Deutsche Bank Risk

Measuring and Managing Credit Risk Volatility – a practitioner's view

New York University Stern School of Business

Passion to Perform

Wilfried Paus, Global Head of Risk Analytics & Living Wills 26. April 2013

Deutsche Bank's Risk Management Framework

Sound principles and processes compliant with Basel 2.5/3 Pillar II

		_
	Pillar II – A Compliant ICAAP framework	 Risk Appetite: Integrated strategic planning process resulting in Risk & Capital Plan:
SSES	Risk governance and strategy	 monitoring in place Use Test : Evidence of strong risk culture and robust governance framework which manages on going risk profile
nanaging s for	Risk management processes	Risk Assessment: Independent function identifies, assesses, manages and reports material risks
ucture	Risk and capital methods – Analytics and modeling	 Regulatory and Internal capital adequacy quantified by risk type Top-down comprehensive limits Regular appropriate stress
MI	Risk infrastructure, policies and	 Skilled and dedicated teams Models regularly validated

Tools adapted to entity requirements

Appropriate risk management proces operating

- Clear roles and responsibilities for m all risk inventories
- Processes and tools identification of risk concentrations
- Established infrastru and operational sup
- Principles, policies a procedures in place
- Relevant top-down monitors risk exposures and process

uocumentations

Four key principles underpin our risk management framework:

Ο

- Risk is taken within the defined risk appetite
- Every risk taken must be approved within the risk management framework
- DB should be adequately compensated for the risk taken
- Risk should be continuously monitored

Risk and Capital Management Process

Internal Capital Adequacy Assessment (ICAAP) is a continuous process

In line with MaRisk⁽¹⁾ and Basel II requirements, the key instruments to ensure adequate capitalization on an ongoing and forward looking basis for the Group are:

- A strategic planning process which sets defined capital threshold and risk appetite limit aligned to business objectives
- Translation of Risk appetite to measurable thresholds
- A continuous monitoring process of actual risk profile against approved limits and thresholds

Robust, firm-wide and ICAAP compliant process Sets the boundary with limits and Planning process triggers sets risk strategy **Risk** aligned to business Appetite Risk Strategy Actual Risk Profile **Risk limits/ Risk Bearing** On going Capacity Day to day limits monitoring and used to assure testing alignment to Risk Appetite

Enterprise-wide Risk Management Oversight on Standards, Processes & Governance

(1) Minimum Requirements for Risk Management for Banks set by the German Federal Financial Supervisory Authority (BaFin)

Risk Measurement: Expected Loss & Economic Capital

Estimates for DB's future loss potential

- Expected Loss (EL) is the average loss over a given period (commonly one year)
- Economic Capital (EC) is the amount of capital needed to cover additional unexpected losses (at 99.98% confidence)
- Calculated via simulation models:

Economic Capital is Deutsche Bank's Risk Currency

DB calculates Economic Capital for...

- Credit Risk
- Market Risk
- Operational Risk
- Business Risk

... and uses it to ...

- Assess capital adequacy & plan capital demand
- Measure performance (RoE, RAROC)
- Distribute compensation
- Perform stress tests
- Meet Basel II regulatory requirements
 - Internal Capital Adequacy Assessment Process
 - Modelling alpha and the Incremental Risk Charge
 - "Use test" for ratings, derivatives methodology etc.

1) As per CEBS CP03R definition. Market liquidity of assets is considered in EC.

Economic Capital by Risk Type

Base Model: Calculating Credit Risk Economic Capital

Joint EC calculation for counterparty, transfer, settlement & traded default risk

Model Extension: Multi-State Asset Value Simulation

Incorporating duration and rating migration

Simulate rating Loss value in state at horizon rating state Multi-State AAA V_{REF} - V_{AAA} V_{REF} - V_{AA} $V_{REF} - V_A$ V_{REF} - V_{BBB} V_{REF}-V_{BB} V_{RFF} - V_{B} $V_{REF}-V_{CCC}$ V_{REF}-V_{Def} Today: rating R₀ Planning horizon Value with rating R_0 : V_{REF}

- Event = defaulted / not defaulted
- Loss value depends only on EAD and LGD
- Event = Rating change at horizon
- Value in rating class at horizon by cash flow valuation: additional dependence on
 - maturity
 - default curve
 - interest rates

Natural choice to model assets subject to fair value accounting

Deutsche Bank Risk

Model Extension: Multi-period Simulation

Joint Economic Capital calculation for Traded Default Risk and Credit Risk

Multi-period extension of credit portfolio model

- Appropriate framework for a joint EC calculation for portfolios with different liquidity horizons
- Multi-period simulation of underlying risk factors captures dependence between sub-portfolios with different liquidity profiles

Joint EC calculation for Traded Default Risk and Credit Risk

- Determination of the liquidity horizon
 - Credit Risk: 12m
 - Traded Default Risk: 6m
- Joint EC calculation for TDR and Credit Risk provides correct diversification effects down to transaction level
- Extendable to "Constant Level of Risk" model used for Incremental Risk Charge

Multi-period simulation of underlying risk factors

- $X^{(i)}$: increment of risk factors in month i
- H_i : loss function of subportfolio with j months liquidity horizon

$$\frac{H_{6}(X^{(1)} + X^{(2)} + ... + X^{(6)})}{H_{12}(X^{(1)} + X^{(2)} + ... + X^{(6)} + X^{(7)} + ... + X^{(12)})}$$

Multi-period EC calculation for TDR and CR

Model Extension: Reflection of Wrong-way Risk

Incorporation of alpha factor

Regulatory alpha parameter is a joint product of DB's credit portfolio model (dbCDE) and derivatives exposure engine (MATRIX)

 α captures "wrong-way" risk through a joint simulation of credit and market risk

 $\alpha = \frac{\text{EC}\text{ based on joint simulation of CR and MR drivers}}{\alpha}$

EC based on Average Expected Exposure

 This makes it a natural component also for EC

Approximative implementation in Deutsche Bank's EC methodology

- Monthly calibration of α
- Scale exposure for derivatives and securities financing transactions
 - EAD=AEE * α
 - by latest α (i.e. previous month's)

alpha calibration based on a joint simulation of credit & market risk

Credit Risk Volatility – How Relevant is It? DB favours PD-based over spread-based Economic Capital modelling

Market-driven credit spreads combine pure credit risk with other aspects

- Overweight of systemic drivers
- Market sentiment
- Liquidity

True threat for a bank's P&L and capital is driven by other criteria

- Credit risk type
 - Default
 - Transfer
- Accounting treatment (e.g. fair value vs. hold to maturity)
- Time horizon (e.g. default vs. settlement risk)

But regulators push for comprehensive credit-spread based capital demand modelling

Deutsche Bank Identifier

Dual Processing of Assets Subject to Spread Risk Risk considerations prevail over accounting and regulatory treatment

DB transactions Pillar I Pillar II Regulatory yes (Global) (Global) Trading Book? CR (AIRB)⁴⁾ CR⁴⁾ MR (VaR) TMR IRC in 12/2011 no¹⁾ TDR FX, Comm., IR Risk²⁾³⁾ Pillar I Pillar II yes Equity/ (Global) (Global) Investment? CR (AIRB) NTMR no Pillar I Pillar II yes (Global) (Global) Fair Value \rightarrow Asset? CR (AIRB) CR/TDR TMR⁵⁾ no Pillar I Pillar II (Global) (Global)

- 1) Incl. "held for sale" and securitization assets in the ramp up phase if they cannot be sold within 180 days
- 2) Interest rate, commodity and foreign exchange risk is transferred to the trading book
- Some retail subsidiaries have their own limits for Interest Rate risk and don't transfer it to the trading book.
- Credit Risk for derivatives in AEE, EPE, PFE (average expected exposure, expected potential exposure, potential future exposure)
- 5) Spread and basis risk

CR (AIRB)

CR

12

12

Managing Credit Risk Volatility Additional tools to mitigate credit risk loss potential

Single-name concentration hedging

Dedicated loan pricing and hedging function established in 2003 Scope: Large Corporates & MidCap

Centralised dynamic hedging

Derivatives exposure Traded default risk

Central counterparts

An additional (partially mandatory) option – but not risk free!

Deutsche Bank Risk

Appendix

Exposure Profiles for Derivatives Integration of market risk drivers into credit risk EC

Exposure calculation for derivatives

- Current MtM does not reflect value change potential over time horizon
- Requires simulation of market factors and revaluation of derivatives over time

Various exposure measures

- Average Expected Exposure (for EC)
- Expected Positive Exposure (for RC)
- Potential Future Exposure (for limit monitoring)

alpha-factor

- Internal Models Method under Basel II: EAD = EPE * α
- α is a scaling factor for "wrong-way risk", ranging from 1.2 (regulatory floor) to 1.4 (standard)
- Consideration for RC (floored) and EC (plain)

15

15

time

Basel II vs. Economic Capital Model

Fundamental Conceptual Differences

	EC Framework	Basel II Framework	
	LGD, PD, etc. calibrated and validated on same data In most cases identical		Comporebility
Credit Risk	Use of best estimate for EAD	Process-driven netting set split	improved
	99.98 % quantile	99.90% quantile	
	Portfolio context considered, i.e. concentration risk	Capital calculated & allocated in isolation – "one size fits all"	No concentration risk under Basel II
	Full diversification through country/industry correlation	"Asset correlation" is counterparty specific	=>Potential systemic risk
OR	Identical loss distribution		Basel II/2.5 building
	99.98 %-ile	99.90%-ile	block approach =
MR	Scaled sVar 99.98%-ile for Tr. Default Risk	99%-ile forVaR+sVar; MRSA 99.90%-ile for IRC & CompRM	No risk type diversification
BR	Earnings simulation		