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Abstract

Advancements in technology have made gathering large arrays of data faster and more ef-

ficient. Mining these data sets for useful information is a quickly growing field of research that

has had impacts on many areas of application. This trend is particularly represented in the Her-

itage Health Prize (HHP) competition, which aims to support the development of an efficient

algorithm for predicting the number of days patients will spend in the hospital given their med-

ical history. The current winning approaches aim to maximize HHPs performance error and

therefore apply blending techniques based on multiple data-mining solvers. The interpretation

of such composite models, however, is obscure. As a result, in this project we focus on the

development of a scalable approach for the comprehensive analysis of interaction effects in the

context of transparent econometric models using the R and LIMDEP econometrics packages.
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1 Introduction

Advancements in technology have made gathering large collections of data faster and more ef-

ficient. Therefore, organization and analysis of big data is a quickly growing field of research,

and the development of this technology has impact on nearly every application domain. Com-

panies realize that by more efficiently exploiting accumulated data, they can potentially increase

productivity rates, profitability, make better decisions, and differentiate themselves from competi-

tors (Barton and Court, 2012). One of the main objectives of our study is the analysis of interactions

within the complex models. This research is especially meaningful and interesting in the context

of real data which can be gathered from data prediction competition platforms like Kaggle.

The Heritage Health Prize (HHP) competition represents one of the current Kaggle-based chal-

lenges. It aims to support the development of an efficient algorithm for predicting the number of

days patients will spend in the hospital given their medical history. With this information, providers

expect to create new care plans that will help minimize unnecessary hospitalization. The compe-

tition began two years ago and is scheduled to end on April 4, 2013 when the $3 million prize

will be awarded. Every six months, the HHP judging panel evaluates the success of the competing

entries and the top two contestants submit papers explaining their approaches.

Focused primarily on minimizing the performance error, the past and current winning ap-

proaches apply blending techniques similar to those exploited by past competitions like the Netflix

Prize (Töscher et al., 2009). In this scenario, multiple models are each trained to predict the de-

sired outcome and then combined to form the final result. For the first milestone, both the first and

second place teams blended the predictions of 20 models. The second place winner solely used

stochastic gradient descent, while the first place winner employed a wider range of techniques that

included gradient boosting machines, neural networks, bagged trees, and linear models. Subse-

quently, despite over 900 entrants competing, the same teams won again during the second mile-

stone. In this iteration, the second place team expanded to include 27 models by adding combined
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gradient descent and gradient boosting machines. The first place team, however, utilized a mix-

ture of 79 models, which now also included additive groves and multivariate adaptive regression

splines. Using a now consolidated set of main features, blending algorithms then won again in the

third milestone.

The goal of our research was to develop a scalable approach for a comprehensive analysis of

interaction effects. While the blending of algorithms is the primary competition approach, the best

score among single algorithms has been achieved with the gradient boosting machine (Friedman,

2001). As its name implies, this technique relies on boosting, the observation that a combination

of multiple weak learners can result in an approach that is strongly correlated with the true clas-

sification. In the case of the gradient boosting machine (GBM), these weak learners are based

on trees that automatically incorporate interactions during the training procedure. Yet even with

this single algorithm approach, the composite model is obscure, making interpretation difficult.

As a result, the project focuses on the domain of transparent econometrics models (Greene, 2012)

and the extension of the corresponding econometrics packages, such as LIMDEP, with a dynamic

programming procedure for screening and preselecting the significant interaction effects of multi-

dimensional models. The report outlines the scope and results of this approach conducted in the

context of the HHP data model.

The subsequent section provides a brief overview of relevant econometric methods, conven-

tional feature selection methods and the extensions that must be accounted for when working with

interactions. Section 4 introduces the step-by-step procedure of the proposed approach. In Sec-

tion 5, we overview the HHP data model. Section 6 demonstrates this approach in the context of

the HHP application, compares numerical results with two alternative approaches and discusses

the encountered issues and the corresponding extensions. And finally, Section 7 concludes with a

summary and future work.
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2 Econometric Models

Econometrics is an active field of research that establishes a consistent estimation framework en-

compassing parametric, semi-parametric, and nonparametric approaches and applying them to a

wide spectrum of real-world problems. Yet, the HHP competition introduces new challenges for

actual economics models involving panel data and count data.

In econometrics, panel data is analyzed as a combination of both cross-sections and time-series.

This allows a researcher to use the panel data framework to simultaneously evaluate the dynamic

and heterogeneous effects across cross-sections. In the HHP model, however, each patients history

is specific to that individual and therefore inconsistent with the conventional panel data structure.

As a result, all the HHP contestants average monthly records into one-year cross-section data

models. Nonetheless, the panel data approach is still valuable for analyzing heterogeneity across

age cohorts and evaluating the patients effects on age groups as seen in the following formula:

yai = x
′
aiβ + ca + εai

where we set a to stand for age groups and i represents the patients. In each age group there is

an uneven distribution of patients and therefore we created an unbalanced panel data model. The

variable ca is known as the age-specific heterogeneity effect, and is the focus of the fixed and

random effects models. The fixed effects model assumes ca is correlated with the independent

features and treats this effect by adding age-specific constants into the regression model. Contrary

to the fixed effects approach, the random effects model considers the independent variables to be

exogenous, and ca is included as a combination of a constant and group-specific heterogeneous

random effects.

Both fixed and random effects models have their own pros and cons. A benefit of the fixed

effects model is that it makes a realistic assumption about correlation. On the other hand, it does

not allow the analysis of time invariant variables and may require the inclusion of many group-
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3. In the context of the fixed effects model, test of “no effects” based on F 
statistics: 
 
 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only   -53403.82792       18138.15458     .00000 | 
|(2)  Group effects only   -51703.71995       17344.93239     .04373 | 
|(3)  X - variables only   -51335.06679       17177.55916     .05296 | 
|(4)  X and group effects  -50570.40566       16835.52483     .07182 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   3400.22      9  .0000    386.33     9   76028   .00000 | 
|(3) vs (1)   4137.52     45  .0000     94.44    45   75992   .00000 | 
|(4) vs (1)   5666.84     54  .0000    108.87    54   75983   .00000 | 
|(4) vs (2)   2266.63     45  .0000     51.09    45   75983   .00000 | 
|(4) vs (3)   1529.32      9  .0000    171.52     9   75983   .00000 | 
+--------------------------------------------------------------------+ 
 
F = [(.07182   - .05296  )/(10-1)]/[(1 - .07182  )/(76038 – 10 - 45)] = 
209.55/1.22156 = 171 
 
4. Robust estimator 
 
Notes 4, # 24 
 
 
 
 
 
 
 
 
 
 
 
 
 
&

&

&

Figure 1: LIMDEP test statistics for the fixed effects model.

specific dummy parameters into the model. Alternatively, the random effects model only adds one

parameter, provides efficient estimation of coefficients, and supports the analysis of time-invariant

variables. One of the major cons, however, is its uncorrelation assumption being too strong for

practical applications.

Our panel data analysis began with the Breusch and Pagan Lagrange Multiplier test. This

statistic is calculated using the least squares residual values and tests the null hypothesis of “no

effects” against the alternative of “some effects”. In the case of the analysis of HHPs Primary

Condition Group features, the Lagrange Multiplier is 57,296 according to LIMDEP. This implies

that the null hypothesis should be rejected. Selection between the fixed and random effects models

is usually based on one of two approaches: the Hausman test and the Wu variable addition test.

The Hausman test determines whether the delta difference between the fixed and random effects

models is significant. This statistic is based on the Wald test and the null hypothesis states that

when the delta equals zero both models coefficients have been consistently estimated. Rejection of

this test implies the selection of the fixed effects model. The Hausman test, however, has several

technical difficulties. For example, in our case the difference of the covariance matrices had a

negative root, meaning that the test could not be computed. As a result, we also considered the
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Wu variable addition test which expands the random effects model with group means. This test,

however, failed again because the group means introduced collinearity into the regression model.

Therefore, to determine the significance of the age specific constants, we conducted the F Tests in

the context of the fixed effects model. The results can be seen in Figure 1, motivating us to include

the age groups as dummy variables in the final dataset.

In addition to the feature selection, another aspect of our study was associated with the selection

of the models addressing the count data of the HHP competition. Econometrics traditionally offers

a broad spectrum of corresponding approaches for this type of data. In our preliminary independent

study we focused on a comparative analysis of the following regression models:

• Linear Regression: a multivariate least square approach

• Poisson Regression: a count data regression model derived from the Poisson distribution

• Negative Binomial: an alternative model to the Poisson approach for allowing over-dispersion.

• Hurdle: an alternative method to Zero Inflation that uses a left-truncated count component

like Poisson or Negative Binomial regression for the positive values and an alternate bino-

mial model to decide on whether an instance is a zero or a larger count.

• Zero-Inflation: in addition to the NB or Poisson models, this approach pays extra attention

to the zeros in the count data. The zeros are assumed to be generated by two separate

distributions, a point mass at zero and count distribution for the remaining data.

From the results documented in the independent study, the negative binomial hurdle performed

the best, having calculated the smallest log likelihood and RMSE results. In a typical setting, a

Poisson regression would represent the doctor visits, however, the excessive over-dispersion factor

makes the model a bad fit for our data since the mean and over-dispersion is captured by a single
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parameter. Negative binomial, on the other hand, has an additional fitting parameter which helps

resolve over-dispersion.

This initial evaluation, however, was not representative of the competition, which was judged

based on the log of the days spent in the hospital. This log-transformation dramatically changed

the relative performances, resulting in the log-linear regression having the best RMSE among our

econometric models. The reason lies in the utility function of the Jensen’s Inequality. In this case,

the regression on the logs minimizes the influence of the zeros, and there is a lower penalty for an

incorrect prediction.

The independent study established the dataset and identified the best candidate model for the

log-transformed data. However, there was still a mismatch in the performance between the log-

linear regression and the gradient boosting machine, the best single model submitted in the com-

petition. For our project we decided to extend the independent study to determine a method to

minimize this gap. Our assumption was that by adding interaction features into the linear regres-

sion, the performance gap between the econometrics model and data-mining approach would be

minimized.

3 Feature Selection Methods

The linear regression approach provides a common platform for considering both the main effects

and interactions of an arbitrary order. For example, the HHP problem can be expressed through

the following set of ordinary log-linear equations:

log(dih + 1) =

c0∑
aix

i +
∑∑

bijxixj + . . . (1)

where dih is the days in hospital, xi are explanatory variables derived from the medical records

of patients, while ai and bij are coefficients of the main and interaction features respectively. De-

spite the fact that all variables in these equations are defined uniformly, interactions exponentially
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increase the dimensionality of the task. This in turn introduces various issues, such as model

overfitting and complex correlations among covariates. As a result, the development of multi-

dimensional data reduction algorithms becomes a necessary prerequisite for the decisive analysis

of interaction effects.

The majority of feature selection methods can be divided into two primary categories: back-

ward and forward selection. These approaches rely on different criteria for choosing the variables,

but overall the objective is to decrease the dimensionality of the model to the point where the

prediction error is minimized. Backward stepwise selection, for example, begins with the entire

set of features and aims to eliminate insignificant features one at a time. The significance of the

parameters is determined by statistical tests like the z-scores or F-tests. Unlike its counterpart,

forward selection iteratively adds features to a previously empty set. There are a number of ways

this can be done in practice (Hastie et al., 2009): forward stepwise selection, forward stagewise

selection, and Least Angle Regression (LARS). The latter is the most efficient approach built on

the integration of several techniques (Efron et al., 2004). Like forward stepwise selection, LARS

incrementally adds those features that are most correlated with residuals calculated from the previ-

ous steps. However, LARS’s step size is shrunk similarly to forward stagewise selection, allowing

the implementation of the lasso penalty criteria (Tibshirani, 1994). In contrast with the stagewise

approach, this step is optimal and determined by the strength of the next competing feature.

Bringing the interaction effects to the conventional selection methods introduces the new is-

sue associated with the consideration of the hierarchical relationship among interacting covariates.

Chipman (1996) considered two major variants of the heredity principles. Strong heredity princi-

ple, otherwise known as the principle of marginality (Nelder, 1977), states that a two-factor inter-

action should be activated together with both its main effects. Alternatively, under weak heredity,

only one of the main features needs to be active. In the case of the backward approach, the interac-

tion selection does not require the special treatment, since all main features are already included in

the active set. Adding interactions into forward selection, and especially the LARS approach, trig-
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gered the development of several extensions. One of them, for example, was the generalized LARS

algorithm proposed by Yuan et al. (2009). In this algorithm, the heredity principle was preserved

by adding a dependent set of main features associated with each interaction. Consequently, this

dependent set was used for estimation of the new measure, average predictability, that generalized

the original correlation-based method.

The heredity-complaint extensions of the selection methods do not resolve the scalability issue

associated with the multi-dimensional models. This project addresses this problem by proposing a

scalable approach that allows to integrate the different variants of backward and forward selection

methods into a generic dynamic programming procedure.

4 Approach

The proposed approach is derived from two major techniques: divide and conquer and feature

screening. Following its name, the divide and conquer approach divides the entire set of features

into multiple smaller subsets and then conquers the subsets by screening the most significant inter-

actions. The screening techniques were successfully employed in previous works, for example by

Fan and Lv (2008), as a fast method for selecting significant main features in a high-dimensional

model. Our approach extends this algorithm to incorporate the heredity principle and uses this

method as a preliminary step for reducing the number of significant interactions in a subset. After-

wards, the model is built incrementally by combining subsets from the bottom up until we reach

one set composed of the most significant interactions. In this procedure, each subset is consistent

and complete containing the relevant main and interaction features, maintaining the principle of

marginality at every stage of the approach.

Our approach is recursive and can be described by an initial and intermediate step. In the initial

step, the set of main features is divided into smaller subsets, AS , that consist of groups of related

main features, xi.
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AS = {xi, i ∈ S} (2)

For each subset, S, of AS , the algorithm includes a composite filtering process based on three

techniques for selecting the significant within-set interactions of the group:

B
(0)
S = {xixj; i, j ∈ S, p < 0.001} (3)

C
(0)
S = {B(0)

S , nS > NS} (4)

J
(0)
S = {C(0)

S , p < 0.01} (5)

The filtering procedure begins with pairwise selection, B(0)
S , an approach based on linear re-

gression that filters out the least significant interactions, xixj , using the t-test’s p-value, p. Next,

the cluster-based selection, C(0)
S , focuses on eliminating the influential rare events by bounding the

minimum number of observations, NS , associated with a particular interaction. The NS differs for

each subset and is determined by the cross-validation procedure. In our research it varied from 50

to 1000. Lastly, joint selection, J (0)
S , applies one of the backward or forward selection algorithms

and picks significant interactions based on their criteria. In order to choose the most reliable xixj ,

the joint selection is built from the intersection of interactions that appear in each cross-validation

fold. Throughout all these steps, all the original main features are maintained and therefore the

strong heredity principle is always satisfied. At the completion of the initial step, each subset

group, G(0)
S , represents the combination of main features and the selected within-set interactions:

G
(0)
S = {AS, J

(0)
S } (6)

With the initial subsets complete, the approach starts the incremental procedure of building the
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model by combining the subsets of the lower levels from the previous steps. For example, to create

the new group at the kth step, the procedure combines two subsets, G(k−1)
P and G(k−1)

R , and then

follows the three-step filtration process:

B
(k)
P,R = {xixj; i ∈ P, j ∈ R, p < 0.001} (7)

C
(k)
P,R = {B(k)

P,R, nP,R > NP,R} (8)

J
(k)
P,R = {J (k−1)

P , J
(k−1)
R , C

(k)
P,R, p < 0.01} (9)

Both of the first two parts, B(k)
P,R and C(k)

P,R, are similar to the initial step. The joint selection,

J
(k)
P,R, however, differs in that it runs a regression on a subset of variables that include C(k)

P,R as well

as the interactions from the previous groups, J (k−1)
P and J (k−1)

R . Therefore, in our approach the

interactions are not fixed and can be filtered out in subsequent steps. As a result, the intermediate

group is built from the main features of both previous groups and the jointly selected subset of

within and between-set interactions.

Gk
P,R = {AP , AR, J

(k)
P,R} (10)

In multi-dimensional models, the higher intermediate groups and final model can be achieved

via different paths. For example, the group Gabc can be built from three different pairs, {Ga,

Gbc}, {Gb, Gac} and {Ga, Gbc}. Because of the random element of the cross-validation procedure,

these paths can lead to different sets of interactions. Thus, the collection of multiple final and

intermediate models naturally form an ensemble of solvers that can be processed with the standard

blending techniques.
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5 Data Model

The Heritage Health Prize Competition contains four years of patient medical history and the

corresponding days in hospital (DIH) values for the three years. This heterogeneous data is divided

into four groups:

• Member: a categorical summary of the patient consisting of MemberID, age and sex.

• Claims: the most significant medical history on the patient for a given year. There are many

sub-categorical variables such as place of service, procedure group, and vendor.

• RX: a history of the number of prescription drugs filled by days since first service.

• Lab: a history of unique laboratory tests by days since first service.

All but the first of these groups contain categorical variables with more than two values. Since

these cannot be directly used in a regression model, the standard procedure of representing these

values is through a set of dummy variables. The age, for example, is divided into 10 groups: 0-10,

11-20, etc. A binary variable is then used to mark the appropriate range of the patient. The pre-

dictors of the claim data, however, required additional treatment since patients could have multiple

claims (rows) throughout the year. Merging the corresponding entries into a single row transformed

these binary dummy features into count variables for each member as shown in Table 1.
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Column Number of Features Column Number of Features

Age At First Claim 9 Places 8

Sex 1 Length Of Stay 11

Claims Truncated 1 Days Since First Seen 13

Days In Hospital 16 Primary Condition Group 45

Providers 14700 Charlson Index 6

Vendors 6388 Procedures 17

Primary Care Physician 1360 Suppressed Length Of Stay 2

Primary Care Physician (last claim) 1360 Drug Count 7

Specialties 12 Lab Count 10

Table 1: List of features of the HHP model (Mestrom, 2011).

6 Results

To test our proposed methodology, we focused on the most significant subset of features as ob-

served by the competitors of the Heritage Health Prize. For the initial step, the features were

divided into 4 groups associated with homogenous features such as the primary condition group.
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Description

LM with Main LM with

GBM

Features Interactions

Features 5-CV Interactions 5-CV 5-CV

G1 Age groups, gender, etc. 11 0.4663 9 0.4657 0.4658

G2 Number of claims, vendors, etc. 8 0.4684 4 0.4683 0.4680

G3 Primary Condition Group 45 0.4682 17 0.4663 0.4659

G4 Specialties, Places, Procedures 37 0.4674 18 0.4667 0.4654

Table 2: Initial Step: Comparison of linear models (LM) with and without interaction features

to the gradient boosting machine (GBM). The table presents experiments performed on separate

subsets of features. The columns show the number of features remaining after filtering and the root

mean square error (RMSE) after performing 5-fold cross validation.

Table 2 contains the results of the initial step produced by the three different approaches. We

evaluate the models using root mean square error (RMSE), the same measure employed for the

HHP competition. The table also includes the number of features employed by the linear models.

The results show that for each subset, adding interactions based on our approach improves the

performance of the linear model (LM). The number of interactions for each group depends on the

parameter NS from (4) which is determined through the 5-fold cross-validation procedure. It is

important to note here that in the HHP competition, the difference between the most competitive

approaches is usually around 0.001. This makes the improvements we observe, quite significant.

Following our approach, the initial groups are further combined into intermediate groups by

adding between-group interactions. One such intermediate step is summarized in Table 3.

15



LM with Main LM with GBM

Features Interactions

Features 5-CV

Leader

Interactions 5-CV

Leader

5-CV

Leader

Board Board Board

G1,2 19 0.4630 0.4702 14 0.4616 0.4702 0.4617 0.4702

G1,3 56 0.4627 0.4697 36 0.4605 0.4680 0.4606 0.4667

G2,3 53 0.4665 0.4713 11 0.4641 0.4690 0.4639 0.4681

G1,4 48 0.4620 0.4692 31 0.4604 0.4686 0.4601 0.4671

G2,4 45 0.4664 0.4716 8 0.4658 0.4709 0.4649 0.4691

G3,4 82 0.4653 0.4703 19 0.4633 0.4674 0.4608 0.4648

Table 3: Intermediate Step: Comparison of the linear models (LM) with and without interaction

features to the gradient boosting machine (GBM). The table presents experiments performed on

a collection of merged subsets of features. The columns show the number of features remaining

after filtering and the root mean square error (RMSE) after performing 5-fold cross validation.

According to the cross-validation results, the approach consistently improves the LM and per-

forms comparably to GBM. However, on the leaderboard GBM outperformed the LM with interac-

tions which indicates some overfitting in the latter algorithm. This issue is associated with the high

sensitivity of interactions to data irregularity and can be solved by integrating the standard bagging

techniques (Breiman, 1996) into joint selections steps (5) and (9). Currently, these steps are based

on the backward selection approach. In order to incorporate bagging the backward approach can

be replaced with forward-stagewise regression (Hastie et al., 2009), the linear-regression version

of the GBM algorithm.
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LM with Main LM with GBM

Features Interactions

Features 5-CV

Leader

Interactions 5-CV

Leader

5-CV

Leader

Board Board Board

Gfinal 101 0.4597 0.4673 119 0.4559 0.4653 0.4557 0.4634

Table 4: Final Step: Comparison of the linear models (LM) with and without feature interactions

to the gradient boosting machine (GBM). All three models are trained on all features. The columns

show the number of features remaining after filtering and the root mean square error (RMSE) after

performing 5-fold cross validation. The table also presents the performance of each model as

evaluated by the HHP leader board evaluation.

The final results are summarized in Table 4. They confirm that interaction analysis based on

our approach improves the performance of the linear model. On the other hand, the linear model

with selected interactions still does not compete with GBM. This discrepancy can be explained

by the differences of the two models. The GBM approach divides the dataset into clusters and

calculates the average response of the within-cluster observations. On the other hand, the linear

model deals with low-dimensional correlation analysis using the whole dataset. Furthermore, the

linear model does not consider the asymmetry of the interacted features. For example, a patient

with a record of 5 acute myocardinal infarction’s (AMI) and 2 emergency visits is not necessarily

going to spend the same amount of days in the hospital as a different person with a record of 2

AMIs and 5 emergency visits. This issue, however, can be addressed in our approach by dividing

the range of independent features into intervals and adding interactions between dummy variables

associated with these intervals.
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7 Summary

This paper presents an efficient and scalable approach for the interaction analysis of the linear

multi-dimensional models. It is developed to address the scalability issue of the conventional

backward and forward selection methods by accommodating them into a consistent procedure

based on the combination of the divide and conquer algorithm and multi-step screening techniques.

The approach is considered in the context of the Heritage Health Prize competition. The numerical

results clearly demonstrate a marked prediction improvement in comparison with the ordinary

linear model. Moreover, the project identifies several directions for future extensions.

We consider that the gap between the linear model and GBM can be further narrowed, if not

surpassed entirely, through two complimentary approaches. First, as revealed from our experi-

ments, the current variant is sensitive to irregularity which in turn leads to overfitting. To resolve

this issue, standard bagging techniques can be integrated into the joint selection steps of our al-

gorithm. This is similar to the way GBM iteratively adds new trees. The second modification to

the proposed approach would address the difference between the linear and GBM models. The

linear model works with the low-dimensional correlation analysis treating the dataset as a whole.

The GBM, however, assumes that not all observations are homogeneous, and instead clusters the

dataset into subgroups and independently computes the response of each of these clusters. This dif-

ference in approaches can be resolved through partitioning the range of each independent variable

into intervals and introducing the associated dummy binary variables. Therefore, an interaction

between multiple dummy variables can be interpreted as a generation of a cluster.
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