Comments on: Fire sales forensics: measuring endogenous risk

Rama Cont Lakshethe Wagalath
George Tauchen, Duke University

Volatility Institute - April 26, 2013
Brief Summary

- presents an intuitive and tractable framework which takes into account the impact of possible fire sales triggered by an exogenous rule such as fire sales triggered by capital ratio constraints.

- Obtain analytical formulas for the realized covariance in the presence of fire sales. This excess covariance is characterized by a liquidation matrix M, which contains all the info about the liquidation flows during a given period of time.

- M is identifiable; build an estimator for M based on price series. Consistent and obeys a central limit theorem, which allows a statistical test for the presence of fire sales.

- Apply this estimation methodology on two empirical examples.
Plausible liquidity events (run on the bank)

Model of the transmission mechanism:

Market(—) shock \rightarrow

negative returns \rightarrow outflows of capital \rightarrow redemptions

accelerated reductions of capital through the *de-leveraging schedule*

more negative returns due to *price impacts* of fire sales \rightarrow downward spiral of capital

could \rightarrow end of fund if capital falls below lower threshold \rightarrow liquidation — BUMMER
Comments

Under Assumptions the setup define price (portfolio values) dynamics \(S \) which is a discrete-time Markov process.

But what about funds (a fund is a vector of portfolio weights) that get liquidated, i.e. extinguished?

Does the system settle down into a stochastic steady state with a small (one?) number of funds that never liquidate?

Develops a model were the drift and local volatility depend up the level of the price:

\[
\frac{dP_t^i}{P_t^i} = \mu_i(P_t)dt + \sigma(P_t)dW_t \quad 1 \leq i \leq n
\]

The levels model has been empirically discredited.
Empirical Findings/Fundamentals

i) Observed Price

ii) Fundamental Price

iii) Discrepancy

Need to have a theory for ii) in order to say something about iii)

We have the Inter-Temporal Dynamic Asset Pricing Model

Here we just consider the classic static CAPM
Estimated Daily Liquidations

<table>
<thead>
<tr>
<th>Sector SPDR</th>
<th>Daily amount liquidated $ \times 10^6$</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financials</td>
<td>320</td>
<td>28%</td>
</tr>
<tr>
<td>Consumer Discretionary</td>
<td>55</td>
<td>5%</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>38</td>
<td>3.5%</td>
</tr>
<tr>
<td>Energy</td>
<td>300</td>
<td>26%</td>
</tr>
<tr>
<td>Health Care</td>
<td>63</td>
<td>5.5%</td>
</tr>
<tr>
<td>Industrials</td>
<td>90</td>
<td>8%</td>
</tr>
<tr>
<td>Materials</td>
<td>110</td>
<td>9.5%</td>
</tr>
<tr>
<td>Technology</td>
<td>65</td>
<td>5.5%</td>
</tr>
<tr>
<td>Utilities</td>
<td>100</td>
<td>9%</td>
</tr>
</tbody>
</table>

Table 1: Daily volume and proportions of fire sales for SPDR between September 15\(^{th}\), 2008 and Dec 31, 2008.
Financial ETF: Beta on S&P Index

Financials Weekly β

Monthly β

Quarterly β

Financials Weekly ξ

Monthly ξ

Quarterly ξ
Energy ETF: Beta on S&P Index

Energy Weekly β

Energy Weekly ξ

Monthly β

Monthly ξ

Quarterly β

Quarterly ξ
Consumer Staples ETF: Beta on S&P Index

ConsumerStaples Weekly β

Monthy β

Quarterly β

ConsumerStaples Weekly ξ

Monthly ξ

Quarterly ξ
Empirical Findings/Fundamentals

i) Observed Price

ii) Fundamental Price

iii) Discrepancy (fire sale noise)

Without a theory for ii) the model likely over attributes to fire sale noise observed realized covariance measures
Concluding Remarks

Very nice paper with an elegant model of the fire sale transmission mechanism

Needs to incorporate a theory of the fundamental value, statistics and probability cannot accomplish this.

What about jumps??