Multiperiod Corporate Default Prediction with
the Partially-Conditioned Forward Intensity

Jin-Chuan Duan' and Andras Fulop?

(April 2013)

'RMI and Business School, National University of Singapore
2ESSEC Business School

itioned



Background

The literature

e Corporate default/bankruptcy prediction literature is vast,
but most do NOT deal with the censoring effect due to
exits other than defaults/bankruptcies.

o Most papers do NOT address the natural dynamic setting
of corporate default predictions where common risk factors
and firm-specific attributes evolve over time.

o Bottom-up aggregation is possible only when one explicitly
addresses the natural dynamic setting. My discussion
focuses on doubly stochastic default prediction models that
are capable of predicting single-name defaults and
conducting portfolio credit risk analysis.
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Background

e Spot-intensity models, e.g. Duffie, Saita and Wang (2007, J
of Financial Economics), Duffie, Eckner, Horel and Saita
(2009, J of Finance):

o A common spot-intensity function of covariates (common
risk factors and firm-specific attributes) for all firms and at
all time.

e Specify a full joint time series dynamics for firm-specific
attributes and common risk factors. Extremely high
dimension! Ambitious, but bound to be quite ad hoc.

e Forward-intensity model, Duan, Sun, Wang (2012, J of
Econometrics) (DSW)

e Avoid specifying the dynamics of the covariates through the
use of forward intensities.

o A set of forward-intensity functions versus one universal
spot-intensity function.

o Easier implementation, but no real default correlations
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Background

This paper

e Extend the model of DSW (2012) to allow for default
correlations by conditioning forward intensities on the
future values of common risk factors (observed or latent).

@ Need to specify a low-dimensional dynamic for the
conditioning common risk factor(s), but still avoid
specifying the joint dynamics for firm-specific attributes.

e Apply a pseudo-Bayesian sequential Monte Carlo technique
to estimate the parameters (two sets: 44 and 40).

o Use recursive estimates for inference by self-normalized
asymptotics.

o Provide empirical analysis of the model on a large US data
sample of over 12,000 firms over 21 years.
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Forward intensity

The forward-intensity model of DSW (2012)

e Assume independence across firms’ defaults and/or other
exits conditional on the observed covariates:
Forward default intensity

fir(T) = exp (oo (7) + a1(T)zie 1 + co(T)Tir2 + - - - ag(T)Tit k)

Forward combined intensity

git(t) = exp(Bo(7) + Bu(T)wit,1 + Bo(T)wir2 + - Be(T)Tit k)
+ fit(T)

o Can derive a consistent PD curve for each company, but it
is in essence a single-obligor PD model.

@ The DSW model has been implemented on over 60,000
exchange-listed firms in 106 economies by the NUS-RMI
Credit Research Initiative (non-profit credit ratings) to
produce daily update PDs for these firms.
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Forward intensity

Our modification of the DSW (2012) model

o Keep the concept of conditional independence, but
introduce common factors Z; into the conditioning set.

o Conditional on future values of the common risk factors,
defaults across firms are assumed to be independent:

77b72t(7—; Zy,u<t+ 7')
In E; [exp (— tt+7()\is + ¢>z‘s)d8> ’ Zy,u<t+rt

T

9it (75 Zyu <t +7)
V(7 Zyw S+ 7) + Y07 B u S L4 T)T
Fit(T3 Ty u < £+ 7) = ebit(MZuuStn)T o

Eq [ tt:TTJFAt exp (= [ (Niw + diu)du) )\isds‘ Zy,u<t+ T}

At—0 At
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Forward intensity

The survival probability over [t,t + 7|, denoted by S (),
becomes

Si(1) = Eylexp(—vi(T;Zy,u <t +7)7)]

= FE {exp <—/ 9it(8;Zy,u < t+ s)ds)} .
0

The forward default probability over [t + 71,t + T2] evaluated at
time t, denoted by Fj;(71,72), becomes

T2

Fy(r1,m) = B [/ e~ Vi(SZuusts)s (s 7w <t + s)ds] .
T1
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Forward intensity

Choose a particular type of partially-conditioned forward
intensity functions.

fit(T5Ze17) =
+
+
9it(T5 Zeyr) =
+
_|_
_|_

explao(7) + a1 (7)) + - - + ap(T)Tik
O1(T)zeq + -+ Om(T)2em

01(7) (ztrn — 260) + -+ 05 (T) (Zerm — 26m)]
exp(Bo(7) + B1(T)wity + - + Be(T)Tit k
m(T)ze1 + -+ D (T)2em

M (T) (Zer1 = 201) + -+ 0 (T) Germ — 2tm)]
fz‘t(T; Zt—l—T)

Note: Default correlations come through future values of the
common risk factors.
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Estimation and inference

Discretized model

@ The sample period [0, 7] is assumed to be divisible into
T /At periods. Let N be the total number of companies.

o Firm ¢ may exit the data sample either due to default or a
non-default related reason, for example,
merger/acquisition. Denote the combined exit time by 7¢;
and the default time by 7p;.

o Let Zypyj ={Z¢, Zignes -+ Leyjne}-
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Estimation and inference

Partially-conditioned forward probabilities

Pt(TCi >t+ (j + 1)At|zt;t+j,7'cz‘ >t -f-]At)
— ¢ 9it(UAEZiyjne) At

Pt(t 4+ jAt <70, =Tpi <t + (] + 1)At‘zt;t+j,7'0i >t —l—jAL‘)
- 1- effit(jAt;ZHjAt)At

P(t+jAt <7oi #1pi <t+(j+ 1)At‘zt;t+j,7'cl' >t + jAL)
— e—fit(jAt;Zt+jAt)At _ e_git(jAt§Zt+jAt)At
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Estimation and inference

Computing default probabilities

e For any joint probability, one first comes up with the joint
probability conditional on future values of the common risk
factors by utilizing conditional independence, and then
integrates over the common risk factors.

o For example,

Pi(t+ jAt < 10 = Tpi < t+ (j + 1)At)
E, [e— Zi;é 9it (sAt;Ze 4 sn) AL (1 _ e_fit(jAt§Zt+jAt)At):|
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Estimation and inference

Estimating the parameters

Denote the unknown fixed model parameters by 6.

(]

The likelihood corresponding to time period jAt for the
prediction interval [jA¢, jAt + 7] can be written as

=1

N
L;j(0) = Ejat (H P (0 ZjAt:jAt—f—r))

Here P; j +(0; Zjatjat+r) is the individual likelihood for a
given firm, conditional on the common risk factor.

(]

The expectation cannot be solved in a closed form, but can
be computed by simulation.

Z, = (Y, F;) where F; is latent and its filtered value can
be obtained by a particle filter.
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Estimation and inference

imum pseudo likelihood

o The maximum sample pseudo likelihood is

T/At—1

L (9 TC,TD, X, Y H L],mln(T ]At’r)(g)
7=0

@ Due to the use of conditioning common risk factors, the
decomposability property of DSW (2012) no longer applies.
Parameters for different forward starting times must be
estimated jointly.
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Estimation and inference

A pseudo-Bayesian device for parameter estimation

o Lack of decomposability means that the number of
parameters to be estimated jointly will be very large. The
conventional gradient-based optimization methods does not
work well.

o Consider the following pseudo-posterior distribution:

t
’Yt(g) X H Lj,min(Tfj,T) (0)7‘-(0)7 fort=1,--- 7T/At —1

j=0
(1)
o Apply the sequential batch-resampling routine of Chopin
(2002).

@ The only role of the prior, 7(0), is to provide the initial
particle cloud from which the algorithm can start.
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Estimation and inference

of the batch-resampling procedure

o For each t, this procedure yields a weighted sample of M
points, (800 wD) i =1,... M.

@ The weights can be easily updated by the computing only
the pseudo-likelihood associated with additional data
points when the particle set to represent the parameters
remains unchanged.

e Without periodical resamplings (sometimes a rejuvenation
sampling), parameter impoverishment or degeneracy will
certainly occur. Thus, resampling is a must after advancing
the system over a block of data over some period of time.

e Additional tempering steps are needed between ~;(6),
Yt+1(0) for a smooth transition.

e The empirical distribution function will converge to 7:(9)
as M increases.
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Estimation and inference

Parameter estimate

@ Denote the pseudo-posterior mean of the parameter
estimates by 6;:

M

ét - zt)z

=1 =1

@ () is not a true posterior because the likelihood function
in equation (1) is not a true likelihood function. Thus, it
cannot directly provide valid inference.
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Estimation and inference

How to conduct valid inference?

o We can turn to the results of Chernozhukov and Hong
(2003) to give a classical interpretation to the simulation
output.

e Let the pseudo-score matrix be s7(6) = Vplr(0) and the
negative of the scaled Hessian be
J2(0) = ~Vaplr(60)/(T/ A1),

@ Theorem 1 of Chernozhukov and Hong (2003) states that
for large T', y7/a—1(0) is approximately a normal density
with the random mean parameter:

0o + Jr(00) " ts7(00)/(T/At). This implies that
e Pseudo posterior mean 0, provides a consistent estimate for
to
e Scaled estimation error can be characterized by

\ T/At(éT/At,1 — 90) ~ JT(HO)_lsT(HO)/\/ T/At
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Estimation and inference

Using the recursive estimates for inference [

@ Access to the recursive estimates ét provides us an easy
way to construct confidence set using the self-normalized
approach of Shao (2010). Hence, no need to estimate
asymptotic variance.

@ Assume that the functional CLT applies to the scaled
pseudo-score:

JT/AL

@ Define a norming matrix

JT(QO)_1 S[TT}(HO) —* SWk(T)vr € [O’ 1]

T/At—1
N 1 /at

Cr= g 2 PO i) )

ion with the Partially-Conditioned Forward Intensity

op (4/20



Estimation and inference

Using the recursive estimates for inference I1

@ Then we can form the following asymptotically pivotal
statistic

(T/ AL (O yar-1—00)C (07 ar—1—00) = Wi(1)Py(1) " Wi (1)

where the asymptotic random norming matrix

1 .
Pr(1) = [3 (Wi(r) — rWi(1))(Wi(r) — rWi(1))'dr is a path
functional of the Brownian bridge. (Note that the nuisance
scale matrix S disappears from this quadratic form!)
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Estimation and inference

Using the recursive estimates for inference I1I

@ The above result can be used to form tests. For example,
we can test the hypothesis of the i-th element of 6y,
denoted by 9((;), equal to a by the following robust analogue
to the t-test:

VITE (0)ai =) W)
Vour o) - wyzar] "

where Si,T is the it" diagonal element of C’T.

t* =
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Estimation and inference

Theoretical recursion for filtering frailty

o As the frailty factor is unobserved, we need a filter to
compute conditional expectations.

e We use the smooth particle filter of Malik and Pitt (2011)
to simulate from the filtering distribution f(Fja¢|Djar)
where Dja; is the information set at jAZ.

o To understand the algorithm, first consider the following
theoretical recursion:

f(Fjat|Djat)

N
o8 f(FjAt’F(j—l)At) (H Pi,jyo(Y(jl)AtaF(jl)At)>

=1
x f(Fj—1)atPi-1)ae)
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Estimation and inference

Sequential importance sampling I

o Assume that we have M particles representing
)
F(Fj—1)at|D(j-1)at), denoted by F((ﬁl)m
@ Then
@ Attach importance weights wj(zz to the particles

m HPJO (Y- 1)AtvF(] )I)At)
i=1

. . . . (m)
@ Resample the particles with weights proportional to ijt
using the smooth bootstrap of Malik and Pitt (2011)

@ Sample from the transition density

Fj(z.nt) ~ f(FjAt|F((;z)1)At)
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Estimation and inference

Sequential importance sampling 11

@ The resulting particle cloud, F ((;;2 , is approximately
distributed according to f(Fja¢|Fjat)-

e To obtain the expectations over the path of the common
variables Zja¢.jat+r, we simulate M paths.

e To decrease Monte Carlo noise, we use the same random
numbers across calls at different parameter sets.
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Estimation and inference

Real-time updating

o In practice the model need to be updated periodically as
new data arrive and/or some old data get revised, i.e., T is
increased to T + At.

@ Assume that from the previous run up to T' we have a
weighted set of particles (§(:T/AL=1) qy(BT/AL=1))
representing the pseudo-posterior V(T:;)At_l(G).

o Next, set QGT/A) — g.T/At=1) 414 reweight by

T+At ;
LET/A) _ (G T/AE-1) %E”T/At ) (9.T/0)
Vi1 (05T/A0)

o The weighted set ((-T/A8) 4T/A) represents the new
pseudo-posterior ’y(TT/’ZtAt) (9).
o If the weights are too uneven, intermediate tempered

densities can be constructed and resample-move steps can
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Empirical analysis

Data of DSW (2012)

e Sample period: 1991-2011, monthly.

e Database:

o Compustat
o CRSP
o Credit Research Initiative database

e 12,268 U.S. public companies (including financial firms)
totaling 1,104,963 firm-month observations.
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Empirical ar

Year
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Active Firms
4012
4009
4195
4433
5069
5462
5649
5703
5422
5082
4902
4666
4330
4070
3915
3848
3767
3676
3586
3396
3224

Defaults
32
28

24
19
20
44
64
7
104
160
81
61
25
24
15
19
59
67
25
21

(%)
0.80%
0.70%
0.60%
0.54%
0.37%
0.37%
0.78%
1.12%
1.42%
2.05%
3.26%
1.74%
1.41%
0.61%
0.61%
0.39%
0.50%
1.61%
1.87%
0.74%
0.65%

Other Exit (%)

257
325
206
273
393
463
560
753
738
616
577
397
368
302
291
279
352
285
244
242
226

6.41%
8.11%
4.91%
6.16%
7.75%
8.48%
9.91%
13.20%
13.61%
12.12%
11.77%
8.51%
8.50%
7.42%
7.43%
7.25%
9.34%
7.75%
6.80%
7.13%
7.01%
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Empirical analysis

Covariates of this paper

3-month treasury rate
frailty factor
Distance to default

Cash and short-term investments/Total assets

Net income/Total assets
Relative size
Market to book ratio

Idiosyncratic volatility

Note: see Duan and Wang (2012, Global Credit Review)
for estimating DTDs of non-financial and financial
firms.
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Empirical analysis

Parameter smoothing and restrictions

e DSW (2012) demonstrated that their parameter estimates
can be modeled by the Nelson-Siegel (1987) type of term
structure function:

h(T; 00, 01, 02, d)

1 e:ip/(d 7/d) o 1 eip/(d 7/d) ~ exp(—1/d)
We further impose d > 0 for all parameter functions, and
set op to 0 for all current values of the stochastic covariates
so that when 7 — o0, their impacts will vanish. The future
values of the partial conditioning variables are NOT
subject to the same limiting requirement.

@ When there are 1 intercept, 12 covariates and 1 partial
conditioning common risk factor, the total number of
default parameters becomes 12 x 3 + 2% 4 = 44.

= 0o+t o1
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Empirical analysis

Macro drivers and the frailty Factor

o We assume that the macro variables follow a first-order
VAR
Y inar=A+B(Yja—A)+Ujn

o Here we only use the US treasury rate. The coefficient of
trailing S&P index return, used in DSW (2012), was found
to be unstable so that it is not used in the analysis.

o We assume that the latent frailty F} is one dimensional and
follows an AR(1) process:

Flivvae = cFjar + €541
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Empirical analysis

Model specifications investigated

e No correlation among the forward intensities (DSW).

@ The current value of the frailty factor enters into the
forward intensities (DSW-F).

e Conditioning depends both on the current and future
values of the frailty factor (PC-F).

o Conditioning depends on the current value of the frailty
factor and the future value of the US treasury rate (PC-M).
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Aggregate # of defaults

Figure 1: Aggregate default rate predictions of the DSW and PC-F models
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Parameter term structure (firm-specific attribute

Figure 2: Parameter estimates for the firm-specific attributes in the forward default intensity
function of the PC-F model
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Parameter term structure (common factors

Figure 3: Parameter estimates for the common risk [actors in the forward default intensity
function of the PC-F model
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Empirical analysis

Frailty factor time series

Figure 4: Estimates of the [railly lactor Lime series under the PC-F model
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Log-pseudo-likelihood differenc

5: Log-pscudo-likelihood diffe!
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Empirical analysis

Portfolio default distributions at two time points

Figure 6: Portfolio default distributions implied by the PC-F model with and without default

correlations under

two market conditions
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Portfolio default distributions (99% time

Figure 7: Portfolio default distribution’s 99 percentile implied by the PC-F model with
and without default correlations
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Empirical a

Table 1: Accuracy ralios

Panel A: In-sample results for the whole sample
1 month 3 months 6 months 12 months 24 months 36 months

DSW 93.02% 91.13% 88.49% 83.4% 73.92% 66.40%
DSW-F 93.66% 91.54% 88.84% 84.13% 75.31% 67.6%
PC-I" 93.5% 01.49% 88.91% 84.29% 75.51% 68.065%
PC-M 093.48% 91.47% 88.80% 84.27% 7H.45% 67.82%
P’anel B: In-sample results for the non-financial subsample

DSW 93.08% 91.1% 88.26% 82.95% 73.87% 66.76%
DSW-F 93.7% 91.53% 85.72% 82.91% 75.42% 67.78%
PC- 93.57% 01.51% 88.8% 84.03% 75.6% 68.29%
PC-M 93.58% 91.52% 88.81% 81.01% 75.59% 68.1%
Panel C: In-sample results for the financial subsample

DSW 92.49% 01.18% 90.29% 86.87% 73.51% 60.13%
DSW-F 093.53% 91.85% 90.34% 87.17% 76.96% 67.06%
PC-F 93.09% 01.49% 90.26% 87.36% 77.09% 66.87%
PC-M 93.08% 01.47% 90.19% 87.26% 77.05% 67.14%
Pancl D: Oul-olsample (over Lime) resulls for the whole sample

DSW 92.85% 01.31% 88.95% 85.02% T7.16% 72.26%
DSW-F  93.51% 91.93% 89.61% 85.92% 77 A6% 70.27%
PC-F 093.37% 91.87% 89.7% 86.2% 78.63% 72.04%
PC-M 93.46% 01.95% 89.75% 86.19% 78.52% 71.61%
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Empiric

Parameter estimates (default)

Tabhle 2: Maximum pscudo-likelihood cstimates for the TPC-F modal
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Parameter

timates (other exit

Table 3: Lsstimates [or the [orward other-exils intensity [uncition
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