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The literature

Corporate default/bankruptcy prediction literature is vast,
but most do NOT deal with the censoring effect due to
exits other than defaults/bankruptcies.

Most papers do NOT address the natural dynamic setting
of corporate default predictions where common risk factors
and firm-specific attributes evolve over time.

Bottom-up aggregation is possible only when one explicitly
addresses the natural dynamic setting. My discussion
focuses on doubly stochastic default prediction models that
are capable of predicting single-name defaults and
conducting portfolio credit risk analysis.
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Spot-intensity models, e.g. Duffie, Saita and Wang (2007, J
of Financial Economics), Duffie, Eckner, Horel and Saita
(2009, J of Finance):

A common spot-intensity function of covariates (common
risk factors and firm-specific attributes) for all firms and at
all time.
Specify a full joint time series dynamics for firm-specific
attributes and common risk factors. Extremely high
dimension! Ambitious, but bound to be quite ad hoc.

Forward-intensity model, Duan, Sun, Wang (2012, J of
Econometrics) (DSW)

Avoid specifying the dynamics of the covariates through the
use of forward intensities.
A set of forward-intensity functions versus one universal
spot-intensity function.
Easier implementation, but no real default correlations

Default Prediction with the Partially-Conditioned Forward Intensity JC Duan & A Fulop (4/2013)



Background Forward intensity Estimation and inference Empirical analysis

This paper

Extend the model of DSW (2012) to allow for default
correlations by conditioning forward intensities on the
future values of common risk factors (observed or latent).

Need to specify a low-dimensional dynamic for the
conditioning common risk factor(s), but still avoid
specifying the joint dynamics for firm-specific attributes.

Apply a pseudo-Bayesian sequential Monte Carlo technique
to estimate the parameters (two sets: 44 and 40).

Use recursive estimates for inference by self-normalized
asymptotics.

Provide empirical analysis of the model on a large US data
sample of over 12,000 firms over 21 years.
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The forward-intensity model of DSW (2012)

Assume independence across firms’ defaults and/or other
exits conditional on the observed covariates:
Forward default intensity

fit(τ) = exp (α0(τ) + α1(τ)xit,1 + α2(τ)xit,2 + · · ·αk(τ)xit,k)

Forward combined intensity

git(τ) = exp (β0(τ) + β1(τ)xit,1 + β2(τ)xit,2 + · · ·βk(τ)xit,k)

+fit(τ)

Can derive a consistent PD curve for each company, but it
is in essence a single-obligor PD model.
The DSW model has been implemented on over 60,000
exchange-listed firms in 106 economies by the NUS-RMI
Credit Research Initiative (non-profit credit ratings) to
produce daily update PDs for these firms.
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Our modification of the DSW (2012) model

Keep the concept of conditional independence, but
introduce common factors Zt into the conditioning set.
Conditional on future values of the common risk factors,
defaults across firms are assumed to be independent:

ψit(τ ; Zu, u ≤ t+ τ)

≡ −
lnEt

[
exp

(
−
∫ t+τ
t (λis + φis)ds

)∣∣∣Zu, u ≤ t+ τ
]

τ
git(τ ; Zu, u ≤ t+ τ)

≡ ψit(τ ; Zu, u ≤ t+ τ) + ψ′it(τ ; Zu, u ≤ t+ τ)τ

fit(τ ; Zu, u ≤ t+ τ) ≡ eψit(τ ;Zu,u≤t+τ)τ ×

lim
∆t→0

Et

[∫ t+τ+∆t
t+τ exp

(
−
∫ s
t (λiu + φiu)du

)
λisds

∣∣∣Zu, u ≤ t+ τ
]

∆t
.
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The survival probability over [t, t+ τ ], denoted by Sit(τ),
becomes

Sit(τ) = Et [exp(−ψit(τ ; Zu, u ≤ t+ τ)τ)]

= Et

[
exp

(
−
∫ τ

0
git(s; Zu, u ≤ t+ s)ds

)]
.

The forward default probability over [t+ τ1, t+ τ2] evaluated at
time t, denoted by Fit(τ1, τ2), becomes

Fit(τ1, τ2) = Et

[∫ τ2

τ1

e−ψit(s;Zu,u≤t+s)sfit(s; Zu, u ≤ t+ s)ds

]
.
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Choose a particular type of partially-conditioned forward
intensity functions.

fit(τ ; Zt+τ ) = exp[α0(τ) + α1(τ)xit,1 + · · ·+ αk(τ)xit,k

+ θ1(τ)zt,1 + · · ·+ θm(τ)zt,m

+ θ∗1(τ)(zt+τ,1 − zt,1) + · · ·+ θ∗m(τ)(zt+τ,m − zt,m)]

git(τ ; Zt+τ ) = exp[β0(τ) + β1(τ)xit,1 + · · ·+ βk(τ)xit,k

+ η1(τ)zt,1 + · · ·+ ηm(τ)zt,m

+ η∗1(τ)(zt+τ,1 − zt,1) + · · ·+ η∗m(τ)(zt+τ,m − zt,m)]

+ fit(τ ; Zt+τ )

Note: Default correlations come through future values of the
common risk factors.
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Discretized model

The sample period [0, T ] is assumed to be divisible into
T/∆t periods. Let N be the total number of companies.

Firm i may exit the data sample either due to default or a
non-default related reason, for example,
merger/acquisition. Denote the combined exit time by τCi
and the default time by τDi.

Let Zt:t+j = {Zt,Zt+∆t, · · · ,Zt+j∆t}.
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Partially-conditioned forward probabilities

Pt(τCi > t+ (j + 1)∆t|Zt:t+j , τCi > t+ j∆t)

= e−git(j∆t;Zt+j∆t)∆t

Pt(t+ j∆t < τCi = τDi ≤ t+ (j + 1)∆t|Zt:t+j , τCi > t+ j∆t)

= 1− e−fit(j∆t;Zt+j∆t)∆t

Pt(t+ j∆t < τCi 6= τDi ≤ t+ (j + 1)∆t|Zt:t+j , τCi > t+ j∆t)

= e−fit(j∆t;Zt+j∆t)∆t − e−git(j∆t;Zt+j∆t)∆t
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Computing default probabilities

For any joint probability, one first comes up with the joint
probability conditional on future values of the common risk
factors by utilizing conditional independence, and then
integrates over the common risk factors.

For example,

Pt(t+ j∆t < τCi = τDi ≤ t+ (j + 1)∆t)

= Et

[
e−

∑j−1
s=0 git(s∆t;Zt+s∆t)∆t

(
1− e−fit(j∆t;Zt+j∆t)∆t

)]
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Estimating the parameters

Denote the unknown fixed model parameters by θ.

The likelihood corresponding to time period j∆t for the
prediction interval [j∆t, j∆t+ τ ] can be written as

Lj,τ (θ) = Ej∆t

(
N∏
i=1

Pi,j,τ (θ; Zj∆t:j∆t+τ )

)

Here Pi,j,τ (θ; Zj∆t:j∆t+τ ) is the individual likelihood for a
given firm, conditional on the common risk factor.

The expectation cannot be solved in a closed form, but can
be computed by simulation.

Zt = (Yt,Ft) where Ft is latent and its filtered value can
be obtained by a particle filter.
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Maximum pseudo likelihood

The maximum sample pseudo likelihood is

Lτ (θ; τC , τD,X,Y) =

T/∆t−1∏
j=0

Lj,min(T−j∆t,τ)(θ)

Due to the use of conditioning common risk factors, the
decomposability property of DSW (2012) no longer applies.
Parameters for different forward starting times must be
estimated jointly.
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A pseudo-Bayesian device for parameter estimation

Lack of decomposability means that the number of
parameters to be estimated jointly will be very large. The
conventional gradient-based optimization methods does not
work well.

Consider the following pseudo-posterior distribution:

γt(θ) ∝
t∏

j=0

Lj,min(T−j,τ)(θ)π(θ), for t = 1, · · · , T/∆t− 1

(1)

Apply the sequential batch-resampling routine of Chopin
(2002).

The only role of the prior, π(θ), is to provide the initial
particle cloud from which the algorithm can start.
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Details of the batch-resampling procedure

For each t, this procedure yields a weighted sample of M
points, (θ(i,t), w(i,t)), i = 1, . . . ,M .

The weights can be easily updated by the computing only
the pseudo-likelihood associated with additional data
points when the particle set to represent the parameters
remains unchanged.

Without periodical resamplings (sometimes a rejuvenation
sampling), parameter impoverishment or degeneracy will
certainly occur. Thus, resampling is a must after advancing
the system over a block of data over some period of time.

Additional tempering steps are needed between γt(θ),
γt+1(θ) for a smooth transition.

The empirical distribution function will converge to γt(θ)
as M increases.
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Parameter estimate

Denote the pseudo-posterior mean of the parameter
estimates by θ̂t:

θ̂t =
1∑M

i=1w
(i,t)

M∑
i=1

w(i,t)θ(i,t)

γt(θ) is not a true posterior because the likelihood function
in equation (1) is not a true likelihood function. Thus, it
cannot directly provide valid inference.
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How to conduct valid inference?

We can turn to the results of Chernozhukov and Hong
(2003) to give a classical interpretation to the simulation
output.
Let the pseudo-score matrix be sT (θ) = ∇θlT (θ) and the
negative of the scaled Hessian be
JT (θ) = −∇θθ′ lT (θ)/(T/∆t).
Theorem 1 of Chernozhukov and Hong (2003) states that
for large T , γT/∆t−1(θ) is approximately a normal density
with the random mean parameter:
θ0 + JT (θ0)−1sT (θ0)/(T/∆t). This implies that

Pseudo posterior mean θ̂t provides a consistent estimate for
θ0

Scaled estimation error can be characterized by√
T/∆t(θ̂T/∆t−1 − θ0) ≈ JT (θ0)−1sT (θ0)/

√
T/∆t
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Using the recursive estimates for inference I

Access to the recursive estimates θ̂t provides us an easy
way to construct confidence set using the self-normalized
approach of Shao (2010). Hence, no need to estimate
asymptotic variance.

Assume that the functional CLT applies to the scaled
pseudo-score:

JT (θ0)−1 1√
T/∆t

s[rT ](θ0)→d SWk(r), r ∈ [0, 1]

Define a norming matrix

ĈT =
1

(T/∆t)2

T/∆t−1∑
l=0

l2(θ̂l − θ̂T/∆t−1)(θ̂l − θ̂T/∆t−1)′
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Using the recursive estimates for inference II

Then we can form the following asymptotically pivotal
statistic

(T/∆t)(θ̂T/∆t−1−θ0)Ĉ−1
T (θ̂T/∆t−1−θ0)′ →d Wk(1)Pk(1)−1Wk(1)

where the asymptotic random norming matrix
Pk(1) =

∫ 1
0 (Wk(r)− rWk(1))(Wk(r)− rWk(1))′dr is a path

functional of the Brownian bridge. (Note that the nuisance
scale matrix S disappears from this quadratic form!)
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Using the recursive estimates for inference III

The above result can be used to form tests. For example,
we can test the hypothesis of the i-th element of θ0,

denoted by θ
(i)
0 , equal to a by the following robust analogue

to the t-test:

t∗ =

√
T/∆t

(
θ̂

(i)
T/∆t−1 − a

)
√
δ̂i,T

→d W (1)[∫ 1
0 (W (r)− rW (1))2dr

]1/2

where δ̂i,T is the ith diagonal element of ĈT .
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Theoretical recursion for filtering frailty

As the frailty factor is unobserved, we need a filter to
compute conditional expectations.

We use the smooth particle filter of Malik and Pitt (2011)
to simulate from the filtering distribution f(Fj∆t|Dj∆t)
where Dj∆t is the information set at j∆t.

To understand the algorithm, first consider the following
theoretical recursion:

f(Fj∆t|Dj∆t)

∝ f(Fj∆t|F(j−1)∆t)

(
N∏
i=1

Pi,j,0(Y(j−1)∆t, F(j−1)∆t)

)
×f(F(j−1)∆t|D(j−1)∆t)
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Sequential importance sampling I

Assume that we have M particles representing

f(F(j−1)∆t|D(j−1)∆t), denoted by F
(m)
(j−1)∆t.

Then

1 Attach importance weights w
(m)
j∆t to the particles

w
(m)
j∆t =

N∏
i=1

Pi,j,0(Y(j−1)∆t, F
(m)
(j−1)∆t)

2 Resample the particles with weights proportional to w
(m)
j∆t

using the smooth bootstrap of Malik and Pitt (2011)
3 Sample from the transition density

F
(m)
j∆t ∼ f(Fj∆t|F (m)

(j−1)∆t)
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Sequential importance sampling II

The resulting particle cloud, F
(m)
(j)∆t is approximately

distributed according to f(Fj∆t|Fj∆t).

To obtain the expectations over the path of the common
variables Z̃j∆t:j∆t+τ , we simulate M paths.

To decrease Monte Carlo noise, we use the same random
numbers across calls at different parameter sets.
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Real-time updating

In practice the model need to be updated periodically as
new data arrive and/or some old data get revised, i.e., T is
increased to T + ∆t.
Assume that from the previous run up to T we have a
weighted set of particles (θ(i,T/∆t−1), w(i,T/∆t−1))

representing the pseudo-posterior γ
(T )
T/∆t−1(θ).

Next, set θ(i,T/∆t) = θ(i,T/∆t−1) and reweight by

w(i,T/∆t) = w(i,T/∆t−1) ×
γ

(T+∆t)
T/∆t (θ(i,T/∆t))

γ
(T )
T/∆t−1(θ(i,T/∆t))

The weighted set (θ(i,T/∆t), w(i,T/∆t)) represents the new

pseudo-posterior γ
(T+∆t)
T/∆t (θ).

If the weights are too uneven, intermediate tempered
densities can be constructed and resample-move steps can
be executed.Default Prediction with the Partially-Conditioned Forward Intensity JC Duan & A Fulop (4/2013)
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Data of DSW (2012)

Sample period: 1991-2011, monthly.

Database:

Compustat
CRSP
Credit Research Initiative database

12,268 U.S. public companies (including financial firms)
totaling 1,104,963 firm-month observations.
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Year Active Firms Defaults (%) Other Exit (%)
1991 4012 32 0.80% 257 6.41%
1992 4009 28 0.70% 325 8.11%
1993 4195 25 0.60% 206 4.91%
1994 4433 24 0.54% 273 6.16%
1995 5069 19 0.37% 393 7.75%
1996 5462 20 0.37% 463 8.48%
1997 5649 44 0.78% 560 9.91%
1998 5703 64 1.12% 753 13.20%
1999 5422 77 1.42% 738 13.61%
2000 5082 104 2.05% 616 12.12%
2001 4902 160 3.26% 577 11.77%
2002 4666 81 1.74% 397 8.51%
2003 4330 61 1.41% 368 8.50%
2004 4070 25 0.61% 302 7.42%
2005 3915 24 0.61% 291 7.43%
2006 3848 15 0.39% 279 7.25%
2007 3767 19 0.50% 352 9.34%
2008 3676 59 1.61% 285 7.75%
2009 3586 67 1.87% 244 6.80%
2010 3396 25 0.74% 242 7.13%
2011 3224 21 0.65% 226 7.01%
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Covariates of this paper

3-month treasury rate

frailty factor

Distance to default

Cash and short-term investments/Total assets

Net income/Total assets

Relative size

Market to book ratio

Idiosyncratic volatility

Note: see Duan and Wang (2012, Global Credit Review)
for estimating DTDs of non-financial and financial
firms.
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Parameter smoothing and restrictions

DSW (2012) demonstrated that their parameter estimates
can be modeled by the Nelson-Siegel (1987) type of term
structure function:

h(τ ; %0, %1, %2, d)

= %0 + %1
1− exp(−τ/d)

τ/d
+ %2

[
1− exp(−τ/d)

τ/d
− exp(−τ/d)

]
We further impose d > 0 for all parameter functions, and
set %0 to 0 for all current values of the stochastic covariates
so that when τ →∞, their impacts will vanish. The future
values of the partial conditioning variables are NOT
subject to the same limiting requirement.
When there are 1 intercept, 12 covariates and 1 partial
conditioning common risk factor, the total number of
default parameters becomes 12× 3 + 2× 4 = 44.
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Macro drivers and the frailty Factor

We assume that the macro variables follow a first-order
VAR

Y(j+1)∆t = A + B(Yj∆t −A) + Uj+1

Here we only use the US treasury rate. The coefficient of
trailing S&P index return, used in DSW (2012), was found
to be unstable so that it is not used in the analysis.

We assume that the latent frailty Ft is one dimensional and
follows an AR(1) process:

F(j+1)∆t = cFj∆t + εj+1
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Model specifications investigated

No correlation among the forward intensities (DSW).

The current value of the frailty factor enters into the
forward intensities (DSW-F).

Conditioning depends both on the current and future
values of the frailty factor (PC-F).

Conditioning depends on the current value of the frailty
factor and the future value of the US treasury rate (PC-M).
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Aggregate # of defaults
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Parameter term structure (firm-specific attributes
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Parameter term structure (common factors
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Frailty factor time series
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Log-pseudo-likelihood difference
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Portfolio default distributions at two time points
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Portfolio default distributions (99% time series)

Default Prediction with the Partially-Conditioned Forward Intensity JC Duan & A Fulop (4/2013)



Background Forward intensity Estimation and inference Empirical analysis

Accuracy ratios
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Parameter estimates (default)
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Parameter estimates (other exits)
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