:T ]) we have

EPt [�
2
1;t:T ]� EPt [�22;t:T ] = �(�21 � �22)EPt [�2I;t:T ]

As a result:

EQt [V1;t:T ]� EQt [V2;t:T ] = (�21 � �22)E
Q
t [�

2
I;t:T ] +

�
EQt [�

2
1;t:T ]� E

Q
t [�

2
2;t:T ]

�
= (�21 � �22)E

Q
t [�

2
I;t:T ] +

�
EPt [�

2
1;t:T ]� EPt [�22;t:T ]

�
= (�21 � �22)

�
EQt [�

2
I;t:T ]� EPt [�2I;t:T ]

�
When the market variance premium is negative, we have ~�I > �I which implies that E

Q
t [�

2
I;t:T ] >
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EPt [�
2
I;t:T ]. We therefore have that

�1 > �2 , EQt [V1;t:T ] > E
Q
t [V2;t:T ]

We conclude that our model is consistent with the �nding in Duan and Wei (2009) that �rms with

high betas tend to have a high level of risk-neutral variance.

4.2 Equity Option Skews

To understand the slope of individual equity option implied volatility curves we need to understand

the way beta in�uences the skewness of the risk-neutral equity return distribution. The next

proposition is key to comprehend how beta, systematic risk, and the market index skewness impact

the total skewness of equity.

Proposition 3 The conditional total skewness of the integrated returns of �rm �j�under P , noted
TSkPj , is given by

TSkPj;t:T � SkP
�R T

t

dSju
Sju

�
= SkPI �

�
APj;t:T

�3=2
+ SkPj �

�
1� APj;t:T

�3=2
(4.1)

Respectively, the total skewness of the integrated returns of �rm �j�under Q, noted TSkQj , is

TSkQj;t:T � SkQ
�R T

t

dSju
Sju

�
= SkQI �

�
AQj;t:T

�3=2
+ SkQj �

�
1� AQj;t:T

�3=2
(4.2)

where

APj;t:T �
EPt [�

2
j�
2
I;t:T ]

EPt [Vj;t:T ]
and AQj;t:T �

EQt [�
2
j�
2
I;t:T ]

EQt [Vj;t:T ]

are the proportion of systematic risk of �rm j under P and Q, and SkI = Sk
�R T

t
dIs
Is

�
and

Skj = Sk
�R T

t
�j;sdW

(j;1)
s

�
are the market and idiosyncratic skewness computed under the measure

considered.

Proof. See Appendix C.
The previous expressions show that �j matters to determine �rm �j�conditional total skewness.

From a risk-neutral perspective, we see from (4.2) that �j a¤ects the slope of equity implied volatility

curve through TSkQj;t:T by in�uencing the level of systematic risk proportion A
Q
j;t:T . A higher A

Q
j;t:T

mechanically implies a higher loading on the market risk-neutral skewness SkQI . Consider two �rms

having the same quantity of expected total variance under Q and with �1 > �2, which implies
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AQ1;t:T > A
Q
2;t:T . As a result, �rm 1 has a greater loading on index risk-neutral skewness than �rm

2. In an economy where the index Q-distribution is more negatively skewed than idiosyncratic

equity distribution1, we have the following cross-sectional prediction: higher-beta �rms will have

more negatively skewed Q-distributions. Note that this prediction is in line with the cross-sectional

empirical �ndings of Duan and Wei (2009) and Dennis and Mayhew (2002).

The equation (4.2) also shows how the dynamic of market risk-neutral skewness will a¤ect

changes in the slope of individual equity implied volatility curve. Whenever idiosyncratic risk is

not priced, we have

AQj;t:T > A
P
j;t:T , EQt [�

2
I;t:T ] > E

P
t [�

2
I;t:T ] (4.3)

Given a negative market variance risk premium (i.e. EQt [�
2
I;t:T ] > E

P
t [�

2
I;t:T ]), the previous expression

suggests that equity return moments are more a¤ected by changes in systematic skewness under the

Q measure than under the P measure. Consequently, the market variance premium can potentially

explain the co-movements in the equity implied volatility slopes found for individual equity options

in Section 2.

Using the model the skewness premium of the individual equity Sjt takes the following form

when SkPj = Sk
Q
j = 0

TSkQj;t:T � TSkPj;t:T =
�
APj;t:T

�3=2 24SkQI �
 
AQj;t:T
APj;t:T

!3=2
� SkPI

35 (4.4)

Recall that when the market variance risk premium is negative, we have AQj;t:T > A
P
j;t:T . Combining

this with a negative market skewness premium (i.e. SkQI < Sk
P
I ), it implies that the expression in

bracket is negative. Given that beta increases the proportion of systematic risk, Aj;t:T , controlling

for total physical variance, high-beta �rms should have lower skewness premiums.

Figure 5 plots the implied Black-Scholes volatility from model option prices. Each line has a

di¤erent beta but the same amount of unconditional total equity variance Vj = �
2
j�I + �j = 0:1. We

set the current spot variance to �2I;t = 0:01 and Vj;t = 0:05, and de�ne the idiosyncratic variance as

the residual �2j;t = Vj;t��2j�2I;t. The market index parameters are �I = 5; �I = 0:04; �I = 0:5; �I =
�0:8; and the individual equity parameters are �j = 1; �j = 0:4; and �j = 0. The risk-free rate is
4% per year and option maturity is 3 months. Figure 5 shows that beta has a substantial impact

on the moneyness slope of equity IV even when keeping the total variance constant: The higher the

beta, the larger the moneyness slope.

1This statement is in line with the empirical �ndings of Bakshi, Kapadia, and Madan (2003).
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4.3 The Equity Volatility Term-Structure

We next investigate the model�s implication for the term structure of equity volatility. The role of

the market beta turns out to be crucial.

Our model implies the following two-component term-structure of equity variance

EQt [Vj;t:T ] =
�
�2j
~�I + �j

�
+ �2j

�
�2I;t � ~�I

�
e�~�I(T�t) +

�
�2j;t � �j

�
e��j(T�t) (4.5)

This expression shows how the market variance term-structure a¤ects the variance term-structure

for the individual equity. Given di¤erent systematic and idiosyncratic mean reverting speeds (~�I 6=
�j), we see that �j has important implications on the term-structure of volatilities. When the

idiosyncratic variance process is more persistent (~�I > �j), higher values of beta imply a faster

reversion toward the unconditional total variance (~Vj = �
2
j
~�I + �j). As a result, when the market

variance process is less persistent than the idiosyncratic variance, in the cross-section, �rms with

higher betas are likely to have steeper volatility term-structures. In other words, higher beta �rms

are expected to have a greater positive (resp. negative) slope when the market variance term-

structure is upward (resp. downward) sloping.

Figure 6 plots the implied Black-Scholes volatility from model prices against option maturity.

Each line has a di¤erent beta but the same amount of unconditional total equity variance Vj =

�2j�I + �j = 0:1. We set the current spot variance to �2I;t = 0:01 and Vj;t = 0:05, and de�ne the

idiosyncratic variance as the residual �2j;t = Vj;t � �2j�2I;t. The parameter values are as in Figure 5.
Figure 6 shows that beta has a non-trivial e¤ect on the IV term structure: The higher the beta,

the steeper the term structure when the term structure is upward sloping.

In summary, our model suggests that�ceteris paribus��rms with higher betas should have higher

levels of volatility, larger moneyness slopes, and higher absolute maturity slopes. We now estimate

the model in order to assess if these patterns are indeed observed in the option data.

5 Estimation and Fit

In this section, we �rst describe our estimation methodology and then we report on parameter

estimates and model �t. Finally, we relate our estimated betas to patterns in observed equity

option IVs.
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5.1 Estimation Methodology

Several approaches have been proposed in the literature for estimating stochastic volatility models.

Jacquier, Polson, and Rossi (1994) use Markov Chain Monte Carlo in a discrete time set-up. Pan

(2002) uses GMM to estimate the objective and risk neutral parameters from returns and option

price. Serban, Lehoczky, and Seppi�s (2008) estimation strategy is based on simulated maximum

likelihood using EM and particle �lter methods.

Another approach treats the latent variables as a parameter to be estimated and thus avoids

�ltering of the latent volatility factor. Such a strategy has been adopted by Bates (2000) and

Santa-Clara and Yan (2010) among others. We follow this strand of literature.

Recall that in our model two vectors of latent variables f�2I;t, �2j;tg and two sets of structural
parameters f�I , �jg need to be estimated where �I � f~�I ; ~�I ; �I ; �Ig and �j � f�j; �j; �j; �j; �jg.
Our methodology involves two main steps.

In the �rst step, we estimate the market index dynamic
�
�I ; �

2
I;t

	
based on S&P500 option

prices alone. In the second step, we take the market index dynamic as given, and we estimate

the �rm-speci�c dynamics
�
�j; �

2
j;t

	
for each �rm conditional on estimates of

�
�I ; �

2
I;t

	
and use

equity options for �rm j only. This step-wise estimation procedure�while not fully e¢ cient in the

econometric sense�enables us to estimate our model for 29 equities while ensuring that the same

dynamic is imposed for the market-wide index for each of the 29 �rms.

Each of the two steps contains an iterative procedure which we now describe in some detail.

Step 1: Market Index Volatility and Parameter Estimation

Given a set of starting values, �0I , for the index structural parameters, we �rst estimate the spot

market variance each day by sequentially solving

�̂2I;t = argmin
�2I;t

NI;tX
m=1

(CI;t;m � Cm(�0I ; �2I;t))2=V ega2I;t;m, for t = 1; 2; :::T (5.1)

where CI;t;m is the market price of index option contract m quoted at t, Cm(�I ; �2I;t) is the model

index option price, NI;t is the number of index contracts available on day t; and V egaI;t;m is the

Black-Scholes sensitivity of the option price with respect to volatility evaluated at the implied

volatility. These vega-weighted dollar price errors are a good approximation to implied volatility

errors and they are much more quickly computed.2

Once the set of T market spot variances have be obtained we solve for the set of market para-

2This approximation has been used in Carr and Wu (2007) and Trolle and Schwartz (2009) among others.
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meters as follows

�̂I = argmin
�I

NIX
m;t

(CI;t;m � Cm(�I ; �̂2I;t))2=V ega2I;t;m, (5.2)

where NI �
PT

t NI;t represents the total number of index option contracts available.

We iterate between (5.1) and (5.2) until the improvement in �t is negligible which typically

requires 5-10 iterations.

Step 2: Equity Volatility and Parameter Estimation

Given an initial value �0j and using the estimated �̂
2
I;t and �̂I we can estimate the spot equity

variance each day by sequentially solving

�̂2j;t = argmin
�2j;t

Nj;tX
m=1

(Cj;t;m � Cm(�0j ; �̂I ; �̂2I;t; �2j;t))2=V ega2j;t;m, for t = 1; 2; :::T (5.3)

where Cj;t;m is the price of equity option m for �rm j quoted at t, Cm(�j;�I ; �2I;t; �
2
j;t) is the model

equity option price, Nj;t is the number of equity contracts available on day t; and V ega;j;t;m is the

Black-Scholes Vega of the equity option.

Once the set of T market spot variances have be obtained we solve for the set of market para-

meters as follows

�̂j = argmin
�j

NjX
m;t

(Cj;t;m � Cm(�j; �̂I ; �̂2I;t; �̂2j;t))=V ega2j;t;m (5.4)

where Nj �
PT

t Nj;t is the total number of contract available for security j.

We again iterate between (5.3) and (5.4) until the improvement in �t is negligible. We have

con�rmed that this estimating technique has good �nite sample properties in a Monte Carlo study

which is available from the authors upon request.

5.2 Parameter Estimates

This section presents results from the market index and 29 equity option model estimations for

the 1996-2010 period. For equity options we use contracts on each trading day. For index options

we estimate the structural parameters in (5.2) on Wednesday data only because the computational

burden is exorbitantly large if all trading days are used.

Our S&P500 index options are European, but our individual equity options are American style.

16



As a result, their prices are in�uenced by early exercise premiums. To circumvent possible biases

in our implied volatility estimates due to the presence of both early exercise premia and dividends,

we eliminate in-the-money (ITM) options for which the early exercise premium matters most.3

Table 6 reports estimates of the structural parameters that describe the dynamic of the system-

atic variance, the beta of each �rm, as well as the idiosyncratic variance dynamics. The top row

shows estimates for the S&P500 index.

The unconditional market index variance ~�I = 0:0542 corresponds to 23% volatility per year.

The average of the index spot volatility path, 1
T

PT
t=1 �

2
I;t during our sample is 21:74%. The dif-

ference between these two numbers provides a rough estimate of the volatility risk premium. The

idiosyncratic �j estimates range from 0:0093 for General Electric to 0:0887 for Cisco.

In Table 6 the speed of mean-reversion parameter for the market index variance ~�I = 1:24

corresponds to a daily variance persistence of 1 � 1:24=365 = 0:9966. The idiosyncratic �j range

from 0:53 for Chevron to 1:53 for 3M showing that idiosyncratic volatility is highly persistent as

well. Interestingly, 3M, Hewlett-Packard and IBM are the only three �rms of our cross-section

having an idiosyncratic variance process less persistent than the market variance.

As typically found in the literature, �I = �0:860 is strongly negative capturing the so-called
leverage e¤ect in the market index. The idiosyncratic �j are also strongly negative ranging from

�0:978 for Microsoft to �0:482 for Disney. The equity option data clearly require additional option
skewness from the idiosyncratic volatility component.

The estimates of beta are reasonable and vary from 0:70 for Johnson & Johnson to 1:30 for JP

Morgan. The average beta across the 29 �rms is 0:99.

The average total spot volatility (ATSV) for �rm j is computed as

ATSV =

vuut 1

T

TX
t=1

Vj;t =

vuut 1

T

TX
t=1

�
�2j�

2
I;t + �

2
j;t

�
Comparing the beta column with the ATSV column in Table 6 shows that ATSV is generally higher

when beta is high.

The �nal column of Table 6 reports for each �rm the systematic risk ratio (SSR) computed from

the spot variances as follows

SSR =

PT
t=1 �

2
j�
2
I;tPT

t=1

�
�2j�

2
I;t + �

2
j;t

�
3Table 2 in Bakshi, Kapadia, and Madan (2003) shows that for OTM calls and puts, the di¤erence between

Black-Scholes implied volatilities and American option implied volatilities (early excercise premia) are negligible.
Elkamhi and Ornthanalai (2010) get a similar result. See also Duan and Wei (2009).
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Table 6 shows that the systematic risk ratio varies from close to 30% for Cisco and Hewlett-

Packard to above 66% for Chevron. The systematic risk ratio varies is on average 45%, which shows

that the estimated variance factor structure in the model is strong. Comparing the beta column

with the SSR column in Table 6 shows that there is no apparent linear relationship between beta

and SSR: Di¤erent �rms with beta close to 1 can have radically di¤erent SSR and, vice versa, �rms

with very di¤erent betas can have roughly similar SSRs. We conclude that SSR is generally high,

suggesting a strong factor structure in model spot volatility which mirrors the model-free factor

structure found in the IVs in Figure 2. But it is not necessarily the case that �rms with high beta

have a high SSR. This of course indicates a key role for the idiosyncratic variance dynamic in our

model.

5.3 Model Fit

Wemeasure model �t using the vega root mean squared error (RMSE) de�ned from the optimization

criteria function as

Vega RMSE �
r
1

N

XN

m;t
(Cm;t � Cm;t(�))2=V ega2m;t

We also report the implied volatility RMSE de�ned as

IVRMSE �
r
1

N

XN

m;t
(IVm;t � IV (Cm;t(�)))2

where IVm;t denotes market IV for option m on day t and IV (Cm;t(�)) denotes model IV. We use

Black-Scholes to compute IV for both model and market prices.

Table 7 reports model �t for the market index and for each of the 29 �rms. We report results

for all contracts together as well as separately for out-of-the-money (OTM) calls and puts, and for

short and long term at-the-money (ATM) contracts. We also report the IVRMSE divided by the

average market IV in order to assess relative IV �t. Several interesting �ndings emerge from Table

7.

� First, the Vega RMSE approximates the IVMRSE closely for the index and for all �rms. This
suggests that using Vega RMSE in estimation does not bias the IVRMSE results.

� Second, the average IVRMSE across �rms is 1:78% and the relative IV (IVRMSE / Average

IV) is 6% on average. The �t does not vary much around these averages. The �t of the model

is thus quite good across �rms.
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� Third, the best pricing performance for equity options is obtained for Coca Cola with an
IVRMSE of 1:41%. The worst �t is for Bank of America where the IVRMSE is 2:40%. In

terms of relative IVRMSE the best �t is for Intel at 4:14% and the worst is for AT&T at

8:15%.

� Fourth, the average IVRMSE �t across �rms for OTM calls is 1:74% and for OTM puts it is

1:82%. Using this metric the model �ts OTM calls and puts roughly equally well.

� Fifth, the average IVRMSE �t across �rms for short-term ATM options is 1:67% and for long-

term ATM options it is 1:59%. The model thus �ts short-term and long-term ATM options

equally well on average.

Figure 7 reports for each �rm the average �t over time for di¤erent moneyness categories.

Moneyness on the horizontal axis is measured by S=K so that OTM calls (and ITM puts) are

shown on the left side and ITM calls (and OTM puts) are shown on the right side. Figure 7

averages over OTM as well as ITM options although to facilitate computations only the former

were used in estimation.

Figure 7.A reports on the �rst �fteen �rms and Figure 7.B reports on the last 14 �rms as well

as the index. Note that in order to properly see the di¤erent patterns across �rms, the vertical axis

scale di¤ers in each subplot, but the range of implied volatility values is kept �xed at 10% across

�rms to facilitate comparisons.

Figure 7 shows that the smiles computed using market prices (solid black lines) vary considerably

across �rms, both in terms of level and shape. Consider for example Cisco in Figure 7.A (third row,

second column) which has a relatively steep smirk and high levels of IV versus Bank of America (top

row, third column) which has a more symmetric smile and lower levels of IV. The model (dashed

grey lines) �ts the di¤erent IV moneyness shapes remarkably well. The IV errors by moneyness are

small in general and no dramatic outliers are apparent.

If any systematic error is apparent it may be that the model tends to underprice the extreme

OTM calls (and thus ITM puts) in the left side of the graphs. The bias is small, however, relative

to the overall level of IV. The small bias could be driven by an insu¢ cient adjustment for the early

exercise premium which a¤ects mostly ITM puts. The bottom right panel in Figure 7.B con�rms

the �nding in Bakshi, Kapadia and Madan (2003) that market index display much more (negative)

skewness than do individual equities. The bottom right panel also shows that additional negative

skewness in the model is required to �t the relatively expensive OTM puts trading on the market

index. Generating market skewness at short maturities can be achieved by return jump models

(Bates, 2000). Interestingly, while the Heston (1993) model is unable to adequately capture OTM
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index put option IV levels, our model is able to �t OTM equity put options quite well. Nevertheless,

allowing expanding the index model we use to allow for jumps is a worthy topic for future study.

In Figure 8 we report for each �rm the average (over time) implied volatility as a function of time

to maturity (in years). We split the data set into two groups: Days where the IV term structure

is upward-sloping (grey lines) and days where it is downward sloping (black lines). We report the

average IVs observed in the market (solid lines) as well as the average IV from our �tted model

prices (dashed lines). The downward sloping black lines use the left-hand axis and the upward

sloping grey lines use the right-hand axis. In order to facilitate comparison between model and

market IVs the level of IVs di¤er between the left and right axis and they di¤er across �rms. In

order to facilitate comparison between term structures the di¤erence between the minimum and

maximum on each axis is �xed at 10% across all �rms.

Figure 8 shows that the term structure of IV di¤ers considerably across �rms. Some �rms such

as Alcoa and American Express have quite �at downward sloping term structures whereas other

�rms such as General Electric and Hewlett-Packard have much steeper term structures. Generally,

across �rms, the downward sloping black lines appear to be steeper than the upward sloping grey

lines. This pattern is matched well by the model. Figure 8 does not reveal any systematic model

biases in the term structure of IVs.

We conclude from Table 7 and Figures 7 and 8 and the model �ts the observed equity option

data quite well. Encouraged by this �nding, we next analyze in some detail how our estimated

betas are related to observed patterns in equity option IVs.

5.4 Estimated Equity Betas and Observed Equity Option IVs

The three central cross-sectional predictions of our model, as discussed in Section 4, are as follows:

1. Firms with higher betas have higher risk-neutral variance.

2. Firms with higher betas have larger moneyness slopes. This is equivalent to stating that �rms

with higher betas are characterized by more negative skewness.

3. Firms with higher betas have steeper positive volatility term structures when the term struc-

ture is upward sloping, and steeper negative volatility term structures when the term structure

is downward sloping.

We now document how these theoretical model implications are manifested in the estimates for

the 29 Dow-Jones �rms. Consider �rst the level of option implied volatility. In the top panel of

Figure 9, we scatter plot the time-averaged intercepts from the implied volatility regression in (2.1),

20



1
T

PT
t=1 aj;t against the beta estimate from Table 6 for each �rm j. We then run a regression on

the 29 points in the scatter and assess the signi�cance and �t. The slope has a t-statistic of 6:40

and the regression �t (R2) is quite high at 60%. The regression line shows the positive relationship

across �rms between our estimated betas and the average implied volatility observed in the market

prices of equity options.

In the middle panel of Figure 9 we scatter plot the moneyness slope coe¢ cients from the IV

regression in (2.1), 1
T

PT
t=1 bj;t against the beta estimate from Table 6 for each �rm j. In the

moneyness slope regression, the sensitivity to beta has a t-statistic of 1:34 and an R2 of 6%. Clearly

the moneyness scatter is noisy and has several outliers including Alcoa which has a beta above one

but also the lowest moneyness slope in the sample. Nevertheless, Panel B shows that an increase

in our beta estimate is associated with an increase in the slope of the moneyness smile in observed

equity IVs. The two �rms with the highest betas (JP Morgan and American Express) have very

high moneyness slopes suggesting that the association may be nonlinear which is partly causing the

relative poor �t of the linear regression.

Finally, in the bottom panel of Figure 9 we scatter plot the absolute of the term structure slope

coe¢ cients from (2.1), that is, 1
T

PT
t=1 cj;t against the beta estimate from Table 6 for each �rm. In

the term slope regression, the sensitivity to beta has a t-statistic of 5:24 and the R2 is quite high

at 50%. Panel C shows that an increase in our beta estimate is associated with an increase in the

absolute slope of the term structure in observed equity IVs: Firms with high betas will tend to have

a term structure of implied volatility curve that decays more quickly to the unconditional level of

volatility than will a �rm with a low beta.

We conclude that our estimates of beta when contrasted with the observed market IVs con�rm

the three main model predictions from Section 4.

6 Further Model Implications: Option Risk and Return

In this section we explore some additional implications of our model. We �rst study the model�s

implications for equity option risk management by computing the most important option price

sensitivity measures. We also derive the expected return on options as implied by our model.

6.1 Equity Option Risk Management

In classic equity option valuation models, partial derivatives are used to assess the sensitivity of

the option price to the underlying stock price (delta) and equity volatility (vega). In our model

the equity option price additionally is exposed to changes in the market level and market variance.
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Portfolio managers with diversi�ed equity option holdings need to know the sensitivity of the eq-

uity option price to these market level variables in order to properly manage risk. The following

proposition provides the model�s implications for the sensitivity to the market level and market

volatility.

Proposition 4 For a derivative contract f j written on the stock price, Sjt , the sensitivity of f j

with respect to market value, It (market delta) is given by:

@f j

@It
=
@f j

@Sjt

Sjt
It
�j

The sensitivity of f j with respect to market variance (market vega) takes the form:

@f j

@�2I;t
=
@f j

@Vj;t
�2j

Proof. See Appendix D.

This proposition shows that the beta of the �rm in a straightforward way provides the link

between the usual stock price delta @fj

@St
and the market delta, @f

j

@It
, as well as the link between the

usual equity vega, @fj

@Vj;t
, and the market vega @fj

@�2I;t
.

The result in the proposition will allow market participants with portfolios of equity options

on di¤erent �rms�as well as equity options�to measure and manage their total exposure to the

market index level and to the market index volatility. It will also allow for investors engaged in

dispersion trading�where index options are sold and equity options bought�to measure and manage

their overall exposure to market risk and market volatility risk.

6.2 Equity Option Expected Returns

So far our model implications have focused on option prices. In certain applications, such as option

portfolio management, option returns are of interest as well. Our �nal proposition provides an

expression for the expected (P -measure) equity option return as a function of the expected market

return.4

Proposition 5 For a derivative f j written on the stock price, Sjt , the expected excess return on the

4Recent empirical work on equity and index option returns includes Broadie, Chernov and Johannes (2009),
Goyal and Saretto (2009), Constantinides, Czerwonko, Jackwerth, and Perrakis (2011), Vasquez (2011), and Jones
and Wang (2012).
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derivative contract is given by

1

dt
EPt
�
df j=f j � rdt

�
=
@f j

@It

It
f j
�I =

@f j

@Sjt

Sjt
f j
�j�I

where @fj

@It
and @fj

@�2I;t
are from the Proposition 4.

Proof. See Appendix E.

This proposition reveals that the beta of the stock provides a simple link between the expected

return on the market index and the expected return on the equity option via the delta of the option.

Our model thus allows the investor to decompose the excess return on the option into two parts:

The delta of the equity option as well as the beta of the stock. Equity options provide investors

which two sources of leverage: First, the beta with the market, and second, the elasticity of the

option price with respect to changes in the stock price.

7 Summary and Conclusions

Principal Component Analysis reveals a strong factor structure in equity option prices. The �rst

common component explains roughly 77% of the cross-sectional variation in IV and the common

component has an 91% correlation with the short-term implied volatility constructed from S&P500

index options. Roughly 49% of the variation in the equity skew is captured by the �rst principal

component. This common component has a correlation of 42% with the skew of market index

options. When looking for a common component in the term structure of equity IV we �nd that

57% of the variation is explained by the �rst principal component. This component has a correlation

of 74% with the term slope of the option IV from S&P500 index options.

Motivated by the �ndings from the principal component analysis, we develop a structural model

of equity option prices that incorporates a market factor. Our model allows for mean-reverting

stochastic volatility and correlated shocks to return and volatility. Motivated by our principal com-

ponents analysis we allow for idiosyncratic shocks to equity prices which also have mean-reverting

stochastic volatility and a separate leverage e¤ect. Individual equity returns are linked to the

market index using a standard linear factor model with a constant beta factor loading. We de-

rive closed-form option pricing formulas as well as results for option hedging and option expected

returns.

We have also developed a convenient estimation method for estimation and �ltering based on

option prices. When estimating the model on the �rms in the Dow we �nd that it provides a good
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�t to observed equity option prices. Moreover, we show that our estimates strongly con�rm the

three main cross-sectional model implications.

Several issues are left for future research. First, it would be interesting to study the empirical

implications of our models for option returns. Second, it may be useful to allow for two stochastic

volatility factors in the market price process as done for example in Bates (2000). Third, allowing

for jumps in the market price is relevant (Bollerslev and Todorov, 2011). Fourth, combining option

information with that in high-frequency returns (Patton and Verardo, 2012; Hansen, Lunde, and

Voev, 2012) for beta estimation could be interesting. Finally, using the model to construct option-

implied betas for use in cross-sectional equity pricing (Conrad, Dittmar and Ghysels, 2013) could

be of substantial interest.

Appendix

This appendix collects proofs of the propositions.

A. Proof of Proposition 1

The proof has two steps. First, we identify the process of the market prices of risk t (step 1). In

a second step, we risk-neutralize the variance processes using the result obtained in step 1.

Step 1: We derive the market prices of risk for the market Index (It). A similar argument can
be easily extended to individual equities. We �rst de�ne the stochastic exponential �(�):

�

�
tR
0

!
0

udWu

�
� exp

�
tR
0

!udWu �
1

2

tR
0

!
0

ud
D
W;W

0
E
u
!u

�
(7.1)

where !u is a 2(n+1) vector adapted to the Brownian �ltration. Given the dynamics assumed and

using �(�), we have
It
Is
= �

�
tR
s

�I;udW
(I;1)
u

�
exp((r + �I)�) (7.2)

where � � t� s. Moreover, we can re-write the change of measure5

dQ

dP
(t) = �

�
�

tR
0


0

udWu

�
(7.3)

5We de�ne u �
h

(1;1)
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(1;2)
u ; ::; 
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u ; 

(I;2)
u
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and Wu �

h
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(1;1)
u ;W

(1;2)
u ; ::;W
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u ;W
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u

i0
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In our set-up, the absence of arbitrage implies the following equilibrium condition

EPs

"
It
Is

dQ
dP
(t)

dQ
dP
(s)
exp(�r�)

#
= 1 , EPs

�
It
I0

dQ

dP
(t) exp(�rt)

�
=
Is

I0

dQ

dP
(s) exp(�rs)

Therefore, no-arbitrage requires that the process fM(t)gt>0 � f ItI0
dQ
dP
(t) exp(�rt)gt>0 is a P�martingale.

Using the previous notation, we can write

M(t) =
It
I0
exp(�rt)�

�
�

tR
0


0

udWu

�
Given that �(Xt)�(Yt) = �(Xt + Yt) exp(hX;Y it), we decompose

dQ
dP
(t) as follows
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(t)?It as the orthogonal part of the Radon-Nikodym derivative with respect to It
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Note that dQ
dP
(t)?It is itself a P�martingale. We can now write dQ

dP
(t) as
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Using previous notation, M(t) can be re-written

M(t) = F (t)
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For M(t) to be a P�martingale, it must be that F (t) is itself a P�martingale. Given the above
property of stochastic exponentials
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and
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As a result, F (t) can be expressed as
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Therefore, using the previous results, a su¢ cient condition for M(t) to be a P�martingale is that

�I � �I;t
�

(I;1)
t + �I

(I;2)
t

�
= 0 dP 
 dt a:s: (7.4)

The economy is incomplete and there exist a multitude of combinations
n

(I;1)
t ; 

(I;2)
t

o
t>0
satisfying

the previous restriction and the Novikov condition.6 In order to obtain a closed-form solution for

the characteristic function of f�I;tgt>0 , the literature has imposed the market price of variance risk
(W (I;2)

t ) to be proportional to �I;t, so to that


(I;2)
t + �I

(I;1)
t = �I�I;t (7.5)

The two last equations uniquely de�ne (I;1)t and (I;2)t . A similar argument can be used for individual

equity with the restriction: (j;2)t + �j
(j;1)
t = 0. Combining results, the Girsanov theorem and the

properties of Lévy processes imply that the vector ~Wt of Q-Brownian motions satisfy the following

dynamic

d ~Wt = dWt + d
D
W;W

0
E
t
t (7.6)

where the prices of systematic risk are


(I;1)
t =

�I � �I�I�2I;t
�I;t(1� �2I)

and 
(I;2)
t =

�I�
2
I;t � �I�I

�I;t(1� �2I)

6We further assume the (su¢ cient) Novikov criterion EP
�
exp

�
1
2

tR
0


0

ud
D
W;W

0
E
u
u

��
< 1 P � a:s: for all t

implying that dQdP (t) is uniformly integrable which ensures the equivalence of the two laws: P � Q, see Protter (1990)
Chapter 8.
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and the prices of idiosyncratic risk are


(j;1)
t =

�j
�j;t(1� �2j)

and 
(j;2)
t = �

�j�j

�j;t(1� �2j)

Step 2: In the following, we present the index return and variance process risk-neutralization.
The same argument applies in regards of individual equities. The index P -dynamic is

dIt
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= (r + �I)dt+ �I;tdW
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The P -dynamic for the systematic variance process is
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where

~�I = �I + �I�I and ~�I =
�I�I
~�I

B. Proof of Proposition 2

In the following, we focus on the derivation of the equity call option price. Note that the model

of Heston (1993) can be obtained by setting �j = 0, Sjt = It, and all the idiosyncratic variance

parameters equal to their market variance counterparts. For ease of notation, we de�ne Lkt;T �
TR
t

�2k;udu and W
m
Lkt;T

�
TR
t

�k;ud ~W
(k;m)
u for m 2 f1; 2g and k 2 N . Given the Q -processes, one can

apply Ito�s lemma to obtain the following expression for the individual equity log-returns under Q
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We begin by establishing the required notation. ~�
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Using (7.7), one may write
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making use of the stochastic exponential �(�) as de�ne in Appendix A, we get
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where
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Given an extension of the Girsanov-Meyer theorem to the complex plane, under the C-measure we

have
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and where
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Using the fact that ~�
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t;T (u) = eiu ln(S
j
t )~�
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t;T (u), the previous equations can be used to compute

the price of a call written on Sjt .

C. Proof of Proposition 3

The following argument is derived under the P measure; however, a similar argument can be

developed under the risk-neutral measure. Given the de�nition of skewness, the total (conditional)

skewness of the integrated returns of �rm �j�is
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By the properties of the Ito�s integrals and the independence of W (I;1) and W (j;1), we have
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De�ning APj;t:T � EPt [�2j�2I;t:T ]=EPt [Vj;t:T ] and given the de�nition of skewness, we obtain

SkP
�R T

t

dSju
Sju

�
= SkPI �

�
APj;t:T

�3=2
+ SkPj �

�
1� APj;t:T

�3=2
(7.16)

which completes the proof.

D. Proof of Proposition 4

Within our model, the index price (IT ) takes the form
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Taking the derivative of the index price It with respect to �jX0;t gives
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We know from Malliavin calculus that It is a di¤erentiable function with respect to �jX0;t (see
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E. Proof of Proposition 5

Ito�s lemma implies that
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The Feynman-Kac formula gives
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Using the previous expressions, the dynamic of df j can therefore be written
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~�I � �2I;t) + ~�j(~�j � �2j;t)
o
dt

+f jSdS
j
t + f

j
Vj
dVj;t

Moreover, under the objective probability measure (P ), we have the following equalities

EPt [dS
j
t ]

dt
= (r + �j�I)S

j
t

EPt [dVj;t]

dt
= �2j�I

�
�I � �2I;t

�
+ �j(�j � �2j;t)

Consequently,

1

dt
EPt

�
df j

f j
� rdt

�
=

f jS
f j
EPt
�
dSjt � rSjt dt

�
+
f jVj
f j
�2jE

P
t

h
d�2I;t � ~�I(~�I � �2I;t)dt

i
+
f jVj
f j
EPt

h
d�2j;t � ~�j(~�j � �2j;t)dt

i
which simpli�es to

1

dt
EPt

�
df j

f j
� rdt

�
= f jS

Sjt
f j
�j�I + f

j
Vj

�2j
f j
(~�I~�I � �I�I) + f jVj

1

f j
(~�j~�j � �j�j) (7.17)

In the previous expression, Q is the risk-neutral distribution de�ned by 3.5. Consistent with Appen-

dix A, we risk-neutralize the market variance process such that ~�I~�I = �I�I while the idiosyncratic
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risk is assumed to not be priced (i.e. ~�j = �j and ~�j = �j). Consequently, we obtain

1

dt
EPt

�
df j

fE
� rdt

�
= f jS

Sjt
f j
�j�I = f

j
I

It
f j
�I

where the second equation makes use of the result in Proposition 4.

Note that part of the literature (see Broadie, Chernov, and Johannes, 2009), risk-neutralizes the

variance process such that ~�I = �I . Given such a restriction, 7.17 would become

1

dt
EP
�
df j

fE
� rdt

�
= f jS

Sjt
f j
�j�I + f

j
Vj

�2j
f j
�I(~�I � �I)

Note that the market variance risk-premium is equal to

EP [d�2I;t]� EQ
�
d�2I;t

�
= �I�I�

2
I;tdt

Therefore, we have

) �I(~�I � �I) = �I�I�2I;t

Combining the previous results, we �nally obtain

1

dt
EP
�
df j

f j
� rdt

�
= f jS

Sjt
f j
�j�I + f

j
Vj

�2j
f j
�I�I�

2
I;t:
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Figure 1: Short-Term At-the-money Implied Volatility. Six Equities and the S&P500 Index
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Notes to Figure: We plot the time series of implied volatility for six equities (black) and S&P500

index (grey). On each day we use contracts with between 9 and 60 days to maturity and a moneyness

(S=K) between 0.95 and 1.05. For every trading day and every security, we average the available

implied volatilities to obtain an estimate of short-term at-the-money implied volatility.
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Figure 2: S&P500 Index Implied Volatility

and the First Principal Component of Implied Equity Volatility
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Notes to Figure: The top panel plots implied volatility from short-term at-the-money (ATM)

S&P500 index options. The bottom panel plots the �rst principal component of implied short-

term ATM implied volatility from options on 29 equities in the Dow.
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Figure 3: Implied Volatility Moneyness Slopes:

S&P500 Index and Equity First Principal Component
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Notes to Figure: The top panel plots over time the slope of implied volatility with respect to

moneyness from short-term S&P500 index options. The bottom panel plots the �rst principal

component of the implied volatility moneyness slopes from options on 29 equities in the Dow.
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Figure 4: Implied Volatility Term Structure Slopes:

S&P500 Index and Equity First Principal Component

1996 1998 2000 2002 2004 2006 2008 2010
0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0.01

0.02

0.03

IV
 T

er
m

 S
lo

pe
S&P500 Implied Volatility Term Slope

1996 1998 2000 2002 2004 2006 2008 2010
0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

P.
C

. 
 IV

 T
er

m
 S

lo
pe

First Principal Component of Equity Implied Volatility Term Slope

Notes to Figure: The top panel plots the slope of the implied volatility term structure from S&P500

index options. The bottom panel plots the �rst principal component of the implied volatility term

structure from options on 29 equities in the Dow.
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Figure 5: Beta and Implied Volatility Across Moneyness. 3-month Equity Options
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Notes to Figure: We plot implied Black-Scholes volatility from model prices. Each line has a

di¤erent beta but the same amount of unconditional total equity variance Vj = �
2
j�I + �j = 0:1. We

set the current spot variance to �2I;t = 0:01 and Vj;t = 0:05, and de�ne the idiosyncratic variance as

the residual �2j;t = Vj;t��2j�2I;t. The market index parameters are �I = 5; �I = 0:04; �I = 0:5; �I =
�0:8; and the individual equity parameters are �j = 1; �j = 0:4; and �j = 0. The risk-free rate is
4% per year and option maturity is 3 months.
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Figure 6: Beta and the Implied Volatility Term Structure. At-the-money Options

0.5 1 1.5 2 2.5 3
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Years

 I
m

pl
ie

d 
V

ol
at

ili
ty

 T
er

m
S

tru
ct

ur
e

 T ermStructure of Implied Volatility

 Beta = 1.4
 Beta = 1.2
 Beta = 1
 Beta = 0.8
 Beta = 0.6

Notes to Figure: We plot implied Black-Scholes volatility from model prices. Each line has a

di¤erent beta but the same amount of unconditional total equity variance Vj = �
2
j�I + �j = 0:1. We

set the current spot variance to �2I;t = 0:01 and Vj;t = 0:05, and de�ne the idiosyncratic variance as

the residual �2j;t = Vj;t��2j�2I;t. The market index parameters are �I = 5; �I = 0:04; �I = 0:5; �I =
�0:8; and the individual equity parameters are �j = 1; �j = 0:4; and �j = 0. The risk-free rate is
4% per year.
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Figure 7.A: Average Market and Model Implied Volatility Smile
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Notes to Figure: We plot the average (across time) implied volatility against moneyness for 15

�rms. The solid black line denotes market IVs and the dashed grey denotes model IVs.
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Figure 7.B: Average Market and Model Implied Volatility Smile (Continued)
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Notes to Figure: We plot the average (across time) implied volatility against moneyness for 14 �rms

and the index. The solid black line denotes market IVs and the dashed grey denotes model IVs.
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Figure 8.A: Market and Model Term Structures of At-The-Money Implied Volatility
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Notes to Figure: The solid black line (left axis) shows the average market IV for days with downward

sloping term structures and vice versa for the grey line (right axis). The dotted lines show the

average model IVs. Moneyness (S=K) is between 0.95 and 1.05.
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Figure 8.B: Market and Model Term Structures of At-The-Money Implied Volatility (Continued)
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Notes to Figure: The solid black line (left axis) shows the average market IV for days with downward

sloping term structures and vice versa for the grey line (right axis). The dotted lines show the

average model IVs. Moneyness (S=K) is between 0.95 and 1.05.
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Figure 9: Implied Volatility Levels, Moneyness Slopes and Absolute Term Structure Slopes

Against Firm Beta
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Notes to Figure: We plot cross-sectional regressions of the average implied volatility (IV) levels

from Figure 2 (top panel), average moneyness slopes from Figure 3 (middle panel), and average

absolute term-structure slope from Figure 4 (bottom panel) against the estimated betas from Table

6.
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Company Ticker Average Average 
All Puts Calls DTM IV

S&P500 Index SPX 393,429 199,756 193,673 91 20.51%
Alcoa AA 60,937 30,683 30,254 116 36.42%
American Express AXP 95,246 47,937 47,309 120 33.65%
Bank of America BAC 85,129 43,159 41,970 128 32.46%
Boeing BA 91,446 45,964 45,482 127 31.28%
Caterpillar CAT 94,211 47,238 46,973 123 33.03%
JP Morgan JPM 100,235 50,627 49,608 125 34.07%
Chevron CVX 91,143 46,069 45,074 130 25.23%
Cisco CSCO 65,032 32,737 32,295 123 40.78%
AT&T T 54,186 28,032 26,154 114 28.54%
Coca Cola KO 84,738 43,114 41,624 130 24.19%
Disney DIS 66,060 33,536 32,524 120 30.83%
Dupont DD 81,191 41,216 39,975 121 28.26%
Exxon Mobil XOM 82,362 41,681 40,681 125 24.54%
General Electric GE 89,313 45,227 44,086 130 28.94%
Hewlett-Packard HPQ 89,046 44,680 44,366 125 37.39%
Home Depot HD 81,683 41,386 40,297 127 32.32%
Intel INTC 75,533 38,081 37,452 123 37.76%
IBM IBM 110,620 55,612 55,008 123 28.94%
Johnson & Johnson JNJ 71,789 36,553 35,236 131 22.90%
McDonald's MCD 80,828 40,899 39,929 126 27.46%
Merck MRK 87,223 44,219 43,004 122 28.43%
Microsoft MSFT 90,038 45,376 44,662 126 32.07%
3M MMM 90,625 45,717 44,908 125 25.37%
Pfizer PFE 79,480 40,450 39,030 128 29.37%
Procter & Gamble PG 86,648 43,961 42,687 129 23.53%
Travellers TRV 43,767 22,225 21,542 119 28.42%
United Technologies UTX 86,063 43,213 42,850 126 27.70%
Verizon VZ 67,948 34,995 32,953 118 27.43%
Walmart WMT 88,431 44,624 43,807 130 27.87%
Average 81,757 41,352 40,405 124 29.97%

Table 1: Companies, Tickers and Option Contracts

Note to Table:  For each firm, we report the total number of options quotes, and the number of puts and 
calls quotes over the sample period 1996-2010. DTM refers to the average number of days-to-maturity 
in the option sample. Finally, IV denotes the average implied volatility in the sample.

Total Number of Quotes



Ticker Avg IV max(IV) min(IV) Avg IV max(IV) min(IV)

SPX 19.6% 82.6% 5.4% 172.00 21.5% 83.5% 5.1% 181.58
AA 35.1% 143.4% 12.4% 8.12 36.7% 142.6% 17.6% 8.07

AXP 34.1% 149.7% 9.3% 12.40 35.3% 143.3% 11.8% 12.38
BAC 29.8% 149.9% 5.1% 11.31 32.5% 149.8% 9.9% 11.44
BA 30.4% 92.3% 11.2% 12.69 31.9% 92.9% 14.8% 12.67

CAT 32.1% 105.7% 14.8% 12.56 34.4% 113.6% 17.1% 12.61
JPM 34.0% 149.4% 6.7% 11.06 36.0% 148.9% 11.6% 11.03
CVX 23.9% 98.0% 7.3% 15.68 27.2% 100.1% 11.6% 15.85
CSCO 41.3% 109.1% 16.1% 9.34 41.2% 111.4% 15.4% 9.19

T 27.1% 100.4% 7.2% 7.05 30.5% 89.7% 9.6% 7.10
KO 22.9% 69.5% 5.2% 10.79 24.9% 70.5% 9.0% 10.85
DIS 30.3% 102.2% 6.7% 8.06 31.1% 105.1% 14.1% 7.94
DD 26.6% 92.2% 7.1% 9.82 29.7% 94.2% 12.6% 9.80

XOM 23.4% 89.1% 5.8% 13.26 25.8% 97.2% 8.2% 13.31
GE 28.8% 147.2% 6.1% 11.51 30.6% 145.1% 7.0% 11.46

HPQ 36.3% 112.6% 11.6% 11.28 37.1% 93.7% 13.9% 11.19
HD 30.9% 98.5% 8.7% 8.55 32.0% 106.4% 11.8% 8.45

INTC 38.6% 92.6% 10.4% 12.06 39.2% 90.6% 15.8% 11.91
IBM 29.2% 87.9% 7.5% 22.08 30.1% 87.5% 12.0% 22.06
JNJ 22.7% 71.3% 5.1% 13.93 24.6% 76.9% 8.7% 13.91

MCD 26.3% 90.5% 7.0% 9.44 28.0% 74.0% 11.0% 9.45
MRK 27.4% 84.7% 10.2% 12.48 29.8% 93.7% 11.7% 12.25
MSFT 33.1% 91.5% 8.3% 13.55 33.6% 93.8% 10.6% 13.32
MMM 24.6% 83.2% 7.4% 17.95 26.7% 84.0% 11.7% 18.04
PFE 29.5% 122.7% 7.5% 10.20 31.3% 74.9% 13.2% 10.01
PG 23.1% 72.2% 5.5% 15.44 24.8% 72.8% 9.2% 15.43

TRV 26.9% 144.5% 6.8% 9.42 29.3% 113.4% 13.1% 9.45
UTX 26.5% 90.3% 8.2% 15.59 28.5% 87.7% 12.3% 15.59
VZ 25.3% 90.9% 6.6% 8.94 29.0% 90.3% 10.6% 8.90

WMT 27.5% 70.6% 10.3% 10.39 28.5% 71.1% 10.5% 10.39
Average 29.2% 103.5% 8.4% 11.89 31.0% 100.5% 11.9% 11.86

Table 2: Summary Statistics on Implied Volatility. 1996-2010

Note: For each firm, we report the average, max, and min of implied volatility. We use Black-Scholes to compute 
implied volatility (IV) for index and equity OTM calls, and we use binomial trees with 200 steps for OTM equity 
puts. Option vega is computed using Black-Scholes.

Out-of-the-money Call Options Out-of-the-money Put Options

Avg Vega Avg Vega



Company 1st Component 2nd Component 3rd Component
Alcoa 15.94% 2.03% -3.27%

American Express 18.64% -11.47% -38.33%
Bank of America 13.96% -12.21% 17.16%

Boeing 16.82% 4.37% 3.29%
Caterpillar 11.05% 5.71% -16.51%
JP Morgan 22.73% 11.71% 10.81%
Chevron 11.06% -14.96% 10.02%

Cisco 10.52% -10.99% -19.08%
AT&T 19.83% -17.64% 16.85%

Coca Cola 19.71% 5.32% -37.52%
Disney 16.22% -5.08% -8.90%
Dupont 20.22% -24.74% -2.46%

Exxon Mobil 17.37% -18.92% 14.54%
General Electric 12.74% 5.17% -3.83%
Hewlett-Packard 15.97% -18.33% 4.55%

Home Depot 28.45% 23.67% 6.34%
Intel 16.46% 13.14% 2.25%
IBM 11.63% 10.68% -15.26%

Johnson & Johnson 13.50% -2.26% 1.65%
McDonald's 12.68% -4.94% 13.26%

Merck 27.54% 13.73% -8.70%
Microsoft 20.09% -4.49% -15.39%

3M 13.34% -10.25% 17.10%
Pfizer 16.60% -10.72% -31.93%

Procter & Gamble 18.17% -29.66% 4.79%
Travellers 18.45% -4.96% -16.26%

United Technologies 32.51% 48.09% 44.50%
Verizon 21.91% 33.68% -17.21%
Walmart 22.27% -42.74% 26.29%

Average 17.81% -2.31% -1.42%
Min 10.52% -42.74% -38.33%
Max 32.51% 48.09% 44.50%

Variation Captured 77.18% 12.54% 2.60%

90.99% 18.88% -3.77%

Table 3: Principal Component Analysis of Short-Term Implied Equity Volatility.
Component Loadings and Properties

Note to Table: This table present the loading of each individual company short term IV on the first three 
principal components. The estimates are obtained by regressing each individual equity short-term ATM 
implied volatility proxy on the components obtained from the PCA. We also report the Average, Min and 
Max of component loadings across firms. Finally we report the total cross sectional variation captured by 
each of the first three components as well as their correlation with the S&P500 short-term IV.

Correlation with S&P500    Short-
Term Implied Volatility



Company 1st Component 2nd Component 3rd Component
Alcoa 16.65% -5.25% -0.48%

American Express 20.23% 0.97% 11.69%
Bank of America 14.37% 12.08% -2.79%

Boeing 21.65% -2.60% -1.50%
Caterpillar 18.70% 4.03% 5.61%
JP Morgan 18.54% 35.83% -0.38%
Chevron 17.35% 18.07% -25.79%

Cisco 16.77% -10.17% 15.16%
AT&T 16.62% 18.01% -2.49%

Coca Cola 17.83% -46.43% 43.74%
Disney 22.70% -19.13% 0.27%
Dupont 14.95% 12.40% -2.45%

Exxon Mobil 20.12% 10.96% -6.05%
General Electric 16.10% 6.91% -4.98%
Hewlett-Packard 20.76% 0.91% -8.29%

Home Depot 22.74% -5.49% 13.79%
Intel 21.38% -10.87% 3.43%
IBM 21.02% -7.33% 8.34%

Johnson & Johnson 22.19% -3.73% -10.99%
McDonald's 16.11% 11.05% -28.18%

Merck 22.45% -8.78% 5.36%
Microsoft 18.69% -10.37% 2.72%

3M 24.19% 8.91% -13.98%
Pfizer 19.54% 1.59% -9.66%

Procter & Gamble 11.02% -2.23% 28.74%
Travellers 14.28% -0.75% 24.32%

United Technologies 20.37% -4.21% -15.17%
Verizon 13.44% -10.80% -37.09%
Walmart 4.98% 64.62% 48.35%

Average 18.13% 2.01% 1.42%
Min 4.98% -46.43% -37.09%
Max 24.19% 64.62% 48.35%

Variation Captured 49.37% 7.81% 5.18%

41.91% 14.43% 31.56%

Table 4: Principal Component Analysis of Equity IV Moneyness Slope.
Component Loadings and Properties

Note to Table: For the first three principal components of implied volatility (IV) moneyness slope we report 
the loadings of each firm as well as the average, min and max loading across firms. The time series of 
moneyness slopes are obtained by regressing equity IV on moneyness for each firm on each day. We also 
report the total cross sectional variation captured by each of the first three components as well as their 
correlation with the S&P500 moneyness slope.

Correlation with S&P500 
Moneyness Slope



Company 1st Component 2nd Component 3rd Component
Alcoa 19.39% -5.13% -2.11%

American Express 19.26% -10.78% -17.93%
Bank of America 13.02% -5.91% -7.60%

Boeing 15.52% 6.64% -14.32%
Caterpillar 14.55% 0.15% -23.64%
JP Morgan 16.71% 15.03% 23.64%
Chevron 11.86% -4.88% -16.01%

Cisco 12.23% -4.90% -17.69%
AT&T 21.86% -17.35% 4.73%

Coca Cola 19.22% 6.33% -25.05%
Disney 18.03% 3.47% -17.29%
Dupont 20.00% -13.30% 17.03%

Exxon Mobil 21.22% -15.33% 6.49%
General Electric 16.04% -1.51% -14.69%
Hewlett-Packard 13.20% -3.77% -15.62%

Home Depot 25.71% 27.29% 6.95%
Intel 18.18% 11.32% -12.41%
IBM 13.72% 1.89% -25.94%

Johnson & Johnson 15.98% -1.76% -2.11%
McDonald's 12.18% 0.07% -14.92%

Merck 24.57% 32.51% 15.59%
Microsoft 18.82% -8.37% -7.85%

3M 13.62% -6.28% -7.58%
Pfizer 15.62% -3.26% -15.54%

Procter & Gamble 23.30% -41.14% 7.09%
Travellers 20.16% 1.09% -2.64%

United Technologies 23.43% 49.06% 36.20%
Verizon 18.00% 30.19% -2.95%
Walmart 28.55% -40.68% 53.86%

Average 18.07% 0.02% -3.18%
Min 11.86% -41.14% -25.94%
Max 28.55% 49.06% 53.86%

Variation Captured 56.61% 9.24% 5.20%

74.26% 16.27% -5.81%

Table 5: Principal Component Analysis of Equity IV Term Structure Slope.
Component Loadings and Properties

Note to Table: For the first three principal components of implied volatility (IV) term structure slope we 
report the loadings of each firm as well as the average, min and max loading across firms. The time series of 
tem structure slopes are obtained by regressing equity IV on maturity for each firm on each day. We also 
report the total cross sectional variation captured by each of the first three components as well as their 
correlation with the S&P500 term structure slope.

Correlation with S&P500     
Term Structure Slope



Average Total Systematic
Ticker Kappa Theta Delta Rho Beta  Spot Volatility Risk Ratio

SPX 1.24 0.0542 0.366 -0.860 21.74%
AA 0.98 0.0207 0.202 -0.659 1.17 41.06% 38.28%

AXP 0.73 0.0229 0.182 -0.801 1.23 39.16% 46.62%
BAC 0.76 0.0147 0.150 -0.775 1.06 40.76% 32.07%
BA 0.99 0.0508 0.317 -0.747 1.00 33.31% 42.37%

CAT 1.10 0.0329 0.269 -0.814 1.16 35.43% 50.84%
JPM 0.80 0.0184 0.172 -0.914 1.30 38.97% 52.27%
CVX 0.53 0.0357 0.195 -0.829 0.98 26.25% 66.13%
CSCO 0.97 0.0887 0.414 -0.943 1.13 44.95% 29.89%

T 0.75 0.0350 0.229 -0.909 0.98 30.36% 48.87%
KO 1.00 0.0340 0.260 -0.824 0.76 25.61% 41.43%
DIS 1.04 0.0319 0.257 -0.482 1.06 33.48% 47.41%
DD 1.06 0.0341 0.268 -0.907 0.98 30.20% 49.32%

XOM 1.18 0.0180 0.206 -0.800 0.98 25.79% 68.31%
GE 0.62 0.0093 0.107 -0.843 1.16 32.78% 58.78%

HPQ 1.44 0.0660 0.436 -0.697 1.03 41.11% 29.91%
HD 1.01 0.0264 0.231 -0.808 1.16 35.40% 50.93%

INTC 1.16 0.0533 0.350 -0.738 1.13 41.60% 34.58%
IBM 1.46 0.0235 0.262 -0.691 0.95 32.15% 41.60%
JNJ 1.05 0.0356 0.273 -0.822 0.70 23.81% 41.39%

MCD 1.31 0.0518 0.369 -0.774 0.79 28.54% 36.31%
MRK 1.71 0.0443 0.390 -0.846 0.93 29.95% 45.50%
MSFT 1.02 0.0240 0.217 -0.978 1.08 35.03% 44.60%
MMM 1.53 0.0248 0.275 -0.798 0.90 26.98% 52.71%
PFE 0.88 0.0601 0.326 -0.848 0.89 30.41% 40.28%
PG 0.95 0.0341 0.255 -0.787 0.77 24.55% 46.58%

TRV 0.84 0.0331 0.236 -0.823 0.90 31.38% 39.28%
UTX 1.22 0.0351 0.293 -0.764 0.91 29.74% 44.08%
VZ 1.04 0.0497 0.322 -0.876 0.90 29.00% 45.40%

WMT 0.59 0.0550 0.254 -0.727 0.82 29.38% 36.75%
Average 1.02 0.0367 0.27 -0.80 0.99 32.66% 44.91%

Note to Table: We use option data from 1996 to 2010 to estimate risk-neutral parameter values for 
the market index as well as the 29 individual equities. The individual equity parameters are estimated 
taking the market index parameter values as given. The last two columns report the average spot 
volatility through the sample and the proportion of total variance accounted for by the systematic 
market risk factor.

Table 6: Model Parameters and Properties. Index and Equity Options



Calls Puts Short Term Long Term
Vega IVRMSE / OTM OTM ATM ATM

Ticker RMSE IVRMSE Average IV IVRMSE IVRMSE IVRMSE IVRMSE

SPX 1.90% 2.01% 9.79% 1.87% 2.14% 1.52% 1.91%
AA 1.82% 1.82% 5.01% 1.80% 1.85% 1.67% 1.70%

AXP 1.90% 1.91% 5.67% 1.86% 1.96% 1.59% 1.76%
BAC 2.39% 2.40% 7.40% 2.37% 2.43% 2.19% 1.95%
BA 1.65% 1.66% 5.30% 1.58% 1.73% 1.55% 1.47%

CAT 1.86% 1.87% 5.66% 1.82% 1.92% 1.78% 1.56%
JPM 2.36% 2.37% 6.95% 2.25% 2.49% 2.08% 2.01%
CVX 1.81% 1.81% 7.18% 1.82% 1.80% 1.85% 1.64%
CSCO 1.91% 1.91% 4.70% 1.93% 1.90% 1.75% 1.92%

T 2.31% 2.33% 8.15% 2.31% 2.35% 2.29% 2.09%
KO 1.41% 1.41% 5.83% 1.38% 1.44% 1.37% 1.27%
DIS 1.57% 1.57% 5.11% 1.46% 1.69% 1.43% 1.42%
DD 1.90% 1.91% 6.76% 1.80% 2.02% 1.84% 1.73%

XOM 1.55% 1.55% 6.33% 1.59% 1.51% 1.49% 1.54%
GE 2.02% 2.03% 7.01% 1.92% 2.14% 1.96% 1.51%

HPQ 1.66% 1.66% 4.45% 1.64% 1.69% 1.62% 1.47%
HD 1.69% 1.69% 5.24% 1.65% 1.74% 1.59% 1.53%

INTC 1.56% 1.56% 4.14% 1.56% 1.57% 1.47% 1.49%
IBM 1.63% 1.63% 5.63% 1.58% 1.69% 1.45% 1.57%
JNJ 1.48% 1.49% 6.52% 1.46% 1.53% 1.35% 1.21%

MCD 1.64% 1.65% 6.01% 1.62% 1.68% 1.64% 1.30%
MRK 1.70% 1.70% 5.99% 1.67% 1.74% 1.75% 1.54%
MSFT 1.73% 1.72% 5.38% 1.69% 1.76% 1.59% 1.75%
MMM 1.54% 1.54% 6.09% 1.49% 1.60% 1.41% 1.39%
PFE 1.60% 1.60% 5.46% 1.59% 1.62% 1.52% 1.36%
PG 1.60% 1.60% 6.82% 1.54% 1.67% 1.38% 1.39%

TRV 1.96% 1.96% 6.91% 1.96% 1.97% 1.76% 1.93%
UTX 1.57% 1.57% 5.69% 1.54% 1.62% 1.54% 1.51%
VZ 2.05% 2.07% 7.55% 2.03% 2.11% 2.05% 1.87%

WMT 1.45% 1.45% 5.22% 1.42% 1.49% 1.38% 1.16%
Average 1.77% 1.78% 6.00% 1.74% 1.82% 1.67% 1.59%

All Contracts

Note to Table: For the S&P500 index and for each firm we compute the implied volatility root mean squared 
error (IVRMSE) along with the vega-based approximation used in estimation and IVRMSE divided by the 
average market IV from Table 1. We also report IVRMSE for out-of-the-money (OTM) call and put options 
separately. Finally, we report IVRMSE for at-the-money (ATM) short term and long term options. At the 
money is defined by 0.975<S/K<1.025 and short (and long) term are defined as less than (more than) six 
months to maturity.

Table 7: Model Fit. Index and Equity Options


