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Abstract: 
In this empirical study, we examine one of the fundamental 
assumptions of the Black-Scholes Option Pricing Theory; that the 
proportion of systematic risk of total risk has no effect on intrinsic 
option prices.  This hypothesis was first proposed by Jin-Chuan 
Duan and Jason Wei (2006) and we will use a similar methodology 
in testing the hypothesis that the slope of implied volatility curve is 
related to the proportion of systematic risk of the underlying asset.  
We will use daily option quotes on the components of the S&P100 
index in order to explore the relationship between the systematic 
risk proportion and the slope of the implied volatility curve: 
specifically, we hope to establish that it has a direct impact in that 
the higher the systematic risk proportion, the steeper the slope of 
the implied volatility curve. 
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Abstract: 
 

In this empirical study, we examine one of the fundamental assumptions of the 

Black-Scholes Option Pricing Theory; that the proportion of systematic risk of total risk 

has no effect on intrinsic option prices.  This hypothesis was first proposed by Jin-Chuan 

Duan and Jason Wei (2006) and we will use a similar methodology in testing the 

hypothesis that the slope of implied volatility curve is related to the proportion of 

systematic risk of the underlying asset.  We will use daily option quotes on the 

components of the S&P100 index in order to explore the relationship between the 

systematic risk proportion and the slope of the implied volatility curve: specifically, we 

hope to establish that it has a direct impact in that the higher the systematic risk 

proportion, the steeper the slope of the implied volatility curve. 

1. Introduction 

The Black-Scholes Option Pricing Theory (1973) is one of the cornerstones of 

modern continuous time finance and is used in a multitude of applications.  For all of its 

elegance, there is a huge amount of evidence in academic literature that the Black-

Scholes model fails empirically; for instance, options with different strike prices on the 

same underlying stock give different implied volatilities (we should expect them to be the 

same) – a phenomenon known as the volatility smile.  Another similar pattern is noticed 

when looking at options on the same underlying security but with different maturities.  In 

this case, the term structure of volatility is not constant but rather flattens with maturity.  

These two problems with the volatility surface have been widely studied (for example, 

Dumas, Fleming and Whaley (1998)). 



These two problems can be traced to two of the key assumptions of the Black 

Scholes model: first, the stock price follows a continuous path through time (the 

geometric Brownian motion assumption) and that the instantaneous volatility of the stock 

rate of return is nonstochastic.   

There are a number of key assumptions behind the Black Scholes model and one 

of the most debated assumptions is that of assuming the price of the underlying security 

follows a geometric Brownian motion Wt, in particular with constant drift μ (Expected 

gain) and volatility σ:  

 

Empirically, when used to price options, the volatility assumption is normally 

obtained through some historic average of total volatility.  Under the CAPM theory, risk 

exists on two dimensions: systematic and unsystematic.  If we break down total volatility 

into its systematic and unsystematic components, we may find that it is easier to estimate 

the future systematic component of total volatility as it is much harder to make assertions 

about future unsystematic (firm specific) volatilities than it is about the general market. 

Since the Black Scholes paper, there has been much theoretical work done in 

improving option pricing models by relaxing the assumption about the underlying asset’s 

return distribution: Cox and Ross (1975) put forward a pure jump model and Merton 

(1976) a mixed diffusion jump model, both of which relaxed the continuity assumption.  

The constant volatility assumption was relaxed by Cox and Ross (1976) with the constant 

elasticity of variance diffusion model, Geske (1979) compound option diffusion model 

and Rubenstein (1985) with the displaced diffusion model.  Other models combining the 

two have since been proposed including Heston (1993).  Generally, these can be classed 



as models including jump-diffusion processes, models with stochastic volatility and local 

volatility models.  These are all important developments, although they can be very hard 

to implement and may not address all of the shortcomings of the Black-Scholes Option 

Pricing Model. 

There are some other empirical problems that appear to be at odd with the risk 

neutral pricing assumption of Black-Scholes and cannot easily be dealt with: that the 

Black-Scholes implied volatilities tend to be higher than the historical volatility, that 

index options have a more pronounced volatility smile / smirk than individual equity 

options and that the risk neutral return distribution’s negative skewness is more 

pronounced that that of the physical return distribution (Bakshi and Madan (2006), 

Dennis and Mayhew (1998)). 

So, in testing to see if the proportion of systematic risk is correlated with the level 

and slope of implied volatility, we hope to gain insight into whether or not the systematic 

risk proportion as a variable can partially explain some of the empirically observed 

shortcomings of the Black-Scholes model.  There has already been some work in this 

area: for example, Dennis and Mayhew (2002) established empirically the link between 

risk-neutral skewness and systematic risk; Bakshi, Madan, Kapadia (2003) demonstrated 

the empirical pricing differences of individual stock options and index options is related 

to the differences in risk-neutral skewness and kurtosis.  Duan and Wei (2006) argued 

that implied volatility, risk-neutral skewness and kurtosis are all tied to systematic risk, 

which is consistent with the local risk-neutral valuation theory of Duan (1995) which tied 

the option price of assets exhibiting a GARCH-type feature to the underlying asset’s risk 

premium.   



Duan and Wei (2006) conducted tests and concluded that systematic risk 

proportion is related to both the slope and the level of the implied volatility curve and 

proposed that systematic risk is priced into options.  Specifically, as the risk-neutral 

return distribution is different from the physical return distribution by a risk premium 

term, the systematic risk proportion may help to explain some of the empirically observed 

irregularities.  This may be intuitive on the surface: for example, equity indices are 

expected to have a higher amount of systematic risk versus individual stocks which is 

consistent with their results: when adjusting for different levels of total risk, a higher 

amount of systematic risk leads to a higher level of implied volatility and a steeper 

implied volatility curve. 

In this study, we hope to verify these results by using a different data set and 

testing slightly different hypotheses. 

Our empirical analysis will begin using option data sourced from OptionMetrics 

(which contains data on all US listed index and equity options and the corresponding 

underlying assets - US exchange listed and NASDAQ equities and market indices).  The 

option data is on a daily basis from the period of Jan 1st 2000 to December 31st 2004 and 

consists of over 14 million options written on the components of the S&P 100 Index.  We 

test one of the null hypotheses in Duan and Wei: 

• The slope of the implied volatility curve is not related to the systematic risk 

proportion. 

2. Methodology 

As previously mentioned, the Black-Scholes model (1973) states that option 

prices only depend on the over level of risk of the underlying asset and not on the level of 



systematic risk or the risk premium.  Duan and Wei give the example: imagine two stocks 

that are identical in every aspect except for the level of systematic risk or risk premium. 

The prices of options on these two stocks must be equal if the terms of the options are 

identical. When these option prices are converted into implied volatilities, they should not 

be related to systematic risk at all.  

 In essence, we want to test the hypothesis:  

a. The slope of the implied volatility curve of the options on the jth stock is 

unrelated to the systematic risk proportion bj. 

The data set consists of over 14 million observations from daily option data on the 

component stocks of the S&P 100 Index for the period January 1st 2000 until December 

31st 2004 (five years worth of data or a total of 260 weeks).  This data was sourced from 

OptionMetrics and included measures of implied volatility, time to expiration and strike.  

The options are American style and traded on the Chicago Board of Options Exchange.  

Daily stock prices and returns for the S&P 100 component stocks for the period January 

1st 1999 until December 31st 2004 were sourced from the Center for Research in Security 

Prices (“CRSP”) and are used to calculate historical volatilities, betas, and hence the 

proportion of systematic risk.  There are several calculation definitions to introduce 

before conducting tests of hypotheses.  First off, historical volatility σhistorical is calculated 

on a daily basis for each stock on a 22 (one month) rolling window off the daily standard 

deviations of the returns. 

Systematic risk is calculated using a beta in a normal CAPM fashion that 

regresses the returns of the individual components of the S&P100 against the returns of 



the S&P500 index over a 250 day (one year) rolling window via ordinary least squares 

regression.  Thus for stock j,  

Rjt = αj + βjRmt + εjt      [1] 

From this, we can calculate  

Systematic Risk = β2
j σ2

m     [2] 

Hence: Total Risk = σ2
j      [3] 

Hence the systematic risk proportion is  

bj = β2
j σ2

m / σ2
j      [4] 

To test our hypothesis, we use a similar method to Duan Wei (2006) and perform 

a two-pass regression on our data set.  We first need to obtain time series of estimates for 

the level and slope of the implied volatility curve.  These results are then used to run 

cross-sectional regressions to test our hypotheses and see if they are related to the 

systematic risk proportion as defined above.  The cross-sectional regression is repeated 

over several time periods and the time-averaged regression coefficients are then used to 

determine whether or not we reject our hypotheses. 

When calculating the level and slope of the implied volatility curve, we need to 

define the number of non-overlapping windows.  Because of the number of options, we 

have opted for a one week window.  We also define a moneyness function:  

M = ln(S/K) / σ√T      [5] 

We split all of the option data into two groups: the ‘left hand side’ with S/K < 1 

(corresponding to out of the money calls or in the money puts) and those on the ‘right 

hand side’ with S/k > 1 (in the money calls or out of the money puts).  We then split these 



into weekly periods and regress the implied volatility against the moneyness function 

defined above for the each of the jth stock: 

σjk
implied = α0j + α1j (ln(Sjk/Kjk) / σ j

 historical√Tjk) for k = 1, 2…Ij [6] 

for 260 weeks.  In the above notation, Ij signifies the number of options for the jth stock. 

Here, α0j represents the level of the implied volatility curve and α1j the slope of the 

implied volatility curve unadjusted for different levels of systematic risk across time.  We 

will have 261 observations for each α0j and α1j for each of the 100 stocks.  It is worth 

noting that this is a departure from the method of Duan Wei (2006) which tests the 

following equation over four different moneyness buckets: 

 

The intercept α0j and regression coefficient a1j are measures of the level and the 

slope of the implied volatility for a particular moneyness bucket, after adjusting for the j-

th stock’s total risk.  By subtracting out some proxy of historic volatility, this allows the 

regression to make tests about the level of the slope which we have chosen to omit in this 

study.  

For the cross-sectional regressions, we will perform two different regressions for 

each of the 261 non-overlapping periods using α1j from the first regression as dependent 

variables for each of the j = 1,2,…, 100.  Measures for skewness and kurtosis are 

calculated off a 250 day window of daily data. 

α1j = γ0 + γ1 * bj + ξ j      [7] 

α1j = γ0 + γ1 * bj + γ2 * Skewj + γ3 * Kurtosisj + ξ j  [8] 

The time series of these 261 regression coefficients are averaged and a 

corresponding t-statistic is calculated.  Equation [7] represents an unconditional test of 



Hypothesis (a) that the slope of the implied volatility curve of the options on the jth stock 

is unrelated to the systematic risk proportion bj.  We should not reject it if γ1 = 0.   

Equation [8] represents a conditional test of Hypothesis (a) controlling for the 

effects of the risk-neutral skewness and kurtosis, and we should obtain γ1 = 0 if the 

systematic risk proportion exerts no effect once the influence of the risk-neutral skewness 

and kurtosis is considered. 

3. Data Analysis 

We expect to find that a strong link exists between the slope of the implied 

volatility and the level of systematic proportion.  The most striking feature is that the 

greater the proportion of systematic risk, the greater the slope of the implied volatility 

curve. 

 We expect to reject the first hypothesis.  We have already mentioned that a key 

point of contention in the original Black Scholes model is that the underlying asset’s 

price follows geometric Brownian motion with constant drift and standard deviation, 

implying that the returns on the underlying security is lognormally distributed.  It is a 

well established fact that the return distribution of the market is leptokurtic (TG Andersen, 

T Bollerslev, FX Diebold, H Ebens 2000).  If we were to include this in the option 

pricing model (and some have, with random jumps built in to the underlying asset price 

movement) we would see precisely the same volatility smile.  Hence one reason for the 

volatility smile is the leptokurtic distribution of underlying asset returns.  The greater the 

systematic risk proportion, the greater the exposure the underlying asset has to the market 

return distribution (and hence exposure to the leptokurtic return distribution) and the 



greater the effect this leptokurtic distribution will have on the slope of the implied 

volatility curve. 

Another possible explanation lies with the empirically established fact that market 

returns are negatively skewed (Berd, Engle, Voranov 2005).  This empirically observed 

physical return distribution is in direct conflict with the Black Scholes assumption with 

the risk neutral distribution; specifically, the physical return distribution differs from the 

risk neutral distribution by a risk premium term, resulting in the negative skew.  Again, a 

higher amount of systematic risk means that trends in the market returns (specifically, the 

negative skewness) will be reflected in a more pronounced affect on the implied volatility 

curve – so that with a greater level of systematic risk, the steeper the slope of the implied 

volatility curve will be.   

 Our second hypothesis tests whether or not the same relationship between the 

systematic risk proportion and the slope of the implied volatility curve still exists even 

when we control for the effects of negative skewness and leptokurtosis.  If we reject this 

hypothesis, then we can show that systematic risk proportion affects the slope of the 

implied volatility curve beyond merely increasing the exposure of the curve to observed 

differences between the physical return distribution and the risk neutral measure assumed 

by Black Scholes. 

Our results firmly reject both hypotheses: clearly, there is a strong relationship 

between the systematic risk proportion and the slope of the implied volatility curve as 

proxied by the moneyness function defined previously.  Additionally, there are a number 

of interesting results. 



The results testing the slope of the implied volatility and the systematic risk 

proportion are as follows.  We obtained a co-efficient of -0.005523442 with a T-statistic 

of -0.80773524 for the left side of the curve with S/K < 1 (corresponding to out of the 

money calls) and a coefficient of 0.01171764 with a T-statistic of 2.380935732 for the 

section of the curve S/K > 1. 

Test 1 Full Sample
Coefficient T-statistic

S/K < 1 -0.00552 -0.80774
S/K > 1 0.01172 2.38094  

This seems to indicate that there is a link between the amount of systematic risk 

and the slope of the implied volatility curve on both the left and right sides of the curve 

but with a stronger link on the right side of the curve which corresponds to in the money 

calls.  These results are exactly as we expect: because of the negative skew of the 

underlying physical return distribution (and to a lesser degree, the leptokurtic nature of it), 

we expect systematic risk proportion to have a greater effect on in the money calls.  

Although we normally we normally think of implied volatility curves for equity options 

as being downsloping on the left with a turning point on the right, because of the way we 

have defined our moneyness function (with ln(S/K) rather than the conventional K/S), we 

expect to have a stronger relationship and a positive coefficient for our right hand side (in 

the money calls). 

Similarly, with the weaker effect for out of the money calls (corresponding to our 

left hand side of the curve ln(S/K), we have a negative sign as we may expect to see a 

slightly negative slope, so a higher systematic risk proportion will still increase the slope 

of the implied volatility curve.  The other signs are clearly correct, as systematic risk 

proportion should always be non negative by definition, as we square the beta in the 



systematic risk proportion.  It seems clear that systematic risk proportion does have an 

effect on the slope of the implied volatility curve; namely, the higher the systematic risk 

proportion, the steeper the slope of the implied volatility curve. 

We also can examine the results of the second test that adjusts for the effects of 

skewness and kurtosis of the underlying return distribution.  We obtained a co-efficient of 

-0.011348909 with a T-statistic of -1.674398784 for the left side of the curve and a co-

efficient of 0.014941934 with a corresponding T-statistic of 2.858496766 for the right 

side of the curve.   

Test 2 Full Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.01135 -1.67440 -0.00003 -0.23848 0.00375 2.51896
S/K > 1 0.01494 2.85850 0.00054 3.98238 0.00076 0.79382

 

This further strengthens our conjecture that there exists a link between systematic 

risk proportion and the slope of the implied volatility curve - the coefficients on both the 

left and right hand side of the curve are significantly non-zero both in terms of the size as 

well as the T-statistic.  Once again, the relationship is stronger for in the money calls (our 

right hand side), but also exists on the left hand side of the curve too.   

 The most startling result from this test is when controlling for the effects of the 

kurtosis and skewness of the underlying asset returns, the effect of systematic risk 

proportion on the slope of the implied volatility curve is even stronger than our first 

hypothesis results both in terms of the absolute value of the coefficients average and in 

terms of the T-statistics.  Since we attributed part of the relationship between systematic 

risk proportion and the slope of the implied volatility curve to the skewness and kurtosis 

of the underlying return, it seems strange that the relationship still exists when controlling 



for the factors.  Even more strange is that the relationship appears stronger with these 

factors. 

 There are a number of possible explanations for this.  Firstly, the measures of 

skewness and kurtosis that were calculated based on a year long rolling window of daily 

returns for the underlying stock.  Calculating these measures off daily data (regardless of 

the window size) may not be the best way.  Theoretically, if the stock returns are really 

independent, identically distributed between each period, if we increase the length of 

each period, we would expect to see kurtosis and skewness to closer reflect a normal 

distribution by the central limit theorem.  However, this is not the case.  Because of a 

time aggregation effect, as the time period increases, we normally see less kurtosis but 

greater negative skew (for example, Berd, Engle, Voranov 2005).  Hence in order to more 

accurately account for the effect of skewness and kurtosis of the underlying return 

distribution on the systematic risk proportion, we may redefine our measures for 

skewness and kurtosis (and possibly even our volatility measures) to be based off a yearly 

window of monthly data rather than daily data.  If we do this, we should expect to 

observe greater negative skewness in the underlying return distribution, in which case we 

should expect the significance of the systematic risk proportion coefficient to be smaller 

after controlling for kurtosis and skewness. 

We must also worry about our proxy of systematic risk proportion.  Using the 

beta derived from a CAPM regression off one year of daily data may not be the best 

indicator of systematic risk.  For example, if the market volatility is σm = 0.2 and there 

are two stocks, A and B, with σA = 0.4 and σB = 0.5. If the stocks’ correlations with the 

market are ρ

B

A = 0.75 and ρB = 0.60, then the two stocks will have the same beta, 1.50, yet 



very different systematic risk proportions, 0.563 versus 0.360.   We may use different 

other models for equity risk such as a three factor French Fama model (in fact, in Duan 

Wei, they recalculate tests using these risk factors).  Instead, we can conduct the 

following tests which use beta instead of (or in conjunction with) systematic risk 

proportion: 

α1j = γ0 + γ1 * βj + ξ j       [9] 

α1j = γ0 + γ1 * βj + γ2 * bj +γ3 * Skewj + γ4 * Kurtosisj + ξ j  [10] 

Our results are very similar: when looking at [9], the relationship between beta 

and the slope of the implied volatility curve we have significant relationships that 

indicate the higher the beta, the steeper the slope of the implied volatility curve.  The only 

difference is that the effect seems stronger on the left hand side for out of the money calls 

which is a bit unusual. 

Test 1 Full Sample
Coefficient T-statistic

S/K < 1 -0.03812 -20.00439
S/K > 1 0.01382 8.91056  

When we run regression [10], we observe similar patterns; namely, the same over 

all observation remains the same (the higher the beta, the steeper the slope of the implied 

volatility curve is).  The unusual observation remains; namely, that after controlling for 

the skewness, kurtosis, and now beta, we still see a strong relationship between 

systematic risk proportion and the slope of the implied volatility curve. 

Test 2 Full Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.04023 -19.70191 -0.00067 -5.35851 0.00461 3.00874
S/K > 1 0.01531 9.80677 0.00074 5.82256 0.00036 0.38916

Test 3 Full Sample

Coefficient T-statistic

Systematic Risk 
Proportion 
Coefficient T-statistic

Kurtosis 
Coefficient T-statistic

Skewness 
Coefficient T-statistic

S/K < 1 -0.07111 -19.06982 0.14333 15.93996 -0.00011 -0.78993 0.00250 1.84605
S/K > 1 0.03378 12.42330 -0.08530 -11.54820 0.00043 3.21525 0.00056 0.63562



There are a number of further tests we could carry out.  For example, we have so 

far restricted ourselves to slope tests (testing the slope of the implied volatility curve).  If 

we recalibrate our first regression to include a term that allows us to compare the level of 

the implied volatility curve in addition to the slope, we may be able to gain further insight 

into the affect of systematic risk proportion on implied volatility curves.   

We can test the following hypothesis, similar to our original one:  

b.  The level of the implied volatility curve of the options on the jth  stock is 

unrelated to the systematic risk proportion bj; and 

We would run the following as our first regression:  

σjk
implied - σ j

 historical =α0j + α1j (ln(Sjk/Kjk) / σ j
 historical√Tjk) for k = 1, 2…Ij [11] 

Here we subtract the historical volatility (alternatively, we could use the at the money 

volatility) in order to allow comparisons between different days and stocks, for which the 

historic volatility changes.  We would then run the following tests for α0j: 

α0j = γ0 + γ1 * bj + ξ j      [12] 

α0j = γ0 + γ1 * bj + γ2 * Skewj + γ3 * Kurtosisj + ξ j  [13] 

It may also be interesting to see how maturity of different options affects the slope 

of the implied volatility curve.  As time increases, we may expect to see more of the 

negative skewness affect the implied volatility curve.  We could set this test up as follows:  

α1j = γ0 + γ1 * bj + T*γ2 + ξ j      [14] 

α1j = γ0 + γ1 * bj + γ2 * Skewj + γ3 * Kurtosisj + T*γ4 + ξ j  [15] 

Here, T represents a dummy variable so that we can observe the impact of 

different maturities on the implied volatility curve.  In addition, other versions of the 



second regression can include dummy variables for stock volatility or market volatility in 

addition to merely the proportion of systematic risk.   

It is also important to comment on the nature of this data set vs the data set that 

used in Duan Wei.  They covered the period of January 1st 1991 to December 31st 1995 

which was showed a clear upward trend in the general market, with substantial volatility.  

In our data set, we cover the period January 31st 2000 to December 31st 2004 which is a 

low volatility period but a wide range of data with both the tech bust and subsequent pick 

up.  Especially with the low market volatility, we may see abnormal amounts of 

idiosyncratic risk which may distort our results somewhat.  Beyond merely timing 

differences, the scope of the data set is also very different.  At first, I decided to broaden 

the data set to include not only the thirty most heavily traded options (by underlying), but 

to include all components of the S&P100.  In retrospect, this may have been a mistake as 

not all underlying assets are heavily traded or have very liquid option markets.  It is 

possible to rerun the tests using the thirty most heavily traded issuances – the results are 

as follows: 

Test 1 30 Largest Volume Sample
Coefficient T-statistic

0.00105 0.02740
0.16467 5.63102  

Test 2 30 Largest Volume Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.00433 -0.66287 -0.00106 -3.30023 0.00531 3.04015
S/K > 1 0.03823 7.64690 0.00034 1.29958 -0.00736 -5.96332

After running the tests on this smaller sample, we find that the results are more or 

less in line with our original results across the full sample.  The effect is even stronger on 

the right hand side (for in the money calls) for both tests and we also see the same effect 



that the relationship is stronger after controlling for the kurtosis and skewness of the 

underlying return distribution.  The only difference lies with the sign of the coefficient 

for the left hand side for the first test. 

4. Conclusion 

In conclusion, we have verified the result established in the Duan Wei paper that 

the level of systematic risk proportion has a direct effect on the slope of the implied 

volatility curve.  This matches with our expectations; for example, we know that 

empirically, the physical return distribution of the underlying exhibits a number of 

features that distinguishes it from the risk neutral measure assumed by Black Scholes.  

Even adjusting for this in our second hypothesis test, we still find that there is a clear link 

between systematic risk proportion and the slope of the implied volatility curve.  This 

effect remains across different specifications of the systematic risk component.  This is 

consistent with some of the alternative option pricing models that have been developed, 

as some local volatility models (GARCH option pricing model, Duan 1995) predicts that 

a higher systematic risk proportion leads to a steeper slope in the implied volatility curve. 

This effect is most pronounced on the right hand side of our curve, which 

corresponds to out of the money calls / in the money puts, which is consistent with our 

assumptions about the properties of the distribution of the underlying returns. 

The effect observed in this study is a lot weaker than the original Duan paper and 

there is an unusual development in that after controlling for the skewness and kurtosis of 

the underlying physical return distribution, the effect of systematic risk proportion is even 

stronger on the slope of the implied volatility curve.  Part of this can be explained by our 



testing procedures, specifically the ways in which skewness and kurtosis measures were 

calculated.   

 



Hypothesis Test Results
Test 1 Full Sample 30 Largest Volume Sample

Coefficient T-statistic Coefficient T-statistic
S/K < 1 -0.00552 -0.80774 0.00105 0.02740
S/K > 1 0.01172 2.38094 0.16467 5.63102

Test 2 Full Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.01135 -1.67440 -0.00003 -0.23848 0.00375 2.51896
S/K > 1 0.01494 2.85850 0.00054 3.98238 0.00076 0.79382

Test 2 30 Largest Volume Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.00433 -0.66287 -0.00106 -3.30023 0.00531 3.04015
S/K > 1 0.03823 7.64690 0.00034 1.29958 -0.00736 -5.96332



Further Test Results
Tests using Beta rather than Systematic Risk Proportion

Test 1 Full Sample
Coefficient T-statistic

S/K < 1 -0.03812 -20.00439
S/K > 1 0.01382 8.91056

Test 2 Full Sample

Coefficient T-statistic
Kurtosis 

Coefficient T-statistic
Skewness 
Coefficient T-statistic

S/K < 1 -0.04023 -19.70191 -0.00067 -5.35851 0.00461 3.00874
S/K > 1 0.01531 9.80677 0.00074 5.82256 0.00036 0.38916

Test 3 Full Sample

Coefficient T-statistic

Systematic Risk 
Proportion 
Coefficient T-statistic

Kurtosis 
Coefficient T-statistic

Skewness 
Coefficient T-statistic

S/K < 1 -0.07111 -19.06982 0.14333 15.93996 -0.00011 -0.78993 0.00250 1.84605
S/K > 1 0.03378 12.42330 -0.08530 -11.54820 0.00043 3.21525 0.00056 0.63562
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