Dynamic Dependence in Corporate Credit

Peter Christoffersen Toronto Kris Jacobs Houston

Xisong Jin Luxembourg Hugues Langlois McGill

Research Questions

- Industry reports suggest that diversification benefits in corporate credit markets have gone down.
 - How do we model dynamic dependence in credit markets?
 - How do we measure diversification benefits?
- Do credit spreads, volatility and correlation have separate dynamics?
- Which economic variables drive credit and equity correlations?

Credit Default Swaps (Markit)

- Hedging
 - CDS allow capital or credit exposure constrained businesses (banks for example) to free up capacity.
 - CDS can be a short credit positioning vehicle. It is easier to buy credit protection than short bonds.
 - CDS may allow users to avoid triggering tax/accounting implications that arise from sale of assets
- Investing
 - Investors take a view on deterioration or improvement of credit quality of a reference credit
 - CDS offer the opportunity to take a view purely on credit
 - CDS offer access to hard to find credit (limited supply of bonds syndicate)
 - Investors can tailor their credit exposure to maturity requirements, as well as desired seniority in the capital structure
 - CDS require little cash outlay and therefore creates leverage

Overview

- 1. Data
- 2. Volatility Models
- 3. Copula Models
- 4. Credit Diversification Benefits
- 5. Economic Drivers of Copula Correlations

1. Data

- 5-year-CDS quotes each Wednesday.
- From Markit: 226 individual firms included in the first 18 series of the CDX North American investment grade index.
- Data range: from 10/01/2001 to 22/08/2012.
- Exclude 3 firms with fewer than 52 consecutive weeks in our sample.
- Construct time series of default intensities from CDS premia using constant default intensity model.

Some Market Events in our Sample

- 19/07/2002 WorldCom Bankruptcy
- 05/05/2005 Ford and GM Downgrade to Junk
- 08/10/2005 Delphi Bankruptcy
- 06/08/2007 Quant Meltdown
- 16/03/2008 Bear Stearns Bankruptcy
- 15/09/2008 Lehman Bankruptcy
- 10/03/2009
- 05/08/2011
- Stock Market Trough
- 1 US Sovereign Debt Downgrade

Threshold Correlations

- Use the weekly log differences in 1) CDS premia,
 2) default intensity and 3) equity prices.
- Standardize the weekly "returns" using sample mean and volatility.
- Compute threshold correlations:

$$\bar{\rho}_{ij}(x) = \begin{cases} Corr(\overline{R}_i, \overline{R}_j \mid \overline{R}_i < x, \overline{R}_j < x) & \text{when } x < 0\\ Corr(\overline{R}_i, \overline{R}_j \mid \overline{R}_i \ge x, \overline{R}_j \ge x) & \text{when } x \ge 0, \end{cases}$$

• Where x is measured in standard deviations from the mean.

2. Dynamic Volatility Models

- Univariate models on weekly log diffs for each of 3 series on 223 firms.
- Up to ARMA(2,2) for the conditional mean. Model selection by AICC.
- Engle and Ng (1993) NGARCH(1,1) for the conditional variance.
- Hansen (1994) asymmetric standardized t distribution for ARMA-NGARCH shocks.

NGARCH Volatility. Med and IQR

3. Dynamic Asymmetric Copula (DAC)

- Key Challenge: 223 firms and thus 24,753 correlations that change week by week.
- Crucial ingredients:
 - Parsimonious Dynamic Conditional Correlation model of Engle (2002).
 - Flexible Multivariate Skewed t Distribution in Demarta and McNeil (2004).
 - Large-scale composite likelihood estimation as in Engle, Shephard and Sheppard (2008).
 - Allow for different start and end times for each firm.
 Patton (2006).
- DAC model developed in Christoffersen and Langlois (JFQA, 2013) and Christoffersen, Errunza, Jacobs and Langlois (RFS, 2012).

-Median and IQR of bivariate copula correlations.

CDS spread,
default intensity
and equity log
diffs.

Note shift in
2007 in credit
but not in equity
correlations.

4. Conditional Diversification Benefits (CDB)

• Using Expected Shortfall (ES), We define CDB as $CDB_t(p) \equiv \frac{\overline{ES}_t(p) - ES_t(p)}{\overline{ES}_t(p) - ES_t(p)},$

• Gaussian version (when p=50%): $VolCDB_t = 1 - \frac{\sqrt{\mathbf{1}^{\top}\Sigma_t \mathbf{1}}}{\mathbf{1}^{\top}\sigma_t}$, - 5% CDB for EW credit portfolio
(top) and EW equity portfolio.
(bottom).

- *Selling* CDS and buying equity.

 VIX on righthand scale. Key dates in vertical bars.

- Note: Deterioration in CDB in both markets. Began in credit in 2007.

- 5% CDB for credit portfolios (top) and equity portfolio. (bottom).

- Optimized weights (dash) on industry Avr. portfolios. Also EW industry weights (solid).

Note:
 Deterioration in
 CDB is partly
 circumvented
 when optimizing
 weights.

5. Economic Drivers of Credit and Equity Correlations

- Macro and market variables considered
 - The CDX North American investment grade index level is used to proxy for the overall level of risk in credit markets.
 - The VIX index represents equity market risk.
 - The term structure is captured by a level variable, the 3-month US Constant Maturity Treasury (CMT), and a slope variable, the 10 year CMT index minus the 3month CMT.
 - The crude oil price as measured by the West Texas Intermediate Cushing Crude Oil Spot Price
 - The inflation level as measured by CPI.
 - Consumer confidence measured by the US Consumer Confidence Index (seasonally adjusted).

Correlation Regression Preliminary Findings

- When using first-differences in median correlation regressed on first-differences of macro and market variables in univariate regressions, we find that
 - VIX drives up credit and equity correlations.
 - Consumer confidence drives down both credit and equity correlations.
 - CDX drives up credit correlations.
 - Crude oil price drives down both credit and equity correlations.
 - The interest rate drives down credit correlation.
- We also run regression on spreads and spread volatility. Regressions on levels. Multivariate regressions.

Summary

- We have estimated a dynamic asymmetric copula model on 223 firms which each have different start and end dates.
- Credit spread levels, volatility and dependence are found to have separate dynamics. Credit and equity prices also have different dynamics.
- Credit dependence appears to be permanently higher after 2007. Equity dependence not so.
- Diversification benefits have declined in both EW credit and EW equity portfolios. This decline in diversification benefit can be reduced by optimizing benefits on industry portfolios.
- We find some scope for economic drivers of credit and equity dependence.

Appendix: Credit Events in the Sample

- CIT Group
- Delphi
- FHLMC
- FNMA
- Washington Mutual
- Tribune
- Lear
- Eastman Kodak
- Residential Cap

See:

http://creditfixings.com/CreditEventAuctions/fixings.jsp