The U.S. Dollar Safety Premium

Matteo Maggiori New York University Stern, NBER IES Fellow, Princeton University

> NYU Volatility Institute April 26, 2013

International Monetary System characterized by the existence of a *Reference Country* and a *Reference Currency*:

- ▶ Pre WW I: UK, British Pound Sterling, Gold
- ▶ Post WW II: US, US Dollar

Key Characteristic: Safe Haven during periods of crisis. Global Flight to Quality toward the Reference Currency

First emphasized by Bagehot (1873) for Sterling. 2008 Lehman Crisis was a painful reminder of the mechanism

Convert conventional wisdom into finance terminology:

- ► The USD is a global safe asset since it pays high in bad states of the world ⇒ Unconditional Safety Premium> 0
- ► There is a GFtQ to the USD during bad times ⇒ Conditional Safety Premium increases during bad times

 $\it Def.$ The USD Safety Premium is the excess return of investing in foreign currency while shorting the USD

Previous literature focused on the first point: contentious

- Large Safety Premium: Gourinchas, Rey (2007,2010); Forbes (2010); Habib (2010)
- No Safety Premium: Curcu, Dvorak, Warnock (2008, 2009); Lane, Milesi-Ferretti (2009)

UIP and carry trade literature: Lustig, Rousannov, Verdhelan (2010,11)

< 17 >

My Contribution

- New Dataset: high quality estimates of global currencies returns
- ► Measure the Unconditional and Conditional USD Safety Premium
 - ▶ 1% on average for the modern floating period (1973-2010)
 - Near 10% during crises, and as large as 50% during the Oct 2008 collapse
- Confirm the role of the USD as a Safe Haven during crises
- Interpret these findings in terms of risk: no free lunch for the US

Introduction

Results

Results Preview: Dollar Safety Premium

The U.S. Dollar Safety Premium

< 17 >

Simple law of one price asset pricing:

$$1 = E_t[\Lambda_{t+1}R_{t+1}] \qquad 1 = E_t[\Lambda_{t+1}^*R_{t+1}^*]$$

* are Foreign variables

Proposition 1 There exist two stochastic discount factors, one for each country, such that:

$$\Lambda_{t+1} = \Lambda_{t+1}^* \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} \qquad \qquad \mathcal{E}_t \downarrow : \text{ USD appreciates}$$

The stochastic discount factors:

$$M_{t+1} \equiv proj(\Lambda_{t+1}|A)$$
 $M_{t+1}^* \equiv proj(\Lambda_{t+1}^*|A^*)$

where $A = A^* \mathcal{E}_{t+1}$ is the space of internationally traded assets, always satisfy the above relationship

Matteo Maggiori

✓ ☐ →
The U.S. Dollar Safety Premium

Return Decomposition

Proposition 2 Assume that asset returns, SDFs and the exchange rate are jointly log-normally distributed. Then the expected excess return in Home currency of the Foreign asset over the Home asset is:

 $E_{t}[r_{t+1}^{*} + \Delta e_{t+1} - r_{t+1}] + \frac{1}{2} Var_{t}(r_{t+1}^{*} + \Delta e_{t+1}) - \frac{1}{2} Var_{t}(r_{t+1}) = -Cov_{t}(m_{t+1}^{*}, r_{t+1}^{*}) + Cov_{t}(m_{t+1}, r_{t+1}) + Cov_{t}(r_{t+1}^{*}, \Delta e_{t+1}) - Cov_{t}(m_{t+1}, \Delta e_{t+1}) - Co$

domestic risk

exchange rate risk

- $-Cov_t(m_{t+1}^*, r_{t+1}^*)$: Foreign asset risk premium in Foreign currency
- $-Cov_t(m_{t+1}, r_{t+1})$: Home asset risk premium in Home currency
- Cov_t(r^{*}_{t+1}, Δe_{t+1}): Foreign asset is riskier for Home investors if it pays high when the Home currency depreciates
- $-Cov_t(m_{t+1}, \Delta e_{t+1})$: currency risk premium

Safe currency

If assets are the risk free rate for each country, then the currency risk premium:

$$E_t[r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1}] + \frac{1}{2} Var_t(\Delta e_{t+1}) = -Cov_t(m_{t+1}, \Delta e_{t+1})$$

A currency is safe if the covariance is positive: i.e. the currency appreciates in bad times

- Interesting to analyze: $Cov_t(risky \ return_{t+1}, \Delta e_{t+1})$
 - risky return_{t+1} = r_{t+1}^* : measures 3rd term
 - ► risky return_{t+1} = r_{t+1}^{w} : then under CAPM $m_{t+1} \equiv a_t b_t r_{t+1}^{w}$ it is a direct measure of the currency risk premium

$$-Cov_t(m_{t+1}, \Delta e_{t+1}) = b_t Cov_t(r_{t+1}^w, \Delta e_{t+1})$$

The challenge: what matters is the conditional covariance. Not observable

✓ ☐ →
The U.S. Dollar Safety Premium

Identification Strategy: Intuition

Methodology originally developed by Campbell (1987) and Harvey (1989). I follow Duffee (2005). Intuition:

- I want to measure: $b_t \ Cov_t(r_{t+1}, \Delta e_{t+1})$
- ► By definition: $r_{t+1} = E_t[r_{t+1}] + \eta_{t+1}^r$ $\Delta e_{t+1} = E_t[\Delta e_{t+1}] + \eta_{t+1}^e$
- So we have: $Cov_t(r_{t+1}, \Delta e_{t+1}) = E_t[\eta_{t+1}^r \eta_{t+1}^e]$

This leads to a three stage econometric procedure

✓ → The U.S. Dollar Safety Premium

Identification Strategy: Econometric Technique

Zero Order regressions: Predictive regressions

1

$$r_{t+1} = \alpha_r Y_t^r + \epsilon_{t+1}^r$$
$$\Delta e_{t+1} = \alpha_e Y_t^e + \epsilon_{t+1}^e$$

 $\widetilde{\textit{Cov}}(r_{t+1}, \Delta e_{t+1}) \equiv \hat{\epsilon}_{t+1}^r \hat{\epsilon}_{t+1}^e$ is the estimated ex-post covariance

First Order regression: Time varying covariance

$$\widetilde{Cov}(r_{t+1}, \Delta e_{t+1}) = \alpha_z Z_t + \xi_{t+1}$$

Second Order regressions: relation between covariance and returns: Constant price of risk:

$$r_{f,t+1}^{*} + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2}\widetilde{Var}(\Delta e_{t+1}) = d_0 + d_1\widetilde{Cov}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1}$$

Time varying price of risk:

$$r_{f,t+1}^{*} + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2}\widetilde{Var}(\Delta e_{t+1}) = d_0 + [d_1 + d_2 \ b_t]\widetilde{Cov}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1}$$

Matteo Maggiori

The U.S. Dollar Safety Premium

Instruments: Empirical

$$\begin{aligned} Y_t^r &= [1, dp_t, r_t] \\ Y_t^e &= [1, r_{f,t+1}^* - r_{f,t+1}, \Delta e_t] \\ Z_t &= [1, dp_t, r_{f,t+1}^* - r_{f,t+1}, r_t, \Delta e_t, vol_t^{'r}, vol_t^{'e}, cov_{t-1}^{'}] \end{aligned}$$

Definitions:

•
$$vol_t^{'x} \equiv \sum_{i=0}^1 (x_{t-i} - \bar{x})^2$$
 for $x = \{r, e\}$
• $cov_t^{'} \equiv \sum_{i=0}^2 (r_{t-i} - \bar{r}) (\Delta e_{t-i} - \bar{\Delta e})$

Robustness checks:

- cay: Lettau and Ludvingson (2001)
- nxa: Gourinchas and Rey (2001)
- volatility index: Bloom (2009)
- ▶ carry trade risk factors: Lustig, Roussanov, Verdhelan (2009)

Matteo Maggiori

The U.S. Dollar Safety Premium

< 17 >

World and Developed Markets Indices

- Stock Market indices and capitalization weights from MSCI-Barra
- USD Currency indices: my own estimates based on forward, Libor, and government rates
- ▶ I build two market cap. weighted indices: Dec 1969 March 2010
 - ▶ World: 45 Developed (D) and Emerging (EM) countries.
 - Developing: 23 Developed countries.

Currency Return Dataset: more extensive in both coverage and time span, and higher quality than datasets currently used in the literature

Average USD Safety Premium:1970-2010

$$SP = r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \widetilde{Var}(\Delta e_{t+1})$$

	World	Developed	Equally Wght
Mean	0.98%	0.99%	1.18%
Stand. Dev	8.06%	8.26%	7.16%
Subcomponents			
$\overline{\Delta e}$	0.72%	1.12%	-2.20%
$\overline{r_f^* - r_f}$	-0.05%	-0.45%	3.13%

- Safety Premium is positive, but not statistically significant
- This is a symptom of low Sharpe Ratios and short samples. Even if true, it would take at least 64 years of data to have statistical significance!
- Simple, pervasive, but surprisingly under-appreciated problem in the literature

Figure : USD Safety Premium: Roll start date - 2010

Figure : USD Safety Premium: 1970 - Roll end date

Matteo Maggiori

The U.S. Dollar Safety Premium

< 67 ►

Zero Order Regressions: Predictive Regressions

$$r_{t+1} = \alpha_r Y_t^r + \epsilon_{t+1}^r \qquad \Delta e_{t+1} = \alpha_e Y_t^e + \epsilon_{t+1}^e$$

	World	Developed	
Equity Returns	r_{t+1}	r_{t+1}	
const.	0.0463	0.0448	
	[2.41]	[2.34]	
dpt	0.0106	0.0102	
	[2.03]	[1.95]	
r _t	0.1259	0.1227	
	[1.68]	[1.67]	
R^2	0.0238	0.0228	
Exchange Rate Changes	Δe_{t+1}	Δe_{t+1}	
const.	0.0004	0.0013	
	[0.29]	[1.01]	
$r_{f,t+1}^* - r_{f,t+1}$	0.1072	0.1330	
	[1.96]	[2.22]	
Δe_t	0.0526	0.0415	
	[0.99]	[0.81]	
R ²	0.0133	0.0169	

< 67 ►

First Order Regressions: Covariance Predictability

 $Cov(r_{t+1}, \Delta e_{t+1}) = \alpha_z Z_t + \xi_{t+1}$

Panel A: Exploring covariance predictability						
	World		Developed			
Instruments	F - Stat	$\chi^2 p - val$	F — Stat	$\chi^2 p - val$		
All	14.12	(0.0000)	13.49	(0.0000)		
ex int. diff	15.76	(0.0000)	15.38	(0.0000)		
ex dp ratio	14.03	(0.0000)	13.18	(0.0000)		
ex covariance	17.10	(0.0000)	15.65	(0.0000)		
ex volatilities	5.12	(0.0004)	4.11	(0.0025)		
ex return & exch. rate chg.	19.70	(0.0000)	19.15	(0.0000)		
Panel B: Details						
	World		Developed			
	Coeff. $ imes$ 10 ⁴	$\chi^2 p - value$	Coeff. $ imes$ 10 ⁴	$\chi^2 p - value$		
int. diff.	-0.600332	(0.2725)	-0.435235	(0.5021)		
	-[1.10]		-[0.67]			

Second Order Regressions: USD Safety Premium

$$r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2}\widetilde{Var}(\Delta e_{t+1}) = d_0 + d_1\widetilde{Cov}(r_{t+1},\Delta e_{t+1}) + \omega_{t+1}$$

	We	orld	Developed	
	d_0	d_1	d_0	d_1
All	0.0001	10.2047	0.0006	9.4118
	[0.03]	[2.54]	[0.34]	[2.28]
ex int. diff.	-0.0028	12.0672	-0.0031	12.4887
	-[1.45]	[3.19]	-[1.51]	[3.17]
ex dp ratio	-0.0042	16.3391	-0.0041	15.4557
	-[1.59]	[2.55]	-[1.55]	[2.46]
ex covariance	-0.0031	13.1771	-0.0035	13.7937
	-[1.56]	[3.16]	-[1.64]	[3.14]
ex volatilities	-0.0005	3.6559	-0.0006	3.8685
	-[0.22]	[0.82]	-[0.27]	[0.79]
ex return & exch. rate chg.	-0.0009	4.6295	-0.0012	5.6272
	-[0.44]	[1.07]	-[0.54]	[1.21]

Introduction

Results

Dollar Safety Premium Developed Index $\hat{d_0} + \hat{d_1Cov}(r_{t+1}, \Delta e_{t+1})$

✓ ☐ →
The U.S. Dollar Safety Premium

Introduction

Results

Dollar Safety Premium World Index $\hat{d_0} + \hat{d_1 Cov}(\widehat{r_{t+1}, \Delta e_{t+1}})$

The U.S. Dollar Safety Premium

< 🗗 >

Conclusion

Main points:

- There is a positive USD safety premium
- There is substantial time variation in the safety premium
- The dollar acts as a Safe Haven during crisis

Evidence supports the role of the USD as a global reserve currency.