Money Growing on Trees:

A Study of Debt-to-Nature Swap Participants

by

Andrew Joseph Goon

An honors thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science

Undergraduate College

Leonard N. Stern School of Business

New York University

May 2009

Professor Marti G. Subrahmanyam

Professor Lawrence J. White

Faculty Advisor

Thesis Advisor

Money Growing on Trees: A Study of Debt-to-Nature Swap Participants

An Honors Thesis by Andrew Joseph Goon

Abstract

This thesis studies the characteristics that make a country more likely to participate as the debtor party in debt-to-nature swaps. A debt-to-nature swap is a financial instrument that involves the forgiveness of a debtor country's debt in exchange for local investments in environmental conservation and sustainability. Explanatory variables used in this study include quantitative country characteristics such as GDP per capita and foreign direct investment; and qualitative attributes such as a country's environmental policy and developmental stage. To estimate the relationship between the response variable of DNS participation from 1987 to June 2008 (1=yes, 0=no) and a set of independent variables, the binary logistic regression model was used. Correlation tables and the more traditional ordinary least squares regression model were used to estimate the relationship between the number of DNSs in which a country has participated during the same time period and the independent variables. These methods were performed on two datasets: one including high-income countries as defined by the World Bank and another excluding these countries. The results of this study suggest that debtor countries tend to fall within a middle range of development. Several variables, such as developmental stage and CO2 emissions per capita, support this observation. In addition, the environmental motives of DNSs seem to outweigh those involving debt burdens. The number of threatened species in a country as well as the amount of nationally protected areas increases the likelihood that a country is a participant. The quality of a country's environmental policies, its magnitude of debt burden, and the amount of foreign direct investment inflows seem to have a positive effect on the number of DNSs in which a country participates. These results can help identify potential swap participants in the future as well as encourage the use of DNSs as a significant tool against the degradation of the environment today.

I would like to express my sincere appreciation to my thesis advisor, Professor Lawrence White, for his guidance, insight, patience, and encouragement. His consistent editing and valuable input has helped shape this paper into what it is today. I would also like to thank Professor Marti Subrahmanyam, Jessie Rosenzweig, the seminar speakers, and my fellow classmates for making this program successful.

Table of Contents

Introduction	1
Background	2
Structure of the Debt-to-Nature Swap	4
Benefits of Debt-to-Nature Swaps	6
Arguments Against and Limitations of Debt-to-Nature Swaps	8
Hypotheses	11
Data	16
Methodology	22
Results	25
Analysis of Results and Discussion of Hypotheses	31
Conclusion	44
References	46
APPENDIX A: Table of Commercial Swaps	48
APPENDIX B: Table of Bilateral Swaps	50
APPENDIX C: Binary Logistic Regression Models (with High-Income Countries)	52
APPENDIX D: Correlation Table (with High-Income Countries)	66
APPENDIX E: Multivariable Logit Regressions (with High-Income Countries)	73
APPENDIX F: Multivariable Ordinary Least Square Regression for Number of DNSs (with High-Income Countries)	
APPENDIX G: Binary Logistic Regression Models (without High-Income Countries)	76
APPENDIX H: Correlation Table (without High-Income Countries)	88
APPENDIX I: Multivariable Logit Regressions (without High-Income Countries)	95
APPENDIX J: Multivariable Ordinary Least Square Regression for Number of DNSs (without High-Income Countries)	

Goon 1

Introduction

The health of the environment has become an important issue in modern society. Environmental degradation, depletion of resources, and the disappearance of numerous species are just a few of the problems that humanity is facing today.

In the mid 1980s, a financial instrument known as the debt-to-nature swap (DNS) was conceived. These swaps, which involve the forgiveness of a debtor country's debt in exchange for local investments in environmental conservation, might offer a solution for debtor countries that are inundated with debt, as well as an answer to some of today's environmental issues. Throughout the past few decades, numerous DNSs have occurred. Debtor countries that have been involved have ranged from Central American countries such as Costa Rica to European countries such as Poland.

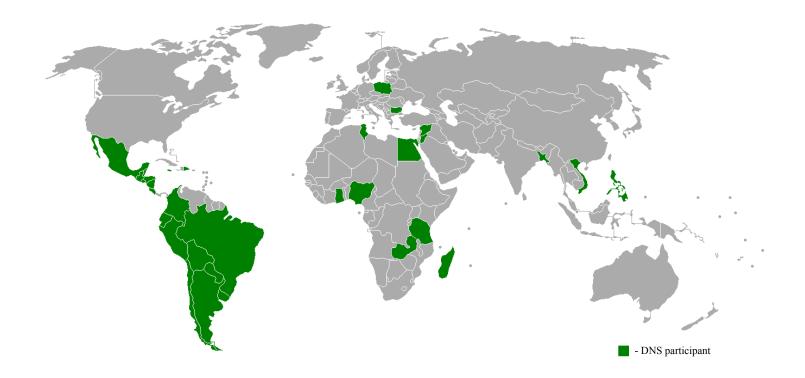
This paper attempts to explain what characteristics make these debtor countries more likely debtto-nature swap participants and why they enter into such agreements. Variables that are explored include quantitative measures such as debt balances and gross domestic product. Qualitative characteristics are also used as explanatory variables by utilizing numerical ratings created by specific outside indexes and reports such as the Global Competitiveness Report. The binary logistic regression model, the ordinary least squares regression model, and correlation tables are utilized to analyze the data.

By identifying common characteristics found among debtor countries that are involved in DNSs, other developing countries can be targeted as candidates for future swaps. Perhaps there are

cultural and demographic features that contribute to a debtor county's willingness to participate. If these characteristics are lacking in nonparticipating developing countries that exhibit environmental degradation, then this research can determine what characteristics within these countries need to be changed first. Through these "qualifications," one can infer why certain countries have not been involved in these swaps and what countries may be good potential candidates. Other relevant contributions of this paper flow from the fact that natural resources are a major component of this type of swap. With the issues of global warming and environmental degradation becoming more prevalent in today's popular culture, debt-to-nature swaps can help combat the environmental challenges that the world will face in the future.

Background

The debt-to-nature swap (also known as the debt-for-nature swap or the debt-for-environment swap) was created in 1984 by Thomas Lovejoy, Vice President of Science for the World Wildlife Fund for Nature (WWF). Modeled after the debt-to-equity swap and other similar financial transactions, the debt-to-nature swap involves the cancelling of a debtor country's foreign debt in exchange for a specified amount of local currency (usually from the debtor country's government). In accordance with the contractual agreements created by these swaps, the local currency is then invested in an environmental conservation program or project in the debtor country. Such projects include, but are not limited to, resource management programs, environmental education programs, the proliferation and maintenance of protected areas, and the training of natural park personnel.


Initially, debt-to-nature swaps were conceived as an outlet for developing countries in the 1980s. Many of these countries were simultaneously inundated with large amounts of debt and environmental degradation. The debt crisis of the early 1980s was an indirect result of the economic growth efforts of developing countries in the 1970s. During this time, developing countries borrowed extensively from western banks to invest in infrastructure and industry projects. However, in the early 1980s the demand for products from developing countries declined, leaving developing countries with less income to pay off their foreign debt. Furthermore, Thapa's study shows that there is a positive correlation between the debt crisis and the environmental degradation experienced during this period. ¹ Austerity programs mandated by the IMF and the World Bank during this time actually forced developing countries to use their natural resources. For example, tropical forests were cut down for wood exports and fertile land was cultivated to grow cash crops.

The first debt-to-nature swap was completed in 1987 between Conservation International (CI) and Bolivia. In this swap, CI paid \$100,000 to buy \$650,000 (nominal) worth of Bolivian foreign debt on the secondary market. Citibank Investment Bank brokered the debt to CI. The \$650,000 debt was then forgiven by CI. In return, the Bolivian government agreed to establish an endowment account of about \$250,000 in local currency. This money was used to protect the Beni Biosphere Reserve. Other provisions of this unprecedented swap included policy reform changes aimed at reinforcing and strengthening legal regulations for park protection.² Throughout the past two decades, over 120 debt-to-nature swaps involving about thirty-six

¹ Thapa, Brijesh. "The Relationship Between Debt-for-Nature Swaps and Protected Area Tourism: A Plausible Strategy for Developing Countries." USDA Forest Service Proceedings. RMRS-P-0. 2000. 2 November 2008 < www.fs.fed.us/rm/pubs /rmrs_p015_2/rmrs_p015_2_268_272.pdf>.

 ² Rosen, Sydney, Simon, Jonathon L., Thea, Donald and Zeitz, Paul. "Exchanging Debt for Health in Africa: Lessons from Ten Years of Debtfor-Development Swaps." Working Paper No. 732. *Harvard Institute for International Development*. 1999.

different debtor countries have occurred. The map below indicates those debtor countries that have participated in DNSs.

Structure of the Debt-to-Nature Swap

The typical debt-to-nature swap can be found in two different forms/structures: bilateral/multilateral swaps or third-party/commercial swaps. Bilateral/multilateral swaps involve direct exchanges between the creditor country(ies) and a debtor county, while third-party swaps usually involve non-governmental organizations (NGOs) such as CI or the WWF. Although individual debt-to-nature swaps differ from one another, there are several steps that usually occur:

1. The indebted country creates guidelines for a DNS program and asks for participation from conservation organizations.

- 2. An international conservation program and local organizations (public and private) reach an agreement for a program.
- 3. Participating organizations verify that sufficient funding will exist for the purchasing of the debt or that debt donations or forgiveness (partial) may be possible.
- 4. Partners request approval for the swap from the local government (central bank or ministry of finance) and sometimes from the government ministry that has jurisdiction over the sector where the proceeds will be used.
- 5. Specific terms are negotiated (exchange rate, redemption rate, local investment instrument). The purchase price is determined by the secondary market price. The redemption rate determines the amount of conservation funds generated by the swap (it is the percentage of the face value debt that is redeemed in the local currency). The redemption rate must exceed the purchase price (rate) by a large enough margin to make the swap worthwhile. Other specifics such as the sequence and timing of debt retirement, the organization that will receive and administer the domestic currency, and the structure of the counterpart fund are designated.
- 6. The debt is acquired and presented to the central bank of the indebted country, which cancels the debt and provides funds in the local currency (cash or bonds).
- 7. Conservation programs and projects are implemented over an agreed-upon time period.³

There is also a distinction between *private* debt swaps and *public* debt swaps. Private debt swaps involve at least two or more non-governmental parties. Typically, a private swap would be negotiated between a creditor country NGO and a debtor country NGO in conjunction with the

³ Resor, James P. "Debt-for-nature swaps: a decade of experience and new directions for the future." Unasylva - No. 188 - Funding Sustainable Forestry. Food and Agriculture Organization of the United Nations Corporate Document Repository. 2 November 2008. http://www.fao.org/docrep/w3247e/w3247e06.htm.

government of the debtor country. A public swap transaction, on the other hand, involves a debtor country government and a creditor country government or group of governments, such as the Paris Club and/or intergovernmental organizations like the World Bank. NGOs are usually not involved in public debt swaps, although the local currency funds generated can be given to NGOs to implement the conservation programs agreed to in such swaps. Most swaps are composed of two components: the "debt component" where debt relief occurs; and the "swap" component where the local currency fund is distributed to different projects.⁴

Benefits of Debt-to-Nature Swaps

The conservation of nature and its resources becomes more important as the world becomes more interconnected and resource stocks start to disappear; the debt-to-nature swap aims to capture the benefits of a healthy natural environment. Although the implications of environmental degradation are not fully known, human society depends on nature in many respects. For example, tropical rainforests cover about seven percent of the earth's landmass. However, they contain about half of all known species of plants, many of which contain medicinal properties. In fact, about 120 different prescription drugs are derived from tropical plants found in rainforests. Scientists believe that there are thousands more herbs and plants with medicinal properties that have not yet been discovered.⁵

The environment is also responsible for regulating the weather, distributing nutrients, and absorbing harmful substances such as pollutants. However, disturbances such as deforestation in

⁴ Rosen et al., 1999.

⁵ West, Larry "Tropical Rainforests: Natures Medicine Cabinet: Preserving Rainforests May Be a Matter of Life and Death for Future Generations" *About.com: Environmental Issues*. 2 November 2008. < http://environment.about.com/od/healthenvironment/a/rainforest_ drug.htm>.

developing countries have led to unfavorable phenomena such as global warming, local climate changes, decreased precipitation, erosion, and tainted water sources. In addition, since about 50% of all species are found in forests, envionmental degradation in developing countries has therefore led to an increase in the number of extinct and endangered species.⁶ Conservation programs resulting from debt-to-nature swaps are meant to curtail and (hopefully) reverse many of these problems.

On the surface, debtor countries mostly benefit from DNSs because the transactions help reduce debt balances. However, many debtor countries experience benefits beyond just a reduced debt burden. It has been shown that debt-to-nature swaps can cause favorable cascading effects and can be welfare improving if implemented correctly.⁷ In fact, protected areas established through debt-to-nature swaps have helped several developing countries boost their economic outlook. Several countries, such as Costa Rica, have experienced increases in tourism-more specifically, culturally/environmental-based tourism and eco-tourism, within the past decade; debt-to-nature swaps have contributed to this growth in participating debtor countries. In fact, environmentbased tourism has experienced 10%-30% increases per year, which is 2-5 times larger than the overall tourism growth rate. National environmental parks and increased eco-tourism have created tangible benefits such as increased employment and income opportunities through heightened demand for lodging, food, and other goods and services related to tourists. DNSs have frequently been cited as sustainable development tools that can potentially, if implemented rapidly, reduce the universal debt burden by roughly US\$200 million per year while increasing funds for environmental organizations at a similar rate. It has also been argued that these swaps

⁶ Thapa, 2000.

⁷ Garvie, Devon A. "When are Debt for Nature Swaps Welfare-Improving?" *International Review of Economics and Business*, 2002, 49(2), 165-173. 2 November 2008. < http://www.econ.queensu.ca/faculty/garvie/mini/garviedfns.pdf>.

can help facilitate investment in tourism at the international level via conservation of forests and wildlife.⁸

How does a creditor country benefit from a debt-to-nature swap, especially when the debt in question is either bought at a discount or cancelled altogether? Creditor countries measurably benefit when debt is bought at a discount because, in many cases, it is assumed that the debtor country would otherwise default on the full amount. The time value of money explains why creditor countries prefer to have money at the time of the swap rather than wait for future payments (which may not even occur). Therefore, partial collection is more favorable than the alternative. When the debt is cancelled without the buying of debt, the creditor country is most likely aiming to foster closer relations with the debtor country in other respects (political, economic, etc.). In addition, many of these creditor countries are interested in implementing policy initiatives that involve the environment and natural resources.

Arguments Against and Limitations of Debt-to-Nature Swaps

Although the debt-to-nature swap seems to be a win-win situation on the surface, there are several drawbacks and limitations to such transactions. One of the most controversial arguments against DNSs is the notion that they mostly serve the interest of the creditor country. Some argue that DNSs impinge on national sovereignty and are simply a euphemism for "eco-colonialism," where debtor countries sometimes cede land to their richer counterparts. Others say that DNSs

⁸ Thapa, 2000.

are wrong because they help impose the environmental goals of rich countries on poor countries, thereby serving the richer creditor countries and their resource needs.⁹

In addition, property rights are also an important issue/limitation. Property rights can work for NGOs that are interested in arranging DNSs, where NGOs purchase rights to use habitats and then retire them. However, when property rights to land or resources are misunderstood, DNSs may become ineffective. Many argue that DNSs are not sustainable because of property rights *a priori* and poor enforcement and monitoring *ex post*. For example, in Bolivia, much of the land that was to be "protected" under the 1987 DNS was owned by the indigenous Chimane people. Because the Chimane possessed extraction rights to the land, Conservation International and the Bolivian government were unable to enforce the protection of these forested areas—this became a huge embarrassment to the swap parties, and ironically, the first-ever DNS was considered a failure. When local customs and practices involving property rights are ignored, it is hard for local communities who "own" the land to understand the benefits of such agreements and preservation.¹⁰

As Hobbs quotes from Simpson (2004), "First and foremost, the local people whose actions determine the survival of biodiversity must be compensated for the opportunity cost of preservation." Hobbs also states that "(when) indigenous populations have been included in the initial negotiations and subsequent monitoring of DNSs, the results seem to be markedly better." Therefore, in order for DNSs to be successful and sustainable, it is important that swap parties

⁹ Hobbs, Bradley K. "Debt-for-Nature Swaps: The Case for Property Rights." Laissez-Faire. No. 22-23. Universidad Francisco Marroquín . 2005. 2 November 2008. < http://fce.ufm.edu/publicaciones/laissezfaire/22-23/LF-22.8_(Hobbs).pdf>.

¹⁰ Hobbs, 2005.

understand the fundamentals of property rights and the impact that DNSs will have on the local population. As shown through experience, the monitoring and enforcement of DNS provisions can only be enforced and implemented by those impacted the most: the locals. Consequently, it is best to involve local stakeholders from the beginning.¹¹

Other limitations found in debt-to-nature swaps (mostly for private debt swaps and to a lesser extent public debt swaps) are listed below:¹²

- One limitation is the lack of performance indicators and/or required outcomes delineated or specified in the swap agreements. This is mostly due to the fact that environmental results and outcomes are hard to measure; hence, having such provisions will ultimately lead to arguments over fulfillment. In the case of private swaps, NGOs would not be authorized to enforce such performance indicators. Instead, swap agreements can only specify inputs (personnel trained, area protected, number of parks, etc.).
- Another limitation, mostly pertaining to private debt swaps, as mentioned above, is the lack of enforcement provisions in swap agreements. Public debt swaps usually do not have this limitation because creditor countries are able to enforce performance and implement a "pay as you go" schedule. In other words, the creditor country can deem the swap void if the debtor country is not meeting its environmental program obligations.
- Because of the lack of enforcement authority, most private debt swaps must have shortterm and discrete goals. Policy reform is especially hard to enact for private swaps as governments have many stakeholders to answer to, not just the environmental NGOs that set up these swaps. The first debt-to-nature swap attempted to push policy reform;

¹¹ Hobbs, 2005.

¹² Rosen et al., 1999.

however, it was considered a failure. On a related note, conservation funds established during DNS agreements are inherently at risk of being expropriated by the debtor country government. Although this has not yet happened, it is a real political risk that can threaten a DNS's integrity.

• A lesser concern is the claim that DNSs can become inflationary if debtor countries decide to print money in order to establish local currency funds. However, given the relatively small magnitudes of such swaps, this limitation has not historically been an issue.

Hypotheses

This paper attempts to explain what characteristics make debtor countries more likely to be participants of debt-to-nature swaps. Numerous hypotheses will be tested; they include the following:

Debtor country participants are more likely to be in the earlier stages of development.

The Global Competitiveness Report (GCR) separates 135 different countries and economies into three different developmental stages: the factor-driven stage, the investment-driven stage, and the innovation-driven stage. The first stage is known as the factor-driven stage, where the dominant basis of competitive advantage arises mostly from physical types of resources such as natural resources and labor. In this stage, economies are very sensitive to world economic cycles, technology is minimal, and products are simple in nature. The second stage of development is known as the investment-driven stage. Countries in this stage produce more advanced products and are able to provide efficient services. As the name implies, investment-driven economies and countries invest substantially in infrastructure, institutions, and human capital—much of this investment comes from abroad. Technology is more advanced, but it is mostly accessed through licenses and joint ventures. These economies, however, are still slightly susceptible to world financial crises and demand shifts.

The final developmental stage is the innovation-driven stage. Countries that reach this stage are extremely advanced and are usually knowledge-based. Consequently, technological advancements usually originate from countries in this stage of development. Intellectual property and services contribute to the competitive advantage of these countries. Economies in this stage of development are fairly large and are often globally driven.¹³

As mentioned, the initial motivation of the debt-to-nature swap was to provide a two-fold solution for developing countries that were inundated with debt and environmental degradation. According to the stages that the GCR uses to separate countries, countries with competitive advantages in natural resources (factor-driven) and countries with large amounts of foreign debt (investment-driven) fall within the first two developmental stages. On the assumption that the motivation for modern debt-to-nature swaps is similar, this hypothesis should hold true. Other variables, such as current account balance, will be used in conjunction with the GCR stages to test this hypothesis.

¹³ Michael E. Porter, Klaus Schwab, Jennifer Blanke, et al. (2008). "The Competitiveness Report 2008-2009". World Economic Forum, Geneva, Switzerland. 4 November 2008. < http://www.weforum.org/documents/GCR0809/index.html>.

Debtor countries possess a certain number of threatened species that make them likely candidates.

The environmental aspect of the debt-to-nature swap usually entails the preservation of natural resources and/or forested land. Although the environment provides many different benefits to society, most creditor countries have historically been interested in preserving the "biodiversity" of the globe. This is even truer for NGOs such as CI and WWF, as these organizations have made the preservation and protection of biodiversity one of their main goals. With this in mind, it is hypothesized that debtor countries must possess at least a certain amount of threatened species to be considered for a debt-to-nature swap.

Debtor countries possess certain environmental factors and land characteristics that make them more likely to be DNS participants.

Variables such as agricultural land, arable land, and forest cover will be used to test this hypothesis. Since environmental preservation is an essential goal of DNSs, debtor countries are assumed to hold certain environmental factors that make them good candidates. Other variables, such as carbon dioxide emissions and urban population/population growth, will be used to complement the primary variables that explain this hypothesis. Common scientific knowledge states that countries with more forests exhibit less net carbon dioxide emissions. This can be attributed to the carbon dioxide absorption characteristics of plants and/or the developmental stage of the country. On the other hand, urban population growth may also be a contributing factor. Higher levels of urban population growth may threaten forested areas; hence debtor countries with high urban population growth may be good candidates for DNSs.

Debtor countries possess a specific amount of external debt that allows them to be considered for DNSs.

It is assumed that debtor countries must have a certain threshold amount of debt in order to be considered for a DNS. Countries with low levels of debt probably would not be interested in swapping out debt at all. However, countries with moderate or large amounts of debt may be targeted by creditor countries as potential DNS participants. DNSs would help creditor countries collect partially on debt that might be defaulted on all together, while debtor countries enjoy a lower debt balance.

There are specific country and institutional policy aspects that make a debtor country a likely participant.

It is hypothesized that country and institutional policies, such as those regarding corruption, would have an effect on a country's tendency to participate in debt-to-nature swaps. For example, it is more likely that a country with lower corruption levels will be trusted by a creditor country to comply with the provisions of a debt-to-nature swap. The Country Policy and Institutional Assessment (CPIA), which is published by the World Bank, rates countries against a set of 16 criteria, several of which this paper will use as explanatory variables. Variables chosen for this paper and their respective hypothesized rating ranges are shown in the chart below.

CPIA Variable	Hypothesized Rating for Likely Participants
Debt Policy rating	Debt policy assesses whether the debt management strategy
	is conducive to minimizing budgetary risks and ensuring
	long-term debt sustainability. A low/moderate debt rating is
	likely for a participating debtor country. High debt policy
	ratings would infer no need to swap debt at all.

CPIA Variable	Hypothesized Rating for Likely Participants
Policy and Institutions for Environmental	A high rating for this variable is expected. Debtor countries
Sustainability rating	are expected to create/maintain sustainable environmental
	programs in return for cancelled debt. Therefore,
	participating countries should have a high rating.
Property Rights and Rule-based	As mentioned in the introduction, the lack of enforcement of
Governance rating	swap provisions and the misunderstanding of property rights
	are two major limitations of DNSs. Therefore, a likely debtor
	country should rate high on this variable.
Transparency, Accountability, and	Debtor countries would be expected to have moderate/high
Corruption rating	ratings for this variable. If debtor countries possessed low
	ratings for this variable, they would be less likely to comply
	with DNS provisions.

This hypothesis will also be tested by using other policy indicators such as nationally protected areas (as a percentage of total country area) and public spending on education (as a percentage of GDP). These variables can help complement the CPIA variables used. The extent of nationally protected areas would be an indication of which countries have the motive to protect the environment. Public spending on education would not be as directly related to one of the CPIA variables. However, education and literacy levels can be an indication of how educated the local community is about the environment and its benefits—high levels of awareness would most likely translate into better cooperation from the community and, therefore, better management and enforcement of environmental programs.

Debtor countries with well-established financial relationships with creditor countries are more likely to be involved in DNSs.

This hypothesis focuses on the importance of inter-country relationships. It is more likely that a creditor country will forgive the debt of a debtor country that the former regularly interacts with

or wishes to interact with. Although this can be a difficult aspect to measure, balances of Foreign Direct Investment (FDI) inflows can help infer what debtor countries other countries are willing to work with/invest in. Even if there is not a specific level of FDI that makes a debtor country more likely to be involved in DNSs, a net inflow is definitely expected. This may also help to reinforce the hypothesis that debtor countries are most likely to be in the factor-driven or *investment-driven* stages.

Debtor countries often possess large tourism industries.

As mentioned in the introduction, eco-tourism has been growing at unprecedented rates in the past few years. Although figures on eco-tourism alone are not available, general tourism variables can be used to try to test this hypothesis.

Data

Over the past two decades there have been about 120 debt-to-nature swaps documented. Data collected on these debt-to-nature swaps include: debtor country, creditor country (for bilateral swaps), NGO involved (for commercial swaps), year of transaction, face value of debt, purchase price (for commercial debt), and amount of conservation funds created. For the years from 1987 to 2003, data was extracted from WWF databases for commercial DNSs and bilateral DNSs. For years occurring after 2003, information was collected from various publications and sources. The time period covered in this study starts when the first DNS was transacted in 1987 and ends in June of 2008.

This paper also requires the collection of country data. Most of the country data collected comes from the World Development Indicators (WDI) Online database, which is maintained by the World Bank Group. The WDI database provides data for about 209 countries and economies, offering about 800 different economic indicators. World Development Indicators chosen for this paper, along with their respective definitions and year of data, are displayed in the following table. For some variables, data are only available for certain years and/or substantial amounts of data are missing for more current years. Therefore, this study takes the number of data points into account when choosing the year of data to use.

Indicator	Definition	Year of data
Current account balance (BoP, current	Current account balance is the sum of net	2004
US\$)	exports of goods, services, net income, and net	
	current transfers. Data are in current U.S.	
	dollars.	
	International Monetary Fund, Balance of Payments Statistics Yearbook and data files.	
GDP growth (annual %)	Annual percentage growth rate of GDP at	2006
	market prices based on constant local currency.	
	Aggregates are based on constant 2000 U.S.	
	dollars. GDP is the sum of gross value added by	
	all resident producers in the economy plus any	
	product taxes and minus any subsidies not	
	included in the value of the products. It is	
	calculated without making deductions for	
	depreciation of fabricated assets or for depletion	
	and degradation of natural resources.	
	World Bank national accounts data, and OECD National	
GDP per capita (constant 2000 US\$)	Accounts data files. GDP per capita is gross domestic product	2006
	divided by midyear population. Data are in	2000
	constant U.S. dollars.	
	World Bank national accounts data, and OECD National	
	Accounts data files.	2006
External debt, total (DOD, current	Total external debt is debt owed to nonresidents	2006
US\$) and External debt, total (% of	repayable in foreign currency, goods, or	
GNI)	services. Total external debt is the sum of	
	public, publicly guaranteed, and private	
	nonguaranteed long-term debt, use of IMF	
	credit, and short-term debt. Short-term debt	
	includes all debt having an original maturity of	
	one year or less and interest in arrears on long-	
	term debt. Data expressed as a percentage of	
	Gross National Income.	
	World Bank, Global Development Finance.	

Indicator	Definition	Year of data
CPIA debt policy rating (1=low to 6=high)	Debt policy assesses whether the debt management strategy is conducive to	2007
	minimizing budgetary risks and ensuring long- term debt sustainability. World Bank Group, CPIA database	
CPIA policy and institutions for environmental sustainability rating (1=low to 6=high)	Policy and institutions for environmental sustainability assess the extent to which environmental policies foster the protection and sustainable use of natural resources and the management of pollution. World Bank Group, CPIA database	2007
CPIA property rights and rule-based governance rating (1=low to 6=high)	Property rights and rule-based governance assess the extent to which private economic activity is facilitated by an effective legal system and rule-based governance structure in which property and contract rights are reliably respected and enforced. World Bank Group, CPIA database	2007
CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high)	Transparency, accountability, and corruption in the public sector assess the extent to which the executive can be held accountable for its use of funds and for the results of its actions by the electorate and by the legislature and judiciary, and the extent to which public employees within the executive are required to account for administrative decisions, use of resources, and results obtained. The three main dimensions assessed here are the accountability of the executive to oversight institutions and of public employees for their performance, access of civil society to information on public affairs, and state capture by narrow vested interests. World Bank Group, CPIA database	2007
Nationally protected areas (% of total land area) and Nationally protected areas (sq. km)	Nationally protected areas are totally or partially protected areas of at least 1,000 hectares that are designated as scientific reserves with limited public access, national parks, natural monuments, nature reserves or wildlife sanctuaries, and protected landscapes. Marine areas, unclassified areas, and litoral (intertidal) areas are not included. The data also do not include sites protected under local or provincial law. United Nations Environmental Program and the World Conservation Monitoring Centre.	2004
Foreign direct investment, net inflows (BoP, current US\$) and Foreign direct investment, net inflows (% of GDP)	Foreign direct investment are the net inflows of investment to acquire a lasting management interest (10 percent or more of voting stock) in an enterprise operating in an economy other than that of the investor. It is the sum of equity capital, reinvestment of earnings, other long-	2004

Indicator	Definition	Year of data
	term capital, and short-term capital as shown in	
	the balance of payments. This series shows net	
	inflows in the reporting economy. Data are in	
	current U.S. dollars.	
	International Monetary Fund, International Financial Statistics and Balance of Payments databases, and World Bank, Global Development Finance.	
International tourism, number of	International inbound tourists (overnight	2004
arrivals	visitors) are the number of tourists who travel to	
	a country other than that in which they have	
	their usual residence, but outside their usual	
	environment, for a period not exceeding 12	
	months and whose main purpose in visiting is	
	other than an activity remunerated from within	
	the country visited. When data on number of	
	tourists are not available, the number of visitors,	
	which includes tourists, same-day visitors,	
	cruise passengers, and crew members, is shown	
	instead.	
	World Tourism Organization, Yearbook of Tourism Statistics,	
	Compendium of Tourism Statistics and data files.	2004
International tourism, receipts (% of	International tourism receipts are expenditures	2004
total exports) and International	by international inbound visitors, including	
tourism, receipts (current US \$)	payments to national carriers for international	
	transport. These receipts include any other	
	prepayment made for goods or services	
	received in the destination country. They also	
	may include receipts from same-day visitors,	
	except when these are important enough to	
	justify separate classification. For some	
	countries they do not include receipts for	
	passenger transport items. Their share in	
	exports is calculated as a ratio to exports of	
	goods and services, which comprise all	
	transactions between residents of a country and	
	the rest of the world involving a change of	
	ownership from residents to nonresidents of	
	general merchandise, goods sent for processing	
	and repairs, nonmonetary gold, and services. World Tourism Organization, Yearbook of Tourism Statistics,	
	Compendium of Tourism Statistics and data files, and IMF and	
	World Bank exports estimates.	
Agricultural land (% of land area) and	Agricultural land refers to the share of land area	2005
Agricultural land (sq. km)	that is arable, under permanent crops, and under	
	permanent pastures. Arable land includes land	
	defined by the FAO as land under temporary	
	crops (double-cropped areas are counted once),	
	temporary meadows for mowing or for pasture,	
	land under market or kitchen gardens, and land	
	temporarily fallow. Land abandoned as a result	
	of shifting cultivation is excluded. Land under	
	permanent crops is land cultivated with crops	

Indicator	Definition	Year of data
	that occupy the land for long periods and need	
	not be replanted after each harvest, such as	
	cocoa, coffee, and rubber. This category	
	includes land under flowering shrubs, fruit	
	trees, nut trees, and vines, but excludes land	
	under trees grown for wood or timber.	
	Permanent pasture is land used for five or more	
	years for forage, including natural and	
	cultivated crops.	
	Food and Agriculture Organization, Production Yearbook and data files.	
Arable land (% of land area) and	Arable land includes land defined by the FAO	2005
Arable land (hectares)	as land under temporary crops (double-cropped	
	areas are counted once), temporary meadows	
	for mowing or for pasture, land under market or	
	kitchen gardens, and land temporarily fallow.	
	Land abandoned as a result of shifting	
	cultivation is excluded.	
	Food and Agriculture Organization, Production Yearbook and data files.	
Forest area (% of land area) and	Forest area is land under natural or planted	2005
Forest area (sq. km)	stands of trees, whether productive or not.	
	Food and Agriculture Organization, Global Forest Resources	
CO2 emissions (kg per PPP \$ of	Assessment. Carbon dioxide emissions are those stemming	2004
GDP),	from the burning of fossil fuels and the	
CO2 emissions (kt) and CO2	manufacture of cement. They include carbon	
emissions (metric tons per capita)	dioxide produced during consumption of solid,	
	liquid, and gas fuels and gas flaring.	
	Carbon Dioxide Information Analysis Center, Environmental	
	Sciences Division, Oak Ridge National Laboratory, in the U.S. state of Tennessee.	
Public spending on education, total	Public expenditure on education consists of	2004 and
(% of GDP)	current and capital public expenditure on	200 F and 2005
	education includes government spending on	2003
	educational institutions (both public and	
	private), education administration as well as	
	subsidies for private entities	
	(students/households and other privates	
	entities).	
	United Nations Educational, Scientific, and Cultural Organization (UNESCO) Institute for Statistics.	
Urban population (% of total) and	Urban population is the midyear population of	2007
Urban population (% annual growth)	areas defined as urban in each country and	
	reported to the United Nations.	
	World Bank staff estimates using United Nations, World	
	Urbanization Prospects.	

This paper also utilizes data from the International Union for Conservation of Nature and Natural Resources (IUCN). Every year the IUCN publishes the IUCN Red List of Threatened Species.

The list identifies and documents those species that are most likely to become extinct if no action is taken to protect them. This paper uses Table 5 of the IUCN Red List database, which lists the number of threatened species in each available country.

Many of the qualitative variables that are used in this study come from the Global Competitiveness Report (GCR). The GCR ranks and scores 135 different countries and separates them into different stages. As mentioned in the hypotheses section, the first stage of development is the factor-driven stage. A numerical value of 1 is assigned to countries that fall into this developmental stage. The numerical values of 2 and 3 are assigned to the later developmental stages, investment-driven and innovation-driven respectively. If a country is transitioning between two developmental stages a .5 increment is used. A 1.5 value implies a country that is transitioning from a factor-driven stage to an investment-driven stage, while a 2.5 value denotes a transition from an investment-driven stage to an innovation-driven stage.

The GCR also scores countries based on 12 pillars. These twelve pillars are grouped into three subindexes: basic requirements, efficiency enhancers, and innovation factors. Each subindex is critical to a specific developmental stage. Basic requirements are most important for the factor-driven stage, while the efficiency enhancers and innovation factors are most important to the investment and innovation-driven stages, respectively. The GCR aggregates and weighs these subindexes to create an Overall Score for each country, which ranges from the lowest score of 1 to the highest score of 7. This paper uses the Overall Score as a dependent variable.

Country data utilized in this paper are from the years between 2004 and 2008. The most ideal method of testing the relationship between the independent variables and a country's participation in DNSs is to analyze data from each individual year (country data for 1990 to DNSs data for 1990). However, not all independent variables are recorded every year; data sets for some variables are published only every two to five years, etc. In addition, a paper utilizing the aforementioned method would require a much larger scale and scope. Therefore, this paper tries to estimate and test the relationship between country characteristics and DNS participation by using more current and abundant data. When comparing data from the late 1980s and early 1990s to more recent data for each variable (where the data are readily available), it should be noted that countries are relatively stable in their rankings. Of course, there are some countries and variables that have changed dramatically over the last two decades, such as China and India. However, the average country does not shift any more than twenty places when ranking the countries based on each variable. Therefore, the use of more recent data should not distort the results or their interpretation in the context of this paper.

Methodology

All statistical models used in this study were analyzed by using the Minitab 14 Statistical Software program. In order to reveal any significant relationships between the independent variables (country characteristics) and binary response variables of yes and no (1 = country has participated in at least one DNS, 0 = country has not participated in a DNS), the binary logistic regression model (logit model) was used. The logistic regression model is a generalized linear model and is used to estimate the probability of occurrence for a specific event by fitting the data to a logistic curve. The independent variables used in this model can be categorical, continuous,

discrete, or dichotomous. The response variables are dichotomous in nature, success/failure or DNS participant/not a DNS participant. In other words, the dependent variable can take the value 1 (probability of success = θ) or the value 0. The function used for the logit model is:¹⁴

 $\theta = \frac{e^{(\alpha+\beta_1z_1+\beta_2z_2+\ldots+\beta_lz_l)}}{1+e^{(\alpha+\beta_lz_1+\beta_lz_2+\ldots+\beta_lz_l)}}$

Where α = the constant of the equation and, β = the coefficient of the predictor variables.

An alternative form of the logistic regression equation is:

$$\operatorname{logit}[\boldsymbol{\theta}(\mathbf{x})] = \operatorname{log}\left[\frac{\boldsymbol{\theta}(\mathbf{x})}{1 - \boldsymbol{\theta}(\mathbf{x})}\right] = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_i x_i$$

The results of the logistic model offer coefficients for the constant and dependent variables. The sign of a dependent variable coefficient depicts whether the variable increases the likelihood that a country participated in a DNS or decreases this likelihood. The results also display a log-likelihood and an odds-ratio. The log-likelihood shows how well the model explains the variables (much like an R-squared figure). The odds-ratio is interpreted in the following way:

Assume

- the probability of success is .75, thus $\theta = .75$
- the probability of failure is .25, $1-\theta = .25$

¹⁴ "Logistic Regression." San Francisco State University. 26 September 2002. 10 April 2009. <a href="http://userwww.sfsu.edu/~efc/classes/biol710/logistic/logis

The odds-ratio of success is then 3 to 1, which is calculated using the following equation $odds(success) = \theta/(1-\theta) = .75/.25 = 3$. The odds-ratio of failure is the reciprocal of the odds of success. According to the Minitab 14 Software Program, the odds ratio displayed can also be used to explain the effect that each one unit increase in the independent variable has on the odds of success (in the case, participation in a DNS). For example, an odds ratio of 2.08 indicates that the odds of success increases by 108% for every one unit increase in the independent variable.

After creating models using each of the individual independent models, the correlation table for the independent variables was used to formulate a multivariable logit regression model. When variables were highly correlated, the variable that better explained the relationship of the data was used. Pearson correlation values between -1 to -.75 and .75 to 1 were used to signify that two variables were correlated. Right-hand side variables were eliminated until a strong multivariable logit regression model was found.

Some DNS participants are repeat participants; therefore, another regression model was used to try to explain such occurrences because the logistic model would not explain any of these relationships because the response variable is dichotomous. The ordinary least squares (OLS) regression model was used to estimate any relationships that might exist between the independent variables and the dependent variable of "number of DNSs." Correlation tables and correlation coefficients were also utilized to explain such relationships.¹⁵

¹⁵ Econometrically, the Tobit regression model is probably a better way to perform this estimation. However, the statistical program used did not have the Tobit model readily available. Therefore, the OLS model was used as an alternative.

These methods were then repeated using a segment of the data that did not include "high income" countries as described by the World Bank. Although including "high income" country data can help explain the relationship between participation and variables such as developmental stage, excluding these data can offer a more explanatory model given the fact that this study focuses on the debtor country participants (traditionally, debtor country participants have not been high income countries).

Results

Basic statistics for each variable used are displayed in Tables 1 and 2. These tables show the number of data points, minimum, maximum, median, and mean values for each dependent and independent variable.

Table 1: Sample Statistics for Data Including High-Income Countries						
Variable	Number of Data Points	Minimum Value	Maximum Value	Median Value	Mean Value	
DNS participation (binary, $1 = yes$, $0 = no$)	209	0.00	1.00	0.00	0.17	
DNS participation (number of DNSs transacted)	209	0.00	14.00	0.00	0.57	
Developmental Stage	135	1.00	3.00	2.00	1.92	
Overall Score	134	2.85	5.74	4.11	4.20	
Current account balance (BoP, current US\$ millions)	161	- 640,149.24	172,058.72	- 60.55	- 182.32	
GDP growth (annual %)	175	- 5.76	34.50	5.21	5.73	
GDP per capita (constant 2000 US\$)	174	90.77	53,489.99	2,048.93	6,810.76	
Number of Threatened Species	200	1.00	2,208.00	72.00	156.28	
External debt, total (DOD, current US\$ millions)	134	84.99	322,845.29	3,476.40	22,266.11	
External debt, total (% of GNI)	132	4.91	619.18	51.41	64.63	
CPIA debt policy rating	75	1.00	6.00	3.50	3.49	
CPIA policy and institutions for environmental sustainability rating	75	2.00	4.50	3.00	3.09	
CPIA property rights and rule-based governance rating	75	1.00	4.00	3.00	2.90	
CPIA transparency, accountability, and corruption in the public sector rating	75	1.00	4.50	3.00	2.88	
Nationally protected areas (% of total land area)	188	0.01	74.38	7.86	11.86	
Nationally protected areas (sq. km)	191	1.00	1,532,557.00	9,694.00	78,764.22	

Table 1: Sample Statistics for Data Including High-Income Countries					
Variable	Number of Data Points	Minimum Value	Maximum Value	Median Value	Mean Value
Foreign direct investment, net inflows (BoP, current US\$ millions)	175	- 10,994.23	145,812.00	324.60	4,426.11
Foreign direct investment, net inflows (% of GDP)	168	- 6.00	240.28	2.72	5.74
International tourism, number of arrivals (thousands)	182	4.00	75,121.00	693.00	4,121.98
International tourism, receipts (% of total exports)	158	0.13	86.27	9.66	16.42
International tourism, receipts (current US\$ millions)	181	1.80	113,387.00	582.00	4,148.50
Agricultural land (% of land area)	203	0.57	90.58	39.58	39.43
Agricultural land (sq. km)	203	8.00	5,563,280.00	30,500.00	235,563.87
Arable land (% of land area)	203	0.04	61.08	11.01	14.44
Arable land (thousand hectares)	203	0.60	174,448.00	1,158.00	6,983.07
Forest area (% of land area)	196	0.01	94.72	28.51	30.64
Forest area (sq. km)	196	10.00	8,087,900.00	22,805.00	201,017.86
CO2 emissions (kg per PPP \$ of GDP)	174	0.01	2.90	0.33	0.43
CO2 emissions (kt)	190	29.30	6,044,023.26	8,260.07	142,947.94
CO2 emissions (metric tons per capita)	188	0.01	69.16	2.54	5.43
Urban population (% of total)	208	10.10	100.00	58.24	56.82
Urban population growth (annual %)	206	- 1.73	6.89	1.81	2.04
Public spending on education, total (% of GDP)	126	1.31	13.84	4.78	4.91

Table 2: Sample Statistics for Data Excluding High-Income Countries					
Variable	Number of data points	Minimum Value	Maximum Value	Median Value	Mean Value
DNS participation (binary, 1 = yes, 0 = no)	145	0.00	1.00	0.00	0.25
DNS participation (number of DNSs transacted)	145	0.00	14.00	0.00	0.83
Developmental Stage	91	1.00	2.50	1.50	1.50
Overall Score	90	2.85	5.22	3.87	3.85
Current account balance (BoP, current US\$ millions)	114	- 15,601.00	68,659.16	- 81.15	1,249.55
GDP growth (annual %)	134	- 5.76	34.50	5.70	6.07
GDP per capita (constant 2000 US\$)	133	90.77	8,692.57	1,286.53	1,996.69
Number of Threatened Species	138	11.00	2,208.00	84.50	181.41
External debt, total (DOD, current US\$ millions)	130	84.99	322,845.29	3,417.58	21,875.39
External debt, total (% of GNI)	128	4.91	619.18	51.41	65.57
CPIA debt policy rating	75	1.00	6.00	3.50	3.49
CPIA policy and institutions for environmental sustainability rating	75	2.00	4.50	3.00	3.09

Table 2: Sample Statistics for Data Excluding High-Income Countries					
Variable	Number of data points	Minimum Value	Maximum Value	Median Value	Mean Value
CPIA property rights and rule-based governance rating	75	1.00	4.00	3.00	2.90
CPIA transparency, accountability, and corruption in the public sector rating	75	1.00	4.50	3.00	2.88
Nationally protected areas (% of total land area)	131	0.06	74.38	7.65	11.36
Nationally protected areas (sq. km)	134	5.00	1,532,557.00	14,420.50	80,193.01
Foreign direct investment, net inflows (BoP, current US\$ millions)	127	- 15.37	54,936.48	218.80	1,701.59
Foreign direct investment, net inflows (% of GDP)	125	- 1.46	44.97	2.82	4.29
International tourism, number of arrivals (thousands)	126	4.00	41,761.00	443.00	2,249.80
International tourism, receipts (% of total exports)	113	0.13	86.27	11.04	16.76
International tourism, receipts (current US\$ millions)	129	1.80	27,755.00	239.00	1,500.61
Agricultural land (% of land area)	142	0.58	90.58	42.32	43.71
Agricultural land (sq. km)	142	50.00	5,563,280.00	53,410.00	258,410.11
Arable land (% of land area)	142	0.04	61.08	10.91	14.54
Arable land (thousand hectares)	142	1.00	159,650.00	1,632.50	7,408.06
Forest area (% of land area)	141	0.07	94.72	27.87	30.54
Forest area (sq. km)	141	10.00	8,087,900.00	31,950.00	210,948.44
CO2 emissions (kg per PPP \$ of GDP)	129	0.01	2.90	0.30	0.42
CO2 emissions (kt)	135	29.30	5,005,687.30	5,472.52	102,884.58
CO2 emissions (metric tons per capita)	133	0.01	13.33	1.17	2.20
Urban population (% of total)	143	10.10	92.98	48.12	48.69
Urban population growth (annual %)	141	- 1.73	6.89	2.22	2.41
Public spending on education, total (% of GDP)	83	1.63	13.84	4.72	4.86

Actual regression results and correlation tables from the Minitab 14 software output are included in the Appendix.

Tables 3-5 provide summaries of the coefficients, p-values, R-squared (where applicable) and odd-ratios (where applicable) of the various independent variables, separated and grouped by the regression model utilized. The first set of tables displays the results for the regressions that included the high-income countries. Regressions displayed in Tables 3 and 4 use DNS

participation (1=yes, 0=no) as the response variable, while the OLS regressions use Number of

DNSs as the response variable.

Table 3: Binary Logistic Regression Model with High-Income Countries in Dataset					
Variable	Coefficient	P-value	Odds Ratio		
Developmental Stage	- 0.9404330	0.001	0.39		
Overall Score	- 0.9325570	0.007	0.39		
Current account balance (BoP, current US\$ millions)	0.0000002	0.947	1.00		
GDP growth (annual %)	- 0.0011993	0.979	1.00		
GDP per capita (constant 2000 US\$)	- 0.0001032	0.018	1.00		
Number of Threatened Species	0.0024615	0.001	1.00		
External debt, total (DOD, current US\$ millions)	0.0000030	0.400	1.00		
External debt, total (% of GNI)	- 0.0038508	0.373	1.00		
CPIA debt policy rating	0.4805420	0.182	1.62		
CPIA policy and institutions for environmental sustainability rating	0.8223870	0.181	2.28		
CPIA property rights and rule-based governance rating	0.4062200	0.418	1.50		
CPIA transparency, accountability, and corruption in the public sector rating	0.6464430	0.177	1.91		
Nationally protected areas (% of total land area)	0.0312686	0.018	1.03		
Nationally protected areas (sq. km)	0.0000009	0.170	1.00		
Foreign direct investment, net inflows (BoP, current US\$ millions)	- 0.0000164	0.409	1.00		
Foreign direct investment, net inflows (% of GDP)	- 0.0343342	0.368	0.97		
International tourism, number of arrivals (thousands)	- 0.0000288	0.340	1.00		
International tourism, receipts (% of total exports)	- 0.0145188	0.238	0.99		
International tourism, receipts (current US\$ millions)	- 0.0000728	0.147	1.00		
Agricultural land (% of land area)	0.0144741	0.082	1.01		
Agricultural land (sq. km)	0.0000001	0.686	1.00		
Arable land (% of land area)	- 0.0036731	0.799	1.00		
Arable land (thousand hectares)	- 0.0000006	0.948	1.00		
Forest area (% of land area)	0.0057305	0.467	1.01		
Forest area (sq. km)	0.0000001	0.496	1.00		
CO2 emissions (kg per PPP \$ of GDP)	- 0.9084700	0.199	0.40		
CO2 emissions (kt)	- 0.0000010	0.390	1.00		
CO2 emissions (metric tons per capita)	- 0.2209290	0.002	0.80		
Urban population (% of total)	0.0038695	0.613	1.00		

Table 3: Binary Logistic Regression Model with High-Income Countries in Dataset			
Variable	Coefficient	P-value	Odds Ratio
Urban population growth (annual %)	0.1282210	0.270	1.14
Public spending on education, total (% of GDP)	- 0.1905870	0.130	0.83

Table 4: Multivariable Binary Logistic Regression Model with High-Income Countries in Dataset

Dataset			
Variable	Coefficient	P-value	Odds Ratio
Number of Threatened Species,	0.0027187	$0.004 \\ 0.000$	1.00
CO2 Emissions (metric tons per capita),	- 0.4923250		0.61
Urban Population (% of total)	0.0519157	0.000	1.05
Number of Threatened Species,	0.0024270	0.010	1.00
GDP per capita (constant 2000 US\$),	- 0.0002499	0.004	1.00
Urban Population (% of total)	0.0479383	0.000	1.05
Number of Threatened Species,	0.0025274	0.010	1.00
CO2 Emissions (metric tons per capita),	- 0.5109290	0.000	0.47
Urban Population (% of total),	0.0534630	0.000	1.03
Nationally protected areas (% of total land area)	0.0344202	0.065	1.00

Table 5: Ordinary Least Squares Regressions for Number of Swaps with High-Income Countries in Dataset

Variable	Coefficient	P-value	R-squared
Number of Threatened Species	0.0063480	0.000	31.6
CPIA policy and institutions for environmental sustainability rating	0.7477000	0.023	
International tourism, receipts (current US\$ millions)	- 0.0006915	0.010	

The next set of tables (Tables 6-8) shows the results of regressions that excluded data from high-

income countries.

Table 6: Binary Logistic Regression Model without High-Income Countries in Dataset			
Variable	Coefficient	P-value	Odds Ratio
Developmental Stage	0.1669340	0.682	1.18
Overall Score	0.5558510	0.260	1.74
Current account balance (BoP, current US\$ millions)	- 0.0000203	0.495	1.00
GDP growth (annual %)	- 0.0291072	0.562	0.97
GDP per capita (constant 2000 US\$)	0.0001759	0.060	1.00
Number of Threatened Species	0.0024120	0.005	1.00
External debt, total (DOD, current US\$ millions)	0.0000033	0.371	1.00

Table 6: Binary Logistic Regression Model without High-Income Countries in Dataset			
External debt, total (% of GNI)	- 0.0044415	0.325	1.00
CPIA debt policy rating	0.4805420	0.182	1.62
CPIA policy and institutions for environmental sustainability rating	0.8223870	0.181	2.28
CPIA property rights and rule-based governance rating	0.4062200	0.418	1.50
CPIA transparency, accountability, and corruption in the public sector rating	0.6464430	0.177	1.91
Nationally protected areas (% of total land area)	0.0463915	0.008	1.05
Nationally protected areas (sq. km)	0.0000012	0.153	1.00
Foreign direct investment, net inflows (BoP, current US\$ millions)	0.0000271	0.397	1.00
Foreign direct investment, net inflows (% of GDP)	- 0.0383916	0.367	0.96
International tourism, number of arrivals (thousands)	0.0000213	0.543	1.00
International tourism, receipts (% of total exports)	- 0.0145188	0.238	0.99
International tourism, receipts (current US\$ millions)	0.0000208	0.694	1.00
Agricultural land (% of land area)	0.0047448	0.595	1.00
Agricultural land (sq. km)	0.0000001	0.840	1.00
Arable land (% of land area)	- 0.0047966	0.750	1.00
Arable land (thousand hectares)	- 0.0000020	0.836	1.00
Forest area (% of land area)	0.0060452	0.447	1.01
Forest area (sq. km)	0.0000001	0.559	1.00
CO2 emissions (kg per PPP \$ of GDP)	- 0.7093410	0.280	0.49
CO2 emissions (kt)	- 0.0000005	0.556	1.00
CO2 emissions (metric tons per capita)	- 0.0597764	0.454	0.94
Urban population (% of total)	0.0330277	0.001	1.03
Urban population growth (annual %)	- 0.0548051	0.642	0.95
Public spending on education, total (% of GDP)	- 0.1607740	0.184	0.85

Table 7: Multivariable Binary Logistic Regression Model without High-Income Countries in Dataset

Dataset			
Variable	Coefficient	P-value	Odds Ratio
Number of Threatened Species, CO2 Emissions (metric tons per capita),	0.0022264 - 0.3075270	0.019 0.015	1.00 0.74
Urban Population (% of total)	0.0526475	0.000	1.05
Number of Threatened Species,	0.0019600	0.046	1.00
CO2 Emissions (metric tons per capita), Urban Population (% of total),	- 0.2971400 0.0541716	0.030 0.000	0.74 1.06
Nationally protected areas (% of total land area)	0.0371407	0.074	1.04

Table 8: Ordinary Least Squares Regressions for Number of Swaps without High-Income Countries in Dataset			
Variable	Coefficient	P-value	R-squared
Number of Threatened Species, CPIA policy and institutions for environmental sustainability rating	0.004399 0.544600	0.000 0.069	23.8

Analysis of Results and Discussion of Hypotheses

The analyses of the binary logistic regressions are mainly based on the sign of the coefficient. For logit regressions, the magnitude of the coefficient values do not explain the extent of the relationship between the independent and the dependent variables in the same manner as an ordinary least squares coefficient would. P-values are included in the results to signify the statistical significance of the coefficients. The odds ratio, as mentioned prior, offers a marginal analysis where the odds ratio denotes a multiple of the probability of success for every one unit increase in the independent variable. Correlation tables and ordinary least square regressions are analyzed in the traditional fashion. It should be understood that most of the debtor country participants fall in the low-to-middle-income categories. Therefore, results and analysis including the high-income countries is only done for completeness.

Debtor country participants are more likely to be in the earlier stages of development.

The results of the binary logistic regressions of DNS participation against Developmental Stage and DNS participation against Overall Score both show negative coefficients (-0.9404330 and -0.9325570, respectively) for the dataset including high income countries. A negative coefficient in these regressions (where θ is the probability of being a DNS participant) signifies that as the independent variable increases the likelihood of DNS participation decreases. Both coefficients have p-values less than 0.05 (0.001 and 0.007, respectively); therefore, these coefficients are significant at the 5% level. The odds ratio reveals that for every one unit increase in either the Developmental Stage or the Overall Score, the odds of success (DNS participation) decrease by 61% or are 39% of the previous odds. These results support the hypothesis that most DNS participants are in the earlier stages of development.

However, the results of the same regressions using the datasets that do not include the highincome countries suggest otherwise. Although the coefficients of these regressions do not have statistical significance and are, therefore, not conclusive, they may help explain the relationship between DNS participation and developmental stage. The coefficients for these two independent variables are positive, and the odds ratios are greater than one. This suggests that when the highincome countries are excluded, the remaining countries are more likely to participate as their Developmental Stage and Overall Score increase. Perhaps this suggests that DNS participation is more likely for countries that fall within a certain middle range of development.

The correlation table that includes the high-income data shows that there are slight negative correlations between DNS Participation (number of DNSs transacted) (to be denoted as Number of DNSs henceforth) and each of the independent variables of Developmental Stage and Overall Score. The second correlation table without the high-income data shows slight positive correlations for these same variables. However, none of these are statistically significant.

The independent variables of Current account balance, GDP growth, and GDP per capita are used to supplement the explanation of this hypothesis. The logit regressions that include the data from high-income countries do not result in any significant relationship between the binary response variable and the variables of Current account balance and GDP growth. However, GDP per capita shows a negative coefficient (-0.0001032) that is statistically significant at the 5% level. The odds-ratio is 1.00, which suggests the relationship is very weak. When the high-income countries were excluded, Current account balance and GDP growth still do not result in any statistically significant relationships. GDP per capita shows a positive coefficient (0.0001759) that is significant if a more lenient 10% level is used. However, once again the odds ratio remains at 1.00, suggesting the relationship may be very weak.

Both correlation tables show that the relationships between Number of DNSs and the independent variables of Current account balance and GDP growth are not significant. However, GDP per capita seems to have a slight negative correlation (-0.127, p-value: 0.094, significant at 10% level) with Number of DNSs in the dataset with high-income counties included. It also has a slight positive correlation (0.189, p-value 0.029, significant at 5% level) with the dependent variable when the high-income countries are excluded. These results reinforce the prior suggestion that DNS participants are more likely to fall within a middle range of developmental stages.

The suggestion that DNS participants tend to fall within a middle range of development can be further supported by examining the logit regression that uses GDP per capita and (GDP per capita)² as independent variables. The variable GDP per capita (constant 2000 US\$) was divided by 1,000 (prior to squaring the term) so that the resulting coefficients would display more significant digits. The results from Minitab are shown below:

Response Information Variable Value Count DNS? 1 36 (Event) 0 138 Total 174 Logistic Regression Table Odds 95% CI Predictor Coef SE Coef Z P Ratio Lower Upper -1.66846 0.378619 Constant -4.41 0.000 GDP per cap/1000 0.560332 0.265729 2.11 0.035 1.75 1.04 2.95 GDP p.c.^2/1000 -0.0676876 0.0341747 -1.98 0.048 0.93 0.87 1.00 Log-Likelihood = -78.121Test that all slopes are zero: G = 21.173, DF = 2, P-Value = 0.000

The GDP per capita variable shows a positive coefficient, while (GDP per capita)² is estimated to have a negative coefficient. Intuitively, from a GDP per capita value of 0 up until a maximum point, the positive effect of the GDP per capita term would outweigh the effect of the (GDP per capita)² term. Therefore, up until this maximum point, as GDP per capita increases so does the probability of DNS participation. After this maximum point, the (GDP per capita)² term would have a greater effect on θ . Since the (GDP per capita)² term shows a negative coefficient, an increase in GDP per capita after the maximum point would cause a decrease in the probability of DNS participation.

Using the following equation that is found on page 23:

$$\log (\theta/1 - \theta) = a + bX + cX^2,$$

and the derivative of this equation, the value of X that maximizes the value of the left-hand side, the odds-ratio, and θ can be calculated. Using the results from the regression, (b = 0.560332 and c = -0.0676876), the maximum value of X can be calculated to be roughly 4.1. Multiplying this by 1,000 to eliminate the scaling effect, the odds-ratio and θ are maximized when GDP per capita is around \$4,100. This corresponds with an upper middle-income level. This is consistent with the conclusion that DNS participation is more likely to occur with countries that fall within a middle range of development.

GDP per capita might show results similar to that of Developmental Stage and Overall Score because these variables are rather highly correlated. On the other hand, the variables of Current account balance and GDP growth can be volatile and are not always correlated with developmental stage. Therefore, their relationships with the dependent variables are not as strong.

Debtor countries possess a certain number of threatened species that make them likely candidates.

The independent variable of Number of Threatened Species shows a statistically significant positive relationship with DNS participation for both binary logistic regression models. It has a statistically significant positive correlation with Number of DNSs in both cases (with high-income counties and without) as well. The results for this variable are summarized in the following table for convenience:

Results for Independent Variable: Number of Threatened Species							
	Binary Logistic Regression						
Dataset	Coefficient	P	-value	Odds Ratio			
With High-Income	0.0024615		0.001	1.00			
Without High-Income	0.0024120		0.005	1.00			
	Correlation with Numb	er of DNSs					
Dataset	Coefficient			P-value			
With High-Income		0.388		0.000			
Without High-Income		0.404		0.000			

These results suggest that the greater the Number of Threatened Species found in a specific country, the more likely the country is to participate in a DNS. Although the positive relationship does not seem to be the strongest of relationships, this independent variable has a statistically significant impact on DNS participation in general.

However, the odds ratios given do not explain much about the marginal effect that one more threatened species has on the probability of DNS participation. This is probably due to the scale of the independent variable; one more species would probably not make a difference. However, when the number of threatened species is divided by 100, the odds ratios become 1.28 and 1.27 (with high-income and without high-income, respectively). Therefore, for every 100 threatened species, a country becomes 28% or 27% more likely to be involved in a DNS.

The fact that Number of Threatened Species has a positive relationship with DNS participation in general should not be a surprise given the fact that many DNSs involve third parties such as the WWF and The Nature Conservancy. These organizations strive, and it is their main purpose, to preserve biodiversity and protect threatened and endangered animals.

Debtor countries possess certain environmental factors and land characteristics that make them more likely to be DNS participants.

The variables used to test this hypothesis include: Agricultural land (% of land area), Agricultural land (sq. km), Arable land (% of land area), Arable land (thousand hectares), Forest area (% of land area), Forest area (sq. km), CO2 emissions (kg per PPP\$ of GDP), CO2

emissions (kt), CO2 emissions (metric tons per capita), Urban population (% of total), and Urban population growth (annual %).

In the binary logistic regressions, very few of these variables show statistically significant results; and most odds ratios remain at or close to 1.00. Therefore, for these variables the null hypotheses of the coefficients being 0 (no relationship between the independent and dependent variable) cannot be rejected.

There are a few exceptions, however. In the binary logistic regression including the high-income countries, Agricultural land (% of land area) shows a positive coefficient (0.0144741) that is significant at the more lenient 10% level. The magnitude of this relationship, however, is limited as the odds ratio is only 1.01.

Another variable that shows a statistically significant relationship is CO2 emissions (metric tons per capita). This variable shows a negative coefficient (-.0.2209290), with statistical significance at the 5% level. The odds ratio also indicates that the negative relationship is quite substantial; for every one-unit increase in the independent variable there is a 20% decrease in the probability of success.

These results are probably linked to the fact that less developed countries have more agricultural economies, while developed countries are more industrialized and emit more CO2 emissions. It is interesting to note that the relative amount of agricultural land explains the data better than does the absolute amount of agricultural land. CO2 emissions (metric tons per capita) probably

explains the data better because it standardizes the amount of CO2 emissions based on a physical attribute (population), while the other CO2 emissions variables do not.

The binary logistic regression that excludes the data from high-income countries shows contrasting results. In this set of regressions, the Urban population (% of total) variable is the only variable that shows a statistically significant relationship with DNS participation. It has a positive coefficient (0.0330277) that is significant at the 0.1% level. The odds ratio (1.03) shows that it is a very slight positive relationship, however. Similar to the results for the Developmental Stage and Overall Score variables, these results suggest that DNS participation is more likely for a low-to-middle-income country that has a higher percentage of urban population. Developing countries with larger urban populations are probably facing more urgent environmental issues than those with smaller urban populations, making them more likely candidates for DNSs. Once again, this seems to support the notion that DNS participants fall in a middle range of development.

The correlation tables show that these independent variables have parallel, yet weaker, relationships with the Number of DNSs response variable. When the high-income countries are included, the CO2 emissions (metric tons per capita) variable has a slight negative correlation coefficient (-.0131, p-value: 0.074) that is significant at the 10% level. This is expected as most industrialized countries are high-income countries that do not participate as the debtor in DNSs. When high-income countries are excluded, the Urban population (% of total) variable once again shows a positive relationship (correlation: 0.216, p-value: 0.010) with the response variable, further supporting the aforementioned theory.

Debtor countries possess a specific amount of external debt that allows them to be considered for DNSs.

Both binary logistic regression sets (with and without high-income countries) show that the null hypothesis of the coefficient being 0 cannot be rejected for External debt, total (DOD, current US\$) or External debt, total (% of GNI). This suggests that the amount of debt that a country holds has little or no significant impact on the probability of DNS participation. This might suggest that the motivation for DNSs is more focused on the environmental preservation aspect as opposed to the debt forgiveness aspect.

Both correlation tables, however, show that the amount of External debt, total (DOD, current US\$) has a slight positive correlation with the Number of DNSs response variable, significant at the 10% level (0.153, p-value: 0.077; 0.159, p-value 0.071 for with and without high-income countries, respectively). Therefore, it seems that a country will participate in more DNSs as the country's debt burden increases.

There are specific country and institutional policy aspects that make a debtor country a likely participant.

As mentioned above in the hypotheses section, independent variables used to explain this hypothesis include CPIA ratings for debt policy; policy and institutions for environmental sustainability; property rights and rule-based governance; and transparency, accountability, and corruption in the public sector. Nationally protected areas (both as a % of total land area and sq. km) and Public spending on education (% of GDP) are also used as independent variables.

Goon 40

Although all of the CPIA ratings show positive coefficients and substantial odds ratios for each of the logistic regression sets, these coefficients and odds ratios are not statistically significant. Therefore, we cannot reject the null hypothesis for these variables. Public spending on education also does not seem to have a conclusive impact on the likelihood of DNS participation.

The variable Nationally protected areas (% of total land area) has a statistically significant positive coefficient in both logistic regression sets (0.0312686, p-value: 0.018; 0.0463915, p-value: 0.008 when high-income countries are included and excluded, respectively). However, the odds ratios (1.03 and 1.05) show that the positive relationships are slight in nature. This result suggests that the relative amount of protected areas in a country has a slight positive impact on the likelihood that the country is a DNS participant. The absolute area of protected areas, however, does not seem to have the same relationship.

The correlation tables show that the CPIA policy and institutions for environmental stability rating has a positive correlation coefficient with the Number of DNSs. In both cases, the correlation coefficient is 0.236 with a p-value of 0.041. These results suggest that countries with better environmental stability programs and policies would probably participate in more DNSs. To ensure the success of DNSs and to facilitate the purposes of DNSs, a debtor country should have good policies in place to ensure the maintenance of conservation programs created by the DNSs. Perhaps creditor countries intentionally choose debtor countries based on their environmental policies, choosing countries that would uphold their contractual agreements of a DNS.

Debtor countries with well-established financial relationships with creditor countries are more likely to be involved in DNSs.

When analyzing the logit regression results for the independent variables of Foreign direct investment, net inflows (BoP, current US\$) and Foreign direct investment, net inflows (% of GDP), neither has a statistically significant impact on the probability of DNS participation across the board. This may be a result of the global nature of today's economy. If the majority of countries are interacting with each other financially (i.e. in the form of foreign direct investing), then a relationship between the independent and dependent variables might not exist.

An interesting observation can be made, however, when looking at the correlation between Foreign direct investment, net inflows (BoP, current US\$ millions), and the Number of DNSs. In the dataset that includes high-income countries, the correlation is not statistically significant. However, when the high-income countries are excluded, the independent variable shows a positive correlation coefficient of 0.190 with a p-value of 0.032. Therefore, among the low-tomiddle-income countries, the higher the absolute amount of FDI inflows into a country, the more DNSs the country participates in. This result supports the hypothesis that was posed.

Debtor countries often possess large tourism industries.

In general, the independent variables utilized to test this hypothesis (International tourism based on number of arrivals and receipts (% of exports and total)) do not explain the response variable of DNS participation. There is one case, however, where one of these variables shows a statistically significant correlation with Number of DNSs. When high-income countries are excluded from the dataset, International tourism, number of arrivals shows a correlation coefficient of 0.179 with a p-value of 0.045. This seems to suggest that among the developing countries, countries have more international arrivals as DNS participation occurs more often. Perhaps this is a result of the increase in ecotourism in the last decade or so.

The multivariable regressions formulated in this paper are summarized in the following table for convenience.

Multivariable Regressions						
High-Income Co	untries Included					
Binary Logistic Regression (Response Va	riable: DNS Participation (1=yes, 0=no))				
Variable Coefficient P-value Odds Ratio						
Number of Threatened Species,	0.0027187	0.004	1.00			
CO2 Emissions (metric tons per capita),	- 0.4923250	0.000	0.61			
Urban Population (% of total)	0.0519157	0.000	1.05			
Number of Threatened Species,	0.0024270	0.010	1.00			
GDP per capita (constant 2000 US\$),	- 0.0002499	0.004	1.00			
Urban Population (% of total)	0.0479383	0.000	1.05			
Number of Threatened Species,	0.0025274	0.010	1.00			
CO2 Emissions (metric tons per capita),	- 0.5109290	0.010	0.47			
Urban Population (% of total),	0.0534630	0.000	1.03			
Nationally protected areas (% of total land area)	0.0344202	0.065	1.00			
Ordinary Least Squares Regression (I	Response Variable: Number	r of DNSs)				
Variable	Coefficient	P-value	R-squared			
	0.00(2400	0.000				
Number of Threatened Species CPIA policy and institutions for environmental sustainability rating	0.0063480 0.7477000	$0.000 \\ 0.023$				
International tourism, receipts (current US\$ millions)	- 0.0006915	0.025	31.6			
High-Income Cou	intries Evoluded					
Binary Logistic Regression (Response Va		1-vos ()-vo)				
Variable	Coefficient	P-value	Odds Ratio			
variable	Coefficient	r-value				
Number of Threatened Species,	0.0022264	0.019	1.00			
CO2 Emissions (metric tons per capita),	- 0.3075270	0.015	0.74			
Urban Population (% of total)	0.0526475	0.000	1.05			
Number of Threatened Species,	0.0019600	0.046	1.00			
CO2 Emissions (metric tons per capita),	- 0.2971400	0.030	0.74			
Urban Population (% of total),	0.0541716	0.000	1.06			
Nationally protected areas (% of total land area)	0.0371407	0.074	1.04			
Ordinary Least Squares Regression (I	Response Variable: Number	r of DNSs)				
Variable	Coefficient	P-value	R-squared			
	0.00.1200	0.000				
Number of Threatened Species, CPIA policy and institutions for environmental sustainability rating	0.004399	0.000	22.0			
UPIA DOUCY and institutions for environmental sustainability rating	0.544600	0.069	23.8			

One thing to be noted when analyzing these regressions is that the Number of Threatened Species is included in every one of these statistically significant multivariable regressions. This suggests that the Number of Threatened Species plays an important role (it has a positive impact) in determining the probability that a country is a DNS participant and in estimating the number of DNSs in which a country participates.

In the binary logit regressions, the Number of Threatened Species, GDP per capita, and CO2 emissions per capita have statistically significant coefficients at the 5% level. The relationships that these independent variables have to the response variable are very similar to the results discussed above when these variables are regressed individually. It should be noted, however, that GDP per capita and CO2 emissions per capita are highly correlated, which suggests that the first two multivariable regressions displayed are explaining similar phenomenon.

More interesting is the inclusion of the variable Urban population (% of total). This variable did not have any statistical significance when examined alone. However, it does seem to have a statistically significant positive coefficient in the multivariable regression results. This suggests that, when coupled with Number of Threatened Species and CO2 emissions per capita or GDP per capita, relative urban population has a positive effect on the probability of DNS participation. When the more lenient significance level of 10% is used, Nationally protected areas (% of total) also shows a positive impact in the multivariable regression.

When using the ordinary least squares model (and a more lenient significance level of 10%), the variables of Number of Threatened Species and CPIA policy and institutions for environmental

sustainability rating have positive coefficients both when high-income countries are included and when they are excluded. When high-income countries are included, the multivariable regression also displays a negative coefficient for International Tourism, receipts (current US\$ millions). This fact seems to be counterintuitive to the hypothesis that DNS participants possess large tourism industries. In addition, this variable does not show significance when the dataset excluding high-income countries is used. One explanation for this may be that the high-income countries are skewing the results. High-income countries, in general, do not participate in DNSs as the debtor country. Therefore, high-income countries with large tourism industries would be classified with the response variable of 0; this may cause the variable to have a negative coefficient.

Conclusion

In analyzing the variables that affect the probability of DNS participation and the number of DNSs in which a country participates, the motivation of environmental preservation seems to outshine that of eliminating debt burdens. Across the board, the independent variable of Number of Threatened Species in a country seems to have a positive impact on DNS participation; the more threatened species that a country possesses the more likely and the more repeated is the country's DNS participation. Countries with more nationally protected areas are also more likely to participate in DNSs. In addition, there seems to be a positive relationship between the superiority of a country's environmental policies and the number of DNSs in which the country has participated. In other words, creditor countries that exhibit the environmental need and have the policies to maintain the DNS agreements.

Goon 45

The debt burden of a country does not seem to have an effect on the likelihood of a country's participation in a DNS. However, for those countries that do participate, it seems that repeat participants are those with larger debt burdens. The results also suggest that repeat participation occurs more when countries have had prior relationships with creditor countries.

It can also be concluded that debtor countries fall within a middle-range of development. When high-income countries are included, results show that developmental stage and economic prosperity indicators have a negative impact on DNS participation. However, when the high-income countries are excluded, the same independent variables show positive correlations and coefficients. Therefore, it can be deduced that DNS participants tend to fall within a middle range of development. Variables used to test whether or not land characteristics and environmental factors have an impact on DNS participation also seem to be connected to this result.

At a time when the negative effects of environmental degradation are becoming more apparent, DNSs should be used more frequently to combat and maybe even reverse the problematic status of the environment. Although these conclusions are based upon past data and past DNS participation, they can be utilized to identify potential DNS participants for the future. Repeat participants and successful swaps should be utilized as case studies and guides to ensure the survival and maintenance of biodiversity, pristine lands, and the overall health of Earth.

References

- "Costa Rica gets \$26M debt-for-nature swap." *Mongabay.com*. 18 October 2007, 10 November 2008. http://news.mongabay.com/2007/1017-costa_rica.html.
- "Debt-for-Nature Swap Protects Forest in Cameroon." *Mongabay.com.* 22 June 2006. 10 November 2008. http://news.mongabay.com/2006/0622-wwf2.html.
- Garvie, Devon A. "When are Debt for Nature Swaps Welfare-Improving?" *International Review* of *Economics and Business*, 2002, 49(2), 165-173. 2 November 2008. < http://www.econ .queensu.ca/faculty/garvie/mini/garviedfns.pdf>.
- Hobbs, Bradley K. "Debt-for-Nature Swaps: The Case for Property Rights." Laissez-Faire. No. 22-23. Universidad Francisco Marroquín . 2005. 2 November 2008. < http://fce.ufm. edu/publicaciones/laissezfaire/22-23/LF-22.8_(Hobbs).pdf>.
- "Jamaica Conserves Forests With Debt-for-Nature Pacts." *Environment News Service*. 12 October 2004. 10 November 2008. http://www.ens-newswire.com/ens/oct2004/2004-10-12-04.asp.
- "Logistic Regression." San Francisco State University. 26 September 2002. 10 April 2009. http://userwww.sfsu.edu/~efc/classes/biol710/logistic/logis
- Michael E. Porter, Klaus Schwab, Jennifer Blanke, et al. (2008). "The Competitiveness Report 2008-2009". *World Economic Forum, Geneva, Switzerland*. 4 November 2008. < http://www.weforum.org/documents/GCR0809/index.html>.
- "Monumental Debt-for-Nature Swap Provides \$20 Million to Protect Biodiversity in Madagascar." *ScienceDaily*. 14 June 2008. 10 November 2008. http://www.sciencedaily.com/releases/2008/06/080612170515.htm.
- Paniagua, Aberto, V. "Bilateral Debt-for-Nature Swaps: The PRORONANPE Experience Peru." 5th World Parks Congress: Sustainable Finance Stream. Durban, South Africa. September 2003. 10 November 2008. http://conservationfinance.net/Workshops_Conferences/WPC/WPC_documents/Apps_11_Paniagua_v2.pdf>.
- Resor, James P. "Debt-for-nature swaps: a decade of experience and new directions for the future." Unasylva - No. 188 - Funding Sustainable Forestry. Food and Agriculture Organization of the United Nations Corporate Document Repository. 2 November 2008. http://www.fao.org/docrep/w3247e/w3247e06.htm>.
- Rosen, Sydney, Simon, Jonathon L., Thea, Donald and Zeitz, Paul. "Exchanging Debt for Health in Africa: Lessons from Ten Years of Debt-for-Development Swaps." Working Paper No. 732. *Harvard Institute for International Development*. 1999.

- Scheer, Roddy. "Guatemala and U.S. Enter Into Historic Debt-for-Nature Swap." *Emagazine*. 11 October 2006. 10 November 2008. http://www.emagazine.com/view/?3389>.
- Thapa, Brijesh. "The Relationship Between Debt-for-Nature Swaps and Protected Area Tourism: A Plausible Strategy for Developing Countries." USDA Forest Service Proceedings. RMRS-P-0. 2000. 2 November 2008 < www.fs.fed.us/rm/pubs /rmrs_p015_2/rmrs_ p015_2_268_ 272 .pdf>.
- "U.S., Columbia Reach Debt-for-Nature Agreement: Colombia will protect several important tropical forest areas." Bureau of International Information Programs, U.S. Department of State. 23 Arpil 2004. 10 November 2008. http://www.america.gov/st/washfileenglish/2004/April/20040423161948GLnesnoM0.8814813.html>.
- West, Larry "Tropical Rainforests: Natures Medicine Cabinet: Preserving Rainforests May Be a Matter of Life and Death for Future Generations" *About.com: Environmental Issues*. 2 November 2008. < http://environment.about.com/od/healthenvironment/a/rainforest_ drug.htm>.

Country	Date	Purchaser	Face Value of Debt	Purchase Price	Conservation Funds
Bolivia	Jul-87	CI	650,000	100,000	250,000
Bolivia	May-93	TNC, WWF	11,465,795	0	2,816,400
Bolivia Total			12,115,795	100000	3,066,400
Brazil	Jun-92	TNC	2,192,000	746,000	2,192,000
Brazil Total			2,192,000	746,000	2,192,000
Columbia	Apr-04	TNC,CI,WWF	10,000,000	8,400,000	10,000,000
Columbia Total			10,000,000	8,400,000	10,000,000
Costa Rica	Feb-88	National Parks Foundation	5,400,000	918,000	4,050,000
Costa Rica	Jul-88	Netherlands	33,000,000	5,000,000	9,900,000
Costa Rica	Jan-89	TNC	5,600,000	784,000	1,680,000
Costa Rica	Apr-89	Sweden	24,500,000	3,500,000	17,150,000
Costa Rica	Mar-90	Sweden, TNC, WWF	10,800,000	1,900,000	9,600,000
Costa Rica	Oct-07	USA, Nature Conservancy, Conservation International	26,000,000	15,120,000	26,000,000
Costa Rica	Feb-91	TNC/Rainforest Alliance	600,000	360,000	540,000
Costa Rica Total			105,900,000	27,582,000	68,920,000
Dominican Republic	Mar-90	TNC, PRCT	582,000	116,000	582,000
Dom. Rep. Total			582,000	116,000	582,000
Ecuador	Dec-87	WWF	1,000,000	354,000	1,000,000
Ecuador	Mar-89	TNC, Missouri Botanical Garden	3,600,000	424,080	3,600,000
Ecuador	Apr-89	WWF	5,389,473	640,000	5,389,473
Ecuador Total			9,989,473	1,418,080	9,989,473
Ghana	Jul-92	CI, SI, MUCIA, ICMS	1,000,000	250,000	1,000,000
Ghana	Jun-00	CI	120,000	104,000	120,000
Ghana Total	0 01		1,120,000	354,000	1,120,000
Guatemala	Oct-91	TNC	100,000	75,000	90,000
Guatemala	May-92	CI	1,300,000	1,200,000	1,300,000
Guatemala	Oct-06	TNC, CI	24,400,000	17,000,000	24,400,000
Guatemala Total			25,800,000	18,275,000	25,790,000
Jamaica	Oct-91	TNC, PRCT	437,956	300,000	437,956
Jamaica	Oct-04	TNC, USA	16,000,000	7,800,000	16,000,000
Jamaica Total			437,956	300,000	437,956
Madagascar	Jul-89	WWF	2,111,112	950,000	2,111,112
Madagascar	Aug-90	WWF	919,364	445,891	919,364
Madagascar	Jan-91	CI	119,000	59,000	119,000
Madagascar	Mar-93	Missouri Botanical Garden	725,000	362,500	725,000
Madagascar	Oct-93	CI	3,200,000	1,500,000	3,200,000
Madagascar	Oct-93	WWF	1,867,500	909,412	1,867,500
Madagascar	Apr-94	WWF	1,340,469	0	1,072,376
Madagascar	May-94	CI	200,000	50,000	160,000

APPENDIX A: Table of Commercial Swaps

Country	Date	Purchaser	Face Value of Debt	Purchase Price	Conservation Funds
Madagascar	Feb-96	WWF	2,000,000	N/A	1,500,000
Madagascar Total			12,482,445	4276803	11,674,352
Mexico	Apr-91	CI	250,000	183,000	250,000
Mexico	Aug-91	CI	250,000	0	250,000
Mexico	Jan-92	CI	441,000	355,000	441,000
Mexico	Jun-93	CI	252,000	208,000	252,000
Mexico	Jun-94	CI	280,000	236,000	280,000
Mexico	Jun-94	CI	480,000	399,390	480,000
Mexico	Nov-94	CI	290,000	248,395	290,000
Mexico	Dec-95	CI	488,000	246,000	336,500
Mexico	Jan-96	CI	391,000	191,607	254,000
Mexico	Jul-96	CI	495,674	327,393	442,622
Mexico	Nov-96	CI	670,889	440,360	560,752
Mexico	May-97	CI	265,714	186,000	243,494
Mexico	Jul-97	CI	310,000	237,661	299,499
Mexico	Jun-98	CI	311,000	249,000	311,000
Mexico Total			5,175,277	3,507,806	4,690,867
Nigeria	Jul-91	Nigerian Conservation Foundation	149,000	65,000	93,000
Nigeria Total			149,000	65,000	93,000
Panama	Sep-04	TNC, USA	11,000,000	7,800,000	11,000,000
Panama	Jul-04	TNC, USA	10,000,000	6,800,000	10,000,000
Panama Total			21,000,000	14,600,000	21,000,000
Paraguay	1991	TNC	9,000,000	2,000,000	5,000,000
Paraguay Total			9,000,000	2,000,000	5,000,000
Philippines	Jun-88	WWF	390,000	195,975	390,000
Philippines	Mar-90	WWF	900,000	438,750	900,000
Philippines	Feb-92	WWF	9,646,606	5,000,000	8,815,946
Philippines	Aug-93	WWF	19,000,000	12,973,854	17,100,000
Philippines Total			29,936,606	18,608,579	27,205,946
Poland	Jan-90	WWF	50,000	11,500	50,000
Poland Total			50,000	11,500	50,000
Zambia	Aug-89	WWF	2,271,112	454,222	2,044,001
Zambia	Jul-94	IUCN	985,986	108,458	162,687
Zambia Total			3,257,098	562,680	2,206,688
Grand Total			265,187,650	108,723,448	210,018,682

Conservation Funds is the amount of money generated to support conservation programs as a result of the swap, usually paid in the form of local currency or local currency bonds. In a few cases, non-monetary commitments (e.g., increased protection for natural areas) were made by debtor governments.

CI = Conservation International
IUCN = World Conservation Union
MUCIA = Midwest Universities Consortium for International Activities, Inc.
PRCT = Puerto Rico Conservation Trust
SI = Smithsonian Institution
TNC = The Nature Conservancy
WWF = World Wildlife Fund/World Wide Fund for Nature

APPENDIX B: Table of Bilateral Swaps

Creditor Co	ountry	Date	Face Value Debt Treated	Environmental Funds Paid
Canada Co	olombia	1993	12800000	12800000
Canada Co	osta Rica	1995	16600000	8300000
Canada El	Salvador	1993	7100000	7100000
Canada Ho	onduras	1993	24900000	12450000
Canada Ni	caragua	1993	13600000	2700000
Canada Pe	ru	1994	16210000	354919
Canada Total			91210000	43704919
Finland Po	land	1990	17000000	17000000
Finland Pe	ru	1996	24620000	3679020
Finland Total			41620000	20679020
France Po	land	1993	66000000	66000000
France Ma	adagascar	2008	20000000	20000000
	imeroon	2006	25000000	25000000
France Total			111000000	111000000
	livia	1997	3700000	1150000
e e	livia	2000	15800000	3200000
•	uador	2002	9500000	3081400
•	uador	2002	10200000	3235770
e	onduras	1999	1068442	534221
-	rdan	1995	13400000	6700000
J	rdan	1995	22700000	11300000
-	rdan	2000	43600000	21800000
-	rdan	2001	11300000	5700000
e e	adagascar	2002	25092262	14843007
Germany Pe	-	1995	20150000	6089810
Germany Pe		1999	5140000	2060000
Germany Pe		1999	5140000	2060000
Germany Pe		2003	25000000	7500000
e	ilippines	1996	5800000	1800000
•	rian Arab Republic	2001	31700000	15900000
	etnam	1996	18200000	5400000
e	etnam	1999	16400000	5000000
e e	etnam	2001	7000000	500000
Germany Total	culam	2001	290890704	117354208
•	land	1998	32000000	32000000
Italy Total	lanu	1998	32000000	32000000
•	osta Rica	1996	14100000	14100000
Netherlands Total		1990	14100000	14100000
	land	2000	27000000	2700000
	land	2000	27000000	27000000 27000000
Norway Total	osta Diga	1999		
-	osta Rica	1999	5222302	2180594
Spain Total	land	1007 1000	5222302	2180594
	land 	1997, 1999	13000000	13000000
	inisia	1992	1342000	1342000
Sweden Tu	inisia	1993	477300	477300

Goon	51

Creditor	Country	Date	Face Value Debt Treated	Environmental Funds Paid
Sweden Total			14819300	14819300
Switzerland	Bolivia	1993	35400000	1365000
Switzerland	Bulgaria	1995	16200000	16200000
Switzerland	Ecuador	1994	46300000	4524000
Switzerland	Egypt, Arab Rep.	1995	121000000	18000000
Switzerland	Guinea-Bissau	1995	8400000	400000
Switzerland	Honduras	1993, 1997	42030000	8430000
Switzerland	Peru	1993	131000000	32700000
Switzerland	Poland	1993	63000000	63000000
Switzerland	Tanzania	1993	25600000	190000
Switzerland Tot	al		488930000	144809000
USA	Argentina	1993	38100000	3100000
USA	Bangladesh	2000	31301857	8500000
USA	Belize	2001	8584692	9289560
USA	Bolivia	1991	38400000	21800000
USA	Botswana	2006	8300000	7000000
USA	Chile	1991	39000000	1400000
USA	Chile	1992	147000000	17300000
USA	Colombia	1992	310000000	41600000
USA	El Salvador	1992	335000000	25600000
USA	El Salvador	1992	279000000	15600000
USA	El Salvador	2001	38400000	14000000
USA	Jamaica	1991	271000000	9200000
USA	Jamaica	1993	134400000	12300000
USA	Peru	1997	35000000	22844235
USA	Peru	2002	28315096	10604003
USA	Philippines	2002	41380000	8224143
USA	Poland	1991	370000000	370000000
USA	Uruguay	1992	1000000	93400
USA	Uruguay	1992	33400000	6100000
USA Total			2502581645	604555341
Grand Total			3619373951	1132202382

APPENDIX C: Binary Logistic Regression Models (with High-Income Countries)

Binary Logistic Regression: DNS? versus Developmental Stage

```
Link Function: Logit
Response Information
Variable Value Count
DNS?
        1 34
                    (Event)
        0
                101
        Total
              135
* NOTE * 135 cases were used
* NOTE * 75 cases contained missing values
Logistic Regression Table
                                                Odds
                                                        95% CI
                    Coef SE Coef Z P Ratio Lower Upper
Predictor
          0.581829 0.523691 1.11 0.267
Constant
Developmental Stage -0.940433 0.293425 -3.21 0.001 0.39 0.22 0.69
Log-Likelihood = -70.275
```

Test that all slopes are zero: G = 11.827, DF = 1, P-Value = 0.001

Binary Logistic Regression: DNS? versus Overall Score for Global Competitiveness

Link Function: Logit

Response Information

Variable Value Count DNS? 1 34 (Event) 0 100 Total 134

* NOTE * 134 cases were used * NOTE * 76 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 2.74127
 1.39254
 1.97
 0.049
 Uverall Score
 -0.932557
 0.344171
 -2.71
 0.007
 0.39
 0.20
 0.77

Log-Likelihood = -71.704Test that all slopes are zero: G = 8.386, DF = 1, P-Value = 0.004

Binary Logistic Regression: DNS? versus Current account balance (BoP, current US\$ millions)

Link Function: Logit

Response Information Variable Value Count DNS? 1 36 (Event) 0 125 Total 161 * NOTE * 161 cases were used * NOTE * 49 cases contained missing values

Logistic Regression Table

0dds Predictor Coef SE Coef Ζ Ρ Ratio -1.24475 0.189151 -6.58 0.000 Constant Current account balance (BoP, c 0.0000002 0.0000035 0.07 0.947 1.00 95% CI Predictor Lower Upper Constant Current account balance (BoP, c 1.00 1.00 Log-Likelihood = -85.558Test that all slopes are zero: G = 0.004, DF = 1, P-Value = 0.947 Binary Logistic Regression: DNS? versus GDP growth (annual %) Link Function: Logit Response Information Variable Value Count 36 DNS? 1 (Event) 0 139 Total 175 * NOTE * 175 cases were used * NOTE * 35 cases contained missing values Logistic Regression Table Odds 95% CI SE Coef Z P Ratio Lower Upper Predictor Coef 0.319666 -4.20 0.000 Constant -1.34409 GDP growth (annual %) -0.0011993 0.0453067 -0.03 0.979 1.00 0.91 1.09 Log-Likelihood = -88.939Test that all slopes are zero: G = 0.001, DF = 1, P-Value = 0.979 Binary Logistic Regression: DNS? versus GDP per capita (constant 2000 US\$) Response Information Variable Value Count 1 DNS? (Event) 36 0 138 174 Total * NOTE * 174 cases were used * NOTE * 36 cases contained missing values Logistic Regression Table Odds Predictor Coef SE Coef Z Ρ Ratio
 Constant
 -0.895179
 0.227425
 -3.94
 0.000

 GDP per capita (constant 2000 U
 -0.0001032
 0.0000436
 -2.37
 0.018
 1.00 95% CI Predictor Lower Upper Constant GDP per capita (constant 2000 U 1.00 1.00 Log-Likelihood = -83.047Test that all slopes are zero: G = 11.323, DF = 1, P-Value = 0.001

Binary Logistic Regression: DNS? versus Number of Threatened Species

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 164 Total 200

* NOTE * 200 cases were used * NOTE * 10 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-1.97417	0.242014	-8.16	0.000		
Number of Threatened Species	0.0024615	0.0007505	3.28	0.001	1.00	1.00

Predictor Upper Constant Number of Threatened Species 1.00

Log-Likelihood = -87.675Test that all slopes are zero: G = 13.208, DF = 1, P-Value = 0.000

Binary Logistic Regression: DNS? versus Number of Threatened species (hundreds)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 164 Total 200

* NOTE * 200 cases were used * NOTE * 10 cases contained missing values

Logistic Regression Table

					Odds	95%	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper	
Constant	-1.97417	0.242017	-8.16	0.000				
Threaten species	0.246148	0.0750533	3.28	0.001	1.28	1.10	1.48	

Log-Likelihood = -87.675Test that all slopes are zero: G = 13.208, DF = 1, P-Value = 0.000

Binary Logistic Regression: DNS? versus External debt, total (DOD, current US\$ millions)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 98 Total 134

```
* NOTE * 134 cases were used
* NOTE * 76 cases contained missing values
```

Logistic Regression Table

Odds 95% CI Z P Ratio Lower Upper Predictor SE Coef Coef -1.07382 0.215440 -4.98 0.000 Constant Ex. debt (tot.) 0.0000030 0.0000036 0.84 0.400 1.00 1.00 1.00 Log-Likelihood = -77.637Test that all slopes are zero: G = 0.680, DF = 1, P-Value = 0.410 Binary Logistic Regression: DNS? versus External debt, total (% of GNI) Link Function: Logit Response Information Variable Value Count 1 DNS? 36 (Event) 0 96 Total 132 * NOTE * 132 cases were used * NOTE * 78 cases contained missing values Logistic Regression Table Odds Predictor Coef SE Coef Z P Ratio
 Constant
 -0.745973
 0.317829
 -2.35
 0.019

 External debt, total (% of GNI)
 -0.0038508
 0.0043242
 -0.89
 0.373
 1.00 95% CI Predictor Lower Upper Constant External debt, total (% of GNI) 0.99 1.00 Log-Likelihood = -76.833Test that all slopes are zero: G = 1.025, DF = 1, P-Value = 0.311 Binary Logistic Regression: DNS? versus CPIA debt policy rating Link Function: Logit Response Information Variable Value Count DNS? 1 12 (Event) 0 63 Total 75 * NOTE * 75 cases were used * NOTE * 135 cases contained missing values Logistic Regression Table 95% 0dds CT P Ratio Lower Predictor Coef SE Coef Z 1.39284 -2.44 0.015 0.359721 1.34 0.182 -3.40393 Constant

Predictor

Upper

1.62

0.80

CPIA debt policy rating (1=low 0.480542 0.359721

```
Constant
CPIA debt policy rating (1=low 3.27
```

Log-Likelihood = -32.008Test that all slopes are zero: G = 1.934, DF = 1, P-Value = 0.164

Binary Logistic Regression: DNS? versus CPIA policy and institutions for environmental sustainability rating

Link Function: Logit

Response Information

Variable	Value	Count	
DNS?	1	12	(Event)
	0	63	
	Total	75	

* NOTE * 75 cases were used

* NOTE * 135 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-4.26996	2.02615	-2.11	0.035		
CPIA policy and institutions fo	0.822387	0.614957	1.34	0.181	2.28	0.68

Predictor Upper Constant CPIA policy and institutions fo 7.60

Log-Likelihood = -32.021Test that all slopes are zero: G = 1.909, DF = 1, P-Value = 0.167

Binary Logistic Regression: DNS? versus CPIA property rights and rule-based governance rating

Link Function: Logit

Response Information

Variable	Value	Count	
DNS?	1	12	(Event)
	0	63	
	Total	75	

* NOTE * 75 cases were used * NOTE * 135 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-2.86016	1.54653	-1.85	0.064		
CPIA property rights and rule-b	0.406220	0.501895	0.81	0.418	1.50	0.56

Predictor Upper Constant CPIA property rights and rule-b 4.01 Log-Likelihood = -32.635Test that all slopes are zero: G = 0.680, DF = 1, P-Value = 0.410

Binary Logistic Regression: DNS? versus CPIA transparency, accountability, and corruption in the public sector rating

Link Function: Logit

Response Information

Variable Value Count DNS? 1 12 (Event) 0 63 Total 75

* NOTE * 75 cases were used * NOTE * 135 cases contained missing values

Logistic Regression Table

						95%	
					Odds	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	
Constant	-3.58371	1.50599	-2.38	0.017			
CPIA transparency, accountabili	0.646443	0.479003	1.35	0.177	1.91	0.75	

Predictor Upper Constant CPIA transparency, accountabili 4.88

Log-Likelihood = -32.034Test that all slopes are zero: G = 1.882, DF = 1, P-Value = 0.170

Binary Logistic Regression: DNS? versus Nationally protected areas (% of total land area)

Link Function: Logit

Response Information Variable Value Count DNS? 1 35 (Event) 0 153

* NOTE * 188 cases were used * NOTE * 22 cases contained missing values

188

Logistic Regression Table

Total

 Odds
 Odds

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio

 Constant
 -1.89157
 0.269977
 -7.01
 0.000

 Nationally protected areas (% o
 0.0312686
 0.0131735
 2.37
 0.018
 1.03

 95% CI
 Predictor
 Lower Upper
 Predictor
 Lower Upper

Constant Nationally protected areas (% o 1.01 1.06

Log-Likelihood = -87.598Test that all slopes are zero: G = 5.518, DF = 1, P-Value = 0.019

Binary Logistic Regression: DNS? versus Nationally protected areas (sq. km)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 35 (Event) 0 156 Total 191

* NOTE * 191 cases were used * NOTE * 19 cases contained missing values

Logistic Regression Table

					Odds
Predictor	Coef	SE Coef	Z	P	Ratio
Constant	-1.58095	0.201127	-7.86	0.000	
Nationally protected areas (sq.	0.000009	0.000007	1.37	0.170	1.00
	95% CI				
Predictor	Lower Upp	er			
Constant					
Nationally protected areas (sq.	1.00 1.	00			

Log-Likelihood = -90.110Test that all slopes are zero: G = 1.720, DF = 1, P-Value = 0.190

Binary Logistic Regression: DNS? versus Foreign direct investment, net inflows

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 139 Total 175

* NOTE * 175 cases were used * NOTE * 35 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.29472	0.194616	-6.65	0.000			
FDI, net inflow	-0.0000164	0.0000199	-0.83	0.409	1.00	1.00	1.00

Log-Likelihood = -88.448Test that all slopes are zero: G = 0.982, DF = 1, P-Value = 0.322

Binary Logistic Regression: DNS? versus Foreign direct investment, net inflows (% of GDP)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 132 Total 168

* NOTE * 168 cases were used

* NOTE * 42 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -1.15542
 0.234094
 -4.94
 0.000

 FDI, % GDP
 -0.0343342
 0.0381320
 -0.90
 0.368
 0.97
 0.90
 1.04

Log-Likelihood = -86.568Test that all slopes are zero: G = 1.443, DF = 1, P-Value = 0.230

Binary Logistic Regression: DNS? versus International tourism, number of arrivals (thousands)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 35 (Event) 0 147 Total 182

* NOTE * 182 cases were used * NOTE * 28 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.33621	0.207542	-6.44	0.000			
Tourism, people	-0.0000288	0.000302	-0.95	0.340	1.00	1.00	1.00

Log-Likelihood = -88.489Test that all slopes are zero: G = 1.220, DF = 1, P-Value = 0.269

Binary Logistic Regression: DNS? versus International tourism, receipts (% of total exports)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 122 Total 158

* NOTE * 158 cases were used * NOTE * 52 cases contained missing values

Logistic Regression Table

 Odds
 Odds

 Predictor
 Coef
 SE
 Coef
 Z
 P
 Ratio

 Constant
 -1.00019
 0.256631
 -3.90
 0.000

 International tourism, receipts
 -0.0145188
 0.0123128
 -1.18
 0.238
 0.99

 95% CI
 Predictor
 Lower Upper
 Constant
 International tourism, receipts
 0.96
 1.01

Log-Likelihood = -84.017Test that all slopes are zero: G = 1.551, DF = 1, P-Value = 0.213

Binary Logistic Regression: DNS? versus International tourism, receipts (current US\$ millions)

```
Link Function: Logit
Response Information
Variable Value Count
DNS?
         1
                   36 (Event)
          0
                   145
          Total
                   181
* NOTE * 181 cases were used
* NOTE * 29 cases contained missing values
Logistic Regression Table
                                                         Odds
                                                                  95% CI
                                             Z
Predictor
                                SE Coef
                                                   P Ratio Lower Upper
                        Coef
                    -1.20376 0.209096 -5.76 0.000
Constant
Tourism, Receipts -0.0000728 0.0000502 -1.45 0.147
                                                         1.00
                                                               1.00 1.00
Log-Likelihood = -88.271
Test that all slopes are zero: G = 4.048, DF = 1, P-Value = 0.044
Binary Logistic Regression: DNS? versus Agricultural land (% of land area)
Link Function: Logit
Response Information
Variable Value Count
         1
DNS?
                   36
                        (Event)
          0
                   167
          Total
                  203
* NOTE * 203 cases were used
* NOTE * 7 cases contained missing values
Logistic Regression Table
                                                                      0dds
Predictor
                                      Coef
                                            SE Coef
                                                         Z
                                                                Р
                                                                     Ratio
Constant -2.13872 0.410255 -5.21 0.000
Agricultural land (% of land ar 0.0144741 0.0083149 1.74 0.082
                                                                       1.01
                                    95% CI
Predictor
                                 Lower Upper
Constant
Agricultural land (% of land ar 1.00 1.03
Log-Likelihood = -93.329
Test that all slopes are zero: G = 3.080, DF = 1, P-Value = 0.079
Binary Logistic Regression: DNS? versus Agricultural land (sq. km)
Link Function: Logit
Response Information
Variable Value Count
DNS?
                 36
          1
                        (Event)
          0
                   167
          Total
                   203
* NOTE * 203 cases were used
* NOTE * 7 cases contained missing values
```

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -1.55966
 0.195312
 -7.99
 0.000
 Agric. sq km
 0.0000001
 0.0000002
 0.40
 0.686
 1.00
 1.00
 1.00

Log-Likelihood = -94.793Test that all slopes are zero: G = 0.153, DF = 1, P-Value = 0.696

Binary Logistic Regression: DNS? versus Arable land (% of land area)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 167 Total 203

* NOTE * 203 cases were used * NOTE * 7 cases contained missing values

Logistic Regression Table

						95%	
					Odds	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	
Constant	-1.48217	0.273509	-5.42	0.000			
Arable land (% of land area)	-0.0036731	0.0144271	-0.25	0.799	1.00	0.97	

Predictor Upper Constant Arable land (% of land area) 1.02

Log-Likelihood = -94.836Test that all slopes are zero: G = 0.066, DF = 1, P-Value = 0.798

Binary Logistic Regression: DNS? versus Arable land (thousand hectares)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 167 Total 203

```
* NOTE * 203 cases were used
* NOTE * 7 cases contained missing values
```

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.53067	0.192722	-7.94	0.000			
Arable hect.	-0.000006	0.0000085	-0.06	0.948	1.00	1.00	1.00

Log-Likelihood = -94.867Test that all slopes are zero: G = 0.004, DF = 1, P-Value = 0.948

Binary Logistic Regression: DNS? versus Forest area (% of land area)

95%

CT

0.99

0dds

1.01

95% CT

1.00 1.00

Odds

1.00

P Ratio Lower

Z

```
Link Function: Logit
Response Information
Variable Value Count
DNS?
           1
                     36 (Event)
           0
                     160
           Total
                     196
* NOTE * 196 cases were used
* NOTE * 14 cases contained missing values
Logistic Regression Table
                                              SE Coef
Predictor
                                        Coef

        Constant
        -1.67271
        0.316065
        -5.29
        0.000

        Forest area (% of land area)
        0.0057305
        0.0078787
        0.73
        0.467

Predictor
                                  Upper
Constant
Forest area (% of land area)
                                  1.02
Log-Likelihood = -93.214
Test that all slopes are zero: G = 0.523, DF = 1, P-Value = 0.470
Binary Logistic Regression: DNS? versus Forest area (sq. km)
Link Function: Logit
Response Information
Variable Value Count
DNS?
           1
                      36
                           (Event)
           0
                     160
                   196
           Total
* NOTE * 196 cases were used
* NOTE * 14 cases contained missing values
Logistic Regression Table
Predictor
                     Coef
                              SE Coef
                                            Z
                                                    P Ratio Lower Upper
Constant-1.522690.191382-7.960.000Forest sq km0.00000010.00000020.680.496
Log-Likelihood = -93.266
Test that all slopes are zero: G = 0.421, DF = 1, P-Value = 0.516
Binary Logistic Regression: DNS? versus CO2 emissions (kg per PPP $ of GDP)
Link Function: Logit
Response Information
Variable Value Count
DNS?
                      36
                           (Event)
           1
           0
                      138
                     174
           Total
```

* NOTE * 174 cases were used

* NOTE * 36 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-0.982583	0.323337	-3.04	0.002		
CO2 emissions (kg per PPP \$ of	-0.908470	0.707845	-1.28	0.199	0.40	0.10

Predictor Upper Constant CO2 emissions (kg per PPP \$ of 1.61

Log-Likelihood = -87.720 Test that all slopes are zero: G = 1.976, DF = 1, P-Value = 0.160

Binary Logistic Regression: DNS? versus CO2 emissions (kt)

Link Function: Logit

Response Information

Variable	Value	Count	
DNS?	1	36	(Event)
	0	154	
	Total	190	

* NOTE * 190 cases were used * NOTE * 20 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.36624	0.199978	-6.83	0.000			
CO2 emissions (kt)	-0.000010	0.0000012	-0.86	0.390	1.00	1.00	1.00

Log-Likelihood = -91.400 Test that all slopes are zero: G = 1.674, DF = 1, P-Value = 0.196 $\,$

Binary Logistic Regression: DNS? versus CO2 emissions (metric tons per capita)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 152 Total 188

* NOTE * 188 cases were used

* NOTE * 22 cases contained missing values

Logistic Regression Table

								Odds
Predictor			C	oef	SE Coef	Z	P	Ratio
Constant			-0.717	340	0.245943	-2.92	0.004	
CO2 emissions	(metric ton	s per	-0.220	929	0.0699928	-3.16	0.002	0.80
			95%	CI				
Predictor			Lower	Upp	er			
Constant								
CO2 emissions	(metric ton	s per	0.70	0.	92			

Log-Likelihood = -82.794Test that all slopes are zero: G = 18.040, DF = 1, P-Value = 0.000

Binary Logistic Regression: DNS? versus Urban population (% of total)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 172 Total 208

* NOTE * 208 cases were used * NOTE * 2 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-1.78667	0.481966	-3.71	0.000		
Urban population (% of total)	0.0038695	0.0076478	0.51	0.613	1.00	0.99

Predictor Upper Constant Urban population (% of total) 1.02

Log-Likelihood = -95.704Test that all slopes are zero: G = 0.257, DF = 1, P-Value = 0.612

Binary Logistic Regression: DNS? versus Urban population growth (annual %)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 170 Total 206

* NOTE * 206 cases were used * NOTE * 4 cases contained missing values

Logistic Regression Table

						95%
					Odds	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower
Constant	-1.82622	0.318296	-5.74	0.000		
Urban population growth (annual	0.128221	0.116132	1.10	0.270	1.14	0.91

Predictor Upper Constant Urban population growth (annual 1.43

Log-Likelihood = -94.846Test that all slopes are zero: G = 1.208, DF = 1, P-Value = 0.272 Binary Logistic Regression: DNS? versus Public spending on education, total (% of GDP)

Link Function: Logit

Response Information

Variable	Value	Count	
DNS?	1	24	(Event)
	0	102	
	Total	126	

* NOTE * 126 cases were used * NOTE * 84 cases contained missing values

Logistic Regression Table

					Odds
Predictor	Co	oef SE Coef	Z	P	Ratio
Constant	-0.5580	0.603787	-0.92	0.355	
Public spending on education, t	-0.1905	587 0.125828	-1.51	0.130	0.83
	95%	CI			
Predictor	Lower	Upper			
Constant					
Public spending on education, t	0.65	1.06			

Log-Likelihood = -60.084Test that all slopes are zero: G = 2.535, DF = 1, P-Value = 0.111

	DNS?	No. of DNS	Development S	Overall Scor
No. of DNS	0.679 0.000			
Development S	-0.288 0.001	-0.136 0.116		
Overall Scor	-0.242 0.005	-0.141 0.104	0.811 0.000	
BoP, Current	0.005	-0.007	-0.055	-0.065
	0.948	0.926	0.552	0.481
GDP growth %	-0.002	-0.000	-0.170	-0.130
	0.979	0.998	0.058	0.150
GDP p. capit	-0.210	-0.127	0.769	0.817
	0.006	0.094	0.000	0.000
Threaten spe	0.288	0.388 0.000	-0.083 0.343	0.035 0.694
Ex. debt (to	0.074	0.153	0.361	0.458
	0.397	0.077	0.001	0.000
Ex. Debt %GN	-0.079	-0.091	-0.229	-0.412
	0.366	0.302	0.031	0.000
CPIA Debt	0.157	0.153	0.343	0.424
	0.180	0.189	0.026	0.005
CPIA Environ	0.157	0.236	0.049	0.268
	0.179	0.041	0.756	0.086
CPIA prop.	0.094	0.117	0.124	0.509
	0.423	0.318	0.435	0.001
CPIA trans.	0.158	0.180	0.065	0.336
	0.176	0.122	0.680	0.030
Protected %	0.184	0.082	-0.023	0.046
	0.012	0.261	0.790	0.607
Protect sq.	0.104	0.022	0.042	0.135
	0.152	0.766	0.634	0.126
FDI, net inf	-0.065	-0.001	0.327	0.401
	0.391	0.985	0.000	0.000
FDI, % GDP	-0.061	-0.046	0.125	0.082
	0.430	0.551	0.163	0.366
Tourism, peo	-0.073	0.016	0.401	0.447
	0.328	0.833	0.000	0.000
Tourism, % r	-0.095	-0.076	-0.030	-0.196
	0.235	0.346	0.745	0.033
Tourism, Rec	-0.108 0.150	-0.042 0.571	0.403	0.491 0.000
Agric. %	0.123	0.094	-0.189	-0.215
	0.080	0.181	0.031	0.014
Agric. sq km	0.029	0.029	0.016	0.145
	0.686	0.679	0.858	0.100
Arable %	-0.018	-0.048	0.062	0.042

APPENDIX D: Correlation Table (with High-Income Countries)

	0.800	0.497	0.484	0.634
Arable hect.	-0.005 0.949	-0.004 0.955	0.033 0.712	0.188 0.032
Forest %	0.052 0.469	0.050 0.491	0.148 0.095	0.056 0.530
Forest sq km	0.050 0.486	0.027 0.710	0.116 0.192	0.136 0.128
CO2 per GDP	-0.098 0.200	-0.080 0.295	0.020 0.826	0.078 0.381
CO2 kt	-0.068 0.353	-0.026 0.719	0.142 0.106	0.300 0.001
CO2 per cap.	-0.213 0.003	-0.131 0.074	0.464 0.000	0.491 0.000
Urban %	0.035 0.615	0.045 0.517	0.685 0.000	0.677 0.000
Urban growth	0.077 0.270	0.017 0.813	-0.543 0.000	-0.440 0.000
Education	-0.136 0.130	-0.102 0.257	0.199 0.051	0.246 0.016
	BoP, Current	GDP growth %	GDP p. capit	Threaten spe
GDP growth %	0.037 0.655			
GDP p. capit	-0.088 0.282	-0.134 0.078		
Threaten spe	-0.264	-0.035	-0.040	
	0.001	0.657	0.611	
Ex. debt (to	0.001 0.572 0.000			0.368 0.000
Ex. debt (to Ex. Debt %GN	0.572	0.657	0.611	
	0.572 0.000 -0.095	0.657 0.096 0.283 -0.036	0.611 0.280 0.001 -0.137	0.000
Ex. Debt %GN	0.572 0.000 -0.095 0.319 0.071	0.657 0.096 0.283 -0.036 0.683 0.293	0.611 0.280 0.001 -0.137 0.125 0.085	0.000 -0.129 0.145 0.167
Ex. Debt %GN CPIA Debt	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350	0.000 -0.129 0.145 0.167 0.160 0.099
Ex. Debt %GN CPIA Debt CPIA Environ	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076 0.566 -0.140	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239 0.040 0.236	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350 0.003 0.491	0.000 -0.129 0.145 0.167 0.160 0.099 0.409 0.024
Ex. Debt %GN CPIA Debt CPIA Environ CPIA prop.	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076 0.566 -0.140 0.286 0.018	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239 0.040 0.236 0.043 -0.007	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350 0.003 0.491 0.000 0.469	0.000 -0.129 0.145 0.167 0.160 0.099 0.409 0.024 0.843 0.112
Ex. Debt %GN CPIA Debt CPIA Environ CPIA prop. CPIA trans.	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076 0.566 -0.140 0.286 0.018 0.889 0.031	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239 0.040 0.236 0.043 -0.007 0.955 0.001	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350 0.003 0.491 0.000 0.469 0.000 0.469 0.000 0.117	0.000 -0.129 0.145 0.167 0.160 0.099 0.409 0.024 0.843 0.112 0.351 0.174
Ex. Debt %GN CPIA Debt CPIA Environ CPIA prop. CPIA trans. Protected %	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076 0.566 -0.140 0.286 0.018 0.889 0.031 0.703 -0.336	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239 0.040 0.236 0.043 -0.007 0.955 0.001 0.988 0.021	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350 0.003 0.491 0.000 0.469 0.000 0.469 0.000 0.117 0.139 0.093	0.000 -0.129 0.145 0.167 0.160 0.099 0.409 0.024 0.843 0.112 0.351 0.174 0.018 0.423
Ex. Debt %GN CPIA Debt CPIA Environ CPIA prop. CPIA trans. Protected % Protect sq.	0.572 0.000 -0.095 0.319 0.071 0.588 -0.076 0.566 -0.140 0.286 0.018 0.286 0.018 0.889 0.031 0.703 -0.336 0.000 -0.639	0.657 0.096 0.283 -0.036 0.683 0.293 0.011 0.239 0.040 0.236 0.043 -0.007 0.955 0.001 0.988 0.021 0.786 -0.059	0.611 0.280 0.001 -0.137 0.125 0.085 0.477 0.350 0.003 0.491 0.000 0.469 0.000 0.469 0.000 0.117 0.139 0.093 0.236 0.482	0.000 -0.129 0.145 0.167 0.160 0.099 0.409 0.024 0.843 0.112 0.351 0.174 0.018 0.423 0.000 0.293

Tourism, % r	-0.040	0.090	-0.115	-0.158
	0.616	0.276	0.164	0.051
Tourism, Rec	-0.627 0.000	-0.141 0.072	0.492	0.286 0.000
Agric. %	-0.083	0.039	-0.168	-0.020
	0.302	0.612	0.029	0.784
Agric. sq km	-0.346 0.000	0.085 0.269	0.071 0.358	0.436
Arable %	-0.037	0.033	0.033	-0.079
	0.646	0.671	0.668	0.272
Arable hect.	-0.428	0.073	0.093	0.414
	0.000	0.341	0.225	0.000
Forest %	0.030	-0.103	0.034	0.140
	0.712	0.184	0.658	0.055
Forest sq km	-0.162	0.011	0.073	0.283
	0.043	0.883	0.346	0.000
CO2 per GDP	0.002 0.978	0.232	-0.073 0.352	-0.007 0.926
CO2 kt	-0.548 0.000	0.009 0.905	0.228	0.390 0.000
CO2 per cap.	-0.116	-0.051	0.715	-0.069
	0.144	0.511	0.000	0.358
Urban %	-0.029	0.007	0.573	0.002
	0.713	0.929	0.000	0.977
Urban growth	-0.007	0.010	-0.315	0.095
	0.934	0.893	0.000	0.184
Education	-0.017	-0.205	0.175	-0.109
	0.861	0.028	0.061	0.229
	Ex. debt (to	Ex. Debt %GN	CPIA Debt	CPIA Environ
Ex. Debt %GN	-0.165 0.059			
CPIA Debt	0.135 0.255	-0.404 0.000		
CPIA Environ	0.082 0.493	-0.161 0.174	0.540 0.000	
CPIA prop.				
	0.048	-0.100	0.538	0.732
	0.689	0.402	0.000	0.000
CPIA trans.				
CPIA trans. Protected %	0.689	0.402	0.000	0.000
	0.689	0.402	0.000	0.000
	0.042	-0.043	0.563	0.556
	0.723	0.715	0.000	0.000
	0.004	0.015	-0.042	0.240
Protected %	0.689	0.402	0.000	0.000
	0.042	-0.043	0.563	0.556
	0.723	0.715	0.000	0.000
	0.004	0.015	-0.042	0.240
	0.968	0.864	0.727	0.046
	0.667	-0.129	-0.067	0.080
Protected % Protect sq.	0.689 0.042 0.723 0.004 0.968 0.667 0.000 0.822	0.402 -0.043 0.715 0.015 0.864 -0.129 0.152 -0.151	0.000 0.563 0.000 -0.042 0.727 -0.067 0.580 0.224	0.000 0.556 0.000 0.240 0.046 0.080 0.509 0.044

Tourism, peo	0.836	-0.223	0.180	0.168
	0.000	0.015	0.148	0.178
Tourism, % r	-0.232	0.304	-0.000	0.337
	0.014	0.001	0.999	0.008
Tourism, Rec	0.809	-0.232	0.205	0.196
	0.000	0.010	0.093	0.110
Agric. %	0.022	-0.041	-0.128	-0.042
	0.799	0.644	0.275	0.723
Agric. sq km	0.770	-0.150	-0.003	0.006
	0.000	0.089	0.978	0.962
Arable %	0.155	-0.113	0.052	0.064
	0.076	0.200	0.660	0.584
Arable hect.	0.797	-0.164	0.138	0.087
	0.000	0.063	0.238	0.456
Forest %	0.009	0.198	-0.104	-0.046
	0.914	0.024	0.373	0.693
Forest sq km	0.636	-0.083	-0.117	-0.101
	0.000	0.349	0.317	0.387
CO2 per GDP	0.227	-0.090	0.148	0.106
	0.010	0.315	0.212	0.371
CO2 kt	0.746	-0.138	0.162	0.109
	0.000	0.118	0.167	0.357
CO2 per cap.	0.336	-0.241 0.006	0.218 0.064	0.261 0.026
Urban %	0.299	-0.046	0.008	0.037
	0.000	0.604	0.948	0.751
Urban growth	-0.220	0.237	-0.268	-0.093
	0.011	0.006	0.021	0.433
Education	-0.144	-0.122	0.108	0.318
	0.190	0.267	0.502	0.043
CPIA trans.				
	CPIA prop. 0.698 0.000	CPIA trans.	Protected %	Protect sq.
Protected %	0.698	CPIA trans. 0.106 0.382	Protected %	Protect sq.
	0.698 0.000 0.109	0.106	Protected % 0.283 0.000	Protect sq.
Protected %	0.698 0.000 0.109 0.367 -0.115	0.106 0.382 -0.051	0.283	Protect sq. 0.474 0.000
Protected % Protect sq.	0.698 0.000 0.109 0.367 -0.115 0.339 0.013	0.106 0.382 -0.051 0.671 -0.008	0.283 0.000 0.044	0.474
Protected % Protect sq. FDI, net inf	0.698 0.000 0.109 0.367 -0.115 0.339 0.013 0.912 0.153	0.106 0.382 -0.051 0.671 -0.008 0.946 0.051	0.283 0.000 0.044 0.573 0.020	0.474 0.000 -0.061
Protected % Protect sq. FDI, net inf FDI, % GDP	0.698 0.000 0.109 0.367 -0.115 0.339 0.013 0.912 0.153 0.201 0.035	0.106 0.382 -0.051 0.671 -0.008 0.946 0.051 0.673 -0.030	0.283 0.000 0.044 0.573 0.020 0.806 0.012	0.474 0.000 -0.061 0.442 0.332
Protected % Protect sq. FDI, net inf FDI, % GDP Tourism, peo	0.698 0.000 0.109 0.367 -0.115 0.339 0.013 0.912 0.153 0.201 0.035 0.779 0.529	0.106 0.382 -0.051 0.671 -0.008 0.946 0.051 0.673 -0.030 0.812 0.507	0.283 0.000 0.044 0.573 0.020 0.806 0.012 0.874 -0.102	0.474 0.000 -0.061 0.442 0.332 0.000 -0.169

	0.016	0 100	0 251	0 650
	0.916	0.109	0.351	0.659
Agric. sq km	-0.127 0.278	-0.065 0.578	-0.007 0.928	0.781 0.000
Arable %	0.158 0.176	-0.042 0.720	-0.046 0.538	-0.117 0.110
Arable hect.	0.057 0.625	0.058 0.619	-0.027 0.713	0.713 0.000
Forest %	-0.056 0.635	0.083 0.479	0.239 0.001	0.066 0.373
Forest sq km	-0.267 0.021	-0.153 0.191	0.040 0.595	0.815
CO2 per GDP	0.032 0.790	-0.183 0.121	-0.140 0.073	0.101 0.192
CO2 kt	0.100 0.396	0.078 0.511	0.024 0.752	0.651 0.000
CO2 per cap.	0.217 0.066	0.039 0.745	-0.053 0.487	0.082 0.278
Urban %	0.049 0.679	0.091 0.437	0.049 0.503	0.130 0.073
Urban growth	-0.228 0.051	-0.242 0.038	0.027 0.713	-0.031 0.676
Education	0.403 0.009	0.401 0.009	0.057 0.537	-0.049 0.589
	FDT net inf	פרים & ברים	Tourism neo	Tourism % r
FDI, % GDP	FDI, net inf 0.364 0.000	FDI, % GDP	Tourism, peo	Tourism, % r
FDI, % GDP Tourism, peo	0.364	FDI, % GDP -0.054 0.503	Tourism, peo	Tourism, % r
	0.364 0.000 0.568	-0.054	Tourism, peo -0.153 0.063	Tourism, % r
Tourism, peo	0.364 0.000 0.568 0.000 -0.139	-0.054 0.503 -0.001	-0.153	Tourism, % r -0.105 0.190
Tourism, peo Tourism, % r	0.364 0.000 0.568 0.000 -0.139 0.087 0.770	-0.054 0.503 -0.001 0.986 -0.030	-0.153 0.063 0.842 0.000	-0.105 0.190
Tourism, peo Tourism, % r Tourism, Rec	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.000 0.075 0.328	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014	-0.153 0.063 0.842 0.000 0.124 0.100	-0.105 0.190 -0.091
Tourism, peo Tourism, % r Tourism, Rec Agric. %	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.000 0.075 0.328 0.553	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014 0.856 -0.047	-0.153 0.063 0.842 0.000 0.124 0.100 0.392	-0.105 0.190 -0.091 0.258 -0.166
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.075 0.328 0.553 0.000 0.078 0.307	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014 0.856 -0.047 0.552 0.002	-0.153 0.063 0.842 0.000 0.124 0.100 0.392 0.000 0.218 0.003 0.466	-0.105 0.190 -0.091 0.258 -0.166 0.039 -0.059
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable %	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.075 0.328 0.553 0.000 0.078 0.307 0.307	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014 0.856 -0.047 0.552 0.002 0.980 -0.057	-0.153 0.063 0.842 0.000 0.124 0.100 0.392 0.000 0.218 0.003 0.466 0.000 -0.015	-0.105 0.190 -0.091 0.258 -0.166 0.039 -0.059 0.464 -0.170 0.034
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable % Arable hect.	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.075 0.328 0.553 0.000 0.078 0.307 0.568 0.000 0.001	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014 0.856 -0.047 0.552 0.002 0.980 -0.057 0.465 0.022	-0.153 0.063 0.842 0.000 0.124 0.100 0.392 0.000 0.218 0.003 0.466 0.000 -0.015 0.848	-0.105 0.190 -0.091 0.258 -0.166 0.039 -0.059 0.464 -0.170 0.034 -0.036 0.657
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable % Arable hect. Forest %	0.364 0.000 0.568 0.000 -0.139 0.087 0.770 0.000 0.075 0.328 0.553 0.000 0.078 0.307 0.568 0.000 0.568 0.000 0.990 0.327	-0.054 0.503 -0.001 0.986 -0.030 0.705 -0.014 0.856 -0.047 0.552 0.002 0.980 -0.057 0.465 0.022 0.784 -0.041	-0.153 0.063 0.842 0.000 0.124 0.100 0.392 0.000 0.218 0.003 0.466 0.000 -0.015 0.848 0.288	-0.105 0.190 -0.091 0.258 -0.166 0.039 -0.059 0.464 -0.170 0.034 -0.036 0.657 -0.158 0.051 -0.150

	Goon 71
4	
0	

CO2 per cap.	0.331 0.000	0.259 0.001	0.162 0.034	-0.164 0.040
Urban %	0.286	0.112 0.147	0.233 0.002	-0.145 0.069
Urban growth	-0.127 0.093	0.007 0.928	-0.204 0.006	-0.005 0.955
Education	0.006 0.945	-0.068 0.471	0.000 0.999	0.158 0.100
	Tourism Dog	Densie 9	Jamia an Im	America &
Agric. %	Tourism, Rec 0.091 0.228	Agric. %	Agric. sq km	Arable %
Agric. sq km	0.473 0.000	0.174 0.013		
Arable %	0.151 0.044	0.521 0.000	-0.023 0.748	
Arable hect.	0.553 0.000	0.094 0.183	0.824 0.000	0.160 0.022
Forest %	-0.008 0.912	-0.440 0.000	-0.083 0.247	-0.245 0.001
Forest sq km	0.287	-0.111 0.121	0.601	-0.090 0.211
CO2 per GDP	-0.005 0.954	0.037 0.630	0.218	-0.002 0.979
CO2 kt	0.729 0.000	0.057 0.435	0.752	0.076 0.299
CO2 per cap.	0.208	-0.304 0.000	0.066 0.373	-0.127 0.086
Urban %	0.253	-0.191 0.006	0.062 0.378	-0.116 0.101
Urban growth	-0.186 0.012	0.053 0.454	0.003 0.971	-0.174 0.014
Education	0.004 0.969	0.121 0.183	-0.117 0.200	0.028 0.760
	Arable hect.	Forest %	Forest sq km	CO2 per GDP
Forest %	-0.035		101000 01 11	<u> </u>
	0.627			
	0.676	0 105		
Forest sq km	0.676 0.000	0.137 0.055		
CO2 per GDP	0.178 0.020	-0.177 0.022	0.094 0.223	
CO2 kt	0.838 0.000	-0.003 0.969	0.478 0.000	0.173 0.023
CO2 per cap.	0.070 0.343	-0.070 0.350	0.118 0.116	0.390 0.000
Urban %	0.035	0.052	0.126	0.148
	0.622	0.474	0.079	0.052
Urban growth	-0.061	-0.103	-0.095	-0.272
	0.392	0.155	0.187	0.000

Education	-0.102 0.263	-0.110 0.234	-0.094 0.311	0.017 0.860
	CO2 kt	CO2 per cap.	Urban %	Urban growth
CO2 per cap.	0.147 0.045			
Urban %	0.099 0.175	0.468 0.000		
Urban growth	-0.102 0.162	-0.246 0.001	-0.463 0.000	
Education	-0.017 0.854	-0.026 0.778	-0.021 0.817	-0.105 0.240

Cell Contents: Pearson correlation P-Value

APPENDIX E: Multivariable Logit Regressions (with High-Income Countries)

Binary Logistic Regression: DNS? versus Number of Threatened Species, CO2 emissions (metric tons per capita), Urban population (% of total)

```
Link Function: Logit
Response Information
Variable Value Count
DNS?
           1
                      36 (Event)
            0
                      145
            Total
                      181
* NOTE * 181 cases were used
* NOTE * 29 cases contained missing values
Logistic Regression Table
                                                                 Odds
                                                                           95% CI
                                                  Z
Predictor
                          Coef
                                   SE Coef
                                                          P Ratio Lower Upper

        Predictor
        Coef
        SE
        Coef
        Z
        P

        Constant
        -3.29951
        0.656659
        -5.02
        0.000

Threaten species 0.0027187 0.0009546 2.85 0.004 1.00 1.00
                                                                                  1.00
CO2 per cap.-0.4923250.119437-4.120.0000.61Urban %0.05191570.01300273.990.0001.05
                                                                         0.48
                                                                                  0.77
                                                                        1.03
                                                                                 1.08
Log-Likelihood = -65.997
Test that all slopes are zero: G = 48.595, DF = 3, P-Value = 0.000
```

Binary Logistic Regression: DNS? versus Urban population (% of total), Number of Threatened Species , GDP per capita (constant 2000 US\$)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 36 (Event) 0 131 Total 167

* NOTE * 167 cases were used * NOTE * 43 cases contained missing values

Logistic Regression Table

					Odds	95%	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper	
Constant	-3.41131	0.689382	-4.95	0.000				
Urban %	0.0479383	0.0132424	3.62	0.000	1.05	1.02	1.08	
Threaten species	0.0024270	0.0009437	2.57	0.010	1.00	1.00	1.00	
GDP p. capita	-0.0002499	0.0000874	-2.86	0.004	1.00	1.00	1.00	

Log-Likelihood = -67.947Test that all slopes are zero: G = 38.201, DF = 3, P-Value = 0.000 Binary Logistic Regression: DNS? versus Number of Threatened Species, CO2 emissions (metric tons per capita), Urban population (% of total), Nationally protected areas (% of total land area)

Link Function: Logit

Response Information

Variable Value Count DNS? 1 35 (Event) 0 137 Total 172

* NOTE * 172 cases were used * NOTE * 38 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-3.76538	0.736550	-5.11	0.000			
Threaten species	0.0025274	0.0009771	2.59	0.010	1.00	1.00	1.00
CO2 per cap.	-0.510929	0.126245	-4.05	0.000	0.60	0.47	0.77
Urban %	0.0534630	0.0135104	3.96	0.000	1.05	1.03	1.08
Protected % land	0.0344202	0.0186800	1.84	0.065	1.04	1.00	1.07

Log-Likelihood = -61.563 Test that all slopes are zero: G = 50.662, DF = 4, P-Value = 0.000 $\,$

APPENDIX F: Multivariable Ordinary Least Square Regression for Number of DNSs (with High-Income Countries)

Regression Analysis: No. of DNS versus Number of Threatened species, CPIA policy and institutions for environmental sustainability rating, International tourism, receipts (current US\$ millions)

The regression equation is No. of DNS = - 2.51 + 0.00635 Threaten species + 0.748 CPIA Environ. - 0.000691 Tourism, Receipts

65 cases used, 145 cases contain missing values

Predictor	Coef	SE Coef	Т	P
Constant	-2.513	1.020	-2.46	0.017
Threaten species	0.006348	0.001318	4.82	0.000
CPIA Environ.	0.7477	0.3199	2.34	0.023
Tourism, Receipts	-0.0006915	0.0002605	-2.65	0.010

S = 1.39016 R-Sq = 31.6% R-Sq(adj) = 28.2%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	54.360	18.120	9.38	0.000
Residual Error	61	117.886	1.933		
Total	64	172.246			

APPENDIX G: Binary Logistic Regression Models (without High-Income Countries)

Odds

95% CI

Binary Logistic Regression: DNS (w/o HI) versus Developmental Stage

Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 34 (Event) 0 57 Total 91 * NOTE * 91 cases were used * NOTE * 54 cases contained missing values Logistic Regression Table
 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -0.768058
 0.653764
 -1.17
 0.240

Log-Likelihood = -60.054Test that all slopes are zero: G = 0.167, DF = 1, P-Value = 0.683

Binary Logistic Regression: DNS (w/o HI) versus Overall Score for Global Competitiveness

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 34 (Event) 56 0 Total 90

* NOTE * 90 cases were used * NOTE * 55 cases contained missing values

Logistic Regression Table

Odds 95% CI
 Predictor
 Coef
 SE Coef
 Z
 P

 Constant
 -2.64624
 1.92554
 -1.37
 0.169
 P Ratio Lower Upper Overall Score 0.555851 0.493715 1.13 0.260 1.74 0.66 4.59

Log-Likelihood = -59.022Test that all slopes are zero: G = 1.290, DF = 1, P-Value = 0.256

Binary Logistic Regression: DNS (w/o HI) versus Current account balance (BoP, current US\$ millions)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 78 Total 114

* NOTE * 114 cases were used

* NOTE * 31 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -0.754980
 0.202609
 -3.73
 0.000
 BoP, Current US\$
 -0.0000203
 0.0000298
 -0.68
 0.495
 1.00
 1.00

Log-Likelihood = -70.801Test that all slopes are zero: G = 0.592, DF = 1, P-Value = 0.442

Binary Logistic Regression: DNS (w/o HI) versus GDP growth (annual %)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 98 Total 134

* NOTE * 134 cases were used * NOTE * 11 cases contained missing values

Logistic Regression Table

					Odds	95%	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper	
Constant	-0.828331	0.351494	-2.36	0.018				
GDP growth %	-0.0291072	0.0501909	-0.58	0.562	0.97	0.88	1.07	

Log-Likelihood = -77.798Test that all slopes are zero: G = 0.359, DF = 1, P-Value = 0.549

Binary Logistic Regression: DNS (w/o HI) versus GDP per capita (constant 2000 US\$)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 97 Total 133

* NOTE * 133 cases were used * NOTE * 12 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.36775	0.289912	-4.72	0.000			
GDP p. capita	0.0001759	0.0000935	1.88	0.060	1.00	1.00	1.00

<code>Log-Likelihood = -75.916</code> Test that all slopes are zero: G = 3.494, DF = 1, P-Value = 0.062

Binary Logistic Regression: DNS (w/o HI) versus Number of Threatened Species

Link Function: Logit

Response Information

Variable Value Count

DNS (w/o HI) 1 36 (Event) 0 102 Total 138 * NOTE * 138 cases were used * NOTE * 7 cases contained missing values Logistic Regression Table Odds 95% CI Coef SE Coef Z Predictor P Ratio Lower Upper Constant
 Constant
 -1.51451
 0.263222
 -5.75
 0.000

 Threaten species
 0.0024120
 0.0008663
 2.78
 0.005
 1.00 1.00 1.00 Log-Likelihood = -74.114Test that all slopes are zero: G = 10.186, DF = 1, P-Value = 0.001 Binary Logistic Regression: DNS (w/o HI) versus Number of Threatened species (hundreds) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 102 138 Total * NOTE * 138 cases were used * NOTE * 7 cases contained missing values Logistic Regression Table Odds 95% CI Z P Ratio Lower Upper Predictor Coef SE Coef
 Constant
 -1.51451
 0.263222
 -5.75
 0.000

 Threaten species
 0.241198
 0.0866321
 2.78
 0.005
 1.27 1.07 1.51 Log-Likelihood = -74.114Test that all slopes are zero: G = 10.186, DF = 1, P-Value = 0.001 Binary Logistic Regression: DNS (w/o HI) versus External debt, total (DOD, current US\$ millions) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 94 Total 130 * NOTE * 130 cases were used * NOTE * 15 cases contained missing values Logistic Regression Table Odds 95% CI Z P Ratio Lower Upper Predictor Coef SE Coef -1.03597 0.216053 -4.79 0.000 Constant Ex. debt (tot.) 0.0000033 0.0000036 0.90 0.371 1.00 1.00 1.00

Log-Likelihood = -76.316Test that all slopes are zero: G = 0.774, DF = 1, P-Value = 0.379

Binary Logistic Regression: DNS (w/o HI) versus External debt, total (% of GNI)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 92 Total 128

* NOTE * 128 cases were used * NOTE * 17 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -0.665272
 0.327737
 -2.03
 0.042
 Ex. Debt %GNI
 -0.0044415
 0.0045082
 -0.99
 0.325
 1.00
 0.99
 1.00

Log-Likelihood = -75.404Test that all slopes are zero: G = 1.290, DF = 1, P-Value = 0.256

Binary Logistic Regression: DNS (w/o HI) versus CPIA debt policy rating

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 12 (Event) 0 63 Total 75

* NOTE * 75 cases were used * NOTE * 70 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -3.40393
 1.39284
 -2.44
 0.015

 CPIA
 Debt
 0.480542
 0.359721
 1.34
 0.182
 1.62
 0.80
 3.27

Log-Likelihood = -32.008Test that all slopes are zero: G = 1.934, DF = 1, P-Value = 0.164

Binary Logistic Regression: DNS (w/o HI) versus CPIA policy and institutions for environmental sustainability rating

Link Function: Logit

```
Response Information
```

Variable Value Count DNS (w/o HI) 1 12 (Event) 0 63 Total 75 * NOTE * 75 cases were used * NOTE * 70 cases contained missing values

Logistic Regression Table

Odds 95% CI

Log-Likelihood = -32.021Test that all slopes are zero: G = 1.909, DF = 1, P-Value = 0.167

Binary Logistic Regression: DNS (w/o HI) versus CPIA property rights and rule-based governance rating

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 12 (Event) 0 63 Total 75

* NOTE * 75 cases were used * NOTE * 70 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-2.86016	1.54653	-1.85	0.064			
CPIA prop.	0.406220	0.501895	0.81	0.418	1.50	0.56	4.01

Log-Likelihood = -32.635Test that all slopes are zero: G = 0.680, DF = 1, P-Value = 0.410

Binary Logistic Regression: DNS (w/o HI) versus CPIA transparency, accountability, and corruption in the public sector rating

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 12 (Event) 0 63 Total 75

* NOTE * 75 cases were used * NOTE * 70 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-3.58371	1.50599	-2.38	0.017			
CPIA trans.	0.646443	0.479003	1.35	0.177	1.91	0.75	4.88

Log-Likelihood = -32.034Test that all slopes are zero: G = 1.882, DF = 1, P-Value = 0.170

Binary Logistic Regression: DNS (w/o HI) versus Nationally protected areas (% of total land area)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 35 (Event) 0 96 Total 131

* NOTE * 131 cases were used * NOTE * 14 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.58015	0.300345	-5.26	0.000			
Protected % land	0.0463915	0.0174274	2.66	0.008	1.05	1.01	1.08

Log-Likelihood = -71.820Test that all slopes are zero: G = 8.433, DF = 1, P-Value = 0.004

Binary Logistic Regression: DNS (w/o HI) versus Nationally protected areas (sq. km)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 35 (Event) 0 99 Total 134

* NOTE * 134 cases were used

* NOTE * 11 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.14608	0.212894	-5.38	0.000			
Protect sq. km.	0.0000012	0.000008	1.43	0.153	1.00	1.00	1.00

Log-Likelihood = -75.922Test that all slopes are zero: G = 2.070, DF = 1, P-Value = 0.150

Binary Logistic Regression: DNS (w/o HI) versus Foreign direct investment, net inflows

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 91 Total 127

* NOTE * 127 cases were used * NOTE * 18 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-0.977033	0.206489	-4.73	0.000			
FDI, net inflow	0.0000271	0.0000321	0.85	0.397	1.00	1.00	1.00

Log-Likelihood = -75.353Test that all slopes are zero: G = 0.728, DF = 1, P-Value = 0.394

Binary Logistic Regression: DNS (w/o HI) versus Foreign direct investment, net inflows (% of GDP)

Link Function: Logit

Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 89 Total 125 * NOTE * 125 cases were used * NOTE * 20 cases contained missing values Logistic Regression Table Odds 95% CI SE Coef Z P 0.252541 -2.98 0.003 Predictor Coef P Ratio Lower Upper Constant -0.752644 FDI, % GDP -0.0383916 0.0426016 -0.90 0.367 0.96 0.89 1.05 Log-Likelihood = -74.544Test that all slopes are zero: G = 1.001, DF = 1, P-Value = 0.317 Binary Logistic Regression: DNS (w/o HI) versus International tourism, number of arrivals (thousands) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 35 (Event) 0 91 Total 126 * NOTE * 126 cases were used * NOTE * 19 cases contained missing values Logistic Regression Table Odds 95% CT Z P Ratio Lower Upper Predictor Coef SE Coef -1.00591 0.217022 -4.64 0.000 Constant Tourism, people 0.0000213 0.0000350 0.61 0.543 1.00 1.00 1.00 Log-Likelihood = -74.267Test that all slopes are zero: G = 0.358, DF = 1, P-Value = 0.549 Binary Logistic Regression: DNS (w/o HI) versus International tourism, receipts (% of total exports) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 77 Total 113 * NOTE * 113 cases were used * NOTE * 32 cases contained missing values Logistic Regression Table Odds 95% CI Predictor SE Coef Ζ Coef P Ratio Lower Upper -0.472044 0.279081 -1.69 0.091 Constant

0.98 0.96 1.01

Tourism, % r -0.0184509 0.0132037 -1.40 0.162

Log-Likelihood = -69.622Test that all slopes are zero: G = 2.187, DF = 1, P-Value = 0.139

Binary Logistic Regression: DNS (w/o HI) versus International tourism, receipts (current US\$ millions)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 93 Total 129

* NOTE * 129 cases were used * NOTE * 16 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-0.981459	0.213936	-4.59	0.000			
Tourism, Receipts	0.0000208	0.0000529	0.39	0.694	1.00	1.00	1.00

Log-Likelihood = -76.302Test that all slopes are zero: G = 0.150, DF = 1, P-Value = 0.699

Binary Logistic Regression: DNS (w/o HI) versus Agricultural land (% of land area)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 106 Total 142

* NOTE * 142 cases were used * NOTE * 3 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -1.28989
 0.444244
 -2.90
 0.004
 4
 4

 Agric. %
 0.0047448
 0.0089313
 0.53
 0.595
 1.00
 0.99
 1.02

Log-Likelihood = -80.255Test that all slopes are zero: G = 0.283, DF = 1, P-Value = 0.595

Binary Logistic Regression: DNS (w/o HI) versus Agricultural land (sq. km)

Link Function: Logit

Response Information

Vari	able		Value	Count	
DNS	(w/o	HI)	1	36	(Event)
			0	106	
			Total	142	

* NOTE * 142 cases were used

* NOTE * 3 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -1.09597
 0.209227
 -5.24
 0.000
 Agric. sq km
 0.0000001
 0.0000003
 0.20
 0.840
 1.00
 1.00

Log-Likelihood = -80.376Test that all slopes are zero: G = 0.040, DF = 1, P-Value = 0.842

Binary Logistic Regression: DNS (w/o HI) versus Arable land (% of land area)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 106 Total 142

* NOTE * 142 cases were used * NOTE * 3 cases contained missing values

Logistic Regression Table

					Odds	95%	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper	
Constant	-1.01115	0.286896	-3.52	0.000				
Arable %	-0.0047966	0.0150249	-0.32	0.750	1.00	0.97	1.02	

Log-Likelihood = -80.344Test that all slopes are zero: G = 0.104, DF = 1, P-Value = 0.747

Binary Logistic Regression: DNS (w/o HI) versus Arable land (thousand hectares)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 106 Total 142

* NOTE * 142 cases were used * NOTE * 3 cases contained missing values

Logistic Regression Table

					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	-1.06560	0.204179	-5.22	0.000			
Arable hect.	-0.000020	0.0000096	-0.21	0.836	1.00	1.00	1.00

Log-Likelihood = -80.374Test that all slopes are zero: G = 0.045, DF = 1, P-Value = 0.832

Binary Logistic Regression: DNS (w/o HI) versus Forest area (% of land area)

Link Function: Logit

Response Information

Variable Value Count

DNS (w/o HI) 1 36 (Event) 0 105 Total 141 * NOTE * 141 cases were used * NOTE * 4 cases contained missing values Logistic Regression Table Odds 95% CI Coef SE Coef Z P Ratio Lower Upper Predictor Constant -1.26011 0.320991 -3.93 0.000 Forest % 0.0060452 0.0079547 0.76 0.447 1.01 0.99 1.02 Log-Likelihood = -79.817Test that all slopes are zero: G = 0.572, DF = 1, P-Value = 0.449 Binary Logistic Regression: DNS (w/o HI) versus Forest area (sq. km) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 105 141 Total * NOTE * 141 cases were used * NOTE * 4 cases contained missing values Logistic Regression Table Odds 95% CI Z P Ratio Lower Upper SE Coef Predictor Coef
 Constant
 -1.09862
 0.199964
 -5.49
 0.000

 Forest sq km
 0.0000001
 0.0000002
 0.58
 0.559
 1.00 1.00 1.00 Log-Likelihood = -79.940Test that all slopes are zero: G = 0.325, DF = 1, P-Value = 0.569 Binary Logistic Regression: DNS (w/o HI) versus CO2 emissions (kg per PPP \$ of GDP) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 93 Total 129 * NOTE * 129 cases were used * NOTE * 16 cases contained missing values Logistic Regression Table Odds 95% CI Z P Ratio Lower Upper Predictor Coef SE Coef Constant -0.668072 0.315545 -2.12 0.034 CO2 per GDP -0.709341 0.656681 -1.08 0.280 0.49 0.14 1.78 Log-Likelihood = -75.694Test that all slopes are zero: G = 1.367, DF = 1, P-Value = 0.242

Binary Logistic Regression: DNS (w/o HI) versus CO2 emissions (kt)

```
Link Function: Logit
Response Information
Variable
             Value Count
DNS (w/o HI) 1
                     36 (Event)
             0
                       99
             Total
                      135
* NOTE * 135 cases were used
* NOTE * 10 cases contained missing values
Logistic Regression Table
                                                Odds
                                                        95% CI
                      SE Coef
                                   Z
                                          P Ratio Lower Upper
Predictor
                Coef
Constant
           -0.973264 0.201679 -4.83 0.000
CO2 kt -0.0000005 0.0000008 -0.59 0.556
                                               1.00
                                                      1.00 1.00
Log-Likelihood = -77.999
Test that all slopes are zero: G = 0.579, DF = 1, P-Value = 0.447
Binary Logistic Regression: DNS (w/o HI) versus CO2 emissions (metric tons per capita)
Link Function: Logit
Response Information
Variable
             Value Count
DNS (w/o HI) 1
                       36 (Event)
             0
                       97
             Total
                      133
* NOTE * 133 cases were used
* NOTE * 12 cases contained missing values
Logistic Regression Table
                                                           95% CI
                                                   Odds
                         SE Coef
Predictor
                  Coef
                                     Z
                                             P Ratio Lower Upper
Constant -0.865396 0.252650 -3.43 0.001
C02 per cap. -0.0597764 0.0798020 -0.75 0.454
                                                   0.94 0.81 1.10
Log-Likelihood = -77.365
Test that all slopes are zero: G = 0.596, DF = 1, P-Value = 0.440
Binary Logistic Regression: DNS (w/o HI) versus Urban population (% of total)
Link Function: Logit
Response Information
Variable
             Value Count
DNS (w/o HI) 1
                      36
                           (Event)
             0
                      107
                      143
             Total
* NOTE * 143 cases were used
* NOTE * 2 cases contained missing values
Logistic Regression Table
                                               Odds
                                                        95% CI
                                Z
                                       P Ratio Lower Upper
Predictor
               Coef
                      SE Coef
           -2.80657 0.597277 -4.70 0.000
Constant
```

Urban % 0.0330277 0.0102256 3.23 0.001 1.03 1.01 1.05

Log-Likelihood = -74.934Test that all slopes are zero: G = 11.506, DF = 1, P-Value = 0.001

Binary Logistic Regression: DNS (w/o HI) versus Urban population growth (annual %)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 36 (Event) 0 105 Total 141

* NOTE * 141 cases were used * NOTE * 4 cases contained missing values

Logistic Regression Table

					Odds	95%	CI	
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper	
Constant	-0.940553	0.336280	-2.80	0.005				
Urban growth	-0.0548051	0.117909	-0.46	0.642	0.95	0.75	1.19	

Log-Likelihood = -79.994Test that all slopes are zero: G = 0.217, DF = 1, P-Value = 0.642

Binary Logistic Regression: DNS (w/o HI) versusPublic spending on education, total (% of GDP)

Link Function: Logit

Response Information

Variable Value Count DNS (w/o HI) 1 24 (Event) 0 59 Total 83

* NOTE * 83 cases were used * NOTE * 62 cases contained missing values

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -0.147969
 0.596084
 -0.25
 0.804

 Education
 -0.160774
 0.120934
 -1.33
 0.184
 0.85
 0.67
 1.08

Log-Likelihood = -48.932Test that all slopes are zero: G = 1.967, DF = 1, P-Value = 0.161

No. of DNG	DNS (w/o HI)	No. of DNS	Development S	Overall Scor
No. of DNS	0.661 0.000			
Development S	0.043 0.686	0.134 0.206		
Overall Scor	0.120 0.261	0.116 0.278	0.641 0.000	
BoP, Current	-0.067	-0.122	0.063	0.249
	0.480	0.196	0.580	0.026
GDP growth %	-0.050	-0.032	0.074	0.197
	0.564	0.716	0.489	0.066
GDP p. capit	0.166 0.056	0.189 0.029	0.753 0.000	0.572
Threaten spe	0.281 0.001	0.404 0.000	0.081 0.453	0.249
Ex. debt (to	0.080	0.159	0.354	0.474
	0.365	0.071	0.001	0.000
Ex. Debt %GN	-0.089	-0.097	-0.248	-0.407
	0.316	0.275	0.021	0.000
CPIA Debt	0.157	0.153	0.343	0.424
	0.180	0.189	0.026	0.005
CPIA Environ	0.157	0.236	0.049	0.268
	0.179	0.041	0.756	0.086
CPIA prop.	0.094	0.117	0.124	0.509
	0.423	0.318	0.435	0.001
CPIA trans.	0.158 0.176	0.180	0.065 0.680	0.336 0.030
Protected %	0.264	0.121	-0.024	-0.044
	0.002	0.170	0.825	0.686
Protect sq.	0.133	0.025	0.165	0.192
	0.126	0.773	0.125	0.075
FDI, net inf	0.080 0.371	0.190 0.032	0.247 0.023	0.407
FDI, % GDP	-0.083	-0.074	0.083	0.076
	0.358	0.414	0.451	0.495
Tourism, peo	0.055	0.179	0.361	0.540
	0.540	0.045	0.001	0.000
Tourism, % r	-0.134	-0.101	0.106	-0.013
	0.158	0.287	0.348	0.911
Tourism, Rec	0.035	0.140	0.313	0.556
	0.695	0.113	0.004	0.000
Agric. %	0.045	0.043	-0.093	-0.015
	0.598	0.610	0.391	0.887
Agric. sq km	0.017	0.024	0.082	0.276
	0.841	0.774	0.449	0.010
Arable %	-0.027	-0.061	0.020	0.128

APPENDIX H: Correlation Table (without High-Income Countries)

	0.751	0.471	0.856	0.237
Arable hect.	-0.017	-0.013	0.086	0.318
	0.837	0.881	0.425	0.003
Forest %	0.064	0.059	0.146	0.020
	0.450	0.488	0.174	0.857
Forest sq km	0.051	0.025	0.226	0.196
	0.551	0.765	0.035	0.069
CO2 per GDP	-0.096	-0.079	0.191	0.336
	0.277	0.374	0.078	0.002
CO2 kt	-0.056	-0.007	0.095	0.342
	0.518	0.939	0.384	0.001
CO2 per cap.	-0.065	0.004	0.577	0.501
	0.455	0.963	0.000	0.000
Urban %	0.281	0.216	0.659	0.511
	0.001	0.010	0.000	0.000
Urban growth	-0.039	-0.068	-0.615	-0.467
	0.645	0.426	0.000	0.000
Education	-0.148	-0.108	0.036	0.080
	0.182	0.331	0.785	0.547
GDP growth %	BoP, Current	GDP growth %	GDP p. capit	Threaten spe
GDP GIOWCII %	0.082 0.392			
GDP p. capit	-0.011 0.911	0.041 0.640		
Threaten spe	0.199 0.037	-0.038 0.675	0.050 0.579	
Ex. debt (to	0.596	0.097	0.281	0.378
	0.000	0.280	0.002	0.000
Ex. Debt %GN	-0.096	-0.056	-0.123	-0.136
	0.317	0.533	0.174	0.133
CPIA Debt	0.071	0.293	0.085	0.167
	0.588	0.011	0.477	0.160
CPIA Environ	-0.076	0.239	0.350	0.099
	0.566	0.040	0.003	0.409
CPIA prop.	-0.140	0.236	0.491	0.024
CPIA trans.	0.286	0.043	0.000	0.843
er in craib.	0.286 0.018 0.889	0.043 -0.007 0.955		0.843 0.112 0.351
Protected %	0.018	-0.007	0.469	0.112
	0.018 0.889 0.071	-0.007 0.955 0.044	0.469 0.000 0.069 0.448 0.088	0.112 0.351 0.246 0.006 0.318
Protected %	0.018 0.889 0.071 0.460 0.693	-0.007 0.955 0.044 0.631 0.090	0.469 0.000 0.069 0.448 0.088 0.329	0.112 0.351 0.246 0.006 0.318
Protected % Protect sq.	0.018 0.889 0.071 0.460 0.693 0.000 0.704	-0.007 0.955 0.044 0.631 0.090 0.319 0.127	0.469 0.000 0.069 0.448 0.088 0.329 0.186	0.112 0.351 0.246 0.006 0.318 0.000 0.333 0.000 -0.131

Tourism, % r	-0.139	-0.012	0.249	-0.210
	0.141	0.902	0.008	0.028
Tourism, Rec	0.495	0.097	0.233	0.355
	0.000	0.282	0.009	0.000
Agric. %	-0.076	0.041	-0.156	-0.123
	0.422	0.638	0.075	0.155
Agric. sq km	0.714	0.166	0.035	0.287
	0.000	0.057	0.693	0.001
Arable %	-0.075	0.057	-0.088	-0.088
	0.428	0.516	0.318	0.307
Arable hect.	0.680	0.142	0.001	0.282
	0.000	0.103	0.993	0.001
Forest %	0.058	-0.114	0.143	0.172
	0.538	0.196	0.103	0.047
Forest sq km	0.693	0.044	0.054	0.201
	0.000	0.615	0.542	0.020
CO2 per GDP	0.280	0.224	0.069	0.003
	0.003	0.011	0.445	0.972
CO2 kt	0.802	0.133	0.026	0.277
	0.000	0.135	0.768	0.001
CO2 per cap.	0.249	0.119	0.563	0.033
	0.008	0.183	0.000	0.710
Urban %	0.086	0.116	0.596	0.110
	0.365	0.180	0.000	0.203
Urban growth	-0.045	-0.038	-0.482	0.032
	0.637	0.663	0.000	0.716
Education	-0.030	-0.138	0.147	-0.131
	0.800	0.220	0.189	0.245
	Ex. debt (to	Ex. Debt %GN	CPIA Debt	CPIA Environ
Ex. Debt %GN	-0.173 0.051			
CPIA Debt	0.135 0.255	-0.404 0.000		
CPIA Environ	0.082 0.493	-0.161 0.174	0.540 0.000	
CPIA prop.	0.048	-0.100	0.538	0.732
	0.689	0.402	0.000	0.000
CPIA trans.	0.042	-0.043	0.563	0.556
	0.723	0.715	0.000	0.000
Protected %	0.004	0.013	-0.042	0.240
	0.962	0.886	0.727	0.046
Protect sq.	0.680	-0.136	-0.067	0.080
	0.000	0.138	0.580	0.509
FDI, net inf	0.826	-0.153	0.225	0.044
	0.000	0.088	0.060	0.717
FDI, % GDP	-0.087 0.333	0.435	0.164 0.173	0.026 0.832

Tourism, peo	0.833	-0.232	0.180	0.168
	0.000	0.012	0.148	0.178
Tourism, % r	-0.230	0.301	-0.000	0.337
	0.016	0.001	0.999	0.008
Tourism, Rec	0.810	-0.237	0.205	0.196
	0.000	0.009	0.093	0.110
Agric. %	0.000	-0.064	-0.128	-0.042
	0.999	0.477	0.275	0.723
Agric. sq km	0.784	-0.157	-0.003	0.006
	0.000	0.079	0.978	0.962
Arable %	0.121	-0.128	0.052	0.064
	0.174	0.152	0.660	0.584
Arable hect.	0.808	-0.170	0.138	0.087
	0.000	0.057	0.238	0.456
Forest %	0.015	0.204	-0.104	-0.046
	0.869	0.022	0.373	0.693
Forest sq km	0.646	-0.087	-0.117	-0.101
	0.000	0.332	0.317	0.387
CO2 per GDP	0.235	-0.086	0.148	0.106
	0.009	0.344	0.212	0.371
CO2 kt	0.756	-0.142	0.162	0.109
	0.000	0.114	0.167	0.357
CO2 per cap.	0.393	-0.220	0.218	0.261
	0.000	0.014	0.064	0.026
Urban %	0.294	-0.041	0.008	0.037
	0.001	0.645	0.948	0.751
Urban growth	-0.208	0.239	-0.268	-0.093
	0.018	0.007	0.021	0.433
Education	-0.157	-0.134	0.108	0.318
	0.162	0.234	0.502	0.043
CPIA trans.	CPIA prop. 0.698 0.000	CPIA trans.	Protected %	Protect sq.
Protected %	0.109 0.367	0.106 0.382		
Protect sq.	-0.115 0.339	-0.051 0.671	0.367 0.000	
FDI, net inf	0.013	-0.008	0.012	0.634
	0.912	0.945	0.897	0.000
FDI, % GDP	0.153	0.051	-0.027	-0.083
	0.201	0.673	0.774	0.369
Tourism, peo	0.035	-0.030	-0.032	0.460
	0.779	0.812	0.732	0.000
Tourism, % r	0.529	0.507	-0.042	-0.207
	0.000	0.000	0.666	0.032
Tourism, Rec				
IUUIISM, REC	0.176	0.136	-0.024	0.403
	0.151	0.267	0.794	0.000

	0.916	0.109	0.015	0.164
Agric. sq km	-0.127 0.278	-0.065 0.578	-0.022 0.804	0.715 0.000
Arable %	0.158 0.176	-0.042 0.720	-0.170 0.053	-0.148 0.088
Arable hect.	0.057 0.625	0.058 0.619	-0.054 0.542	0.621 0.000
Forest %	-0.056 0.635	0.083 0.479	0.301 0.000	0.140 0.109
Forest sq km	-0.267 0.021	-0.153 0.191	0.064 0.468	0.834 0.000
CO2 per GDP	0.032 0.790	-0.183 0.121	-0.132 0.147	0.104 0.250
CO2 kt	0.100 0.396	0.078 0.511	-0.017 0.846	0.565 0.000
CO2 per cap.	0.217 0.066	0.039 0.745	-0.060 0.506	0.180 0.043
Urban %	0.049 0.679	0.091 0.437	0.065 0.463	0.199 0.021
Urban growth	-0.228 0.051	-0.242 0.038	0.107 0.224	-0.064 0.464
Education	0.403 0.009	0.401 0.009	-0.032 0.778	-0.112 0.319
	FDI, net inf	FDI, % GDP	Tourism, peo	Tourism, % r
FDI, % GDP	FDI, net inf 0.006 0.944	FDI, % GDP	Tourism, peo	Tourism, % r
FDI, % GDP Tourism, peo	0.006	FDI, % GDP -0.060 0.523	Tourism, peo	Tourism, % r
	0.006 0.944 0.850 0.000	-0.060	Tourism, peo -0.163 0.098	Tourism, % r
Tourism, peo	0.006 0.944 0.850 0.000 -0.182	-0.060 0.523 0.120	-0.163	Tourism, % r -0.068 0.477
Tourism, peo Tourism, % r	0.006 0.944 0.850 0.000 -0.182 0.059 0.791	-0.060 0.523 0.120 0.215 -0.078	-0.163 0.098 0.922	-0.068
Tourism, peo Tourism, % r Tourism, Rec	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077	-0.163 0.098 0.922 0.000 0.065	-0.068 0.477 -0.097 0.305
Tourism, peo Tourism, % r Tourism, Rec Agric. %	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717 0.840	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077 0.396 -0.066	-0.163 0.098 0.922 0.000 0.065 0.472 0.674 0.000	-0.068 0.477 -0.097 0.305 -0.233 0.013
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717 0.840 0.000 0.001	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077 0.396 -0.066 0.464 -0.089	-0.163 0.098 0.922 0.000 0.065 0.472 0.674 0.000 0.146	-0.068 0.477 -0.097 0.305 -0.233 0.013 -0.044
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable %	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717 0.840 0.000 0.041 0.651 0.700	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077 0.396 -0.066 0.464 -0.089 0.325 -0.096	-0.163 0.098 0.922 0.000 0.065 0.472 0.674 0.000 0.146 0.104 0.632 0.000 -0.036	-0.068 0.477 -0.097 0.305 -0.233 0.013 -0.044 0.642 -0.207
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable % Arable hect.	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717 0.840 0.000 0.041 0.651 0.700 0.000 0.011	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077 0.396 -0.066 0.464 -0.089 0.325 -0.096 0.287 -0.011	-0.163 0.098 0.922 0.000 0.065 0.472 0.674 0.000 0.146 0.104 0.632 0.000 -0.036	-0.068 0.477 -0.097 0.305 -0.233 0.013 -0.044 0.642 -0.207 0.028 -0.044 0.645
Tourism, peo Tourism, % r Tourism, Rec Agric. % Agric. sq km Arable % Arable hect. Forest %	0.006 0.944 0.850 0.000 -0.182 0.059 0.791 0.000 0.033 0.717 0.840 0.000 0.041 0.651 0.700 0.000 0.041 0.651 0.700 0.000 0.011 0.900 0.490	-0.060 0.523 0.120 0.215 -0.078 0.396 -0.077 0.396 -0.066 0.464 -0.089 0.325 -0.096 0.287 -0.091 0.906 -0.050	-0.163 0.098 0.922 0.000 0.065 0.472 0.674 0.000 0.146 0.104 0.632 0.000 -0.036 0.695 0.419 0.000	-0.068 0.477 -0.097 0.305 -0.233 0.013 -0.044 0.642 -0.207 0.028 -0.044 0.645 -0.174 0.065 -0.142

CO2 per cap.	0.275	0.045	0.360	-0.081
	0.002	0.622	0.000	0.395
Urban %	0.179	0.120	0.201	-0.107
	0.044	0.182	0.024	0.259
Urban growth	-0.138	-0.071	-0.201	0.004
	0.123	0.429	0.024	0.966
Education	-0.096	-0.013	-0.024	0.273
	0.397	0.906	0.830	0.019
	Tourism, Rec	Agric. %	Agnia ag Im	Amable %
Agric. %	0.050 0.572	AGLIC. 3	Agric. sq km	Arable %
Agric. sq km	0.645 0.000	0.138 0.101		
Arable %	0.122 0.169	0.480 0.000	-0.032 0.707	
Arable hect.	0.608	0.057	0.816	0.202
	0.000	0.499	0.000	0.016
Forest %	-0.077	-0.513	-0.103	-0.279
	0.392	0.000	0.226	0.001
Forest sq km	0.307	-0.156	0.568	-0.099
	0.000	0.064	0.000	0.243
CO2 per GDP	0.219	0.153	0.291	0.070
	0.016	0.083	0.001	0.428
CO2 kt	0.769	0.057	0.851	0.076
	0.000	0.509	0.000	0.380
CO2 per cap.	0.304	-0.025	0.247	0.003
	0.001	0.779	0.004	0.969
Urban %	0.173	-0.048	0.095	-0.110
	0.050	0.568	0.262	0.192
Urban growth	-0.148	-0.008	-0.032	-0.148
	0.094	0.921	0.706	0.083
Education	-0.068	0.142	-0.198	-0.026
	0.552	0.200	0.073	0.815
	Arable hect.	Forest %	Forest sq km	CO2 per GDP
Forest %	-0.052 0.541			
Forest sq km	0.633 0.000	0.159 0.059		
CO2 per GDP	0.230 0.009	-0.203 0.021	0.095 0.285	
CO2 kt	0.808	-0.044	0.439	0.269
	0.000	0.611	0.000	0.002
CO2 per cap.	0.203	-0.005	0.210	0.681
	0.019	0.957	0.015	0.000
Urban %	0.042 0.623	0.120 0.159	0.170 0.045	0.230
Urban growth	-0.090	-0.078	-0.123	-0.362
	0.291	0.365	0.152	0.000

Education	-0.151 0.173	-0.128 0.253	-0.107 0.339	0.092 0.418
	CO2 kt	CO2 per cap.	Urban %	Urban growth
CO2 per cap.	0.215			
	0.013			
Urban %	0.049	0.502		
	0.576	0.000		
	0 0 0 0 0	0 400	0 450	
Urban growth	-0.076	-0.490	-0.472	
	0.383	0.000	0.000	
Education	-0.100	0.090	-0.008	-0.132
	0.375	0.424	0.945	0.234

Cell Contents: Pearson correlation P-Value

APPENDIX I: Multivariable Logit Regressions (without High-Income Countries)

Binary Logistic Regression: DNS (w/o HI) versus Number of Threatened Species, CO2 emissions (metric tons per capita), Urban population (% of total)

Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 36 (Event) 0 92 Total 128 * NOTE * 128 cases were used * NOTE * 17 cases contained missing values Logistic Regression Table Odds 95% CI P Ratio Lower Upper Predictor Coef SE Coef Z -3.43244 0.674598 -5.09 0.000 Constant Threaten species 0.0022264 0.0009486 2.35 0.019 1.00 1.00 1.00 0.126039 -2.44 0.015 0.0132568 3.97 0.000 CO2 per cap. -0.307527 0.74 0.57 0.94 0.0526475 0.0132568 Urban % 1.05 1.03 1.08 Log-Likelihood = -61.818Test that all slopes are zero: G = 28.461, DF = 3, P-Value = 0.000 Binary Logistic Regression: DNS (w/o HI) versus Number of Threatened Species, CO2 emissions (metric tons per capita), Urban population (% of total), Nationally protected areas (% of total land area) Link Function: Logit Response Information Variable Value Count DNS (w/o HI) 1 35 (Event) 0 87 Total 122 * NOTE * 122 cases were used * NOTE * 23 cases contained missing values Logistic Regression Table Odds 95% CI Z Predictor Coef SE Coef P Ratio Lower Upper -3.95255 0.778515 -5.08 0.000 Constant Threaten species 0.0019600 0.0009835 1.99 0.046 1.00 1.00 1.00 CO2 per cap. -0.297140 0.136873 -2.17 0.030 0.74 0.57 0.97 0.0541716 0.0137935 3.93 0.000 1.08 1.03 Urban % 1.06 Protected % land 0.0371407 0.0207638 1.79 0.074 1.04 1.00 1.08

Log-Likelihood = -57.251Test that all slopes are zero: G = 31.736, DF = 4, P-Value = 0.000

APPENDIX J: Multivariable Ordinary Least Square Regression for Number of DNSs (without High-Income Countries)

Regression Analysis: No. of DNS versus Number of Threatened Species, CPIA policy and institutions for environmental sustainability rating

The regression equation is No. of DNS = - 1.81 + 0.00440 Threaten species + 0.545 CPIA Environ.

72 cases used, 73 cases contain missing values

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 -1.8069
 0.9245
 -1.95
 0.055

 Threaten species
 0.004399
 0.001084
 4.06
 0.000

 CPIA Environ.
 0.5446
 0.2947
 1.85
 0.069

S = 1.38564 R-Sq = 23.8% R-Sq(adj) = 21.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	41.396	20.698	10.78	0.000
Residual Error	69	132.479	1.920		
Total	71	173.875			