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Abstract

We propose a tractable framework for quantifying the impact of fire sales on the
volatility and correlations of asset returns in a multi-asset setting. Our results enable
to quantify the impact of fire sales on the covariance structure of asset returns and
provide a quantitative explanation for spikes in volatility and correlations observed
during liquidation of large portfolios. These results allow to test for the presence of
fire sales during a given period of time and to estimate the impact and magnitude
of fire sales from observation of market prices: we give conditions for the identifi-
ability of model parameters from time series of asset prices, propose an estimator
for the magnitude of fire sales in each asset class and study the consistency and
large sample properties of the estimator. We illustrate our estimation methodology
with two empirical examples: the hedge fund losses of August 2007 and the Great
Deleveraging following the default of Lehman Brothers in Fall 2008.
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1 Introduction

Fire sales or, more generally, the sudden deleveraging of large financial portfolios, have
been recognized as a destabilizing factor in recent (and not-so-recent) financial crises,
contributing to unexpected spikes in volatility and correlations of asset returns and re-
sulting in spirals of losses for investors (Carlson, 2006; Brunnermeier, 2008; Khandani and Lo,
2011). In particular, unexpected increases in correlations across asset classes have fre-
quently occurred during market downturns (Cont and Wagalath, 2012; Bailey et al.,
2012), leading to a loss of diversification benefits for investors, precisely when such
benefits were desirable.

For instance, during the first week of August 2007, when a large fund manager
deleveraged his/her positions in long-short market neutral equity strategies, other long-
short market neutral equity funds experienced huge losses, while in the meantime, in-
dex funds were left unaffected (Khandani and Lo, 2011). On a larger scale, the Great
Deleveraging of financial institutions’ portfolios subsequent to the default of Lehman
Brothers in fall 2008 led to an unprecedented peak in correlations across asset returns
(Fratzscher, 2011).

The importance of fire sales as a factor of market instability is recognized in the
economic literature. Shleifer and Vishny (1992, 2011) characterize an asset fire sale by a
financial institution as a forced sale in which potential high valuation buyers are affected
by the same shocks as the financial institution, resulting in a sale of the asset at a dis-
counted price to non specialist buyers. They underline the fact that in the presence of fire
sales, losses by financial institutions with overlapping holdings become self-reinforcing,
leading to downward spirals for asset prices and, ultimately, to systemic risk. Pedersen
(2009) describes qualitatively the effects of investors running for the exit and the spi-
rals of losses and spillover effects they generate. Shin (2010) and Ozdenoren and Yuan
(2008) propose equilibrium models which takes into account the supply and demand gen-
erated by investors reacting to a price move and show how feedback effects contribute to
the amplification of volatility and market instability. Boyer et al. (2006) emphasize the
role of institutional investors in price-mediated contagion, suggesting that crisis spread
through the asset holdings of international investors rather than through changes in fun-
damentals. Brunnermeier (2008) describes the channel through which losses in mortgage
backed securities during the recent financial crisis led to huge losses in equity markets,
although those two assets classes had been historically uncorrelated.

The empirical link between fire sales and increase in correlation across asset returns
has been documented in several recent studies. Coval and Stafford (2007) give empirical
evidence for fire sales by open-end mutual funds by studying the transactions caused
by capital flows. They show that funds in distress experience outflows of capital by
investors which result in fire sales in existing positions, creating a price pressure in the
securities held in common by distressed funds. Jotikasthira et al. (2011) lead an em-
pirical investigation on the effects of fund flows from developed countries to emerging
markets. They show that such investment flows generate forced trading by fund man-
agers, affecting asset prices and correlations between emerging markets and creating a
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new channel through which shocks are transmitted from developed markets to emerg-
ing markets. Anton and Polk (2008) find empirically that common active mutual fund
ownership predicts cross-sectional variation in return realized covariance.

However, although the empirical examples cited above are related to liquidation of
large portfolios, most theoretical studies focus for simplicity on fire sales in a single
asset market and thus are not able to investigate the effect of fire sales on asset return
correlations and the resulting limits to diversification alluded to above.

Kyle and Xiong (2001) propose an equilibrium model, which takes into account the
supply and demand of three categories of traders: noise traders, long-term investors and
convergence traders, in a market with two risky assets and find that convergence traders,
who are assumed to trade using a logarithmic utility function, can react to a price shock
in one asset by deleveraging their positions in both markets, leading to contagion effects.
Greenwood and Thesmar (2011) propose a simple framework for modeling price dynam-
ics which takes into account the ownership structure of financial assets, considered as
given exogenously. Cont and Wagalath (2012) model the systematic supply and demand
generated by investors exiting a large distressed fund and quantify its impact on asset
returns.

We propose here a tractable framework for modeling and estimating the impact of fire
sales in multiple funds on the volatility and correlations of asset returns in a multi-asset
setting. We explore the mathematical properties of the model in the continuous-time
limit and derive analytical results relating the realized covariance of asset returns to the
parameters describing the volume of fire sales. In particular, we show that, starting from
homoscedastic inputs, feedback effects from fire sales naturally generate heteroscedastic-
ity in the covariance structure of asset returns, thus providing an economic interpretation
for various multivariate models of heteroscedasticity in the recent literature (Engle, 2002;
Da Fonseca et al., 2008; Gouriéroux et al., 2009; Stelzer, 2010). Our results allow for a
structural explanation for the variability observed in measures of cross sectional depen-
dence in asset returns (Bailey et al., 2012), by linking such increases in cross-sectional
correlation to the deleveraging of large portfolios.

The analytically tractable nature of these results allows to explore in detail the
problem of estimating these parameters from empirical observations of price series; we
explore the corresponding identification problem and propose a method for estimating
the magnitude of distressed selling in each asset class, and study the consistency and
large sample properties of the proposed estimator. These results provide a quantitative
framework for the ’forensics analysis’ of the impact of fire sales and distressed selling,
which we illustrate with two empirical examples: the August 2007 hedge fund losses and
the Great Deleveraging of bank portfolios following the default of Lehman Brothers in
September 2008.

Our framework links large shifts in the realized covariance structure of asset returns
with the liquidation of large portfolios, in a framework versatile enough to be amenable
to empirical data. This provides a toolbox for risk managers and regulators in view
of investigating unusual market events and their impact on the risk of portfolios in a
systematic way, moving a step in the direction proposed by Fielding et al. (2011), who
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underlined the importance of systematically investigating all ’systemic risk’ events in
financial markets, as done by the National Transportation Safety Board for major civil
transportation accidents.

Outline This paper is organized as follows. Section 2 presents a simple framework for
modeling the impact of fire sales in various funds on asset returns. Section 3 resolves
the question of the identification and estimation of the model parameters, characterizing
the fire sales. Section 4 displays the results of our estimation procedure on liquidations
occurring after the collapse of Lehman Brothers while Section 5 is focused on the study
of the positions liquidated during the first week of August 2007.

2 Fire sales and endogenous risk

2.1 Impact of fire sales on price dynamics: a multiperiod model

Consider a financial market where n assets/financial strategies are traded at discrete
dates tk = k

N , multiples of a time step 1
N ( taken to be a trading day in the empirical

examples: N = 250). The value of asset/financial strategy i at date tk is denoted Si
k.

We consider J institutional investors trading in these assets: fund j initially holds
αj
i units of asset i. The value of this (benchmark) portfolio at date tk is denoted

V j
k =

n∑

i=1

αj
iS

i
k (1)

The impact of (exogenous) economic factors (’fundamentals’) on prices is modeled
through an IID sequence (ξk)k≥1 of Rn-valued centered random variables such that, in
the absence of fire sales, the return of asset i during period [tk, tk+1] is given by

exp

(
1

N

(
mi −

Σi,i

2

)
+

√
1

N
ξik+1

)
− 1

Here mi represents the expected return of asset i in the absence of fire sales and the
’fundamental’ covariance matrix Σ, defined by

Σi,j = cov(ξik, ξ
j
k)

represents the covariance structure of returns in the absence of large systematic trades
by institutional investors.

Typically, over short time horizons of a few days, institutional investors do not alter
their portfolio allocations. However, the occurrence of large losses typically leads the
fund to sell off part of its assets (Coval and Stafford, 2007; Jotikasthira et al., 2011;
Shleifer and Vishny, 2011). Such distressed selling may be triggered endogenously by� capital requirements set by regulators or target leverage ratios set by fund man-

agers, which lead financial institutions to deleverage their portfolios when faced
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with trading losses (Danielsson et al., 2004; Greenwood and Thesmar, 2011). Con-
sider the simple example of a fund whose maximal leverage ratio is 12. Initially
this fund possesses $10 million of equity and borrows $90 million to build a port-
folio of assets worth $100 million. The initial leverage of this fund is hence equal
to Assets

Assets−Debt =
100

100−90 = 10 < 12.
A decline of d (expressed in percent) in the value of the assets held by the fund

modifies the fund’s leverage to a value of 100×(1−d)
100×(1−d)−90 . As a consequence, a decline

in asset value of more than 1.8% leads to a spike in the fund’s leverage ratio above
the maximum leverage ratio of 12. In order to maintain such maximum leverage
ratio, the fund can either raise equity (which can be costly, especially at a time
when its portfolio value is decreasing) or, most likely, engage in fire sales. The
diagram below illustrates such endogenous mechanism for distressed selling when
asset value drops by 5%, leading to liquidation of $35 million of assets. On the
contrary, as long as the drop in asset value is lower than 1.8%, the leverage of the
fund remains below 12 and there is no distressed selling.

Note that this mechanism is asymmetric with respect to losses/gains: large losses trigger
fire sales, but large gains do not necessarily result in massive buying. Once the capi-
tal requirement constraints or leverage constraints are not binding, they may cease to
influence the fund managers’ actions in a decisive manner.

Debt
(90)

Equity
(10)

Assets
(100)

Leverage = 10 < 12

Debt
(90)

Equity (5)

Assets
(95)

Leverage = 95
5 > 12

Liquidation of
$35 million
of assets

Asset value
drops by 5%

Leverage
too large

Fire sales may be also due to:� investors redeeming (or expanding) their positions depending on the performance of
the funds, causing inflows and outflows of capital. This mechanism is described by
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Coval and Stafford (2007), who show empirically that funds in distress experience
outflows of capital by investors and explain that, as the ability of borrowing is
reduced for distressed funds and regulation and self-imposed constraints prevent
them from short-selling other securities, such outflows of capital result in fire sales
in existing positions.� rule based strategies –such as portfolio insurance– which result in selling when a
fund underperforms (Gennotte and Leland, 1990),� sale of assets held as collateral by creditors of distressed funds (Shleifer and Vishny,
2011).

The impact of fire sales may also be exacerbated by short-selling and predatory
trading: Brunnermeier and Pedersen (2005) show that, in the presence of fire sales in a
distressed fund, the mean-variance optimal strategy for other investors is to short-sell
the assets held by the distressed fund and buy them back after the period of distress. A
common feature of these mechanisms is that they react to a (negative) change in fund
value.

Here we do not attempt to model each of these mechanisms in detail but focus in-
stead on their aggregate effect. This aggregate effect may be modeled in a parsimonious
manner by introducing a deleveraging schedule, represented by a function fj which mea-
sures the systematic supply/demand generated by the fund j as a function of the fund’s
return: when, due to market shocks, the value of the portfolio j moves over [tk, tk+1]
from V j

k to
n∑

l=1

αj
lS

l
k exp (

1

N
(ml −

Σl,l

2
) +

√
1

N
ξlk+1)

a portion

fj

(
V j
k

V j
0

)
− fj

(
1

V j
0

n∑

l=1

αj
lS

l
k exp

(
1

N
(ml −

Σl,l

2
) +

√
1

N
ξlk+1

))
(2)

of fund j is liquidated between tk and tk+1, proportionally in each asset detained by the
fund.

As shown in the previous example and by Jotikasthira et al. (2011), negative returns
for a fund lead to outflows of capital from this fund: this implies that fj is an increasing
function. Fire sales occur when a fund underperforms significantly and its value goes
below a threshold and it ends when the fund is entirely liquidated: as a consequence, we
choose fj to be constant for small and large values of its argument (i.e. constant outside

an interval [βliq
j , βj ]) with βj < 1. Furthermore, we choose fj to be concave, capturing

the fact that fire sales accelerate as the fund exhibits larger losses. Figure 1 displays
an example of such a deleveraging schedule fj. As long as fund j’s value remains above

βjV
j
0 , the portion liquidated, given in (2), is equal to zero, as fj is constant on [βj ,+∞[:

there are no fire sales. A drop in fund value below that threshold generates fire sales of
a portion of fund j, described in (2).
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Figure 1: Example of a deleveraging schedule fj

When the trades are sizable with respect to the average trading volume, the sup-
ply/demand generated by this deleveraging strategy impacts asset prices. We introduce,
for each asset i, a price impact function φi(.) which captures this effect: the impact of
buying v shares (where v < 0 represents a sale) on the return of asset i is φi(v). We
assume that φi : R 7→ R is increasing and φi(0) = 0.

The impact of fire sales on the return of asset i is then equal to

φi




J∑

j=1

αj
i

(
fj(

1

V j
0

n∑

l=1

αj
lS

l
k exp (

1

N
(ml −

Σl,l

2
) +

√
1

N
ξlk+1))− fj(

V j
k

V j
0

)

)


The price dynamics can be summed up as follows:

Si
k Si

k exp
(

1
N (mi − Σi,i

2 ) +
√

1
N ξik+1

)
Si
k+1

exogenous

factors (ξk+1)

fire sales

Si
k+1 = Si

k exp

(
1

N

(
mi −

Σi,i

2

)
+

√
1

N
ξik+1

)
×


1 + φi




J∑

j=1

αj
i

(
fj(

1

V j
0

n∑

l=1

αj
lS

l
k exp (

1

N
(ml −

Σl,l

2
) +

√
1

N
ξlk+1))− fj(

V j
k

V j
0

)

)


 (3)

where V j
k is the benchmark portfolio value of fund j at date tk, defined in (1).

At each period, the return of asset i can be decomposed into a fundamental com-
ponent, which is independant from the past, and an endogenous component due to the
impact of fire sales. Note that when there are no fire sales, this endogenous term is equal
to zero and the return of asset i is equal to its fundamental return.
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Assumption 2.1 S0 ∈
(
R
∗
+

)n
and min

1≤i≤n
φi


−2

n∑

j=1

|αj
i | × ‖fj‖∞


 > −1.

Proposition 2.2 Under Assumption 2.1, (1)–(3) define a price dynamics S which is a
discrete-time Markov process in

(
R
∗
+

)n
.

Proof Equations (1) and (3) show that Sk+1 depends only on its value at tk and on
ξk+1, which is independent of events previous to tk. The price vector S is thus a discrete-

time Markov process. Furthermore, when min
1≤i≤n

φi


−2

n∑

j=1

|αj
i | × ‖fj‖∞


 > −1, the

endogenous price impact due to fire sales, is strictly larger than -1, which ensures that
the Markov process stays in

(
R
∗
+

)n
.

This multiperiod model exhibits interesting properties: in particular, as shown in
(Cont and Wagalath, 2012), the presence of distressed selling induces an endogenous,
heteroscedastic component in the covariance structure of returns, which leads to path-
dependent realized correlations, even in the absence of any heteroscedasticity in the
fundamentals.

Figure 2 shows an example of such endogenous correlations: we simulated 106 price
trajectories of this multiperiod model with the parameters used in (Cont and Wagalath,
2012, Section 3) and for each trajectory, we computed the realized correlation between
all pairs of assets. We find that even in the case where the exogenous shocks driving the
asset values are independent (i.e. the ’fundamental’ covariance matrix Σ is diagonal), the
presence of distressed selling leads to significant realized correlations, thereby increasing
the volatility experienced by investors holding the fund during episodes of fire sales. This
phenomenon may substantially decrease the benefits of diversification.

Our goal is to explore such effects systematically and propose a method for estimating
their impact on price dynamics.

2.2 Continuous-time limit

The multiperiod model described above is rather cumbersome to study directly; in the
sequel we focus on its continuous-time limit, which is analytically tractable and more
easily related to commonly used diffusion models for price dynamics. This will allow us
to compute realized covariances between asset returns in the presence of feedback effects
from distressed selling.

For two n-dimensional vectors x and y, we denote x.y =
∑

1≤i≤n

xiyi the scalar product

between vectors x and y. For M ∈ Mn(R), M
t is the transpose of matrix M. Sn(R) (resp.

S+
n (R)) denotes the set of real-valued symmetric matrices (resp. real-valued symmetric

positive semi-definite matrices). For a sequence X(N) of random variables indexed by
integers N , we denote the fact that X(N) converges in law (resp. in probability) to X
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Figure 2: Distribution of realized correlation between two securities in the presence of
distressed selling (case of zero fundamental correlation)

when N goes to infinity by X(N) ⇒
N→∞

X (resp. X(N) P→
N→∞

X). For (a, b) ∈ R
2, we

denote a ∧ b = min(a, b).
In order to study the continuous-time limit of the multiperiod model described in

the previous section, we make the following assumption.

Assumption 2.3 For i = 1..n, j = 1..J,

φi ∈ C3(R) , fj ∈ C3
0(R) and αj

i ≥ 0

∃η > 0,E(‖ exp(ηξ)‖) < ∞ and E(‖ξ‖η+4) < ∞
where Cp

0(R) denotes the set of real-valued, p-times continuously differentiable maps
whose first derivative has compact support.

Note that if fj ∈ Cp
0(R), all its derivatives of order 1 ≤ l ≤ p have compact support.

In particular fj is constant for large values and very small values of its argument. This
assumption has a natural interpretation in our context: fire sales occur when funds
underperform, i.e. when the value of the fund relative to a benchmark falls below a
threshold, and cease when the fund defaults, i.e. when the value of the fund relative to
the benchmark decreases below a default threshold.

Theorem 2.4 Under Assumptions 2.1 and 2.3, the process (S⌊Nt⌋)t≥0 converges weakly
on the Skorokhod space D([0,∞[,Rn), as N → ∞, to a diffusion process (Pt)t≥0 solution
of the stochastic differential equation

dP i
t

P i
t

= µi(Pt)dt+ (σ(Pt)dWt)i 1 ≤ i ≤ n (4)
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where µ (resp., σ) is a R
n-valued (resp. matrix-valued) mapping defined by

σi,k(Pt) = Ai,k + φ′
i(0)

J∑

j=1

αj
if

′

j(
V j
t

V j
0

)

(
Aπj

t

)
k

V j
0

(5)

µi(Pt) = mi +
φ′
i(0)

2

J∑

j=1

αj
i

(V j
0 )

2
f ′′
j (

V j
t

V j
0

)πj
t .Σπ

j
t (6)

+

J∑

j=1

φ′
i(0)

αj
i

V j
0

f ′
j(
V j
t

V j
0

)
(
πj
t .m+ (Σπj

t )i

)
+

φ′′
i (0)

2

J∑

j,r=1

αj
iα

r
i

V j
0 V

r
0

f ′
j(
V j
t

V j
0

)f ′
r(
V r
t

V r
0

)πj
t .Σπ

r
t

Here Wt is an n-dimensional Brownian motion, πj
t =




αj
1P

1
t

...

αj
nPn

t


 is the (dollar) al-

location of fund j, V j
t =

n∑

k=1

αj
kP

k
t is the value of fund j, mi = mi − Σi,i

2 and A is a

square-root of the fundamental covariance matrix: AAt = Σ.

The proof of this Theorem is given in Appendix 6.1.

Remark 2.5 The limit price process that we exhibit in Theorem 2.4 depends on the
price impact functions only through their first and second derivatives in 0, φ′

i(0) and
φ′′
i (0). In particular, the expression of σ in (5) shows that realized volatilities and realized

correlations of asset returns depend only on the slope φ′
i(0) of the price impact function.

As a consequence, under our assumptions, a linear price impact function would lead to
the same realized covariance structure for asset returns in the continuous-time limit.

In the remainder of this paper, which is dedicated to the study of the impact of fire sales
on the covariance structure of asset returns, we hence use the assumption of linear price
impact: Di =

1
φ′
i(0)

then corresponds to the market depth for asset i and is interpreted

as the number of shares an investor has to buy in order to increase the price of asset i
by 1%.

Corollary 2.6 (Case of linear price impact) When φi(x) =
x
Di

, the drift and volatil-
ity of the stochastic differential equation (4) verified by the continuous-time price process
are:

σi,k(Pt) = Ai,k +
1

Di

∑

1≤j≤J

αj
if

′

j(
V j
t

V j
0

)

(
Aπj

t

)
k

V j
0

(7)

µi(Pt) = mi +
1

Di

J∑

j=1

(
αj
i

2(V j
0 )

2
f ′′
j (

V j
t

V j
0

)πj
t .Σπ

j
t +

αj
i

V j
0

f ′
j(
V j
t

V j
0

)
(
πj
t .m+ (Σπj

t )i

))
(8)

where Wt, π
j
t , V

j
t , m and A are defined in Theorem 2.4.
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When market depths are infinite, the price dynamics follows a multivariate exponen-
tial Brownian motion. In the presence of fire sales by distressed sellers, the fundamental
dynamics of the assets is modified.

2.3 Realized covariance in the presence of fire sales

The realized covariance (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004)
between dates t1 and t2 computed on a time grid with step 1

N is defined as

Ĉ
(N)
[t1,t2]

=
1

t2 − t1
([X,X]

(N)
t2 − [X,X]

(N)
t1 ) (9)

whereX is the log price process defined byXi
t = lnP i

t and [X,X]
(N)
t =

(
[Xi,Xk]

(N)
t

)
1≤i,k≤n

with
[Xi,Xk]

(N)
t =

∑

1≤l≤⌊tN⌋

(Xi
l/N −Xi

(l−1)/N )(Xk
l/N −Xk

(l−1)/N ) (10)

As N goes to infinity, the process
(
[X,X]

(N)
t

)
t≥0

converges in probability on the Sko-

rokhod space D([0,∞[,Rn) to an increasing, S+
n (R)-valued process ([X,X]t)t≥0, the

quadratic covariation of X (Jacod and Protter, 2012, Theorem 3.3.1). We define the
S+
n (R)-valued process c = (ct)t≥0, which corresponds intuitively to the ’instantaneous

covariance’ of returns, as the derivative of the quadratic covariation process. The realized
covariance matrix of returns between t1 and t2 is denoted C[t1,t2].

[X,X]t =

∫ t

0
csds C[t1,t2] =

1

t2 − t1

∫ t2

t1

ct dt (11)

Theorem 2.6 allows to compute the realized covariance matrix for the n assets.

Proposition 2.7 The instantaneous covariance matrix of returns, ct, defined in (11),
is given by:

ct = Σ+

J∑

j=1

[
1

V j
0

f
′

j(
V j
t

V j
0

)
(
Λj(π

j
t )

tΣ+ Σπj
tΛ

t
j

)]
+

J∑

j,k=1

πj
t .Σπ

k
t

V j
0 V

k
0

f
′

j(
V j
t

V j
0

)f
′

k(
V k
t

V k
0

)ΛjΛ
t
k

where

πj
t =




αj
1P

1
t

...

αj
nPn

t


 denotes the (dollar) holdings of fund j and Λj =




αj
1

D1

...
αj
n

Dn


 rep-

resents the positions of fund j in each market as a fraction of the respective market
depth.

Fire sales impact realized covariances between assets. In the presence of fire sales,
realized covariance is the sum of the fundamental covariance matrix Σ and an excess
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realized covariance which is liquidity-dependent and path-dependent. The magnitude
of this endogenous impact is measured by the vectors Λj , which represent the positions
of each fund as a fraction of asset market depths. The volume generated by fire sales
in fund j on each asset i is equal to αj

i × f ′
j and its impact on the return of asset i is

equal to
αj
i

Di
× f ′

j. This impact can be significant even if the asset is very liquid, when
the positions liquidated are large enough compared to the asset’s market depth. Thus,
even starting with homoscedastic inputs, fire sales naturally lead to endogenous patterns
of heteroscedasticity in the covariance structure of asset returns –in particular spikes or
plateaux of high correlation during liquidation periods– similar to those observed in
empirical data.

More precisely, we observe that the excess realized covariance terms due to fire sales
contain a term of order one in ‖Λ‖ plus higher order terms:

ct = Σ+
J∑

j=1

[
1

V j
0

f
′

j

(
V j
t

V j
0

)(
Λj(π

j
t )

tΣ+Σπj
tΛ

t
j

)]
+O(‖Λ‖2) (12)

where
Λ = (Λ1, ...,ΛJ ) ∈ Mn×J(R) (13)

where Λj is defined in Proposition 2.7 and O(‖Λ‖2)
‖Λ‖2

is bounded as ‖Λ‖ → 0. This result is

due to the fact that under Assumption 2.3, the second order terms
πj
t .Σπk

t

V j
0
V k
0

f
′

j(
V j
t

V j
0

)f
′

k(
V k
t

V k
0

)

in the expression of ct in Proposition 2.7 are bounded because for all 1 ≤ j ≤ n, f ′
j has

a compact support.
In addition, if we denote γj the average rate of liquidation (for example γj =

fj(βj)−fj(β
liq
j

)

βj−βliq
j

), we can approximate the terms of order one in ‖Λ‖ in (12) as follows:

J∑

j=1

[
1

V j
0

f
′

j

(
V j
t

V j
0

)(
Λj(π

j
t )

tΣ+ Σπj
tΛ

t
j

)]
=

J∑

j=1

[
γj

V j
0

(
Λj(π

j
t )

tΣ+ Σπj
tΛ

t
j

)]
+O(‖f ′′‖)

where ‖f ′′‖ =

J∑

j=1

‖f ′′
j ‖∞.

As a consequence, Proposition 2.7 may be interpreted as follows: if there are no fire
sales between 0 and T , the realized covariance of returns between 0 and T is given by

C[0,T ] =
1

T

∫ T

0
ct dt = Σ

while the realized covariance between T and T + τliq (where liquidations could have
occurred) contains an endogenous component, whose leading terms will be

C[T,T+τliq] =
1

τliq

∫ T+τliq

T
ct dt = Σ+ LM0ΠΣ+ ΣΠM0L+O(‖Λ‖2, ‖f ′′‖) (14)
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where the remainder is composed of higher order corrections in ‖Λ‖2 and ‖f ′′‖, and

M0 =

J∑

j=1

γj

V j
0

× αj(αj)t (15)

where αj =




αj
1
...

αj
n


 is the vector of positions of fund j and L and Π are diagonal ma-

trices with i-th diagonal term equal respectively to 1
Di

and 1
τliq

∫ T+τliq
T P i

t dt. In practice,

as shown by simulation studies in (Cont and Wagalath, 2012), this first order approx-
imation is precise enough and we will focus on this approximation in the numerical
examples.

In the absence of distressed selling between 0 and T , the realized covariances between
asset returns during this period are equal to their fundamental value. Between T and
T + τliq, fire sales can affect the realized covariance between asset returns. The excess
realized covariance is characterized by a matrix M0, defined in (15), which reflects the
magnitude of the fire sales. Note that we do not assume that all the funds are liquidating
between T and T + τliq. A fund j which is not subject to fire sales during this period of
time has a rate of liquidation γj equal to zero.

In (15), αj(αj)t is a n × n symmetric matrix representing an orthogonal projection
on fund j’s positions and hence M0 is a sum of projectors. The symmetric matrix M0

captures the direction and intensity of liquidations in the J funds.

2.4 Spillover effects: price-mediated contagion

Consider now the situation where a reference fund with positions (α1, ..., αn) is subject to
distressed selling. As argued above, this leads to endogenous volatility and correlations
in asset prices, which then modifies the volatility experienced by any other fund holding
the same assets.

Proposition 2.7 allows to compute the magnitude of this volatility spillover effect
(Cont and Wagalath, 2012). The following result shows that the realized variance of
a (small) fund with positions (µi

t, i = 1..n) is the sum of the realized variance in the
absence of distressed selling and an endogenous term which represents the impact of fire
sales in the reference fund.

Corollary 2.8 (Spillover effects) In the presence of fire sales in a reference fund with
positions (α1, ..., αn), the realized variance for a small fund with positions (µi

t)1≤i≤n

between t1 and t2 is equal to 1
t2−t1

∫ t2
t1

γs ds where

γsM
2
s = πµ

s .Σπ
µ
s +

2f
′
(Vs

V0
)

V0
(πµ

s .Σπ
α
s )(Λ.π

µ
s ) +

f
′
(Vs

V0
)2

V 2
0

(πα
s .Σπ

α
s )(Λ.π

µ
s )

2 (16)
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where πα
s =




α1P
1
s

...
αnP

n
s


 and πµ

s =




µ1
tP

1
s

...
µn
t P

n
s


 denote the (dollar) holdings of the ref-

erence fund and the small fund respectively, Ms =

n∑

i=1

µi
sP

i
s is the small fund’s value,

and Λ = ( α1

D1
, ..., αn

Dn
)t represents the positions of the reference fund in each market as a

fraction of the respective market depth.

The second and third term in (16), which represent the price-mediated contagion of
endogenous risk from the distressed fund to other funds holding the same assets, are
maximal for funds whose positions are colinear to those of the distressed fund. On the
other hand, these endogenous terms are zero if the two portfolios verify an ’orthogonality
condition’:

Λ.πµ
t =

n∑

i=1

αi

Di
µi
tP

i
t = 0, (17)

in which case the fund with positions µt is not affected by the fire sales of assets by the
distressed fund.

3 Identification and estimation

Theorem 2.4 describes the convergence of the multiperiod model to its diffusion limit
under the assumption that the funds liquidate long positions. However, the continuous-
time model given in Theorem 2.4 makes sense in a more general setting where we relax
the constraint on the sign of αj

i i.e. when long-short portfolios are liquidated: in this
case, the coefficients of the stochastic differential equation are still locally Lipschitz,
so by (Ikeda and Watanabe, 1981, Theorem 3.1, Ch.4) the equation still has a unique
strong solution on some interval [0, τ [, where τ is a stopping time (possibly infinite).

In the sequel, we consider the continuous-time model given in Theorem 2.4 in this
more general setting which allows for the liquidation of long-short portfolios. Note that
the expressions for covariances and spillover effects are not modified.

3.1 Inverse problem and identifiability

Equation (14) describes the leading term in the impact of fire sales on the realized co-
variance matrix of returns. Conversely, given that realized covariances can be estimated
from observation of prices series, one can use this relation to recover information about
the volume of liquidation during a fire sales episode.

We now consider the inverse problem of explaining ’abnormal’ patterns in realized
covariance and volatility in the presence of fire sales and estimating the parameters of
the liquidated portfolio from observations of prices. Mathematically, this boils down to
answering the following question: for a given time period [T, T + τliq] where liquidations
could have occurred, is it possible, given Σ, C[T,T+τliq], L and Π, to find M such that

C[T,T+τliq] = Σ+ LMΠΣ+ ΣΠML (18)
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The following proposition gives conditions under which this inverse problem is well-posed
i.e. the parameter M is identifiable:

Proposition 3.1 (Identifiability) Let L and Π be diagonal matrices with

Lii =
1

Di
Πii =

1

τliq

∫ T+τliq

T
P i
t dt

If ΠΣL−1 is diagonalizable and there exists an invertible matrix Ω and φ1,...,φn such
that

Ω−1ΠΣL−1Ω =



φ1 0

. . .

0 φn




and for all 1 ≤ p, q ≤ n
φp + φq 6= 0

then there exists a unique symmetric n× n matrix M verifying (18) which is given
by

M = Φ(Σ, C[T,T+τliq]) (19)

where Φ(Σ, C) is a n× n matrix defined by

[
ΩtΦ(Σ, C)Ω

]
p,q

=
1

φp + φq
×
[
ΩtL−1(C − Σ)L−1Ω

]
p,q

(20)

In this case, the unique solution M of (18) verifies

M = M0 +O(‖Λ‖2, ‖f ′′‖) (21)

where M0 is defined in (15).

The proof of this proposition is given in Appendix 6.2. Thanks to (21), we deduce the
following corollary:

Corollary 3.2 The knowledge of M allows to estimate, up to an error term of order
one in ‖Λ‖ and zero in ‖f ′′‖, the volume of fire sales in asset class i between T and
T + τliq:

J∑

j=1

αj
iP

i
T

V j
T

× γj ×
(
V j
T − V j

T+τliq

V j
0

)
× V j

T

= (0, ..., 0, P i
T , 0, ..., 0)M(PT − PT+τliq ) +O(‖Λ‖2, ‖f ′′‖)

Note that the knowledge of M does not allow in general to reconstitute the detail
of fire sales in each fund. Indeed, the decomposition of M given in (15) is not always
unique. Nevertheless, when different funds engage in similar patterns of fire sales, the
common component of these patterns may be recovered from the principal eigenvector
of M . In the empirical examples, we find that M has one large eigenvalue, meaning that
liquidations were concentrated in one direction.
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3.2 Consistency and large sample properties

In the remainder of the paper, we make the following assumption, which guarantees that
the identification problem is well-posed in the sense of Proposition 3.1:

Assumption 3.3 ΠΣL−1 is diagonalisable with distinct eigenvalues φ1, ..., φn such that
for all 1 ≤ p, q ≤ n:

φp + φq 6= 0

As a consequence, (19) (20) (21) hold. We require that the eigenvalues of ΠΣL−1

are distinct so that the set of matrices Σ verifying Assumption 3.3 is an open subset of
Sn(R) which allows for the study of the differentiability of Φ defined in (20).

Proposition 3.1 states that if we know L = diag( 1
Di

), Π = diag( 1
τliq

∫ T+τliq
T P i

t dt),

the fundamental covariance matrix, Σ, and the realized covariance matrix between T
and T + τliq, C[T,T+τliq], we can reconstitute M and hence the aggregate characteristics
of the liquidation between T and T + τliq, according to Corollary 3.2.

The market depth parameters (L) may be estimated using intraday data, following
the methods outlined in Obizhaeva (2011); Cont et al. (2010). This is further discussed
in Section 4. Π may be computed from time series of prices.

Σ and C[T,T+τliq] are estimated using the realized covariance matrices computed on

a time-grid with step 1
N , defined in (9). In order to estimate Σ, we have to identify a

period of time with no fire sales. Denote

τ = inf {t ≥ 0 | ∃ 1 ≤ j ≤ J, V j
t < βjV

j
0 } ∧ T. (22)

τ is the first time, prior to T , when fire sales occur. In our model, fire sales begin
when the value of a fund j drops below a certain threshold βjV

j
0 , with βj < 1. Given

Corollary 2.6, asset prices and hence fund values are continuous, which implies that τ is
a stopping time, bounded by T . Furthermore, as βj < 1 for all 1 ≤ j ≤ J , τ is strictly
positive almost surely: P (τ = 0) = 0. As a consequence, we estimate the fundamental
covariance matrix Σ using the sample realized covariance matrix on [0, τ ], denoted Σ̂(N).
In addition, a natural estimator for C[T,T+τliq] is the sample realized covariance matrix

between T and T + τliq, denoted Ĉ (N). By (Jacod and Protter, 2012, Theorem 3.3.1),
we find that the estimators of Σ and C[T,T+τliq] are consistent:

Σ̂(N) =
1

τ
[X,X](N)

τ
P−→

N→∞
Σ (23)

Ĉ(N) =
1

τliq

(
[X,X]

(N)
T+τliq

− [X,X]
(N)
T

)
P−→

N→∞
C[T,T+τliq] (24)

where the process [X,X](N) is defined in (10) and τ is defined in (22). We can hence

define an estimator M̂ (N) of M by:

M̂ (N) = Φ(Σ̂(N), Ĉ(N)) (25)

where Φ is defined in (20).
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Proposition 3.4 (Consistency) M̂ (N) defined in (25) is a consistent estimator of M :

M̂ (N) = Φ(Σ̂(N), Ĉ(N))
P−→

N→∞
M.

The proof of this proposition is given in Appendix 6.2. Proposition 3.4 shows that
M̂ (N) defined in 25 is a consistent estimator of M , which contains the information on
liquidations between T and T + τliq. The following proposition gives us the rate of this

estimator M̂ (N) and its asymptotic distribution.

Proposition 3.5 (Asymptotic distribution of estimator)

√
N
(
M̂ (N) −M

)
⇒

N→∞
∇Φ

(
Σ, C[T,T+τliq]

)
.

(
1
τZτ

1
τliq

(ZT+τliq − ZT )

)
(26)

where τ is defined in (22), ∇Φ is the gradient of Φ, defined in (20), and

Z
ij
t =

1√
2

∑

1≤k,l≤n

∫ t

0

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)
dW̃ kl

s (27)

where W̃ is a n2-dimensional Brownian motion independent from W and Ṽ is a Mn2×n2(R)-
valued process verifying

(ṼtṼ
t
t )

ij,kl = [σσt(Pt)]i,k[σσ
t(Pt)]j,l (28)

where σ is defined in (7).

The proof of this proposition is given in Appendix 6.3. The Brownian motion W̃ de-
scribes the estimation errors in (25): the fact that it is asymptotically independent
from the randomness W driving the path of the price process allows to compute the
asymptotic distribution of the estimator, conditioned on a given price path and derive
confidence intervals, as explained below.

3.3 Testing for the presence of fire sales

Proposition 3.5 allows to test whetherM 6= 0 i.e. if significant fire sales occurred between
T and T + τliq. Consider the null hypothesis

M = 0 (H0)

Under hypothesis (H0), there are no fire sales between T and T + τliq. The central limit
theorem given in Proposition 3.5 can be simplified as follows:

Proposition 3.6 Under the null hypothesis (H0), the estimator M̂ (N) verifies the fol-
lowing central limit theorem:

√
NM̂ (N) ⇒

N→∞
Φ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

τ
Zτ

)
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where Z is a n2-dimensional Brownian motion with covariance

cov(Z
i,j
, Z

k,l
) = Σi,kΣj,l +Σi,lΣj,k

and Φ and τ are defined in (20) and (22) respectively.

The proof of this proposition is given in Appendix 6.4. τ is given in (22) and can be
simulated thanks to Corollary 2.6. This result allows to test whether the variability
in the realized covariance of asset returns during [T, T + τliq] may be explained by the
superposition of homoscedastic fundamental covariance structure and feedback effects
from fire sales. To do this, we estimate the matrix M and test the nullity of the liqui-
dation volumes derived in Corollary (3.2). In practice, it may be possible, for economic
reasons, to identify a period [0, T ] with no fire sales and hence test the presence of fire
sales during [T, T + τliq].

Corollary 3.7 Under the null hypothesis (H0) and if there are no fire sales between 0
and T ,

√
N
(
P t
T M̂

(N)(PT − PT+τliq )
)

⇒
N→∞

N


0,

(
1

T
+

1

τliq

) n∑

i,j,k,l=1

mijmkl (ΣikΣjl +ΣjkΣil)




with mij =

n∑

p,q=1

[Ω−1PT ]p[Ω
−1(PT − PT+τliq )]q

φp + φq
ΩipΩjqDiDj where Ω and (φi)1≤i≤n are

defined in Proposition 3.1, Pt is the vector of prices at date t and (Di)1≤i≤n are the asset
market depths.

The proof of this corollary is given in Appendix 6.4. Corollary 3.7 gives the asymp-

totic law of
(
P t
T M̂

(N)(PT − PT+τliq )
)
, the estimated volume of liquidations, under the

null hypothesis (H0) and if there are no fire sales during [0, T ]. We can then define a
level l such that

P

(∣∣∣P t
T M̂

( N)(PT − PT+τliq )
∣∣∣ > l

)
≤ 1− pl

where pl is typically equal to 95% or 99%. If we find that
∣∣∣P t

T M̂
( N)(PT − PT+τliq )

∣∣∣ > l

and if we know that there were no fire sales during [0, T ], then the null hypothesis of no
fire sales between T and T + τliq may be rejected at confidence level pl.

3.4 Numerical experiments

To assess the accuracy of these estimators in samples of realistic size, we first apply this
test to a simulated discrete-time market. We consider the case of one fund investing
in n = 20 assets, with fundamental volatility 30% and zero fundamental correlation.
Furthermore, we assume that all assets have the same market depth D and that the

fund is initially equally weighted across these assets:
αiP i

0

V0
= 1

n . The size of the fund
can be captured by the vector Λ, defined in Proposition 2.7, which represents the size
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of the fund’s position in each asset as a fraction of the asset’s market depth. In our
simulations, we choose this ratio equal to 20%.

We examine the results of our estimation method in the two following cases:� the fund is not subject to distressed selling� the fund is subject to distressed selling: when the fund value drops below β0 = 95%
of its initial value, the manager deleverages the fund portfolio.

Figure 3 displays a trajectory for the fund’s value, where the fund was subject to
distressed selling between T=116 days and T + τliq = 127 days.

0 20 40 60 80 100 120
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time

F
u

n
d

 V
a

lu
e

Threshold below which
there is distressed selling

Liquidation during
this period

Figure 3: Fund value

We consider a market where trading is possible every day ( 1
N = 1

250 ). We calculate

Σ̂(N) and Ĉ(N) and we apply our estimation procedure and calculate in each case (no
liquidation and liquidation cases) an estimate for the volume of liquidations. Using
3.7, we can determine, at confidence level 95%, for example, whether there has been a
liquidation or not.

Under the assumption (H0) that M = 0 and using Lemma 3.7 we find that

P

(∣∣∣P t
T M̂

(N)(PT − PT+τliq )
∣∣∣ > 3.2× 103

)
≤ 5%

We find that� when there are no fire sales, P t
T M̂

(N)(PT − PT+τliq ) = 203 < 3.2 × 103 and we
cannot reject assumption (H0)� when fire sales occur, P t

T M̂
(N)(PT − PT+τliq ) = 7× 103 > 3.2× 103 and we reject

(H0) at a 95% confidence level.
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Let us now focus on the results of our estimation procedure in the case where there were
liquidations and check whether it allows for a proper reconstitution of the liquidated

portfolio. We find that the estimates for the proportions liquidated
αiP

i
0

V0
are all positive

and ranging from 2% to 10%, around the true value which is 1
20 = 5%.

4 The Great Deleveraging of Fall 2008

Lehman Brothers was the fourth largest investment bank in the USA. During the year
2008, it experienced severe losses, caused mainly by the subprime mortgage crisis, and
on September, 15th, 2008, it filed for chapter 11 bankruptcy protection, citing bank debt
of $613 billion, $155 billion in bond debt, and assets worth $639 billion, becoming the
largest bankruptcy filing in the US history.

The failure of Lehman Brothers generated liquidations and deleveraging in all asset
classes all over the world. The collapse of this huge institution was such a shock to fi-
nancial markets - major equity indices all lost around 10% on that day - that it triggered
stop loss and deleveraging strategies among a remarkable number of financial institu-
tions worldwide. Risk measures of portfolios, for example the value at risk, increased
sharply, obliging financial institutions to hold more cash, which they got by deleveraging
their portfolios, rather than by issuing debt which would have been very costly at such
distressed times.

This massive deleveraging has been documented in several empirical studies. Fratzscher
(2011) studies the effect of key events, such as the collapse of Lehman Brothers, on capi-
tal flows. He uses a dataset on portfolio capital flows and performance at the fund level,
from EPFR, and containing daily, weekly and monthly flows for more than 16000 equity
funds and 8000 bond funds, domiciled in 50 countries. He aggregates the net capital flows
(ie net of valuation changes) for each country and finds that they are negative for all the
countries of the study. This means that fund managers of such funds deleveraged their
positions after the collapse of Lehman Brothers, sometimes in dramatic proportions: in
some cases, the ouflows can represent up to 30% of the assets under management by the
funds.

Our method allows to estimate the net effect of liquidations during this period. We
report below the result of the estimation method described in Section 3 SPDRs and
components of the Eurostoxx 50 index. Figure 4 shows that the increase of average
correlation in these two equity baskets lasted for around three months after September,
15th, 2008. As a consequence, we examine liquidations that occurred between September,
15th, 2008 and December, 31st, 2008.

We calculate the realized covariance matrices respectively between 02/01/2008 and
T = 09/15/2008 and between T = 09/15/2008 and T + τliq = 12/31/2008 and ap-
ply the estimation procedure described in Section 3. We use a linear price impact
model Obizhaeva (2011); Cont et al. (2010). To calibrate the market depth parameters
Di, we follow the approach proposed in Obizhaeva (2011): denoting by σi the average
daily volatility of asset i and ADVi the average daily trading volume, it was shown in
Obizhaeva (2011) for a large panel of US stocks that the ratio 1

D
ADV
σr

does not vary

21



Feb Mar Apr May Jun Jul Aug Sep Oct Nov

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 

 

S&P 500
Eurostoxx 50

Collapse of 
Lehman Brothers

Figure 4: One-year EWMA estimator of average pairwise correlations of daily returns
in S&P500 and EuroStoxx 50 index

significantly from one asset to another and

1

D

ADV

σr
≈ 0.33. (29)

Obizhaeva (2011) also argues empirical evidence that the difference in price impact of
buy-originated trades and sell-originated trades is not statistically significant. We use
average daily volumes and average daily volatility to estimate the market depth of each
asset, using (29). Alternatively one could use intraday data, following the methodology
proposed in Cont et al. (2010).

4.1 Sector ETFs

We first study fire sales among sector SPDRs, which are sector sub indices of the S&P
500. There exist nine sector SPDRs: Financials (XLF), Consumer Discretionary (XLY),
Consumer Staples (XLP), Energy (XLE), Health Care (XLV), Industrials (XLI), Ma-
terials (XLB), Technology (XLK) and Utilities (XLU) and our goal is to determine
how economic actors investing in those SPDRs liquidated their portfolios following the
collapse of Lehman Brothers.

In order to compute our estimation procedure, we need to know the market depth of
each SPDR, which we can estimate as described in the previous section. Market depths
are given in Table 1. We find that financials have the highest market depth and that
other SPDRs have similar market depths.

We can then apply the estimation method described in Section 3 and find the mag-
nitude of fire sales in each SPDR between September, 15th, 2008 and December, 31st,
2008.
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Sector SPDR Estimated Market Depth
×108 shares

Financials 34.8
Consumer Discretionary 4.4
Consumer Staples 6.2
Energy 8.8
Health Care 6.4
Industrials 8.1
Materials 7.0
Technology 7.9
Utilities 7.1

Table 1: Estimated market depth for SPDRs.

Our method yields an estimate of 86 billion dollars for fire sales afffecting SPDRs
between September, 15th, 2008 and December, 31st, 2008. Using Corollary 3.7, we can
reject the hypothesis of no liquidation at a 95% confidence level for this period. The
liquidation volume that we find is equivalent to a daily liquidation volume of 1.2 billion
dollars per day. In comparison, the average volume on SPDRs before Lehman Brother’s
collapse was 5.1 billion dollars per day. This shows how massive the liquidations were
after this market shock.

Corollary 3.2 allows us to determine the aggregate composition of liquidations be-
tween September 15th 2008 and December, 31st, 2008. The daily liquidated volumes and
the proportions of each SPDR are given in Table 2. This shows that the aggregate port-
folio liquidated after Lehman Brother’s collapse was a long portfolio. This is consistent
with the observation that many financial institutions liquidated equity holdings in order
to meet capital requirements during this period, due to the increase of the risk associated
with Lehman Brother’s collapse. The highest volume of liquidations are associated with
financial stocks, followed by the energy sector. Those two sectors represent 60% of the
liquidations and more that 50 billion dollars liquidated before December, 31st, 2008.

As discussed in Section 3.1, the principal eigenvector of M reflects the common
patterns of fire sales. Table 3 gives the proportions of fire sales associated to the principal
eigenvector of M . We see that this portfolio is essentially made of financials, which have
a weight of 78%. The large weight of XLF, the financial sector index, may be explained
in terms of the loss of investor confidence in banks in the aftermath of the Lehman’s
collapse.

4.2 Eurostoxx 50

We now conduct our analysis on stocks belonging to the Eurostoxx 50 in order to de-
termine the average composition of portfolios diversified among the components of the
Eurostoxx 50 and that were liquidated after Lehman Brother’s filing for bankruptcy.
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Sector SPDR Daily amount liquidated Weight
×106$

Financials 320 28%
Consumer Discretionary 55 5%
Consumer Staples 38 3.5%
Energy 300 26%
Health Care 63 5.5%
Industrials 90 8%
Materials 110 9.5%
Technology 65 5.5%
Utilities 100 9%

Table 2: Daily volume and proportions of fire sales for SPDR between September 15th,
2008 and Dec 31,2008.

Sector SPDR Weight

Financials 78%
Consumer Discretionary 0%
Consumer Staples 2.5%
Energy 4%
Health Care 0%
Industrials 0%
Materials 2.5%
Technology 10%
Utilities 3%

Table 3: Proportions of fire sales between September 15th, 2008 and December, 31st,
2008 associated to the principal eigenvector of M
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The Eurostoxx 50 is an equity index regrouping the 50 largest capitalizations of the
Euro zone. It is the most actively traded index in Europe and is used as a benchmark
to measure the financial health of the euro zone.

We use the same methodology as in the previous section (choice of dates, estimation
of Σ and market depths). Note that we restricted our study to 45 stocks of the index,
for which we had clean data. The 5 stocks left correspond to the lowest capitalizations
among the index components, with very low liquidity.

We find that 350 billion euros were liquidated on stocks belonging to the Eurostoxx
50 between September, 15th, 2008 and December, 31st, 2008. Our statistical test de-
scribed in Corollary 3.7 allows us to reject the null hypothesis of no liquidation at a
99% confidence level. Our estimate for the liquidated volume is equivalent to a daily
liquidation of 5 billion euros, which is equal to one third of the average daily volume of
the index components before September, 15th, 2008.

Figure 5, where each bar represents the weight of a stock in the aggregate liqui-
dated portfolio, shows that most of the liquidations following Lehman Brother’s collapse
involved liquidation of long positions in stocks.
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Deutsche Bank

Eni

Intesa San Paulo

Arcelor Mittal

Unicredito

Figure 5: Fire sales in Eurostoxx 50 stocks in Fall 2008: each bar represents the weight
of one stock in the aggregate liquidated portfolio

Figure 5 shows that fire sales are more intense for some stocks than others. Table 4
gives the detail of those stocks. As suggested by the previous section, we see that the fire
sales in the Eurostoxx 50 index were concentrated in the financial and energy sectors.
ING and Deutsche Bank account for almost half of the volume liquidated on the whole
index.
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Stock Amount liquidated Weight
×106 e

ING 1100 25%
Deutsche Bank 1000 23%
Eni 750 16%
Arcelor Mittal 350 8%
Intesa San Paolo 320 7%
Unicredito 300 6.5%

Table 4: Most liquidated stocks in the Eurostoxx 50 during the three months following
September, 15th, 2008

5 The hedge fund losses of August 2007

From August 6th to August 9th 2007, long-short market-neutral equity funds experienced
large losses: many funds lost around 10% per day and experienced a rebound of around
15% on August 10th, 2007. During this week, as documented by Khandani and Lo
(2011), market-neutral equity funds whose returns previously had a low historical volatil-
ity exhibited negative returns exceeding 20 standard deviations, while no major move
was observed in equity market indices.

Khandani and Lo (2011) suggested that this event was due to a large market-neutral
fund deleveraging its positions. They simulate a contrarian long-short equity market
neutral strategy implemented on all stocks in the CRSP Database and were able to
reconstitute qualitatively the empirically observed profile of returns of quantitative hedge
funds : low volatility before August 6th, huge losses during three days and a rebound
on August 10th. We reconstituted empirically the returns for Khandani and Lo’s equity
market neutral strategy on the S&P500 for the first three quarters of 2007. Figure 6
shows that this strategy underperforms significantly during the second week of August
2007, while no major move occurred in the S&P 500. Such empirical results tend to
confirm the hypothesis of the unwind of a large portfolio, which generated through price
impact large losses across similar portfolios, as predicted by our model.

Using historical data on returns of 487 stocks from the S&P500 index, we have
reconstituted the composition of the fund that deleveraged its positions during the second
week of August 2007 using the estimation procedure described in Section 3 for the periods
[0, T ] = [08/03/2006, 08/03/2007] and [T, T + τliq] = [08/06/2007, 08/09/2007].

Figure 7 displays the composition of the aggregate portfolio liquidated on the S&P500
during this period and found by our estimation method. The first and striking difference
with the case of the deleveraging after Lehman Brother’s collapse is that, during this
quant event, the liquidated portfolio was a long-short portfolio. We clearly see in Figure
7 that for some stocks the liquidated position is significantly negative, meaning that
a short position is being exited. More precisely, 250 stocks have positive weights in
the liquidated portfolio, whereas 237 have negative weights. Furthermore, we find that
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Figure 6: Returns of an market-neutral equity portfolio in 2007, compared with S&P500
returns.

the liquidated portfolio was highly leveraged: for each dollar of capital, 15 dollars are
invested in long positions and 14 dollars are invested in short positions.
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Figure 7: Equity positions liquidated during the 2nd week of August 2007.

Importantly, the estimated portfolio is market-neutral in the sense of Equation (16):
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using the notations of Section 2.4 we find

Λ̂.πµ̂
t

‖Λ̂‖‖πµ̂
t ‖

=

n∑

i=1

αi

Di
µi
tP

i
t

‖Λ̂‖‖πµ̂
t ‖

= 0.0958

which corresponds to an angle of 0.47π between the vectors Λ̂ and πµ̂
t , i.e. very close

to orthogonality. This provides a quantitative explanation for the fact that, although
massive liquidations occurred in the equity markets, index funds were not affected by
this event. Note that, unlike other explanations proposed at the time, this explanation
does not involve any assumption of liquidity drying up during the period of hedge fund
turbulence.

6 Appendices

6.1 Proof of Theorem 2.4

We work under Assumptions 2.1 and 2.3. We denote Zk+1 =
1
Nm+

√
1
N ξk+1 ∈ R

n where

mi = mi − Σi,i

2 . We can write the price dynamics (3) as follows:

Si
k+1 = Si

k exp
(
Zi
k+1

)

1 + φi




J∑

j=1

αj
i

(
fj(

n∑

l=1

αj
lS

l
k

V j
0

exp (Z l
k+1))− fj(

n∑

l=1

αj
lS

l
k

V j
0

)

)




As a consequence, we have Sk+1 = θ(Sk, Zk+1) where θ :
(
R
∗
+

)n × R
n 7→

(
R
∗
+

)n
is

C3(R) as fj and φi are C3(R) for all 1 ≤ j ≤ J and 1 ≤ i ≤ n.
Define now a (resp., b) a Mn(R)-valued (resp. Rn-valued) mapping such that

ai,j(S) =

n∑

l=1

∂θi
∂zl

(S, 0) ×Al,j (30)

bi(S) =
n∑

j=1

∂θi
∂zj

(S, 0)mj +
1

2

n∑

j,l=1

∂2θi
∂zj∂zl

(S, 0)Σj,l (31)

In order to show Theorem 2.4, we first show the following lemma:

Lemma 6.1 Under Assumptions 2.1 and 2.3, for all ǫ > 0 and r > 0:

lim
N→∞

sup
‖S‖≤r

N × P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S) = 0 (32)

lim
N→∞

sup
‖S‖≤r

‖N × E (Sk+1 − Sk|Sk = S)− b(S)‖ = 0 (33)

lim
N→∞

sup
‖S‖≤r

∥∥N × E
(
(Sk+1 − Sk)(Sk+1 − Sk)

t|Sk = S
)
− aat(S)

∥∥ = 0 (34)

where a and b are defined respectively in (30) and (31).
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Proof Fix ǫ > 0 and r > 0. As θ is C1, for ‖S‖ ≤ r, there exists C > 0 such that for all
Z ∈ R

n

‖θ(S,Z)− θ(S, 0)‖ ≤ C‖Z‖
As Sk+1 = θ(Sk, Zk+1) and Sk = θ(Sk, 0), we find that:

P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S, ‖S‖ ≤ r) ≤ P (C‖Zk+1‖ ≥ ǫ)

≤ P

(
C‖m

N
+

√
1

N
ξk+1‖ ≥ ǫ

)
≤ P


‖ξk+1‖ ≥ ǫ− ‖m‖C

N

C
√

1
N




≤ E





‖ξk+1‖

C
√

1
N

ǫ− ‖m‖C(r)
N




2+η
 ≤ 1

N1+ η

2

E

[
(‖ξk+1‖)2+η

]
×
(

C

ǫ− ‖m‖C(r)
N

)2+η

which implies (32).
As θ is C2, we can write the Taylor expansion of θi in 0, for 1 ≤ i ≤ n:

θi(S,Z)− θi(S, 0) =
∂θi
∂z

(S, 0)Z +
1

2
Z.

∂2θi
∂z∂z′

(S, 0)Z + Z.Ri(S,Z)Z

where Ri converges uniformly to 0 when Z goes to 0, when ‖Z‖ ≤ ǫ and ‖S‖ ≤ r. We
have:

E

(
∂θi
∂z

(S, 0)Zk+1

)
=

1

N

n∑

j=1

∂θi
∂zj

(S, 0)mj

and

E

(
Zk+1.

∂2θi
∂z∂z′

(S, 0)Zk+1

)
=

1

N

n∑

j,l=1

∂2θi
∂zlzj

Σj,l + o(
1

N
)

Recalling that Si
k+1 − Si

k = θ(Sk, Zk+1)− θ(Sk, 0), we find that:

lim
N→∞

sup
‖S‖≤r

‖NE [(Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ]− b(S)‖ = 0 (35)

We remark that:

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥

≤ ‖(NE ((Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ)− b(S))‖P(‖Zk+1‖ ≤ ǫ)+‖b(S)‖P(‖Zk+1‖ ≥ ǫ)

As we saw that P(‖Zk+1‖ ≥ ǫ) ≤ 1

N1+
η
2

E

[
(‖ξk+1‖)2+η

]
×
(

1

ǫ−
‖m‖
N

)2+η

and given

(35) and the fact that b is continuous, we find that:

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥ = 0 (36)
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Similarly, we show that

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≤ǫ|Sk = S
)
− aat(S)

∥∥ = 0 (37)

Given (3), we have the following inequality:

Si
k+1 ≤ Si

k exp (
mi

N
+

√
1

N
ξik+1)


1 + φi


2

J∑

j=1

αj
i

Di
‖fj‖∞






which implies that, conditional on Sk = S and for p > 0 such that p
√

1
N < η, Sk+1 ∈ Lp.

Using this result for p = 2, we find that for
√

1
N < η

2 , Sk+1 ∈ L2 and we can use Cauchy

Schwarz inequality: ∣∣E
(
(Si

k+1 − Si
k)1‖Zk+1‖≥ǫ|Sk = S

)∣∣

≤
√

E
(
(Si

k+1 − Si
k)

2|Sk = S
)
P (‖Zk+1‖ ≥ ǫ)

≤ 1

N1+ η

4

√
E
(
(Si

k+1 − Si
k)

2|Sk = S
)
√√√√

E

(
‖ξk+1‖
ǫ− ‖m‖

N

)4+η

As E(‖ξk+1‖4+η) < ∞, Sk+1 ∈ L2 and Sk+1 stays L
2 bounded conditional on Sk = S

and ‖S‖ ≤ r. As a consequence, we obtain:

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≥ǫ|Sk = S

)∥∥ = 0 (38)

Using the same property with p=4, we show that

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≥ǫ|Sk = S
)∥∥ = 0 (39)

(36) and (38) give (33). Similarly, (37) and (39) give (34).

The following lemma gives the expressions of a and b by direct computation of (30)
– (31).

Lemma 6.2 (30) and (31) respectively can be written as

ai,k(S) = Si


Ai,k + φ′

i(0)
J∑

j=1

αj
i

V j
0

f ′

(
Vj(S)

V j
0

)
(Atπj(S))k


 (40)

bi(S) = Simi + Siφ
′
i(0)

2

J∑

j=1

αj
i

(V j
0 )

2
f ′′
j

(
Vj(S)

V j
0

)
πj(S).Σπj(S) (41)
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+Siφ′
i(0)

J∑

j=1

αj
i

V j
0

f ′
j

(
Vj(S)

V j
0

)
(πj(S).m+ (Σπj(S))i)

+Siφ
′′
i (0)

2

J∑

j,r=1

αj
iα

r
i

V j
0 V

r
0

f ′
j

(
Vj(S)

V j
0

)
f ′
r

(
Vr(S)

V r
0

)
πj(S).Σπr(S)

where πj(S) =




αj
1S

1

...

αj
nSn


 and Vj(S) =

n∑

l=1

αj
lS

l.

Because fj is C3 for 1 ≤ j ≤ J , a and b are C2 and C1 respectively. Furthermore,

because f ′
j, and hence f ′′

j and f
(3)
j , have a compact support, there exists R > 0 such

that, for all 1 ≤ j ≤ J , when ‖S‖ ≥ R, f ′
j

(
Vj(S)

V j
0

)
= f ′′

j

(
Vj(S)

V j
0

)
= f

(3)
j

(
Vj(S)

V j
0

)
= 0.

As a consequence, there exists K > 0 such that for all S ∈
(
R
∗
+

)n
:

‖a(S)‖ + ‖b(S)‖ ≤ K‖S‖ (42)

Furthermore, as the first derivatives of a and b are bounded, a and b are Lipschitz.
Define the differential operator G : C∞

0

(
R
∗
+

)n 7→ C1
0

(
R
∗
+

)n
by

Gh(x) =
1

2

∑

1≤i,j≤n

(aat)i,j(x)∂i∂jh+
∑

1≤i≤n

bi(x)∂ih

As a and b verify (42), one can apply (Ethier and Kurtz, 1986, Theorem 2.6, Ch.8)
to conclude that the martingale problem associated to (G, δS0

) is well-posed. In fact,
as a and b are Lipschitz, the solution of this martingale problem is given by the unique
strong solution of the stochastic differential equation:

dPt = b(Pt)dt+ a(Pt)dWt with P0 = S0.

As we have shown Lemma 6.1, by (Ethier and Kurtz, 1986, Theorem 4.2, Ch.7), when
N → ∞,

(
S⌊Nt⌋

)
t≥0

converges in distribution to the solution of the martingale problem

associated to (G, δS0
), which concludes the proof of Theorem 2.4.

6.2 Proofs of Propositions 3.1 and 3.4

Let us invert (18) under the assumptions of Proposition 3.1. Denote

Ω(i) =




Ω1,i
...

Ωn,i




the i-th column of the matrix Ω. By definition, we know that ΠΣL−1Ω(p) = φpΩ
(p)

which is equivalent to (Ω(p))tL−1ΣΠ = φp(Ω
(p))t. As (18) is equivalent to MΠΣL−1 +
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L−1ΣΠM = L−1(C[T,T+τliq]−Σ)L−1 and multiplying this equality on the left by (Ω(p))t

and on the right by Ω(q), we find that

(φp + φq)[Ω
tMΩ]p,q = [ΩtL−1(C[T,T+τliq ] −Σ)L−1Ω]p,q

which gives the matrix ΩtMΩ as a function of Σ and C[T,T+τliq]. As Ω is invertible, this
characterizes the matrix M , as a function, denoted Φ of Σ and C[T,T+τliq], proving (19)
and (20).

Furthermore, notice that M0 = Φ
(
Σ, C[T,T+τliq] +O(‖Λ‖2, ‖f ′′‖)

)
. Given the ex-

pression for Φ in (20), (21) follows directly. This concludes the proof of Proposition
3.1.

Lemma 6.3 The mapping Φ defined in (20) is C∞ in a neighborhood of (Σ, C).

Proof The following map

F : S3
n(R) 7→ Sn(R), (S,C,N) 7→ LNΠS + SΠNL + S− C (43)

is infinitely differentiable, its gradient with respect to N given by

∂F

∂N
(S,C,N).H3 = LH3ΠS + SΠH3L.

As Σ verifies Assumption 3.3, we showed that ∂F
∂N (Σ, C,N) is invertible for all C. As

Φ(Σ, C) is defined as the only matrix verifying F (Σ, C,Φ(Σ, C)) = 0, the implicit func-
tion theorem states that Φ is C∞ in a neighborhood of (Σ, C).

As convergence in probability implies that a subsequence converges almost surely,
we assume from now on that the estimators defined in (23) and (24) converge almost
surely. As a consequence, for N large enough, Σ̂( N) also verifies Assumption 3.3. This
is possible because the set of matrices Σ verifying this assumption is an open set and
Σ̂( N) converges almost surely to Σ when N goes to infinity. We can hence define M̂ ( N)

as in (25).
Lemma 6.3 implies in particular that Φ is continuous and hence that Φ(Σ̂( N), Ĉ( N))

converges almost surely, and hence in probability, to Φ(Σ, C[T,T+τliq]). As a consequence,

Φ(Σ̂( N), Ĉ( N)) is a consistent estimator of Φ(Σ, C[T,T+τliq]), meaning that M̂ ( N) is a
consistent estimator of M . This shows Proposition 3.4.

6.3 Proof of Proposition 3.5

Using Theorem 2.6 and Ito’s formula, we deduce that the log price Xi
t = ln(P i

t ) verifies
the following stochastic differential equation:

dXi
t =

(
µi(e

Xt)− 1

2
(σ(eXt)σ(eXt)t)i,i

)
dt+

(
σ(eXt)dWt

)
i
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where σ, µ and W are defined in Theorem 2.6 and eXt is a n-dimensional column vector
with i-th term equal to expXi

t . As a consequence, X is an Ito process which verifies, for
t ≥ 0,

∫ t

0


 ∑

1≤i≤n

(
µi(Pt)−

1

2
(σ(Pt)σt(Pt)

t)i,i

)2

+ ‖σσt(Pt)‖2

 ds < ∞

We are thus in the setting of (Jacod and Protter, 2012, Theorem 5.4.2, Ch.5) which
describes the asymptotic distribution of the quadratic covariation of an Ito process with
well-behaved coefficients. We need to extend (Ω,F , (Ft)t≥0,P) to a larger probability
space (Ω̃, F̃ , (F̃t)t≥0, P̃). There exists W̃ a n2-dimensional Brownian motion, defined on
(Ω̃, F̃ , (F̃t)t≥0, P̃) and independent from W , such that

√
N
(
[X,X](N) − [X,X]

)
s.l.−→

N→∞
Z

where the n×n dimensional process Z is defined in (27) and s.l. means stable convergence
in law (see (Jacod and Protter, 2012, Section 2.2.1)). The auxiliary Brownian motion
W̃ represents the estimation error. Furthermore, (Jacod and Protter, 2012, Equation
2.2.5) shows that (√

N
(
[X,X](N) − [X,X]

)
, τ
)

⇒
N→∞

(
Z, τ

)

This implies that the estimators (Σ̂( N), Ĉ( N)) defined in (23) and (24) verify the fol-
lowing central limit theorem:

√
N

[(
Σ̂( N)

Ĉ( N)

)
−
(

Σ
C[T,T+τliq]

)]
⇒

N→∞

(
1
τZτ

1
τliq

(ZT+τliq − ZT )

)
(44)

Since Φ ∈ C1, one can then apply the ’delta method’ to (Σ̂(N), Ĉ(N)) to derive the result
in Proposition 3.5.

6.4 Proof of Proposition 3.6 and Corollary 3.7

Under the null hypothesis (H0),
1

τliq

∫ T+τliq
T ct dt = Σ and hence

Φ

(
Σ,

1

τliq

∫ T+τliq

T
ct dt

)
= Φ(Σ,Σ) = 0

Let us calculate now the first derivative of Φ on (Σ,Σ). Recall that Φ(Σ, C) is
defined as the only element of Sn(R) such that F (Σ, C,Φ(Σ, C)) = 0, where F is defined
in (43). F is affine in each component and as a consequence is C∞ and we can define
its derivatives on (S,C,N), ∂F

∂S (S,C,N), ∂F
∂C (S,C,N) and ∂F

∂N (S,C,N) which are linear
mappings from Sn(R) to Sn(R) defined by:

∂F

∂S
(S,C,N).H1 = LNΠH1 +H1ΠNL+H1
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∂F

∂C
(S,C,N).H2 = −H2

∂F

∂N
(S,C,N).H3 = LH3ΠS + SΠH3L

As a consequence, we have

∇F (S,C,N).(H1,H2,H3) = LNΠH1 +H1ΠNL+H1 −H2 + LH3ΠS + SΠH3L

In the proof of Lemma 6.3, we showed that ∂F
∂N (Σ, C,N) is invertible. As a conse-

quence we can apply the implicit function theorem in order to compute the gradient
of Φ. As F (Σ, C,Φ(Σ, C)) = 0 and Φ(Σ,Σ) = 0, we find that ∂F

∂S (Σ,Σ, 0).H1 = H1,
∂F
∂C (Σ,Σ, 0).H2 = −H2 and ∂F

∂N (Σ,Σ, 0).H3 = LH3ΠΣ + ΣΠH3L and hence the deriva-
tive of Φ on (Σ,Σ) is given by:

∇Φ(Σ,Σ).(H1,H2) =

(
∂F

∂N
(Σ,Σ, 0)

)−1

(H2 −H1)

which is equivalent to

∇Φ(Σ,Σ).(H1,H2) = Φ(Σ,Σ+H2 −H1)

Using Proposition 3.5, we find that

√
NM̂ ( N) L⇒ Φ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

τ
Zτ

)

which concludes the proof of Proposition 3.6.
If there are no fire sales between 0 and T , then τ = T almost surely. In addition,

under (H0), we have σσt = Σ and the expression for the process Ṽt defined in (28) is
simplified as

(ṼtṼ
t
t )

ij,kl = Σi,kΣj,l (45)

which implies that the process Z defined in (27) is a Brownian motion.

Furthermore, given Proposition 3.6, under (H0),
√
N
(
P t
T M̂

(N)(PT − PT+τliq )
)
con-

verges in law when N goes to infinity to the random variable

P t
TΦ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)
(PT − PT+τliq )

Given the expression for Φ given in (20), we find the expression for:

P t
TΦ(Σ, C)(PT − PT+τliq )

=
∑

1≤p,q≤n

(Ω−1PT )p

[
ΩtL−1(C − Σ)L−1Ω

]
p,q

φp + φq
(Ω−1(PT − PT+τliq ))q
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Given the fact that L−1 = diag(Di), we have (ΩtL−1)p,i = Ωi,pDi and (L−1Ω)j,q =
Ωj,qDj . As a consequence, denoting

mi,j =
∑

1≤p,q≤n

[Ω−1PT ]p[Ω
−1(PT − PT+τliq )]q

φp + φq
ΩipΩjqDiDj

we can write P t
TΦ(Σ, C)(PT − PT+τliq ) as

∑

1≤i,j≤n

mij(Ci,j − Σi,j). Hence the limit of

√
N
(
P t
T M̂

(N)(PT − PT+τliq )
)
is equal to

∑

1≤i,j≤n

mij

(
1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)

i,j

Under the assumptions of Corollary 3.7, Z is a Brownian motion on [0, T + τliq] (see
(45)), so the limit process is a mean-zero Gaussian process. To compute its variance,

we first compute the variance of
∑

1≤i,j≤n

mijZ
i,j
t which, given the expression of Z in (27),

can be written as
∑

1≤k,l≤n

∫ t

0

1√
2

∑

1≤i,j≤n

mi,j

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)
dW̃ kl

s .

Using the Ito isometry formula, its variance is thus equal to

∑

1≤k,l≤n

∫ t

0


 ∑

1≤i,j≤n

1√
2
mi,j

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)



2

ds

=
t

2

∑

1≤k,l≤n


 ∑

1≤i,j,p,q≤n

mi,jmp,q

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)(
Ṽ pq,kl
s + Ṽ qp,kl

s

)



=
t

2

∑

1≤i,j,p,q≤n

mi,jmp,q


 ∑

1≤k,l≤n

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)(
Ṽ pq,kl
s + Ṽ qp,kl

s

)



= t
∑

1≤i,j,p,q≤n

mi,jmp,q (Σi,pΣj,q +Σi,qΣj,p)

using the fact that
∑

1≤k,l≤n

Ṽ ij,kl
s Ṽ pq,kl

s = Σi,pΣj,q as Ṽ verifies (45). Given the fact

that ZT+τliq − ZT and ZT are independent, we find that the variance of the limit
∑

1≤i,j≤n

mij

(
1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)

i,j

is equal to

(
1

T
+

1

τliq

) ∑

1≤i,j,k,l≤n

mijmkl (ΣikΣjl +ΣjkΣil)

which concludes the proof of Corollary 3.7.
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