The U.S. Dollar Safety Premium

Matteo Maggiori
New York University Stern, NBER
IES Fellow, Princeton University

NYU Volatility Institute
April 26, 2013
International Monetary System characterized by the existence of a Reference Country and a Reference Currency:

- Pre WW I: UK, British Pound Sterling, Gold
- Post WW II: US, US Dollar

Key Characteristic: Safe Haven during periods of crisis. Global Flight to Quality toward the Reference Currency

First emphasized by Bagehot (1873) for Sterling. 2008 Lehman Crisis was a painful reminder of the mechanism
Convert conventional wisdom into finance terminology:

- The USD is a global safe asset since it pays high in bad states of the world ⇒ Unconditional Safety Premium > 0
- There is a GFtQ to the USD during bad times ⇒ Conditional Safety Premium increases during bad times

Def. The USD Safety Premium is the excess return of investing in foreign currency while shorting the USD

Previous literature focused on the first point: contentious

UIP and carry trade literature: Lustig, Rousannov, Verdhelan (2010, 11)
My Contribution

- New Dataset: high quality estimates of global currencies returns
- Measure the Unconditional and Conditional USD Safety Premium
 - 1% on average for the modern floating period (1973-2010)
 - Near 10% during crises, and as large as 50% during the Oct 2008 collapse
- Confirm the role of the USD as a Safe Haven during crises
- Interpret these findings in terms of risk: no free lunch for the US
Results Preview: Dollar Safety Premium
Simple law of one price asset pricing:

\[1 = E_t[\Lambda_{t+1} R_{t+1}] \quad \quad 1 = E_t[\Lambda_{t+1}^* R_{t+1}^*] \]

* are Foreign variables

Proposition 1 There exist two stochastic discount factors, one for each country, such that:

\[\Lambda_{t+1} = \Lambda_{t+1}^* \frac{E_t}{E_{t+1}} \]

\(E_t \downarrow : \) USD appreciates

The stochastic discount factors:

\[M_{t+1} \equiv \text{proj}(\Lambda_{t+1} | A) \quad M_{t+1}^* \equiv \text{proj}(\Lambda_{t+1}^* | A^*) \]

where \(A = A^* E_{t+1} \) is the space of internationally traded assets, always satisfy the above relationship
Return Decomposition

Proposition 2 Assume that asset returns, SDFs and the exchange rate are jointly log-normally distributed. Then the expected excess return in Home currency of the Foreign asset over the Home asset is:

\[
E_t[r_{t+1}^* + \Delta e_{t+1} - r_{t+1}] + \frac{1}{2} \text{Var}_t(r_{t+1}^* + \Delta e_{t+1}) - \frac{1}{2} \text{Var}_t(r_{t+1}) =
\]

\[
- \text{Cov}_t(m_{t+1}^*, r_{t+1}^*) + \text{Cov}_t(m_{t+1}, r_{t+1}) + \text{Cov}_t(r_{t+1}^*, \Delta e_{t+1}) - \text{Cov}_t(m_{t+1}, \Delta e_{t+1})
\]

- **domestic risk**
- **exchange rate risk**

- \(- \text{Cov}_t(m_{t+1}^*, r_{t+1}^*) \): Foreign asset risk premium in Foreign currency

- \(- \text{Cov}_t(m_{t+1}, r_{t+1}) \): Home asset risk premium in Home currency

- \(\text{Cov}_t(r_{t+1}^*, \Delta e_{t+1}) \): Foreign asset is riskier for Home investors if it pays high when the Home currency depreciates

- \(- \text{Cov}_t(m_{t+1}, \Delta e_{t+1}) \): currency risk premium
Safe currency

If assets are the risk free rate for each country, then the currency risk premium:

\[E_t[r^{*,t+1}_f + \Delta e_{t+1} - r_{f,t+1}] + \frac{1}{2} \text{Var}_t(\Delta e_{t+1}) = -\text{Cov}_t(m_{t+1}, \Delta e_{t+1}) \]

A currency is safe if the covariance is positive: i.e. the currency appreciates in bad times

- Interesting to analyze: \(\text{Cov}_t(\text{risky return}_{t+1}, \Delta e_{t+1}) \)
 - \(\text{risky return}_{t+1} = r^{*,t+1}_f \): measures 3rd term
 - \(\text{risky return}_{t+1} = r^w_{t+1} \): then under CAPM \(m_{t+1} \equiv a_t - b_t r^w_{t+1} \) it is a direct measure of the currency risk premium

\[-\text{Cov}_t(m_{t+1}, \Delta e_{t+1}) = b_t \text{Cov}_t(r^w_{t+1}, \Delta e_{t+1}) \]

The challenge: what matters is the conditional covariance. Not observable
Identification Strategy: Intuition

Methodology originally developed by Campbell (1987) and Harvey (1989). I follow Duffee (2005). Intuition:

- I want to measure: \(b_t \text{ Cov}_t(r_{t+1}, \Delta e_{t+1}) \)
- By definition: \(r_{t+1} = E_t[r_{t+1}] + \eta_{t+1} \) \(\Delta e_{t+1} = E_t[\Delta e_{t+1}] + \eta_{t+1}^e \)
- So we have: \(\text{Cov}_t(r_{t+1}, \Delta e_{t+1}) = E_t[\eta_{t+1}^r \eta_{t+1}^e] \)

This leads to a three stage econometric procedure
Identification Strategy: Econometric Technique

- **Zero Order** regressions: Predictive regressions

 \[r_{t+1} = \alpha_r Y_t^r + \epsilon_{t+1}^r \]

 \[\Delta e_{t+1} = \alpha_e Y_t^e + \epsilon_{t+1}^e \]

 \[\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \equiv \hat{\epsilon}_{t+1}^r \hat{\epsilon}_{t+1}^e \] is the estimated ex-post covariance

- **First Order** regression: Time varying covariance

 \[\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) = \alpha_z Z_t + \xi_{t+1} \]

- **Second Order** regressions: relation between covariance and returns:

 Constant price of risk:

 \[r^*_{f,t+1} + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \tilde{\text{Var}}(\Delta e_{t+1}) = d_0 + d_1 \tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1} \]

 Time varying price of risk:

 \[r^*_{f,t+1} + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \tilde{\text{Var}}(\Delta e_{t+1}) = d_0 + [d_1 + d_2 b_t] \tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1} \]
Instruments: Empirical

\[Y_t^r = [1, dp_t, r_t] \]
\[Y_t^e = [1, r_{f,t+1}^* - r_{f,t+1}, \Delta e_t] \]
\[Z_t = [1, dp_t, r_{f,t+1}^* - r_{f,t+1}, r_t, \Delta e_t, vol_t', vol_t^e, cov_{t-1}'] \]

Definitions:

- \(vol_t'x \equiv \sum_{i=0}^{1} (x_{t-i} - \bar{x})^2 \) for \(x = \{r, e\} \)
- \(cov_t' \equiv \sum_{i=0}^{2} (r_{t-i} - \bar{r})(\Delta e_{t-i} - \bar{\Delta e}) \)

Robustness checks:

- \(cay: \) Lettau and Ludvingson (2001)
- \(nxa: \) Gourinchas and Rey (2001)
- \(\text{volatility index: } \) Bloom (2009)
- \(\text{carry trade risk factors: } \) Lustig, Roussanov, Verdhelan (2009)
World and Developed Markets Indices

- Stock Market indices and capitalization weights from MSCI-Barra

- USD Currency indices: my own estimates based on forward, Libor, and government rates

- I build two market cap. weighted indices: Dec 1969 - March 2010
 - World: 45 Developed (D) and Emerging (EM) countries.
 - Developing: 23 Developed countries.

Currency Return Dataset: more extensive in both coverage and time span, and higher quality than datasets currently used in the literature
Average USD Safety Premium: 1970-2010

\[SP = r_{f,t+1} + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \hat{\text{Var}}(\Delta e_{t+1}) \]

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th>Developed</th>
<th>Equally Wght</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.98%</td>
<td>0.99%</td>
<td>1.18%</td>
</tr>
<tr>
<td>Stand. Dev</td>
<td>8.06%</td>
<td>8.26%</td>
<td>7.16%</td>
</tr>
<tr>
<td>Subcomponents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta e)</td>
<td>0.72%</td>
<td>1.12%</td>
<td>-2.20%</td>
</tr>
<tr>
<td>(r_{f}^* - r_f)</td>
<td>-0.05%</td>
<td>-0.45%</td>
<td>3.13%</td>
</tr>
</tbody>
</table>

- Safety Premium is positive, but not statistically significant
- This is a symptom of low Sharpe Ratios and short samples. Even if true, it would take at least 64 years of data to have statistical significance!
- Simple, pervasive, but surprisingly under-appreciated problem in the literature
Figure: USD Safety Premium: Roll start date - 2010

Figure: USD Safety Premium: 1970 - Roll end date
Zero Order Regressions: Predictive Regressions

\[r_{t+1} = \alpha_r Y_r^r + \epsilon_{t+1}^r \]
\[\Delta e_{t+1} = \alpha_e Y_e^e + \epsilon_{t+1}^e \]

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th>Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_{t+1})</td>
<td>0.0463</td>
<td>0.0448</td>
</tr>
<tr>
<td>const.</td>
<td>[2.41]</td>
<td>[2.34]</td>
</tr>
<tr>
<td>(dp_t)</td>
<td>0.0106</td>
<td>0.0102</td>
</tr>
<tr>
<td></td>
<td>[2.03]</td>
<td>[1.95]</td>
</tr>
<tr>
<td>(r_t)</td>
<td>0.1259</td>
<td>0.1227</td>
</tr>
<tr>
<td></td>
<td>[1.68]</td>
<td>[1.67]</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.0238</td>
<td>0.0228</td>
</tr>
<tr>
<td>Exchange Rate Changes</td>
<td>(\Delta e_{t+1})</td>
<td>(\Delta e_{t+1})</td>
</tr>
<tr>
<td>(\Delta e_{t+1})</td>
<td>0.0004</td>
<td>0.0013</td>
</tr>
<tr>
<td>const.</td>
<td>[0.29]</td>
<td>[1.01]</td>
</tr>
<tr>
<td>(r_{r,t+1}^* - r_{r,t+1})</td>
<td>0.1072</td>
<td>0.1330</td>
</tr>
<tr>
<td></td>
<td>[1.96]</td>
<td>[2.22]</td>
</tr>
<tr>
<td>(\Delta e_t)</td>
<td>0.0526</td>
<td>0.0415</td>
</tr>
<tr>
<td></td>
<td>[0.99]</td>
<td>[0.81]</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.0133</td>
<td>0.0169</td>
</tr>
</tbody>
</table>
First Order Regressions: Covariance Predictability

\[\widetilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) = \alpha Z_t + \xi_{t+1} \]

Panel A: Exploring covariance predictability

<table>
<thead>
<tr>
<th>Instruments</th>
<th>World F - Stat</th>
<th>(\chi^2) p - val</th>
<th>Developed F - Stat</th>
<th>(\chi^2) p - val</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>14.12</td>
<td>(0.0000)</td>
<td>13.49</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>ex int. diff</td>
<td>15.76</td>
<td>(0.0000)</td>
<td>15.38</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>ex dp ratio</td>
<td>14.03</td>
<td>(0.0000)</td>
<td>13.18</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>ex covariance</td>
<td>17.10</td>
<td>(0.0000)</td>
<td>15.65</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>ex volatilities</td>
<td>5.12</td>
<td>(0.0004)</td>
<td>4.11</td>
<td>(0.0025)</td>
</tr>
<tr>
<td>ex return & exch. rate chg.</td>
<td>19.70</td>
<td>(0.0000)</td>
<td>19.15</td>
<td>(0.0000)</td>
</tr>
</tbody>
</table>

Panel B: Details

<table>
<thead>
<tr>
<th>Instruments</th>
<th>World Coeff. (\times 10^4)</th>
<th>(\chi^2) p - value</th>
<th>Developed Coeff. (\times 10^4)</th>
<th>(\chi^2) p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>int. diff.</td>
<td>-0.600332</td>
<td>(0.2725)</td>
<td>-0.435235</td>
<td>(0.5021)</td>
</tr>
<tr>
<td></td>
<td>-[1.10]</td>
<td></td>
<td>-[0.67]</td>
<td></td>
</tr>
</tbody>
</table>
Second Order Regressions: USD Safety Premium

\[r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \text{Var}(\Delta e_{t+1}) = d_0 + d_1 \text{Cov}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1} \]

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th>Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d_0)</td>
<td>(d_1)</td>
</tr>
<tr>
<td>All</td>
<td>0.0001</td>
<td>10.2047</td>
</tr>
<tr>
<td></td>
<td>[0.03]</td>
<td>[2.54]</td>
</tr>
<tr>
<td>ex int. diff.</td>
<td>-0.0028</td>
<td>12.0672</td>
</tr>
<tr>
<td></td>
<td>[-1.45]</td>
<td>[3.19]</td>
</tr>
<tr>
<td>ex dp ratio</td>
<td>-0.0042</td>
<td>16.3391</td>
</tr>
<tr>
<td></td>
<td>[-1.59]</td>
<td>[2.55]</td>
</tr>
<tr>
<td>ex covariance</td>
<td>-0.0031</td>
<td>13.1771</td>
</tr>
<tr>
<td></td>
<td>[-1.56]</td>
<td>[3.16]</td>
</tr>
<tr>
<td>ex volatilities</td>
<td>-0.0005</td>
<td>3.6559</td>
</tr>
<tr>
<td></td>
<td>[-0.22]</td>
<td>[0.82]</td>
</tr>
<tr>
<td>ex return & exch. rate chg.</td>
<td>-0.0009</td>
<td>4.6295</td>
</tr>
<tr>
<td></td>
<td>[-0.44]</td>
<td>[1.07]</td>
</tr>
</tbody>
</table>
Dollar Safety Premium Developed Index

\[\hat{d}_0 + \hat{d}_1 \text{Cov}(r_{t+1}, \Delta e_{t+1}) \]
Dollar Safety Premium World Index

\[\hat{d}_0 + \hat{d}_1 \widehat{Cov}(r_{t+1}, \Delta e_{t+1}) \]
Conclusion

Main points:

- There is a positive USD safety premium
- There is substantial time variation in the safety premium
- The dollar acts as a Safe Haven during crisis

Evidence supports the role of the USD as a global reserve currency.