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Abstract

In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence
of n trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit al-
gorithms with a small finite strategy set is quite well understood, bandit problems with large strategy sets
are still a topic of very active investigation, motivated bypractical applications such as online auctions
and web advertisement. The goal of such research is to identify broad and natural classes of strategy sets
and payoff functions which enable the design of efficient solutions.

In this work we study a very general setting for the multi-armed bandit problem in which the strate-
gies form a metric space, and the payoff function satisfies a Lipschitz condition with respect to the
metric. We refer to this problem as theLipschitz MAB problem. We present a solution for the multi-
armed problem in this setting. That is, for every metric space (L, X) we define an isometry invariant
MaxMinCOV(X) which bounds from below the performance of Lipschitz MAB algorithms forX , and we
present an algorithm which comes arbitrarily close to meeting this bound. Furthermore, our technique
gives even better results for benign payoff functions.

1 Introduction

In a multi-armed bandit problem, an online algorithm must choose from a set of strategies in a sequence
of n trials so as to maximize the total payoff of the chosen strategies. These problems are the principal
theoretical tool for modeling the exploration/exploitation tradeoffs inherent in sequential decision-making
under uncertainty. Studied intensively for the last three decades [7, 8, 13], bandit problems are having
an increasingly visible impact on computer science becauseof their diverse applications including online
auctions, adaptive routing, and the theory of learning in games. The performance of a multi-armed bandit
algorithm is often evaluated in terms of itsregret, defined as the gap between the expected payoff of the
algorithm and that of an optimal strategy. While the performance of bandit algorithms with a small finite
strategy set is quite well understood, bandit problems withexponentially or infinitely large strategy sets are
still a topic of very active investigation [1, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 19].

Absent any assumptions about the strategies and their payoffs, bandit problems with large strategy sets
allow for no non-trivial solutions — any multi-armed banditalgorithm performs as badly, on some inputs,
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as random guessing. But in most applications it is natural toassume a structured class of payoff functions,
which often enables the design of efficient learning algorithms [16]. In this paper, we consider a broad and
natural class of problems in which the structure is induced by a metric on the space of strategies. While
bandit problems have been studied in a few specific metric spaces (such as a one-dimensional interval)
[1, 4, 9, 15, 22], the case of general metric spaces has not been treated before, despite being an extremely
natural setting for bandit problems. As a motivating example, consider the problem faced by a website
choosing from a database of thousands of banner ads to display to users, with the aim of maximizing the
click-through rate of the ads displayed by matching ads to users’ characterizations and the web content that
they are currently watching. Independently experimentingwith each advertisement is infeasible, or at least
highly inefficient, since the number of ads is too large. Instead, the advertisements are usually organized into
a taxonomy based on metadata (such as the category of productbeing advertised) which allows a similarity
measure to be defined. The website can then attempt to optimize its learning algorithm by generalizing from
experiments with one ad to make inferences about the performance of similar ads [22, 23]. Abstractly, we
have a bandit problem of the following form: there is a strategy setX, with an unknown payoff function
µ : X → [0, 1] satisfying a set of predefined constraints of the form|µ(u) − µ(v)| ≤ δ(u, v) for some
u, v ∈ X andδ(u, v) > 0. In each period the algorithm chooses a pointx ∈ X and observes an independent
random sample from a payoff distribution whose expectationis µ(x).

A moment’s thought reveals that this abstract problem can beregarded as a bandit problem in a metric
space. Specifically, ifL(u, v) is defined to be the infimum, over all finite sequencesu = x0, x1, . . . , xk = v
in X, of the quantity

∑
i δ(xi, xi+1), thenL is a metric1 and the constraints|µ(u)−µ(v)| < δ(u, v) may be

summarized by stating thatµ is a Lipschitz function (of Lipschitz constant1) on the metric space(L,X). We
refer to this problem as theLipschitz MAB problemon (L,X), and we refer to the ordered triple(L,X, µ)
as aninstanceof the Lipschitz MAB problem.2

Prior work. While our work is the first to treat the Lipschitz MAB problem in general metric spaces,
special cases of the problem are implicit in prior work on thecontinuum-armed bandit problem [1, 4, 9,
15] — which corresponds to the space[0, 1] under the metricLd(x, y) = |x − y|1/d, d ≥ 1 — and the
experimental work on “bandits for taxonomies” [22], which corresponds to the case in which(L,X) is a tree
metric. Before describing our results in greater detail, itis helpful to put them in context by recounting the
nearly optimal bounds for the one-dimensional continuum-armed bandit problem, a problem first formulated
by R. Agrawal in 1995 [1] and recently solved (up to logarithmic factors) by various authors [4, 9, 15]. In the
following theorem and throughout this paper, theregretof a multi-armed bandit algorithmA running on an
instance(L,X, µ) is defined to be the functionRA(t) which measures the difference between its expected
payoff at timet and the quantityt supx∈X µ(x). The latter quantity is the expected payoff of always playing
a strategyx ∈ argmax µ(x) if such strategy exists.

Theorem 1.1([4, 9, 15]). For anyd ≥ 1, consider the Lipschitz MAB problem on(Ld, [0, 1]). There is an
algorithmA whose regret on any instanceµ satisfiesRA(t) = Õ(tγ) for everyt, whereγ = d+1

d+2 . No such

algorithm exists for anyγ < d+1
d+2 .

In fact, if the time horizont is known in advance, the upper bound in the theorem can be achieved by
an extremely naı̈ve algorithm which simply uses an optimalk-armed bandit algorithm (such as theUCB1
algorithm [2]) to choose strategies from the setS = {0, 1

k , 2
k , . . . , 1}, for a suitable choice of the param-

eterk. While the regret bound in Theorem 1.1 is essentially optimal for the Lipschitz MAB problem in
(Ld, [0, 1]), it is strikingly odd that it is achieved by such a simple algorithm. In particular, the algorithm

1More precisely, it is a pseudometric because some pairs of distinct pointsx, y ∈ X may satisfyL(x, y) = 0.
2 When the metric space(L, X) is understood from context, we may also refer toµ as an instance.
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approximates the strategy set by a fixed meshS and does not refine this mesh as it gains information about
the location of the optimal strategy. Moreover, the metric contains seemingly useful proximity information,
but the algorithm ignores this information after choosing its initial mesh. Is this really the best algorithm?

A closer examination of the lower bound proof raises furtherreasons for suspicion: it is based on a
contrived, highly singular payoff functionµ that alternates between being constant on some distance scales
and being very steep on other (much smaller) distance scales, to create a multi-scale “needle in haystack”
phenomenon which nearly obliterates the usefulness of the proximity information contained in the metric
Ld. Can we expect algorithms to do better when the payoff function is more benign? For the Lipschitz MAB
problem on(L1, [0, 1]), the question was answered affirmatively in [9, 4] for some classes of instances, with
algorithms that are tuned to the specific classes.

Our results and techniques. In this paper we consider the Lipschitz MAB problem on arbitrary metric
spaces. We are concerned with the following two main questions motivated by the discussion above:

(i) What is the best possible bound on regret for a given metric space?

(ii) Can one take advantage of benign payoff functions?

In this paper we give a complete solution to (i), by describing for every metric spaceX a family of algorithms
which come arbitrarily close to achieving the best possibleregret bound forX. We also give a satisfactory
answer to (ii); our solution is arbitrarily close to optimalin terms of the zooming dimension defined below.
In fact, our algorithm for (i) is an extension of the algorithmic technique used to solve (ii).

Our main technical contribution is a new algorithm, thezooming algorithm, that combines the upper
confidence bound technique used in earlier bandit algorithms such asUCB1 with a noveladaptive refinement
step that uses past history to zoom in on regions near the apparent maxima ofµ and to explore a denser mesh
of strategies in these regions. This algorithm is a key ingredient in our design of an optimal bandit algorithm
for every metric space(L,X). Moreover, we show that the zooming algorithm can perform significantly
better on benign problem instances. That is, for every instance(L,X, µ) we define a parameter called the
zooming dimension, and use it to bound the algorithm’s performance in a way thatis often significantly
stronger than the corresponding per-metric bound. Note that the zooming algorithm isself-tuning, i.e. it
achieves this bound without requiring prior knowledge of the zooming dimension.

To state our theorem on the per-metric optimal solution for (i), we need to sketch a few definitions which
arise naturally as one tries to extend the lower bound from [15] to general metric spaces. Let us say that a
subsetY in a metric spaceX has covering dimensiond if it can be covered byO(δ−d) sets of diameterδ
for all δ > 0. A point x ∈ X has local covering dimensiond if it has an open neighborhood of covering
dimensiond. The spaceX has max-min-covering dimensiond = MaxMinCOV(X) if it has no subspace
whose local covering dimension is uniformly bounded below by a number greater thand.

Theorem 1.2.Consider the Lipschitz MAB problem on a compact metric space(L,X). Letd = MaxMinCOV(X).
If γ > d+1

d+2 then there exists a bandit algorithmA such that for every problem instanceI it satisfies

RA(t) = OI(tγ) for all t. No such algorithm exists ifd > 0 andγ < d+1
d+2 .

In generalMaxMinCOV(X) is bounded above by the covering dimension ofX. For metric spaces which
are highly homogeneous (in the sense that any twoǫ-balls are isometric to one another) the two dimensions
are equal, and the upper bound in the theorem can be achieved using a generalization of the naı̈ve algorithm
described earlier. The difficulty in Theorem 1.2 lies in dealing with inhomogeneities in the metric space.3

3To appreciate this issue, it is very instructive to considera concrete example of a metric space(L, X) whereMaxMinCOV(X)
is strictly less than the covering dimension, and for this specific example design a bandit algorithm whose regret boundsare better
than those suggested by the covering dimension. This is further discussed in Section 3.
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It is important to treat the problem at this level of generality, because some of the most natural applications
of the Lipschitz MAB problem, e.g. the web advertising problem described earlier, are based on highly
inhomogeneous metric spaces. (That is, in web taxonomies, it is unreasonable to expect different categories
at the same level of a topic hierarchy to have the roughly the same number of descendants.)

The algorithm in Theorem 1.2 combines the zooming algorithmdescribed earlier with a delicate trans-
finite construction over closed subsets consisting of “fat points” whose local covering dimension exceeds a
given thresholdd. For the lower bound, we craft a new dimensionality notion, the max-min-covering di-
mension introduced above, which captures the inhomogeneity of a metric space, and we connect this notion
with the transfinite construction that underlies the algorithm.

For “benign” input instances we provide a better performance guarantee for the zooming algorithm.
The lower bounds in Theorems 1.1 and 1.2 are based on contrived, highly singular, “needle in haystack”
instances in which the set of near-optimal strategies is astronomically larger than the set of precisely optimal
strategies. Accordingly, we quantify the tractability of aproblem instance in terms of the number of near-
optimal strategies. We define thezooming dimensionof an instance(L,X, µ) as the smallestd such that the
following covering property holds: for everyδ > 0 we require onlyO(δ−d) sets of diameterδ/8 to cover
the set of strategies whose payoff falls short of the maximumby an amount betweenδ and2δ.

Theorem 1.3. If d is the zooming dimension of a Lipschitz MAB instance then at any timet the zooming
algorithm suffers regret̃O(tγ), γ = d+1

d+2 . Moreover, this is the best possible exponentγ as a function ofd.

The zooming dimension can be significantly smaller than the max-min-covering dimension. Let us
illustrate this point with two examples (where for simplicity the max-min-covering dimension is equal to
the covering dimension). For the first example, consider a metric space consisting of a high-dimensional
part and a low-dimensional part. For concreteness, consider a rooted treeT with two top-level branchesT ′

andT ′′ which are complete infinitek-ary trees,k = 2, 10. Assign edge weights inT that are exponentially
decreasing with distance to the root, and letL be the resulting shortest-path metric on the leaf setX.4 If
there is a unique optimal strategy that lies in the low-dimensional partT ′ then the zooming dimension is
bounded above by the covering dimension ofT ′, whereas the “global” covering dimension is that ofT ′′.
In the second example, let(L,X) be a homogeneous high-dimensional metric, e.g. the Euclidean metric
on the unitk-cube, and the payoff function isµ(x) = 1 − L(x, S) for some subsetS. Then the zooming
dimension is equal to the covering dimension ofS, e.g. it is0 if S is a finite point set.

Discussion. In stating the theorems above, we have been imprecise about specifying the model of com-
putation. In particular, we have ignored the thorny issue ofhow to provide an algorithm with an input
containing a metric space which may have an infinite number ofpoints. The simplest way to interpret our
theorems is to ignore implementation details and interpret“algorithm” to mean an abstract decision rule, i.e.
a (possibly randomized) function mapping a history of past observations(xi, ri) ∈ X × [0, 1] to a strategy
x ∈ X which is played in the current period. All of our theorems arevalid under this interpretation, but
they can also be made into precise algorithmic results provided that the algorithm is given appropriate oracle
access to the metric space. In most cases, our algorithms require only acovering oraclewhich takes a finite
collection of open balls and either declares that they coverX or outputs an uncovered point. We refer to this
setting as the standard Lipschitz MAB problem. For example,the zooming algorithm uses only a covering
oracle for(L,X), and requires only one oracle query per round (with at mostt balls in roundt). However,
the per-metric optimal algorithm in Theorem 1.2 uses more complicated oracles, and we defer the definition
of these oracles to Section 3.

While our definitions and results so far have been tailored for the Lipschitz MAB problem on infinite
metrics, some of them can be extended to the finite case as well. In particular, for the zooming algorithm

4Here aleaf is defined as an infinite path away from the root.
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we obtain sharp results (that are meaningful for both finite and infinite metrics) using a more precise,non-
asymptoticversion of the zooming dimension. Extending the notions in Theorem 1.2 to the finite case is an
open question.

Extensions. We provide a number of extensions in which we elaborate on ouranalysis of the zooming
algorithm. First, we provide sharper bounds for several examples in which the reward from playing each
strategyu is µ(u) plus an independentnoiseof a known and “benign” shape. Second, we upgrade the
zooming algorithm so that it satisfies the guarantee in Theorem 1.3and enjoys a better guarantee if the
maximal reward is exactly 1. Third, we apply this result to a version whereµ(·) = 1 − L( · , S) for some
target setS which is not revealed to the algorithm. Fourth, we relax someassumptions in the analysis of
the zooming algorithm, and use this generalization to analyze the version in whichµ(·) = 1 − f(L( · , S))
for some known functionf . Finally, we extend our analysis from reward distributionssupported on[0, 1] to
those with unbounded support and finite absolute third moment.

Follow-up work. For metric spaces whose max-min-covering dimension is exactly 0, this paper provides
an upper boundR(T ) = OI(T γ) for anyγ > 1

2 , but no matching lower bound. Characterizing the optimal
regret for such metric spaces remained an open question. Following the publication of the conference
version, this question has been settled in [17], revealing the following dichotomy: for every metric space, the
optimal regret of a Lipschitz MAB algorithm is either bounded above by anyf ∈ ω(log t), or bounded below
by anyg ∈ o(

√
T ), depending on whether the completion of the metric space is compact and countable.

1.1 Preliminaries

Given a metric space,B(x, r) denotes an open ball of radiusr around pointx. Throughout the paper, he
constants in theO(·) notation are absolute unless specified otherwise.

Definition 1.4. In theLipschitz MAB problemon (L,X), there is a strategy setX, a metric space(L,X) of
diameter≤ 1, and a payoff functionµ : X → [0, 1] such that the followingLipschitz conditionholds:

|µ(x) − µ(y)| ≤ L(x, y) for all x, y ∈ X. (1)

Call L is thesimilarity function. The metric space(L,X) is revealed to an algorithm, whereas the payoff
function µ is not. In each round the algorithm chooses a strategyx ∈ X and observes an independent
random sample from a payoff distributionD(x) with supportS ⊂ [0, 1] and expectationµ(x).

Theregretof a bandit algorithmA running on a given problem instance isRA(t) = WA(t)−tµ∗, where
WA(t) is the expected payoff ofA at timet andµ∗ = supx∈X µ(x) is themaximal expected reward.

TheC-zooming dimensionof the problem instance(L,X, µ) is the smallestd such that for everyr ∈
(0, 1] the setXr = {x ∈ X : r

2 < µ∗ − µ(x) ≤ r} can be covered byC r−d sets of diameter at mostr/8.

Definition 1.5. Fix a metric space on setX. LetN(r) be the smallest number of sets of diameterr required
to coverX. Thecovering dimensionof X is

COV(X) = inf{ d : ∃c ∀r > 0 N(r) ≤ cr−d }.

Thec-covering dimensionof X is defined as the infimum of alld such thatN(r) ≤ cr−d for all r > 0.

Outline of the paper. In Section 2 we prove Theorem 1.3. In Section 3 we discuss the per-metric opti-
mality and prove Theorem 1.2. Section 4 covers the extensions.
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2 Adaptive exploration: the zooming algorithm

In this section we introduce thezooming algorithmwhich uses adaptive exploration to take advantage of the
”benign” input instances, and prove the main guarantee (Theorem 1.3).

Consider the standard Lipschitz MAB problem on(L,X). The zooming algorithm proceeds in phases
i = 1, 2, 3, . . . of 2i rounds each. Let us consider a single phaseiph of the algorithm. For each strategy
v ∈ X and timet, let nt(v) be the number of times this strategy has been played in this phase before timet,
and letµt(v) be the corresponding average reward. Defineµt(v) = 0 if nt(v) = 0. Note that at timet both
quantities are known to the algorithm. Define theconfidence radiusof v at timet as

rt(v) :=
√

8 iph / (2 + nt(v)). (2)

Let µ(v) be the expected reward of strategyv. Note thatE[µt(v)] = µ(v). Using Chernoff Bounds, we
can bound|µt(v) − µ(v)| in terms of the confidence radius:

Definition 2.1. A phase is calledcleanif for each strategyv ∈ X that has been played at least once during
this phase and each timet we have|µt(v) − µ(v)| ≤ rt(v).

Claim 2.2. Phaseiph is clean with probability at least1 − 4−iph .

Throughout the execution of the algorithm, a finite number ofstrategies are designatedactive. Our
algorithm only plays active strategies, among which it chooses a strategyv with the maximalindex

It(v) = µt(v) + 2 rt(v). (3)

Say that strategyv coversstrategyu at timet if u ∈ B(v, rt(v)). Say that a strategyu is coveredat timet if
at this time it is covered by some active strategyv. Note that thecovering oracle(as defined in Section 1) can
return a strategy which is not covered if such strategy exists, or else inform the algorithm that all strategies
are covered. Now we are ready to state the algorithm:

Algorithm 2.3 (Zooming Algorithm). Each phasei runs for 2i rounds. In the beginning of the phase no
strategies are active. In each round do the following:

1. If some strategy is not covered, make it active.
2. Play an active strategy with the maximal index (3); break ties arbitrarily.

We formulate the main result of this section as follows:

Theorem 2.4. Consider the standard Lipschitz MAB problem. LetA be Algorithm 2.3. Then∀C > 0

RA(t) ≤ O(C log t)1/(2+d) × t1−1/(2+d) for all t, (4)

whered is theC-zooming dimension of the problem instance.

RemarkThe zooming algorithm isnot parameterized by theC in (4), yet satisfies (4) for allC > 0. For
sharper guarantees,C can be tuned to the specific problem instance and specific timet.

Let us prove Theorem 2.4. Note that after step 1 in Algorithm 2.3 all strategies are covered. (Indeed,
if some strategy is activated in step 1 then it covers the entire metric.) Letµ∗ = supu∈X µ(u) be the
maximal expected reward; note that we do not assume that the supremum is achieved by some strategy. Let
∆(v) = µ∗ − µ(v). Let us focus on a given phaseiph of the algorithm.

6



Lemma 2.5. If phaseiph is clean then we have∆(v) ≤ 4 rt(v) for any timet and any strategyv. It follows
thatnt(v) ≤ O(iph)∆−2(v).

Proof. Suppose strategyv is played at timet. First we claim thatIt(v) ≥ µ∗. Indeed, fixǫ > 0. By
definition ofµ∗ there exists a strategyv∗ such that∆(v∗) < ǫ. Let vt be an active strategy that coversv∗.
By the algorithm specificationIt(v) ≥ It(vt). Sincev is clean at timet, by definition of index we have
It(vt) ≥ µ(vt) + rt(vt). By the Lipschitz property we haveµ(vt) ≥ µ(v∗) − L(vt, v

∗). Sincevt coversv∗,
we haveL(vt, v

∗) ≤ rt(vt) Putting all these inequalities together, we haveIt(v) ≥ µ(v∗) ≥ µ∗ − ǫ. Since
this inequality holds for an arbitraryǫ > 0, we in fact haveIt(v) ≥ µ∗. Claim proved.

Furthermore, note that by the definitions of “clean phase” and “index” we haveµ∗ ≤ It(v) ≤ µ(v) +
3 rt(v) and therefore∆(v) ≤ 3 rt(v).

Now suppose strategyv is not played at timet. If it has never been played before timet in this phase,
thenrt(v) > 1 and thus the lemma is trivial. Else, lets be the last time strategyv has been played before
time t. Then by definition of the confidence radiusrt(v) = rs+1(v) ≥

√
2/3 rs(v) ≥ 1

4 ∆(v).

Corollary 2.6. In a clean phase, for any active strategiesu, v we haveL(u, v) > 1
4 min(∆(u),∆(v)).

Proof. Assumeu has been activated beforev. Let s be the time whenv has been activated. Then by the
algorithm specification we haveL(u, v) > rs(u). By Lemma 2.5rs(u) ≥ 1

4∆(u).

Let d be the theC-zooming dimension. For a given timet in the current phase, letS(t) be the set of all
strategies that are active at timet, and let

A(i, t) = {v ∈ S(t) : 2i ≤ ∆−1(v) < 2i+1}.

We claim that|A(i, t)| ≤ C 2id. Indeed, setA(i, t) can be covered byC 2id sets of diameter at most2−i/8;
by Corollary 2.6 each of these sets contains at most one strategy fromA(i, t).

Claim 2.7. In a clean phaseiph, for each timet we have

∑
v∈S(t)∆(v)nt(v) ≤ O(C iph)

1−γ tγ , (5)

whereγ = d+1
d+2 andd is theC-zooming dimension.

Proof. Fix the time horizont. For a subsetS ⊂ X of strategies, letRS =
∑

v∈S ∆(v)nt(v). Let us choose
ρ ∈ (0, 1) such that

ρt = (1
ρ)d+1(C iph) = tγ (C iph)

1−γ .

DefineB as the set of all strategiesv ∈ S(t) such that∆(v) ≤ ρ. Recall that by Lemma 2.5 for each
v ∈ A(i, t) we havent(v) ≤ O(iph)∆−2(v). Then

RA(i,t) ≤ O(iph)
∑

v∈A(i,t) ∆−1(v)

≤ O(2i iph) |A(i, t)|
≤ O(C iph) 2i(d+1)

∑

v∈S(t)

∆(v)nt(v) ≤ RB +
∑

i<log(1/ρ)

RA(i,t)

≤ ρt + O(C iph) (1
ρ )d+1

≤ O
(
tγ (C iph)

1−γ
)
.
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The left-hand side of (5) is essentially the contribution ofthe current phase to the overall regret. It
remains to sum these contributions over all past phases.

Proof of Theorem 2.4: Let iph be the current phase, lett be the time spend in this phase, and letT be the
total time since the beginning of phase1. Let Rph(iph, t) be the left-hand side of (5). Combining Claim 2.2
and Claim 2.7, we have

E[Rph(iph, t)] < O(C iph)
1−γ tγ ,

RA(T ) = E


Rph(iph, t) +

iph−1∑

i=1

Rph(i, 2
i)




< O(C log T )1−γ T γ .

3 Attaining the optimal per-metric performance

In this section we ask, “What is the best possible algorithm for the Lipschitz MAB problem on a given
metric space?” We consider theper-metric performance, which we define as the worst-case performance of
a given algorithm over all possible problem instances on a given metric. As everywhere else in this paper,
we focus on minimizing the exponentγ such thatRA(t) ≤ tγ for all sufficiently larget. Motivated by the
shape of the guarantees in Theorem 1.1, let us define theregret dimensionof an algorithm as follows.

Definition 3.1. Consider the Lipschitz MAB problem on a given metric space. For algorithmA and problem
instanceI let

DIMI(A) = inf
d≥0

{∃t0 ∀t ≥ t0 RA(t) ≤ t1−1/(d+2)}.

The regret dimensionof A is DIM(A) = supI DIMI(A), where the supremum is taken over all problem
instancesI on the given metric space.

Then Theorem 1.1 states that for the Lipschitz MAB problem on(Ld, [0, 1]), the regret dimension of
the “naı̈ve algorithm” is at mostd. In fact, it is easy to extend the “naı̈ve algorithm” to arbitrary metric
spaces. Such algorithm is parameterized by the covering dimensiond of the metric space. It divides time
into phases of exponentially increasing length, chooses aδ-net during each phase,5 and runs aK-armed
bandit algorithm such asUCB1 on the elements of theδ-net. The parameterδ is tuned optimally givend and
the phase lengthT ; the optimal value turns out to beδ = T−1/(d+2). Using the technique from [15] it is
easy to prove that the regret dimension of this algorithm is at mostd.

Lemma 3.2. Consider the Lipschitz MAB problem on a metric space(L,X) of covering dimensiond. Let
A be the näıve algorithm that usesUCB1 in each phase. ThenDIM(A) ≤ d.

Proof. Let A be the naı̈ve algorithm. For concreteness, assume each phase i lasts2i rounds. By definition
of the covering dimension, it suffices to assume thatd is ac-covering dimension, for some constantc > 0.
By definition of the regret dimension, it suffices to prove that RA(t) ≤ Õ(tγ) for all t, whereγ = d+1

d+2 . In

order to provethat, it suffices to show that for each phasei we haveR(A, i)(2
i) ≤ Õ(2iγ), whereR(A, i)(t)

is the expected regret accumulated in the firstt rounds of phasei.
Let us focus on some phasei. In this phase the algorithm chooses aδ-net, call itS. We claim that

|S| ≤ c δ−d. Indeed, for anyδ′ < δ the metric space can be covered byc δ−d sets of diameter at mostδ′,
each of which can contain only one point fromS. Claim proved. The algorithm proceeds to runUCB1 on

5It is easy to see that the cardinality of thisδ-net isK = O(δ−d).
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the elements ofS. By [2] the expected regret ofUCB1 on K arms int rounds is at mostO(
√

K t log t).
Since the maximalµ onS is at mostδ off of the maximalµ onX, we have

R(A, i)(t) ≤ O(
√

|S| t log t) + δt ≤ Õ(
√

δ−d t + δt).

Plugging int = 2i andδ = t−1/(d+2), we obtainR(A, i)(2
i) ≤ Õ(2iγ) as claimed.

Thus we ask:is it possible to achieve a better regret dimension, perhaps using a more sophisticated
algorithm? We show that this is indeed the case. Moreover, weprovide an algorithm such that for any given
metric space its regret dimension is arbitrarily close to optimal.

The rest of this section is organized as follows. In Section 3.1 we develop a lower bound on regret
dimension. In Section 3.2 we will show that for some metric spaces, there exist algorithms whose regret
dimension is smaller than the covering dimension. We develop these ideas further in Section 3.3 and provide
an algorithm whose regret dimension is arbitrarily close tooptimal.

3.1 Lower bound on regret dimension

Let us develop a lower bound on regret dimension of any algorithm on a given metric space. This bound is
equal to the covering dimension for highly homogeneous metric spaces (such as those in which all balls of
a given radius are isometric to each other), but in general itcan be much smaller.

It is known [3] that a worst-case instance of theK-armed bandit problem consists ofK − 1 strategies
with identical payoff distributions, and one which is slightly better. We refer to this as a “needle-in-haystack”
instance. The known constructions of lower bounds for Lipschitz MAB problems rely on creating amulti-
scaleneedle-in-haystack instance in which there areK disjoint open sets, andK − 1 of them consist of
strategies with identical payoff distributions, but in theremaining open set there are strategies whose payoff
is slightly better. Moreover, this special open set contains K ′ ≫ K disjoint subsets, only one of which
contains strategies superior to the others, and so on down through infinitely many levels of recursion. To
ensure that this construction can be continued indefinitely, one needs to assume a covering property which
ensures thateachof the open sets arising in the construction has sufficientlymany disjoint subsets to continue
to the next level of recursion.

Definition 3.3. For a metric space(L,X), we say thatd is themin-covering dimensionof X, d = MinCOV(X),
if d is the infimum ofCOV(U) over all non-empty open subsetsU ⊆ X. Themax-min-covering dimension
of X is defined by

MaxMinCOV(X) = sup{MinCOV(Y ) : Y ⊆ X}.

The infimum over openU ⊆ X in the definition of min-covering dimension ensures that every open
set which may arise in the needle-in-haystack constructiondescribed above will containΩ(δε−d) disjoint δ-
balls for some sufficiently smallδ, ε. Constructing lower bounds for Lipschitz MAB algorithms ina metric
spaceX only requires thatX should havesubsetswith large min-covering dimension, which explains the
supremum over subsets in the definition of max-min-coveringdimension.

We will use the following simple packing lemma.6

Lemma 3.4. If Y is a metric space of covering dimensiond, then for anyb < d and r0 > 0, there exists
r ∈ (0, r0) such thatY contains a collection of at leastr−b disjoint open balls of radiusr.

Proof. Let r < r0 be a positive number such that every covering ofY requires more thanr−b balls of
radius2r. Such anr exists, because the covering dimension ofY is strictly greater thanb. Now letP =

6This is a folklore result; we provide the proof for convenience.
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{B1, B2, . . . , BM} be any maximal collection of disjointr-balls. For everyy ∈ Y there must exist some
ball Bi (1 ≤ i ≤ M) whose center is within distance2r of y, as otherwiseB(y, r) would be disjoint from
every element ofP contradicting the maximality of that collection. If we enlarge each ballBi to a ballB+

i

of radius2r, then everyy ∈ Y is contained in one of the balls{B+
i | 1 ≤ i ≤ M}, i.e. they form a covering

of Y . HenceM ≥ r−b as desired.

Theorem 3.5. If X is a metric space andd is the max-min-covering dimension ofX thenDIM(A) ≥ d for
every bandit algorithmA.

Proof. Without loss of generality let us assume thatd > 0. Given γ < d+1
d+2 , let a < b < c < d be

such thatγ < a+1
a+2 . Let Y be a subset ofX such thatMinCOV(Y ) ≥ c. Using Lemma 3.4 we recursively

construct an infinite sequence of setsP0,P1, . . . each consisting of finitely many disjoint open balls inX,
centered at points ofY . Let P0 = {X} consist of a single ball that contains all ofX. If i > 0, for every
ball B ∈ Pi−1, let r denote the radius ofB and choose a numberri(B) ∈ (0, r/4) such thatB contains
ni(B) = ⌈ri(B)−b⌉ disjoint balls of radiusri(B) centered at points ofY . Such a collection of disjoint balls
exists, by Lemma 3.4. LetPi(B) denote this collection of disjoint balls and letPi =

⋃
B∈Pi−1

Pi(B). Now
sample a random sequence of ballsB1, B2, . . . by picking B1 ∈ P1 uniformly at random, and fori > 1
picking Bi ∈ Pi(Bi−1) uniformly at random.

Given a ballB = B(x∗, r∗), let fB(x) be a Lipschitz function onX defined by

fB(x) =

{
min{r∗ − L(x, x∗), r∗/2} if x ∈ B

0 otherwise
. (6)

Let fi = fBi
for i ≥ 1. Definef0 by settingf0(x) = 1/3 for all x ∈ X. The reader may verify that the sum

µ =
∑∞

i=0 fi is a Lipschitz function. Define the payoff distribution forx ∈ X to be a Bernoulli random
variable with expectationµ(x). We have thus specified a randomized construction of an instance(L,X, µ).

We claim that for any algorithmA and any constantC,

Pr
µ,A

(∀ t RA(t) < Ctγ) = 0. (7)

The proof of this claim is based on a “needle in haystack” lemma (Lemma 3.6 below) which states that for
all i, conditional on the sequenceB1, . . . , Bi−1, with probability at least1 − O((ri(Bi))

(b−a)/2), no more
than half of the firstti(Bi) = ri(Bi)

−a−2 strategies picked byA lie insideBi. The proof of the lemma is
deferred to the end of this section.

Any strategyx 6∈ Bi satisfiesµ(x) < µ(x∗) − ri/2, so we may conclude that

Pr
µ

(
RA(ti(Bi)) < 1

4 ri(Bi)
−a−1 |B1, . . . , Bi−1

)
≤ O

(
(ri(Bi))

(b−a)/2
)

. (8)

Denotingri(Bi) and ti(Bi) by ri and ti, respectively, we have14 r−a−1
i = 1

4 t
(a+1)/(a+2)
i > Ctγi for all

sufficiently largei. As i runs through the positive integers, the terms on the right side of (8) are dominated
by a geometric progression becauseri(Bi) ≤ 4−i. By the Borel-Cantelli Lemma, almost surely there are
only finitely manyi such that the events on the left side of (8) occur. Thus (7) follows.

Remark.To prove Theorem 3.5 it suffices to show that for every given algorithm there exists a “hard”
problem instance. In fact we proved a stronger result (7): essentially, we construct a probability distribution
over problem instances which is hard, almost surely, for every given algorithm. This seems to be the best
possible bound since, obviously, a single problem instancecannot be hard for every algorithm.

In rest of this subsection we prove the “needle in haystack” lemma used in the proof of Theorem 3.5.
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Lemma 3.6. Consider the randomized construction of an instance(L,X, µ) in the proof of Theorem 3.5.
Fix a bandit algorithmA. Then for alli, conditional on the sequenceB1, . . . , Bi−1, with probability at least
1 − O((ri(Bi))

(b−a)/2), no more than half of the firstri(Bi)
−a−2 strategies picked byA lie insideBi.

Let us introduce some notation needed to prove the lemma. Letus fix an arbitrary Lipschitz MAB algo-
rithmA. We will assume thatA is deterministic; the corresponding result for randomizedalgorithms follows
by conditioning on the algorithm’s random bits (so that its behavior, conditional on these bits, is determinis-
tic), invoking the lemma for deterministic algorithms, andthen removing the conditioning by averaging over
the distribution of random bits. Note that since our construction uses only{0, 1}-valued payoffs, and the
algorithmA is deterministic, the entire history of play in the firstt rounds can be summarized by a binary
vectorσ ∈ {0, 1}t, consisting of the payoffs observed byA in the firstt rounds. Thus a payoff functionµ
determines a probability distributionPµ on the set{0, 1}t, i.e. the distribution ont-step histories realized
when using algorithmA on instanceµ.

Let B be any ball in the setPi−1, let n = ni(B), r = ri(B), and t = ti(B) = ri(B)−a−2. Let
B1, B2, . . . , Bn be an enumeration of the balls inPi(B). Choose an arbitrary sequence of ballsB1 ⊇ B2 ⊇
. . . ⊇ Bi−1 = B such thatB1 ∈ P1 and for allj > 0 Bj ∈ P(Bj−1). Similarly, for k = 1, 2, . . . , n,
choose an arbitrary sequence of ballsBk = Bk

i ⊇ Bk
i+1 ⊇ . . . such thatBk

j ∈ P(Bk
j−1) for all j ≥ i.

Define functionsfj (1 ≤ j ≤ i − 1) andfk
j (j ≥ i) using the ballsBj , B

k
j , as in the proof of Theorem 3.5.

Specifically, use definition (6) and setfj = fBj
andfk

j = fBk
j
. Let µ0 =

∑i−1
j=0 fj and

µk = µ0 +

∞∑

j=i

fk
j (for 1 ≤ k ≤ n).

Note that the instancesµk (1 ≤ k ≤ n) are equiprobable under our distribution on input instancesµ. The
instanceµ0 is not one that could be randomly sampled by our construction, but it is useful as a “reference
measure” in the following proof. Note that the functionsµk have the following properties, by construction.

(a) 1/3 ≤ µk(x) ≤ 2/3 for all x ∈ X.
(b) 0 ≤ µk(x) − µ0(x) ≤ r for all x ∈ X.
(c) If x ∈ X \ Bk, thenµk(x) = µ0(x).
(d) If x ∈ X \ Bk, then there exists some pointxk ∈ Bk such thatµk(xk) − µk(x) ≥ r/2.

Each of the payoff functionsµk (0 ≤ k ≤ n) gives rise to a probability distributionPµk on {0, 1}t

as described in the preceding section. We will use the shorthand notationPk instead ofPµk . We will also
useEk to denote the expectation of a random variable under distribution Pk. Finally, we letNk denote the
random variable defined on{0, 1}t that counts the number of roundss (1 ≤ s ≤ t) in which algorithmA
chooses a strategy inBk given the historyσ.

The following lemma is analogous to Lemma A.1 of [3], and its proof is identical to the proof of that
lemma.

Lemma 3.7. Letf : {0, 1}t → [0,M ] be any function defined on reward sequencesσ. Then for anyk,

Ek[f(σ)] ≤ E0[f(σ)] + M
2

√
− ln(1 − 4r2)E0[Ni].

Applying Lemma 3.7 withf = Nk andM = t, and averaging overk, we may apply exactly the same
reasoning as in the proof of Theorem A.2 of [3] to derive the bound

1

n

n∑

k=1

Ek(Nk) ≤
t

n
+ O

(
tr

√
t

n

)
. (9)
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Recalling that the actual ballBk sampled when randomly constructingµ in the proof of Theorem 3.5 is
a uniform random sample fromB1, B2, . . . , Bn, we may writeN∗ to denote the random variable which
counts the number of rounds in which the algorithm plays a strategy inBk and the bound (9) implies

E(N∗) = O

(
t

n
+ tr

√
t

n

)

Recalling thatt = r−a−2 andn = r−b, we see that theO(tr
√

t/n) term is the dominant term on the right
side, and that it is bounded byO(tr(b−a)/2). An application of Markov’s inequality now yields:

Pr(N∗ ≥ t/2) = O(r(b−a)/2),

completing the proof of Lemma 3.6.

3.2 Beyond the covering dimension

Thus far, we have seen that every metric spaceX has a bandit algorithmA such thatDIM(A) = COV(X)
(the naı̈ve algorithm), and we have seen (via the needle-in-haystack construction, Theorem 3.5) thatX can
never have a bandit algorithm satisfyingDIM(A) < MaxMinCOV(X). WhenCOV(X) 6= MaxMinCOV(X),
which of these two bounds is correct, or can they both be wrong?

To gain intuition, we will consider two concrete examples. Consider an infinite rooted tree where for
each leveli ∈ N most nodes have out-degree2, whereas the remaining nodes (calledfat nodes) have out-
degreex > 2 so that the total number of nodes is4i. In our first example, there is exactly one fat node on
every level and the fat nodes form a path (called thefat leaf). In our second example, there are exactly2i

fat nodes on every leveli and the fat nodes form a binary tree (called thefat subtree). In both examples, we
assign aweightof 2−id (for some constantd > 0) to each level-i node; this weight encodes the diameter
of the set of points contained in the corresponding subtree.An infinite rooted tree induces a metric space
(L,X) whereX is the set of all infinite paths from the root, and foru, v ∈ X we defineL(u, v) to be
the weight of the least common ancestor of pathsu andv. In both examples, the covering dimension is
2d, whereas the max-min-covering dimension is onlyd because the “fat subset” (i.e. the fat leaf or fat
subtree) has covering dimension at mostd, and every point outside the fat subset has an open neighborhood
of covering dimensiond.

In both of the metrics described above, the zooming algorithm (Algorithm 2.3) performs poorly when the
optimumx∗ is located inside the fat subsetS, because it is too burdensome to keep covering7 the profusion
of strategies located nearx∗ as the ball containingx∗ shrinks. An improved algorithm, achieving regret
exponentd, modifies the zooming algorithm by imposingquotason the number of active strategies that lie
outsideS. At any given time, some strategies outsideS may not be covered; however, it is guaranteed that
there exists an optimal strategy which eventually becomes covered and remains covered forever afterward.
Intuitively, if some optimal strategy lies inS then imposing a quota on active strategies outsideS does not
hurt. If no optimal strategy lies inS then all ofS gets covered eventually and stays covered thereafter, in
which case the uncovered part of the strategy set has low covering dimension and (starting after the time
whenS becomes permanently covered) no quota is ever exceeded.

This use of quotas extends to the following general setting which abstracts the idea of “fat subsets”:

Definition 3.8. Fix a metric space(L,X). A closed subsetS ⊂ X is d-fat if COV(S) ≤ d and for any open
supersetU of S we haveCOV(X \U) ≤ d. More generally, ad-fat decompositionof depthk is a decreasing
sequenceX = S0 ⊃ . . . ⊃ Sk ⊃ Sk+1 = ∅ of closed subsets such thatCOV(Sk) ≤ d andCOV(Si \ U) ≤ d
wheneveri ∈ [k] andU is an open superset ofSi+1.

7Recall that a strategyu is calledcoveredat timet if for some active strategyv we haveL(u, v) ≤ rt(v).
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Example 3.9. Let (L,X) be the metric space in either of the two “tree with a fat subset” examples. Then
the corresponding “fat subset”S is d-fat. For an example of a fat decomposition of depthk = 2, consider
the product metric(L∗,X × X) defined by

L∗((x1, x2), (y1, y2)) = L(x1, y1) + L(x2, y2),

with a fat decomposition given byS1 = (S × X) ∪ (X × S) andS2 = S × S.

WhenX is a metric space with ad∗-fat decompositionD, the algorithm described earlier can be modified
to achieve regretO (tγ) for anyγ > 1 − 1/(d∗ + 2), by instituting a separate quota for each subsetSi. The
algorithm requires access to aD-covering oraclewhich for a giveni and a given finite set of open balls
(given by the centers and the radii) either reports that the balls coverSi, or returns some strategy inSi which
is not covered by the balls. No further knowledge ofD or the metric space is required.

Theorem 3.10.Consider the Lipschitz MAB problem on a fixed compact metric space with ad∗-fat decom-
positionD. Then for anyd > d∗ there is an algorithmAD such thatDIM(AD) ≤ d.

Remarks.(1) We can relax the compactness assumption in Theorem 3.10: instead, we can assume that the
completionof the metric space is compact and re-define the sets in thed-fat decomposition as subsets of the
completion (possibly disjoint with the strategy set). Thiscorresponds to the “fat leaf” which lies outside the
strategy set. Such extension requires some minor modifications.

(2)The per-metric guarantee expressed by Theorem 3.10 can be complemented with sharperper-instance
guarantees. First, for every problem instanceI the per-instance regret dimensionDIMI(A) is upper-bounded
by the zooming dimension ofI. Second, if for somec > 0 the c-covering dimension ofX is finite then
for someγ < 1 and allt we haveRA(t) ≤ O(c tγ). However, as this extension is tangential to our main
storyline, we focus on analyzing the regret dimension.

The algorithm. Our algorithm proceeds in phasesi = 1, 2, 3, . . . of 2i rounds each. In a given phase,
we run a fresh instance of the followingphase algorithmAph(T, d,D) parameterized by the phase length
T = 2i, target dimensiond > d∗ and theD-covering oracle. The phase algorithm is a version of a single
phase of the zooming algorithm (Algorithm 2.3) with very different rules for activating strategies. As in
Algorithm 2.3, the confidence radius and the index are definedby (2) and (3), respectively. At the start of
each round some strategies are activated, and then an activestrategy with the maximal index is played.

Let us specify the activation rules. Letk be the depth of the decompositionD, and denoteD = {Si}k+1
i=0 .

Initially the algorithm constructs2−j-netsNj, j ∈ N, using the covering oracle. It finds the largestj such
thatN = Nj contains at most12 T d/(d+2) points, and activates all strategies inN . The rest of the active
strategies are partitioned intok+1 poolsPi ⊂ Si such that at each timet each poolPi satisfies the following
quota(that we denoteQi):

|{u ∈ Pi : rt(u) ≥ ρ}| ≤ Cρ ρ−d (10)

whereρ = T−1/(d+2) andCρ = (64k log 1
ρ)−1. In the beginning of each round the following activation

routine is performed. If there exists a setSi such that some strategy inSi is not covered andthere is room
under the corresponding quotaQi, pick one such strategy, activate it, and add it to the corresponding pool
Pi. Since for a given strategyu the confidence radiusrt(u) is non-increasing int, the constraint (10) is
never violated. Repeat until there are no such setsSi left. This completes the description of the algorithm.

Analysis. As was the case in Section 2, the analysis of the unbounded-time-horizon algorithm reduces to
proving a lemma about the regret of each phase algorithm.
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Lemma 3.11. Fix a problem instance in the setting of Theorem 3.10. LetAph(T ) = Aph(T, d,D). Then

(∃ tmin < ∞) (∀T ≥ tmin) RAph(T )(T ) ≤ T 1−1/(d+2). (11)

Note that the lemma bounds the regret ofAph(T ) for timeT ≥ tmin only. Proving Theorem 3.10 is now
straightforward:

Proof of Theorem 3.10: LetAph(T ) be the phase algorithm from Lemma 3.11. Recall that in each phasei
in the overall algorithmA we simply run a fresh instance of algorithmAph(2

i) for 2i steps.
Let t0 be thetmin from (11) rounded up to the nearest end-of-phase time. Leti0 be the phase starting at

time t0 + 1. Note thatRA(t0) ≤ t0. Let Ri be the regret accumulated byA during phasei. Let γ = d+1
d+2 .

Then for any timet ≥ t
1/γ
0 in phasei we haveRA(t) ≤ t0 +

∑i
j=i0

Rj ≤ t0 +
∑i

j=i0
(2j)γ ≤ O(tγ).

In the remainder of this section we prove Lemma 3.11. Let us fixa problem instance of the Lipschitz
MAB problem on a compact metric space(L,X) with a depth-k d∗-fat decompositionD = {Si}k+1

i=0 . Fix
d > d∗ and letAph(T ) = Aph(T, d,D) be the phase algorithm. Letµ be the expected reward function and
let µ∗ = supu∈X µ(u) be the optimal reward. Let∆(u) = µ∗ − µ(u).

By definition of the Lipschitz MAB problem,µ is a continuous function on the metric space(L,X).
Therefore the supremumµ∗ is achieved by some strategy (call such strategiesoptimal). Say that a run of
algorithmAph(T ) is well-coveredif at every timet ≤ T some optimal strategy is covered.

Say that a run of algorithmAph(T ) is cleanif the property in Claim 2.2 holds for all timest ≤ T . Note
that a given run is clean with probability at least1 − T−2. The following lemma adapts the technique from
Lemma 2.5 to the present setting:

Claim 3.12. Consider a clean run of algorithmAph(T ).
(a) If strategiesu, v are active at timet ≤ T then∆(v) − ∆(u) ≤ 4rt(v).
(b) if the run is well-covered and strategyv is active at timet ≤ T then∆(v) ≤ 4rt(v).

The quotas (10) are chosen so that the regret computation in Claim 2.7 works out for a clean and well-
covered run of algorithmAph(T ).

Claim 3.13. RA(T ) ≤ T 1−1/(d+2) for any clean well-covered run of algorithmA = Aph(T ).

Sketch.Let At(δ) be the set of all strategiesu ∈ X such thatu is active at timet ≤ T andδ ≤ rt(u) < 2δ.
Note that for any such strategy we havent(u) ≤ O(log T ) δ−2 and∆(u) ≤ 4rt(u) < 8δ. Write

R∗(T ) :=
∑

u∈X∆(u)nT (u) ≤ ρT +
∑⌈log 1/ρ⌉

i=0

∑
u∈AT (2−i) ∆(u)nT (u),

whereρ = T−1/(d+2) and apply the quotas (10).

Let Sℓ be the smallest set inD which contains some optimal strategy. Then there is an optimal strategy
contained inSℓ \Sℓ+1; let u∗ be one such strategy. The following claim essentially showsthat the irrelevant
high-dimensional subsetSℓ+1 is eventually pruned away.

Claim 3.14. There exists an open setU containing Sℓ+1 such thatu∗ 6∈ U and U is always covered
throughout the firstT steps of any clean run of algorithmAph(T ), provided thatT is sufficiently large.

Proof. Sℓ+1 is a compact set since it is a closed subset of a compact metricspace. Since functionµ is
continuous, it assumes a maximum value onSℓ+1. By construction, this maximum value is strictly less than
µ∗. So there existsǫ > 0 such that∆(w) > 8ǫ for anyw ∈ Sℓ+1. DefineU = B(Sℓ+1, ǫ/2). Note that
u∗ 6∈ U since8ǫ < ∆(w) ≤ L(u∗, w) for anyw ∈ Sℓ+1.
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Recall that in the beginning of algorithmA(T ) all strategies in some2−j-netN are activated. Suppose
T is large enough so that2−j ≤ ǫ.

Consider a clean run of algorithmAph(T ). We claim thatU is covered at any given timet ≤ T . Indeed,
fix u ∈ U . By definition ofU there exists a strategyw ∈ Sℓ+1 such thatL(u,w) < ǫ/2. By definition ofN
there existv, v∗ ∈ N such thatL(v,w) ≤ ǫ andL(u∗, v∗) ≤ ǫ. Note that:

(a) ∆(v∗) = µ(u∗) − µ(v∗) ≤ L(u∗, v∗) ≤ ǫ.
(b) SinceL(v,w) ≤ ǫ and∆(w) > 8ǫ, we have∆(v) > 7ǫ.
(c) By Claim 3.12 we have∆(v) − ∆(v∗) ≤ 4rt(v

∗).
Combining (a-c), it follows thatrt(v) ≥ 3

2 ǫ ≥ L(u, v), sov coversu. Claim proved.

Proof of Lemma 3.11: By Claim 3.13 it suffices to show that ifT is sufficiently large then any clean run of
algorithmAph(T ) is well-covered. (Runs that are not clean contribute onlyO(1/T ) to the expected regret
of Aph(T ), because the probability that a run is not clean is at mostT−2 and the regret of such a run is at
mostT .) Specifically, we will show thatu∗ is covered at any timet ≤ T during a clean run ofAph(T ). It
suffices to show that at any timet ≤ T there is room under the corresponding quotaQℓ in (10).

Let U be the open set from Claim 3.14. SinceU is an open neighborhood ofSℓ+1, by definition of the
fat decomposition it follows thatCOV(Sℓ \ U) ≤ d∗. Defineρ andCρ as in (10) and fixd′ ∈ (d∗, d). Then
for any sufficiently largeT it is the case that (i)Sℓ \ U can be covered with(1

ρ)d
′

sets of diameter< ρ and

moreover (ii) that(1
ρ )d

′ ≤ 1
2 Cρ ρ−d.

Fix time t ≤ T and letAt be the set of all strategiesu such thatu is in the poolPℓ at time t and
rt(u) ≥ ρ. Note thatAt ⊂ Sℓ \ U sinceU is always covered, and by the specification ofAph only active
uncovered strategies inSℓ are added to poolPℓ. Moreover,At is ρ-separated. (Indeed, letu, v ∈ At and
assumeu has been activated beforev. ThenL(u, v) > rs(u) ≥ rt(u) ≥ ρ, wheres is the time whenv was
activated.) It follows that|At| ≤ 1

2 Cρ ρ−d, so there is room under the corresponding quotaQℓ in (10).

3.3 The per-metric optimal algorithm

The algorithm in Theorem 3.10 requires a fat decomposition of finite depth, which in general might not exist.
To extend the ideas of the preceding section to arbitrary metric spaces, we must generalize Definition 3.8 to
transfinitely infinitedepth.

Definition 3.15. Fix a metric space(L,X). Let β denote an arbitrary ordinal. Atransfinited-fat decompo-
sition of depthβ is a transfinite sequence{Sλ}0≤λ≤β of closed subsets ofX such that:

(a) S0 = X, Sβ = ∅, andSν ⊇ Sλ wheneverν < λ.
(b) if V ⊂ X is closed, then the set{ordinalsν ≤ β: V intersectsSν} has a maximum element.
(c) for any ordinalλ ≤ β and any open setU ⊂ X containingSλ+1 we haveCOV(Sλ \ U) ≤ d.

Note that for a finite depthβ the above definition is equivalent to Definition 3.8. In Theorem 3.17 below,
we will show how to modify the “quota algorithms” from the previous section to achieve regret dimensiond
in any metric with a transfinited∗-fat decomposition ford∗ < d. This gives an optimal algorithm for every
metric spaceX because of the following surprising relation between the max-min-covering dimension and
transfinite fat decompositions.

Proposition 3.16. For every compact metric space(L,X), the max-min-covering dimension ofX is equal
to the infimum of alld such thatX has a transfinited-fat decomposition.

Proof. If ∅ 6= Y ⊆ X and MinCOV(Y ) > d then, by transfinite induction,Y ⊆ Sλ for all λ in any
transfinited-fat decomposition, contradicting the fact thatSβ = ∅. Thus, the existence of a transfinited-
fat decomposition ofX impliesd ≥ MaxMinCOV(X). To complete the proof we will construct, given any
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d > MaxMinCOV(X), a transfinited-fat decomposition of depthβ, whereβ is any ordinal whose cardinality
exceeds that ofX. For a metric spaceY , define the set ofd-thin pointsTP(Y, d) to be the union of all open
setsU ⊆ Y satisfyingCOV(U) < d. Its complement, the set ofd-fat points, is denoted byFP(Y, d). Note
that it is a closed subset ofY .

For an ordinalλ ≤ β, we define a setSλ using transfinite induction as follows:
1. S0 = X andSλ+1 = FP(Sλ, d) for each ordinalλ.
2. If λ is a limit ordinal thenSλ =

⋂
ν<λ Sν .

Note that eachSλ is closed, by transfinite induction. It remains to show thatD = {Sλ}λ∈O satisfies the
properties (a-c) in Definition 3.15. It follows immediatelyfrom the construction thatS0 = X andSν ⊇ Sλ

whenν < λ. To prove thatSβ = ∅, observe first that the setsSλ \Sλ+1 (for 0 ≤ λ < β) are disjoint subsets
of X, and the number of such sets is greater than the cardinality of X, so at least one of them is empty.
This means thatSλ = Sλ+1 for someλ < β. If Sλ = ∅ thenSβ = ∅ as desired. Otherwise, the relation
FP(Sλ, d) = Sλ implies thatMinCOV(Sλ) ≥ d contradicting the assumption thatMaxMinCOV(X) < d. This
completes the proof of property (a). To prove property (b), suppose{νi | i ∈ I} is a set of ordinals such that
Sνi

intersectsV for everyi. Letν = sup{νi}. ThenSν ∩V =
⋂

i∈I(Sνi
∩V ), and the latter set is nonempty

becauseX is compact and the closed sets{Sνi
∩ V | i ∈ I} have the finite intersection property. Finally,

to prove property (c), note that ifU is an open neighborhood ofSλ+1 then the setT = Sλ \ U is closed
(hence compact) and is contained inTP(Sλ, d). ConsequentlyT can be covered by open setsV satisfying
COV(V ) < d. By compactness ofT , this covering has a finite subcoverV1, . . . , Vm, and consequently
COV(T ) = max1≤i≤m COV(Vi) < d.

Theorem 3.17. Consider the Lipschitz MAB problem on a compact metric space(L,X). For any d >
MaxMinCOV(X) there exists an algorithmAd such thatDIM(Ad) ≤ d.

Note that Theorem 1.2 follows immediately by combining Theorem 3.17 with Theorem 3.5.
We next describe an algorithmAd satisfying Theorem 3.17. The algorithm requires two oracles: a depth

oracleDepth(·) and aD-covering oracleD-Cov(·). For any finite set of open ballsB0, B1, . . . , Bn (given
via the centers and the radii) whose union is denoted byB, Depth(B0, B1, . . . , Bn) returns the maximum
ordinalλ such thatSλ intersects the closureB; such an ordinal exists by Definition 3.15(b).8 Given a finite
set of open ballsB0, B1, . . . , Bn with unionB as above, and an ordinalλ, D-Cov(λ,B0, B1, . . . , Bn) either
reports thatB coversSλ, or it returns a strategyx ∈ Sλ \ B.

The algorithm. Our algorithm proceeds in phasesi = 1, 2, 3, . . . of 2i rounds each. In any given phasei,
there is a “target ordinal”λ(i) (defined at the end of the preceding phase), and we run an algorithm during
the phase which: (i) activates some nodes initially; (ii) plays a version of the zooming algorithm which only
activates strategies inSλ(i); (iii) concludes the phase by computingλ(i + 1). The details are as follows.
In a given phase we run a fresh instance of a phase algorithmAph(T, d, λ) whereT = 2i andλ = λ(i) is
a target ordinal for phasei, defined below when we give the full description ofAph(T, d, λ). The goal of
Aph(T, d, λ) is to satisfy the per-phase bound

RAph(T,d,λ)(T ) = Õ(T γ) (12)

for all T > T0, whereγ = 1− 1/(d + 2) andT0 is a number which may depend on the instanceµ. Then, to
derive the boundRAd

(t) = Õ(tγ) for all t we simply sum per-phase bounds over all phases ending before
time2t.

8To avoid the question of how arbitrary ordinals are represented on the oracle’s output tape, we can instead say that the oracle
outputs a pointu ∈ Sλ instead of outputtingλ. In this case, the definition ofD-Cov should be modified so that its first argument is
a point ofSλ rather thanλ itself.
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Initially Aph(T, d, λ) uses the covering oracle to construct2−j-netsNj, j = 0, 1, 2, . . ., until it finds the
largestj such thatN = Nj contains at most12 T d/(d+2) log(T ) points. It activates all strategies inN and
sets

ε(i) = max{2−j , 32T−1/(d+2) log(T )}.
After this initialization step, for every active strategyv we define the confidence radius

rt(v) := max

{
T−1/(d+2),

√
8 log T

2 + nt(v)

}
,

wherent(v) is the number of timesv has been played by the phase algorithmAph(T, d, λ) before timet.
Let B0, B1, . . . , Bn be an enumeration of the open balls belonging to the collection

{B(v, rt(v)) | v active at timet}.

If n < 1
2 T d/(d+2) log(T ) then we perform the oracle callD-Cov(λ,B0, . . . , Bn), and if it reports that

a pointx ∈ Sλ is uncovered, we activatex and setnt(x) = 0. The index of an active strategyv is de-
fined asµt(v) + 4rt(v) — note the slight difference from the index defined in Algorithm 2.3 — and we
always play the active strategy with maximum index. To complete the description of the algorithm, it re-
mains to explain how the ordinalsλ(i) are defined. The definition is recursive, beginning withλ(1) = 0.
At the end of phasei (i ≥ 1), we let B0, B1, . . . , Bm be an enumeration of the open balls in the set
{B(v, ε(i)) | v active, rT (v) < ε(i)/2}. Finally, we setλ(i + 1) = Depth(B0, B1, . . . , Bm).

Proof of Theorem 3.17: Since we have modified the definition of index, we must prove a variant of Claim 3.12
which asserts the following:

In a clean run ofAph, if u, v are active at timet then∆(v) − ∆(u) ≤ 5rt(v). (13)

To prove it, lets be the latest round in{1, 2, . . . , t} whenv was played. We havert(v) = rs(v), and
∆(v) − ∆(u) = µ(u) − µ(v), so it remains to prove that

µ(u) − µ(v) ≤ 5rs(v). (14)

From the fact thatv was played instead ofu at times, together with the fact that both strategies are clean,

µs(u) + 4rs(u) ≤ µs(v) + 4rs(v) (15)

µ(u) − µs(u) ≤ rs(u) (16)

µs(v) − µ(v) ≤ rs(v). (17)

We obtain (14) by adding (15)-(17), noting thatrs(u) > 0. This completes the proof of (13).
Let λ be the maximum ordinal such thatSλ contains an optimal strategyu∗; such an ordinal exists by

Definition 3.15(b). We will prove that for sufficiently largei, if the i-th phase is clean, thenλ(i) = λ. The
setSλ+1 is compact, and the functionµ is continuous, so it assumes a maximum value onSλ+1 which is,
by construction, strictly less thanµ∗. Chooseε > 0 such that∆(w) > 5ε for all w ∈ Sλ+1, and choose
T0 = 2i0 such thatε(i0) ≤ ε. We shall prove that for allT = 2i ≥ T0 and all ordinalsν, a clean run
of Aph(T, d, ν) results in settingλ(i + 1) = λ. First, letv∗ ∈ N be such thatL(u∗, v∗) ≤ ε(i). If v
is active andrT (v) < ε(i)/2 then (13) implies that∆(v) − ∆(v∗) ≤ 5

2 ε(i) hence∆(v) ≤ 7
2 ε(i). As

∆(w) > 5ε ≥ 5ε(i) for all w ∈ Sλ+1, it follows that the closure ofB(v, ε(i)) does not intersectSλ+1. This
guarantees thatDepth(B0, B1, . . . , Bm) returns an ordinal less than or equal toλ. Next we must prove that
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this ordinal is greater than or equal toλ. Note that the total number of strategies activated byAph(T, d, ν)
is bounded above byT d/(d+2) log(T ). Let AT denote the set of strategies active at timeT and let

v0 = arg max
v∈AT

nT (v).

By the pigeonhole principle,nT (v0) ≥ T 2/(d+2)/ log(T ) and hencerT (v0) < 3T−1/(d+2) log(T ). If t
denotes the last time at whichv0 was played, then we have

It(v
0) = µt(v

0) + 4rt(v
0) ≤ µ∗ + 5rt(v

0)

≤ µ∗ + 15T−1/(d+2) log(T ) < µ∗ + ε(i)/2,

provided that the phase is clean and thatT ≥ T0. Sincev0 had maximum index at timet, we deduce that
It(v

∗) < µ∗ + ε(i)/2 as well. AsL(u∗, v∗) ≤ ε(i) we haveµt(v
∗) ≥ µ∗− ε(i)− rt(v

∗) provided the phase
is clean. To finish the proof we observe that

µ∗ + ε(i)/2 > It(v
∗) ≥ µ∗ − ε(i) + 3rt(v

∗)

which impliesrt(v
∗) < ε(i)/2. Since the confidence radius does not increase over time, we haverT (v∗) <

ε(i)/2 soB(v∗, ε(i)) is one of the ballsB0, B1, . . . , Bm. Sinceu∗ is contained in the closure of this ball,
we may conclude thatDepth(B0, B1, . . . , Bm) returns the ordinalλ as desired.

Let U = B(Sλ+1, ε(i)/2). As in Claim 3.14 it holds that in any clean phase,U is covered throughout
the phase by balls centered at points ofN . Hence for any pair of consecutive clean phases, in the second
phase of the pair our algorithm only calls the covering oracle D-Cov with the proper ordinalλ (i.e. the
maximumλ such thatSλ contains an optimal strategy) and with a set of ballsB0, B1, . . . , Bn that covers
U . Also, note that an active strategyv during a run ofAph(T, d, λ) never has a confidence radiusrt(v) less
thanδ = T−1/(d+2), so the strategies activated by the covering oracle form aδ-net in the spaceSλ \ U . By
Definition 3.15(c), aδ-net inSλ \ U contains fewer thanO(δ−d) points. Hence for sufficiently largeT the
“quota” of 1

2 T d/(d+2) active strategies is never reached, which implies that every point of Sλ — including
u∗ — is covered throughout the phase. The upper bound on the regret ofAph(T, d, λ) concludes as in the
proof of Theorem 2.4.

4 Zooming algorithm: extensions and examples

We extend the analysis in Section 2 in several directions, and follow up with examples.

• In Section 4.1 we note that our analysis works under a more abstract notion of the confidence radius:
essentially, it can be any function of the history of playinga given strategy such that Claim 2.2 holds.
This observation leads to sharper results if the reward fromplaying each strategyu is µ(u) plus an
independentnoiseof a known and “benign” shape; we provide several concrete examples.

• In Section 4.2 we provide an improved version of the confidence radius such that the zooming algo-
rithm satisfies the guarantee in Theorem 2.4and achieves a better regret exponentd

d+1 if the maximal
reward is exactly 1. The analysis builds on a novel Chernoff-style bound which, to the best of our
knowledge, has not appeared in the literature.

• In Section 4.3 we consider the an example which show-cases both the notion of the zooming dimen-
sion and the improved algorithm from Section 4.2. It is thetarget MABproblem, a version of the
Lipschitz MAB problem in which the expected reward of a givenstrategy is a equal to its distance
to some (unknown)target setS. We show that the zooming algorithm performs much better in this
setting; in particular, if the metric is doubling andS is finite, it achievespoly-logarithmicregret.
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• In Section 4.4 we relax some of the assumptions in the Lipschitz MAB problem: we do not require
the similarity functionL to satisfy the triangle inequality, and we need the Lipschitz condition (1) to
hold only if one of the two strategies is optimal. We use this extension to analyze a generalization of
the target MAB problem in whichµ(u) = f(L(u, S)) for some known functionf .

• Finally, in Section 4.5 we extend the analysis in Section 2 from reward distributions with bounded
support9 to arbitrary reward distributions with a finite absolute third moment. Our analysis relies on
the extension of Azuma inequality known as thenon-uniform Berry-Esseen theorem[21].

Let us recap some conventions we’ll be using throughout thissection. The zooming algorithm proceeds
in phasesi = 1, 2, 3, . . . of 2i rounds each. Within a given phase, for each strategyv ∈ X and timet, nt(v)
is the number of timesv has been played before timet, andµt(v) is the corresponding average reward. Also,
we denote∆(v) = µ∗ − µ(v), whereµ∗ = supv∈X µ(v) is the maximal reward.

4.1 Abstract confidence radius and noisy rewards

In Section 4.1 the confidence radius of a given strategy was defined by (2). Here we generalize this definition
to any function of the history of playing this strategy that satisfies certain properties.

Definition 4.1. Consider a single phaseiph of the algorithm. For each strategyv and any timet within this
phase, let̂rt(v) and µ̂t(v) be non-negative functions ofiph, t, and the history of playingv up to roundt.
Call r̂t(v) aconfidence radiuswith respect tôµt(v) if

(i) |µ̂t(v) − µ(t)| ≤ r̂t(v) with probability at least1 − 8−iph .
(ii) 3

4 r̂t(v) ≤ r̂t+1(v) ≤ r̂t(v).
The confidence radius is(β,C)-good if nt(v) ≤ (C iph)∆−β(v) whenever∆(v) ≤ 4r̂t(v).

Remark.Property (i) says that Claim 2.2 holds for the appropriatelyredefinedclean phase. Property (ii) is
a “smoothness” condition:̂rt(v) does not increase with time, and does not decrease too fast. It is needed for
the last line of the proof of Lemma 2.5.

Given such confidence radius, we can carry out the proof of Theorem 2.4 with very minor modifications.

Theorem 4.2. Consider an instance of the standard Lipschitz MAB problem for which there exists a(β, c0)-
good confidence radius,β ≥ 0. LetA be an instance of Algorithm 2.3 defined with respect to this confidence
radius. Suppose the problem instance hasc-zooming dimensiond. Then:

(a) If d + β > 1 thenRA(t) ≤ a(t) t1−1/(d+β) for all t, wherea(t) = O(c c0 log2 t)1/(d+β).

(b) If d + β ≤ 1 thenRA(t) ≤ O(c c0 log2 t).

Remark.A new feature of this theorem (as compared to Theorem 2.4) is the poly-logarithmicbound on
regret in part (b). For better intuition on this, note that the exponent in part (a) becomes negative ifd+β < 1.
Since the regret bound should not bedecreasingin t, one would expect this term to vanish from the “correct”
bound. Indeed, it is easy to check that the computation in theproof of Claim 2.7 results in part (b).

A natural application of Theorem 4.2 if a setting in which thereward from playing each strategyu is
µ(u) plus an independentnoiseof known shape.

9In Section 4.1 we also considerstochastically boundeddistributions such as Gaussians.
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Definition 4.3. The Noisy Lipschitz MAB problemis a standard Lipschitz MAB problem such that every
time any strategyu is played, the reward isµ(u) plus an independent random sample from some fixed
distributionP (called thenoise distribution) which is revealed to the algorithm.

We present several examples in which we take advantage of a “benign” shape ofP. Interestingly, in
these examples the payoff distributions are not restrictedto have bounded support.10 Technically the results
are simple corollaries of Theorem 4.2.

We start with perhaps the most natural example when the noisedistribution is normal.

Corollary 4.4. Consider the Noisy Lipschitz MAB problem with normal noise distribution P = N (0, σ2).
Then there exists an algorithmA which enjous guarantee (4) with the right-hand side multiplied byσ.

Proof. Define the confidence radius as (2) with the right-hand side multiplied by σ. It is easy to see that this
is a(2, O(σ))-good confidence radius. The result follows from Theorem 4.2(a).

Remark. In fact, Corollary 4.4 can be extended to noise distributions of a somewhat more general form: let
us say that a random variableX is stochastically(ρ, σ)-boundedif its moment-generating function satisfies

E[er(X−E[x])] ≤ er2σ2/2 for all r ∈ [−ρ, ρ]. (18)

Note that a normal distributionN (0, σ2) is (∞, σ)-bounded, and any distribution with support[−σ, σ] is
(1, σ)-bounded. The meaning of (18) is that it is precisely the condition needed to establish an Azuma-type
inequality: ifS is the sum ofn independent stochastically(ρ, σ)-bounded random variables with zero mean,
then with high probabilityS ≤ Õ(σi

√
n):

Pr
[
S > λσ

√
n
]
≤ exp(−λ2/2) for anyλ ≤ 1

2 ρ σ
√

n. (19)

The derivation and the theorem statement needs to be modifiedslightly to account for the parameterρ; we
omit the details from this version.

Second, we consider thenoiselesscase when all probability mass inP is concentrated at 0. Our result
holds more generally, whenP has at least onepoint mass: a pointx ∈ R such thatP(x) > 0.

Corollary 4.5. Consider the Noisy Lipschitz MAB problem such that the noisedistributionP has at least
one point mass. Then the problem admits a confidence radius which is (β, c)-good for any givenβ > 0 and
a constantc = c(β,P). The corresponding low-regret guarantees follow via Theorem 4.2.

Proof Sketch.Let S = argmaxP(x) be the set of all points with the largest point massp = maxx P(x),
and letq = maxx:P(x)<p P(x) be the second largest point mass. Thenn = Θ(log t) samples suffices to
ensure that with high probability each node inS will get at leastn(p + q)/2 hits whereas any other node
will get less, which exactly locates all points inS. We use confidence radiusrt(v) = Θ(iph)(

3
4 )nt(v).

Third, we consider noise distributions with a ”special region” which can be located using a few samples.
This may be a more efficient way to estimateµ(v) than using the standard Chernoff-style tail bounds.
Moreover, in our examplesP may be heavy-tailed, so that Chernoff-style bounds do not hold.

Corollary 4.6. Consider the Noisy Lipschitz MAB problem with noise distribution P. SupposeP has a
densityf(x) which is symmetric around0 and non-increasing forx > 0. Assume one of the following:

(a) f(x) has a sharp peak:f(x) = Θ(|x|−α) for all small enough|x|, whereα ∈ (0, 1).

10Recall that throughout the paper the payoff distribution ofeach strategyx has supportS(x) ⊂ [0, 1]. In this subsection, by a
slight abuse of notation, we do not make this assumption.

20



(b) f(x) piecewise continuous on(0,∞) with at least one jump.
Then for some constantcP that depends only onP the problem admits a(β, cP )-good confidence radius,
where(a) β = 1 − α, (b) β = 1. The corresponding low-regret guarantees follow via Theorem 4.2.

Proof Sketch.For part (a), note that for anyx > 0 in a neighborhood of0 we haveP[(−x, x)] = Θ(x1−α).
Thereforen = Θ(xα−1 log t) samples suffices to separate with high probability any length-x sub-interval
of (−x, x) from any length-x sub-interval of(2x,∞). It follows that usingn samples we can approximate
the mean reward up to±O(x). Accordingly, we setrt(v) = Θ(iph/nt(v))1/(1−α).

For part (b), let x0 be the smallest positive point where densityf has a jump. Then by continuity there
exists someǫ > 0 such thatinfx∈(x0−ǫ, x0) f(x) > supx∈(x0, x0+ǫ) f(x). Therefore for anyx < ǫ using
n = Θ( 1

x log n) samples suffices to separate with high probability any length-x sub-interval of(0, x0) from
any length-x sub-interval of(x0,∞). It follows that usingn samples we can approximate the mean reward
up to±O(x). Accordingly, we setrt(v) = Θ(iph/nt(v)).

4.2 What if the maximal expected reward is 1?

We elaborate the algorithm from Section 2 so that it satisfiesthe guarantee (4)and performs much better if
the maximal expected reward is1.

Definition 4.7. Consider the Lipschitz MAB problem. Call an algorithmβ-good if there exists an abso-
lute constantc0 such that for any problem instance ofc-zooming dimensiond it has the properties (ab) in
Theorem 4.2. Call a confidence radiusβ-good if it is (β, c0)-goodfor some absolute constantc0.

Theorem 4.8. Consider the standard Lipschitz MAB problem. There is an algorithmA which is2-good in
general, and1-good when the maximal expected reward is1.

The key ingredient here is a refined version of the confidence radius which is much sharper than (2)
when the sample average is close to1. For phaseiph, we define

rt(v) :=
α

1 + nt(v)
+

√
α

1 − µt(v)

1 + nt(v)
for someα = Θ(iph). (20)

In order to analyze (20) we need to establish the following Chernoff-style bound which, to the best of
our knowledge, has not appeared in the literature:

Lemma 4.9. Considern i.i.d. random variablesX1 . . . Xn on [0, 1]. Let µ be their mean, and letX be
their average. Then for anyα > 0 the following holds:

Pr [ |X − µ| < r(α,X) < 3 r(α, µ) ] > 1 − e−Ω(α), wherer(α, x) = α
n +

√
αx
n .

Proof. We will use two well-known Chernoff Bounds which we state below (e.g. see p. 64 of [20]):

(CB1) Pr[|X − µ| > δµ] < 2 e−µnδ2/3 for anyδ ∈ (0, 1).

(CB2) Pr[X > a] < 2−an for anya > 6µ.

First, supposeµ ≥ α
6n . Apply (CB1) with δ = 1

2

√
α

6µn . Thus with probability at least1 − e−Ω(α) we have

|X − µ| < δµ ≤ µ/2. Moreover, plugging in the value forδ,

|X − µ| < 1
2

√
αµ/n ≤

√
αX/n ≤ r(α,X) < 1.5 r(α, µ).
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Now supposeµ < α
6n . Then using (CB2) with a = α

n , we obtain that with probability at least1−2−Ω(α)

we haveX < α
n , and therefore

|X − µ| < α
n < r(α,X) < (1 +

√
2) α

n < 3 r(α, µ).

Proof of Theorem 4.8: Let us fix a strategyv and timet. Let us use Lemma 4.9 withn = nt(v) and
α = Θ(iph) as in (20), setting each random variableXi equal to 1 minus the reward from thei-th time
strategyv is played in the current phase. Thenµ = µ(v) andX = µt(v), so the Lemma says that

Pr

[
|µt(v) − µ(v)| < rt(v) < 3

(
α

nt(v)
+

√
α (1 − µ(v))

nt(v)

)]
> 1 − 2Ω(α). (21)

Note that (20) is indeed a confidence radius with respect toµt(v): property (i) in Definition 4.1 holds
by (21), and it is easy to check that property (ii) holds, too.It is easy to see that (20) is a2-good confidence
radius. It remains to show that it is1-good when the maximal reward is1; this is where we use the upper
bound onrt(v) in (21). It suffices to prove the following claim:

If the maximal reward is1 and∆(v) ≤ 4 rt(v) thennt(v) ≤ O(log t)∆(v)−1.

Indeed, letn = nt(v) and∆ = ∆(v), and suppose that the maximal reward is1 and∆(v) ≤ 4 rt(v).
Then by (21) we have∆ ≤ 4 rt(v) ≤ α

n +
√

α∆/n for someα = O(log t). Now there are two cases. If
α
n < ∆/2 then

√
α∆/n ≥ ∆ − α

n > ∆(v)/2, which implies the desired inequality. Else we simply have
n ≤ O(α/∆). Claim proved.

4.3 Example: expected reward= distance to the target

We consider a version of the Lipschitz MAB problem where the expected reward of a given strategy is equal
to its distance to sometarget setwhich is not revealed to the algorithm.

Definition 4.10. The Target MAB problem on a metric space(L,X) with a target setS ⊂ X is the standard
Lipschitz MAB problem on(L,X) with payoff functionµ(u) = 1 − L(u, S).

Remark. It is a well-known fact thatL(u, v) ≥ L(u, S) − L(v, S) for anyu, v ∈ X and any setS ⊂ X.
Therefore the payoff functionµ in Definition 4.10 is Lipschitz on(L,X).

Note that in the Target MAB problem the maximal reward is 1, sowe can take advantage of the zooming
algorithmA from Theorem 4.8. Recall thatRA(t) ≤ Õ(c t1−1/(1+d)) whered is thec-zooming dimension.
In this example zooming dimension is about coveringB(S, r) with sets of diameterΘ(r): it is the smallest
d such that for eachr > 0 the ballB(S, r) can be covered withc r−d sets of diameter≤ r/8.

Let us refine this bound for metric spaces of finite doubling dimension. In particular, we show that for a
finite target set the zooming algorithm from Theorem 4.8 achievespoly-logarithmicregret.

Theorem 4.11. Consider the Target MAB problem on a metric space of finite doubling dimensiond∗. Let
A be the zooming algorithm from Theorem 4.8. Then

RA(t) ≤ (c 2O(d∗) log2 t) t1−1/(1+d) for all t, (22)

whered is thec-covering dimension of the target setS.
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Proof. By Theorem 4.8 it suffices to prove that theK-zooming dimension of the pair(L,µ) is at mostd,
for someK = c 2O(d∗). In other words, it suffices to cover the setSδ = {u ∈ Y : ∆(u) ≤ δ} with K δ−d

sets of diameter≤ δ/16, for any givenδ > 0.
Fix δ > 0 and note that∆(u) = L(u, S). Note that setS can be covered withc δ−d sets{Ci }i of

diameter≤ δ. It follows that the setSδ can be covered withr−d sets{B(Ci, r) }i of diameter≤ 3r.
Moreover, each setB(Ci, r) can be covered with2O(d∗) of sets of diameter≤ δ/16.

Remarks.This theorem is useful whend < d∗, i.e. when the target set is a low-dimensional subset of the
metric space. Recall that the zooming algorithm is self-tuning: it does not need to knowd∗ andd, and in
fact it does not even need to know that it is presented with an instance of the Target MAB problem!

We note in passing that it is very easy to extend Theorem 4.11 to a setting in which the strategy setY
is a proper subset of the metric space(L,X) and does not contain the target setS. If L(Y, S) = 0 then the
guarantee (22) holds as is. IfL(Y, S) > 0 then the following guarantee holds:

RA(t) ≤ (c 2O(d∗) log2 t) t1−1/(2+d) for all t,

whered is thec-covering dimension of the setB(S, r), r = L(Y, S).

4.4 The Lipschitz MAB problem under relaxed assumptions

The analysis in Section 2 does not require all the assumptions in the Lipschitz MAB problem. In fact, it
never uses the triangle inequality, and applies the Lipschitz condition (1) only if (essentially) one of the two
strategies in (1) is optimal. Let us formulate our results under the properly relaxed assumptions. In what
follows, thezooming algorithmwill refer to the algorithm in Theorem 4.8.

Theorem 4.12.Consider a version of the Lipschitz MAB problem on(L,X) in which the similarity metric
is not required to satisfy triangle inequality,11 and the Lipschitz condition (1) is replaced by

(∀u ∈ X) ∆(u) ≤ L(u, v∗) for somev∗ = argmax
v∈X

µ(v) (23)

More generally, if such nodev∗ does not exist, assume

(∀ǫ > 0) (∃v∗ ∈ X) (∀u ∈ X) ∆(u) ≤ L(u, v∗) + ǫ. (24)

Then the guarantees for the zooming algorithm in Theorem 4.8still hold.

We apply this theorem to a generalization of the Target MAB problem in whichµ(u) = f(L(u, S))
for some known non-decreasingshape functionf : [0, 1] → [0, 1]. Let us define a quasi-distanceLf by
Lf (u, v) = f(L(u, v)) − f(0). It is easy to see thatLf satisfies (23). Indeed, fix anyu∗ ∈ S. Then

∆(u) = f(L(u, S)) − f(0) ≤ f(L(u, u∗)) − f(0) = Lf (u, u∗) (∀u ∈ X).

Thus we can use the zooming algorithm on the quasi-distanceLf and enjoy the guarantees in Theorem 4.8.
Below we refine these guarantees for several examples.

Our goal here is to provide clean illustrative statements rather than cover the most general setting to
which our refined guarantees apply. Therefore we start with the most concrete example which we formulate
as a theorem, and follow up with some extensions which we listwithout a proof.

11Formally, we requireL to be a symmetric functionX × X → [0,∞] such thatL(x, x) = 0 for all x ∈ X. We call such
function aquasi-distanceonX.
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Theorem 4.13. Consider the Target MAB problem on a metric space(L,X) of finite doubling dimension
d∗, with shape functionf(x) = x1/α, α > 0. LetA be the zooming algorithm on(Lf ,X). Then

RA(t) ≤ (c 2O(d∗) log2 t) t1−1/(1+αd) for all t, (25)

whered is thec-covering dimension of the target setS.

Proof. Consider the pair(Lf , µ). Since the maximal reward is 1, by Theorem 4.8 it suffices to prove that
for somec∗ = c 2O(d∗) thec∗-zooming dimension of this pair is at mostαd. Specifically, for eachδ > 0 we
need to cover the setSδ = {u ∈ X : ∆(u) ≤ δ} with c∗ δ−αd sets ofLf -diameter at mostδ/16.

Indeed, since∆(u) = Lf (u, S), for eachu ∈ Sδ we haveL(u, S) ≤ δα. ThusSδ ⊂ B(S, δα). Let
ǫ = 16−α. As in the proof of Theorem 4.11, we can show thatSδ can be covered byc ǫ−O(d∗) δ−αd sets of
diameterǫ δα. Each of these sets hasLf -diameter at mostf(ǫ δα), which is at mostδ/16.

Remarks.This theorem includes Theorem 4.3 as a special casef(x) = x. Like the latter, this theorem is
useful when the target set is a low-dimensional subset of themetric space.

We consider extensions to more general shape functions and to strategy sets which do not containS:

• Suppose the shape functionf satisfies the following constraints for some constantsα ≥ α∗ > 0:

∀x ∈ (0, 1] g(x) ≥ x1/α andg(x) ≥ 21/α∗

g(x
2 ),

whereg(x) = f(x) − f(0). Then forβ = 1 + 1{f(0)>0} we have

RA(t) ≤ (c 2O(α∗d∗/α) log2 t) t1−1/(β+α d) for all t.

• Consider the setting in which the strategy setY is a proper subset of the metric space(L,X) and does
not contain the target setS. If L(u∗, S) = 0 for someu∗ ∈ Y then the guarantee (25) holds as is. In
general, if we restrict the shape function tof(x) = c + x1/α, α ∈ (0, 1] then

RA(t) ≤ (c 2O(d∗) log2 t) t1−1/(2+d) for all t,

whered is thec-covering dimension of the setS∗ = B(S, r), r = L(Y, S). Moreover, one can prove
similar guarantees withd∗ being the doubling dimension of an open neighborhood ofS∗, rather than
that of the entire metric space

4.5 Heavy-tailed reward distributions

Consider the Lipschitz MAB problem and letXn(v) be the reward from then-th trial of strategyv. The
current problem formlulation restrictsXn(v) to support[0, 1]. In this section we remove this restriction.
In fact, it suffices to assume thatXn(v) is an independent random variable with meanµ(v) ∈ [0, 1] and a
uniformly bounded bounded absolute third moment. Note thatdifferent trials of the same strategy{Xn(v) :
n ∈ N} do not need to be identically distributed.

Theorem 4.14.Consider the standard Lipschitz MAB problem. LetXn(v) be the reward from then-th trial
of strategyv. Assume that eachXn(v) is an independent random variable with meanµ(v) ∈ [0, 1] and
furthermore thatE

[
|Xn(v)|3

]
< ρ for some constantρ. Then there is an algorithmA such that if for some

c the problem instance hasc-zooming dimensiond then

RA(t) ≤ a(t) t1−1/(3d+6) for all t, wherea(t) = O(cρ log t)1/(3d+6). (26)
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The proof relies on the non-uniform Berry-Esseen theorem (e.g. see [21] for a nice survey) which we
use to obtain a tail inequality similar to Claim 2.2: for anyα > 0

Pr[|µt(v) − µ(v)| > rt(v)] < O(t−3α), wherert(v) = Θ(tα)/
√

nt(v). (27)

However, this inequality gives much higher failure probability than Claim 2.2; in particular, we cannot take
a union bound over all active strategies. Accordingly, we need a more refined version of Theorem 4.2
which is parameterized by the failure probability in (27). In the analysis, instead of the failure events when
the phase is not clean (see Definition 2.1) we need to considerthe ρ-failure eventswhen the tail bound
from (27) is violated by some strategyv such that∆(v) > ρ. Then using the technique from Section 2 we
can upper-boundRA(T ) in terms ofT , d, ρ andα and choose the optimal values forρ andα.
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[3] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit
problem.SIAM J. Comput., 32(1):48–77, 2002. Preliminary version in36th IEEE FOCS, 1995.
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