Secondary Markets in Turbulent Times: Distortions, Disruptions and Bailouts

Fernando Broner* Aitor Erce^ Alberto Martin* Jaume Ventura*

*CREI, UPF and Barcelona GSE ^Bank of Spain

- In 2006, Portugal, Ireland, Italy, Greece, and Spain looked very solid
 - growth: 3.7% (Germany and France 2.8%)
 - fiscal deficit/GDP: 1.8% (Germany and France 2.0%)
 - sovereign spreads: 0.15%
 - public debt/GDP: 77% (Germany and France 71%)
 - maturity: 6.4 years (Germany and France 6.6 years)
- By 2010, PIIGS were facing
 - major sovereign debt problems
 - deep recessions
- What happened?

Sovereign spreads

• Explanations

- ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 - * ex-post rationalization? why ignored for so long?
- rollover/liquidity crises
 - * but debts were long term and there is funding from official creditors

Explanations

- ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 * ex-post rationalization? why ignored for so long?
- rollover/liquidity crises
 - * but debts were long term and there is funding from official creditors

• This paper

- secondary markets and multiple equilibria
- foreigners become pessimistic o sell bonds to domestics o crowds out investment o
 - ightarrow lower growth ightarrow lower cost of default ightarrow default more likely ightarrow validates pessimism

Explanations

- ignored problems: fiscal in Greece, low growth in Portugal and Italy, bubbles in Ireland and Spain
 - * ex-post rationalization? why ignored for so long?
- rollover/liquidity crises
 - * but debts were long term and there is funding from official creditors

This paper

- secondary markets and multiple equilibria
- foreigners become pessimistic \rightarrow sell bonds to domestics \rightarrow crowds out investment \rightarrow
 - ightarrow lower growth ightarrow lower cost of default ightarrow default more likely ightarrow validates pessimism

• Crucial assumptions

- governments sometimes discriminate in favor of domestic residents
- cost of default depends on size of economy
- secondary markets

Related literature

- Self-fulfilling debt crises
 - Calvo (1988), Cole-Kehoe (2000), Conesa-Kehoe (2012), Aguiar-Amador-Farhi-Gopinath (2013)
- Secondary markets and sovereign risk
 - Broner-Martin-Ventura (2008, 2010), Broner-Ventura (2010, 2011), Lanau (2011), Bai-Zhang (2012), Pitchford-Wright (forth.)
- Sovereign defaults and economic activity
 - Aguiar-Amador-Gopinath (2009), Aguiar-Amador (2011), Brutti (2011), Erce (2012), Mendoza-Yue
 (2012), Mengus (2012), Gennaioli-Martin-Rossi (forth.)
- Gross capital flows during crises
 - Broner-Didier-Erce-Schmukler (2013), Brutti-Saure (2013)

Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD's Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven bank recapitalization

Debts and Deficits: Germany vs. Spain

Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD's Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven bank recapitalization
- Domestic credit allocation
 - sources: National Central Banks' Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat

Sectorial credit: Germany vs. Spain

Public credit, private credit & sovereign spreads

Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD's Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven bank recapitalization
- Domestic credit allocation
 - sources: National Central Banks' Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat
- Patterns of public debt holdings
 - sources: National Treasuries and Central Banks
 - in PIIGS sovereign debt holdings shifted from foreigners to domestic residents as spreads rose
 - in Germany they continued shifting to foreigners

Sovereign debt holders: Germany vs. Spain

Some facts

- Dynamics of Debt-GDP ratios
 - sources: OECD's Economic Outlook Database, Eurostat
 - in PIIGS driven by high spreads, low growth, and high cyclical deficits, despite low structural deficits
 - in Germany driven bank recapitalization
- Domestic credit allocation
 - sources: National Central Banks' Monetary Surveys and Financial Accounts, Datastream
 - in PIIGS credit to government increased while credit to corporations and households decreased
 - in Germany they have been flat
- Patterns of public debt holdings
 - sources: National Treasuries and Central Banks
 - in PIIGS sovereign debt holdings shifted from foreigners to domestic residents as spreads rose
 - in Germany they continued shifting to foreigners
- Sovereign debt maturity
 - sources: OECD's Economic Outlook Database
 - in both PIIGS and Germany maturity has been stable at 6-7 years

Average term to maturity

Presentation of the model

- Sovereign debt, risk, and growth
 - multiple steady states and poverty traps
- Endogenous cost of default
 - multiple equilibria and rollover crises
- Role of maturity (preliminary)

Model

- OLG: young and old, measure one
- ullet Preferences: $1-\mu$ consume when young and μ maximizes expected consumption when old

$$U_t = E_t \left\{ c_{t+1} \right\}$$

- Labor: young supplies one unit of labor inelastically
- Technology: Cobb-Douglas production function

$$f\left(k_{t}\right) = k_{t}^{\alpha}$$

where $\alpha \in (0,1)$ and capital depreciates at rate $\delta \in (0,1)$

• Factor markets: competitive

$$w_t = (1 - \alpha) \cdot k_t^{\alpha}$$
$$r_t = \alpha \cdot k_t^{\alpha - 1} + 1 - \delta$$

 \bullet Young save fraction $s \equiv \mu \cdot (1-\alpha)$ of output

Model

- Small open economy
 - international financial market (IFM) willing to borrow and lend at expected rate ρ
 - domestic residents save in capital and borrow from or lend to IFM
- ullet Financial markets: domestic residents can pledge fraction $\phi \in (0, \rho)$ of capital stock

$$f_t \le \frac{\phi \cdot k_{t+1}}{\rho}$$

where f_t denotes financing (assume $\phi = 0$ in this presentation)

- Government follows these rules of behavior
 - (i) issues only one-period debt
 - (ii) taxes old enough to keep debt burden constant at $d_t=d$
 - (iii) never defaults on debt held by domestic residents

Model

- Government debt is traded in secondary markets
- Key question for evolution of economy: Who buys this debt?
 - depends on whether foreigners expect to be repaid or not
- Foreigners are repaid if secondary markets remain open when government debt matures
 - government might have incentives to impose capital controls

Equilibrium

- If foreigners are repaid with probability 1
 - foreigners buy all government debt

$$R_{t+1} = \rho$$

- young invest solely in domestic capital

$$k_{t+1} = k^{1}(k_{t}) \equiv \min \left\{ s \cdot k_{t}^{\alpha}, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1 - \alpha}} \right\}$$

- old receive return on capital, are taxed to pay government debt, and consume

Equilibrium

- If foreigners are repaid with probability 1
 - foreigners buy all government debt

$$R_{t+1} = \rho$$

young invest solely in domestic capital

$$k_{t+1} = k^{1}(k_{t}) \equiv \min \left\{ s \cdot k_{t}^{\alpha}, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1 - \alpha}} \right\}$$

- old receive return on capital, are taxed to pay government debt, and consume
- If foreigners are repaid with probability 0
 - foreigners do not buy any government debt
 - young invest in both domestic capital and government debt

$$k_{t+1} = k^{0}(k_{t}) \equiv \min \left\{ s \cdot k_{t}^{\alpha} - d, \left(\frac{\alpha}{\rho + \delta - 1} \right)^{\frac{1}{1 - \alpha}} \right\}$$
$$R_{t+1} = \max \left\{ \alpha \cdot k_{t+1}^{\alpha - 1} + 1 - \delta, \rho \right\} \ge \rho$$

- old receive return on capital and government debt, are taxed to pay government debt, and consume

- \bullet Foreigners are repaid with probability $\pi \in (0,1)$
 - our interpretation: government can impose capital controls with probability $1-\pi$

- Foreigners are repaid with probability $\pi \in (0,1)$
 - our interpretation: government can impose capital controls with probability $1-\pi$
- Contractual interest rate depends on identity of marginal buyer
 - foreigners hold government debt if compensated for risk of default

$$R_t \ge \frac{\rho}{\pi}$$

- domestic residents hold government debt if compensated for foregone investment

$$R_t \ge \max\left\{\alpha \cdot k_{t+1}^{\alpha - 1} + 1 - \delta, \rho\right\}$$

- Identity of marginal buyer depends on capital stock
- Secondary markets ex-ante imply that government cannot choose who to borrow from
 - debt is purchased by agents that value it more

- Law of motion $k^{\pi}(k_t)$ characterized by three regions
- Region I: k_t is low and its return high
 - domestic residents invest only in capital
 - all debt is purchased by IFM
 - $-k_{t+1} = k^1 \left(k_t \right)$
- Region II: k_t and its return are intermediate
 - domestic residents invest in capital until return is equalized with (their) return on debt
 - some debt is purchased by IFM

$$-k_{t+1} = \left(\frac{\alpha \cdot \pi}{\rho - (1 - \delta) \cdot \pi}\right)^{\frac{1}{1 - \alpha}}$$

- Region III: k_t is high and its return is low
 - domestic residents invest in capital and purchase all debt
 - no debt is purchased by IFM

$$-k_{t+1} = k^0 \left(k_t \right)$$

- Government can discriminate ex post but not ex ante (can make it more symmetric)
 - ex-post discrimination means debt is more valuable if held by domestic residents
 - ex-ante non-discrimination means government cannot prevent crowding out
- Can have multiple steady states and poverty traps
- Changes in debt and risk of default can have unexpected consequences

- Until now there was no cost of default
 - in reality: loss of reputation, sanctions, disruption of financial markets
- We now introduce cost of default
 - if government defaults on foreigners, old generation suffers a loss
- Deadweight loss
 - increases with capital stock: disruptions are more costly in absolute terms in a larger economy
 - increases with size of default: more effort undertaken to impose penalty
- In particular, we assume

cost of default =
$$\lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1}$$

• Cost of default may sustain "optimistic equilibrium"

- if
$$\lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1} \ge R_{t+1} \cdot d_{t+1}^F \Leftrightarrow k_{t+1} \ge 1/\lambda$$
 government repays foreigners

• If repayment is expected with probability 1

$$R_{t+1} =
ho \ \ ext{and} \ \ d_{t+1}^F = d$$
 $k_{t+1} = k^1 \left(k_t
ight)$

$$k_t \ge \bar{k}^O \equiv \begin{cases} \min\left\{k : k^1(k) = 1/\lambda\right\} & \text{if } \lambda \ge 1/k^* \\ \infty & \text{if } \lambda < 1/k^* \end{cases} \text{ where } k^* = \left(\frac{\alpha}{\rho + \delta - 1}\right)^{\frac{1}{1 - \alpha}}$$

• Cost of default may sustain "optimistic equilibrium"

- if
$$\lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1} \geq R_{t+1} \cdot d_{t+1}^F \Leftrightarrow k_{t+1} \geq 1/\lambda$$
 government repays foreigners

• If repayment is expected with probability 1

$$R_{t+1} =
ho$$
 and $d_{t+1}^F = d$ $k_{t+1} = k^1 \left(k_t
ight)$

$$k_t \ge \bar{k}^O \equiv \begin{cases} \min\left\{k : k^1(k) = 1/\lambda\right\} & \text{if } \lambda \ge 1/k^* \\ \infty & \text{if } \lambda < 1/k^* \end{cases} \text{ where } k^* = \left(\frac{\alpha}{\rho + \delta - 1}\right)^{\frac{1}{1 - \alpha}}$$

- In this equilibrium
 - expect repayment \rightarrow debt not attractive to domestic residents \rightarrow high investment \rightarrow
 - → high capital stock → repayment takes place

• Despite cost of default there may be a "pessimistic equilibrium"

- if
$$\lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1} \leq R_{t+1} \cdot d_{t+1}^F \Leftrightarrow k_{t+1} \leq 1/\lambda$$
 government defaults on foreigners

ullet If repayment is expected with probability π

$$R_{t+1} \in \left[\rho, \frac{\rho}{\pi}\right] \quad \text{and} \quad d_{t+1}^F \in [0, d]$$

$$k_{t+1} = k^{\pi} \left(k_t\right)$$

$$k_t \le \bar{k}^P \equiv \begin{cases} \max\{k : k^{\pi}(k) = 1/\lambda\} & \text{if } \lambda \ge 1/k^* \\ \infty & \text{if } \lambda < 1/k^* \end{cases} \text{ where } k^* = \left(\frac{\alpha}{\rho + \delta - 1}\right)^{\frac{1}{1 - \alpha}}$$

• Despite cost of default there may be a "pessimistic equilibrium"

- if
$$\lambda \cdot R_{t+1} \cdot d_{t+1}^F \cdot k_{t+1} \leq R_{t+1} \cdot d_{t+1}^F \Leftrightarrow k_{t+1} \leq 1/\lambda$$
 government defaults on foreigners

• If repayment is expected with probability π

$$R_{t+1} \in \left[\rho, \frac{\rho}{\pi}\right] \quad \text{and} \quad d_{t+1}^F \in [0, d]$$

$$k_{t+1} = k^{\pi} \left(k_t\right)$$

$$k_t \le \bar{k}^P \equiv \begin{cases} \max\{k : k^{\pi}(k) = 1/\lambda\} & \text{if } \lambda \ge 1/k^* \\ \infty & \text{if } \lambda < 1/k^* \end{cases} \text{ where } k^* = \left(\frac{\alpha}{\rho + \delta - 1}\right)^{\frac{1}{1 - \alpha}}$$

- In this equilibrium
 - expect default \rightarrow debt attractive to domestic residents \rightarrow low investment \rightarrow
 - \rightarrow low capital stock \rightarrow default takes place

• Since $k^{\pi}(k) \leq k^{1}(k)$ for all k, it follows that

$$\bar{k}^P \ge \bar{k}^O$$

• Both optimistic and pessimistic equilibria exist if

$$k_t \in \left[\bar{k}^O, \bar{k}^P\right]$$

- A self-fulfilling crisis leads to
 - higher sovereign spreads
 - fraction of debt held domestically increases
 - domestic resources shift from investment to government debt
 - lower investment and growth

Maturity structure (preliminary discussion)

- Now government can issue debt of any maturity
- Assume
 - with probability $1-\pi$ government can default on all outstanding debt held by foreigners
 - cost of default is proportional to market value of defaulted debt at end of previous period
- Conjecture: maturity structure makes no difference
 - optimistic and pessimistic equilibria exist for same values of k_t as with one-period debt
 - laws of motion in both equilibria are the same as with one-period debt

Maturity structure (preliminary discussion)

• Now government can issue debt of any maturity

Assume

- with probability $1-\pi$ government can default on all outstanding debt held by foreigners
- cost of default is proportional to market value of defaulted debt at end of previous period
- Conjecture: maturity structure makes no difference
 - optimistic and pessimistic equilibria exist for same values of k_t as with one-period debt
 - laws of motion in both equilibria are the same as with one-period debt

• Why?

- with secondary markets foreigners can sell both maturing and non-maturing debt to domestic residents
- size of "run" is independent of maturity structure
- secondary markets make long-term debt effectively short-term with respect to rollover crises

Conclusions

- Facts of recent European crisis
 - higher spreads
 - sovereign debt holdings shifted from foreigners to domestic residents
 - bank credit shifted from corporate and consumers to government
 - debt dynamics driven by higher spreads and lower growth
- Portfolio reallocation
 - might seem puzzling and contrary to logic of optimal diversification
 - but is natural in models of sovereign risk with secondary markets
- In this paper, crisis triggered by
 - higher debt
 - higher probability of capital controls
 - multiple equilibria
- Secondary markets constrain governments. If they operate
 - at time of maturity: negative but ex-ante positive (reduce sovereign risk)
 - before maturity: negative (prevent market segmentation and lead to investment crowding out)
- Next,
 - formal analysis of maturity structure, contagion, and bailouts