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Abstract

We propose a model of firm volatility based on customer-supplier connectedness.

We assume that customers’ growth rate shocks influence the growth rates of their sup-

pliers, larger suppliers have more customers, and the strength of a customer-supplier

link depends on the size of the customer firm. When the size distribution becomes

more dispersed, economic activity is concentrated among a smaller number of firms,

the typical supplier becomes less diversified and its volatility increases. The model

is consistent with a set of new stylized facts. At the macro level, the firm volatility

distribution is driven by firm size dispersion; the latter explains common movements

in firm-level total and residual volatility. At the micro level, we show that the concen-

tration of customer networks is an important determinant of firm-level volatility.
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1 Introduction

Firms experience great volatility in their growth rates and stock returns. Such fluctuations in

uncertainty have important implications for investment and hiring decisions, firm value, and

stock prices.1 While much progress has been made in describing the time-series dynamics

of volatility, our understanding of the underlying determinants of firm volatility is limited.

Indeed, most work on volatility in economics and finance models firms that are exposed to

heteroscedastic shocks without specifying the source of heteroscedasticity. In contrast, this

paper explores the determinants of firm volatility both theoretically and empirically.

We propose a model in which firms are connected to other firms in a business network.

Idiosyncratic and homoscedastic shocks hit each firm and propagate through the network.

Each firm has a limited number of business connections. The granularity of firm networks

makes firms imperfect aggregators of idiosyncratic shocks. The model links the firm size

distribution to network formation, generating a rich interaction between the firm size and

firm volatility distributions. As the firm size distribution becomes more dispersed, firm

networks become more concentrated, and the diversification of shocks becomes impaired.

Both the average firm volatility and its cross-sectional dispersion increase. The interaction

between the size distribution and network structure endogenously generates heteroscedastic

firm volatility. Guided by the model’s predictions, we establish a new set of stylized cross-

sectional and time series facts about firm volatility. A calibrated version of our model

captures these facts not only qualitatively but also quantitatively.

Our network model of firm growth makes three assumptions. First, shocks travel up-

stream: customers’ growth rate shocks influence the growth rates of their suppliers. Second,

the probability of the presence of a customer-supplier link depends on the size of the supplier.

Hence, large firms typically supply to a higher number of customers. Third, the importance

of a customer-supplier link depends on the size of the customer. Hence, large customers have

a stronger connection with their suppliers, presumably because they accounts for a large frac-

tion of their suppliers’ sales. We provide microeconomic evidence for all three assumptions

1See Leahy and Whited (1996), Bloom, Bond, and Van Reenen (2007), Bloom (2009), Stokey (2012)
among many others. The volatility of individual stock returns varies greatly over time (Lee and Engle 1993)
and across different firms (Black (1976), Christie (1982), and Davis, Haltiwanger, Jarmin, and Miranda
(2007)).
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based on the observed customer-supplier networks among Compustat firms.

These simple assumptions have six main implications for firm volatility and its relation-

ship to firm size. We test these predictions in the data and find support for all of them.

First, larger firms have lower volatility than smaller firms. Because they are connected to

more customers, their customer network is less concentrated which improves diversification.

Second, firms with more concentrated customer networks have higher volatility. Because

customer size determines the strength of a link, a supplier’s customer network will be more

concentrated if there is high dispersion in its customers’ sizes. Large customers’ shocks

will exert an outsized influence on the supplier, which results worse diversification and high

volatility, even if the firm has a large number of customers. The data indeed shows a strong

negative cross-sectional relationship between firm size and firm volatility and a strong posi-

tive correlation between a firm’s out-Herfindahl, our measure of the degree of concentration

of the customer network, and its volatility. The dependence of firm volatility on firm size

and firm out-Herfindahl survives the inclusion of other determinants of volatility previously

proposed in the empirical literature, including industry concentration and competition, R&D

intensity, equity ownership composition, and firm age or cohort effects.

Third, because each supplier’s network is a random draw from the entire size distribu-

tion, all firms’ customer networks have equal concentration in expectation. They inherit the

concentration of the entire firm size distribution. Increases in the dispersion of the size dis-

tribution hamper the diversifiability of shocks for all firms, and hence increase the volatility

of all firms. Thus, the model generates a factor structure in volatilities with the firm size

dispersion as the factor. In the data, lagged size dispersion explains 25% of the variation

in (realized) firm volatilities, as much as is explained by lagged average volatility, a natural

benchmark. Fourth, small firms have a larger exposure to this common factor, which also

implies that fluctuations in the factor should account for a larger faction of the volatility

dynamics of small firms. Both are features of the data.

Fifth, as a result of the factor structure, firm size dispersion is positively correlated with

mean firm volatility and with the dispersion of firm volatility. In the data, size dispersion has

a 67% correlation with mean firm volatility and 61% with the dispersion of firm volatility. A

persistent widening in the firm size dispersion should lead to a persistent rise in mean firm

3



volatility. We observe such a widening (increase in firm concentration) between the early

1960s and the late 1990s, providing a new explanation for the trend in mean firm volatility

studied by Campbell et al. (2001).

Sixth, residual firm volatility, defined as the volatility of the part of firm growth that is

orthogonal to aggregate growth, inherits the same factor structure. Intuitively, the factor

model is misspecified because a firm’s growth only depends on the growth of the customers

in its network, not on a size-weighted average growth of all firms. Consistent with these

predictions, Kelly, Lustig and Van Nieuwerburgh (2012) uncover a factor structure in the

volatility of stock returns (1926-2010) and sales growth rates (1962-2010). Even after re-

moving all of the common variation in returns or sales growth, as is commonly done in the

literature (see, e.g., Bekaert, Hodrick, and Zhang (2010)), the puzzling finding is that the

volatility of the residuals inherits the same factor structure as total volatility. Our paper

provides a resolution of this puzzle.

Collectively, this evidence supports a network-based explanation of firm volatility. Next

we explore whether the network model is able to quantitatively account for the correlations

between firm size, firm volatility, the number of customers, and the concentration of its cus-

tomer base, as well as aggregate moments of the cross-sectional distributions of size, volatility

and connections. The complexities that arise from the inherent non-linearity of the network

as well as its dynamics (exit and entry of firms and persistence in connections) necessitate

a numerical simulation. The calibration also allows us to confront truncation and selection

issues we face in the data. We find that a calibration with strong network effects and high

average concentration in customer networks is able to account quantitatively for most fea-

tures cross-sectional and aggregate features of the size and volatility data. Interestingly, the

model displays substantial movement in aggregate moments of size and volatility distribu-

tions, despite having a large number of firms and being run for a large number of periods.

The data display similar movements, but standard models of the firm size distribution imply

that such aggregate moments are constant.

In addition to the empirical literatures on fundamentals-based and return-based firm

volatility, our paper contributes to the literature on networks in finance.2 To that literature,

2See Allen and Babus (2009) for a recent summary paper.
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we contribute a model that links the size distribution to network formation and network

formation to the firm volatility distribution. We use the network structure in Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), but apply it at the firm level. We combine

their insights with the idea that each firm only connects with a small number of customers.

The granularity of the network is related to the idea that a few large firms account for a

large part of aggregate output and hence of aggregate volatility (Gabaix 2011). However, our

granularity operates at the firm level thereby endogenously generating firm-level volatilities

rather than taking those as given. Our explicit aggregation to economy-wide volatility can

be interpreted as providing micro-foundations for the granularity effect in Gabaix (2011).

Our paper brings to the fore an interesting question on the direction of shock propaga-

tion in the networks literature. The literature that tries to understand aggregate volatility of

GDP by studying the connections between sectors (e.g., Long and Plosser (1987), Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Carvalho and Gabaix (2013)) typically

considers downstream transmission of shocks from intermediary goods to final goods produc-

ers. Our work and that in corporate finance (e.g., Ahern and Harford (forthcoming)) instead

assumes that shocks propagate upstream. Shea (2002) lists a class of equilibrium models

in which final demand shocks are transferred upstream. Thus, our specification emphasizes

demand shocks over supply shocks as drivers of firm volatility. To understand the difference

in predictions, the appendix studies a version of our model where shocks travel downstream

from suppliers to customers instead. The implications for the size and volatility distribu-

tions are identical. Interestingly, the implications for the correlation between volatility on

the one hand and customer concentration (out-Herfindahl) and supplier concentration (in-

Herfindahl) on the other hand are different. On balance, the data supports the downstream

transmission mechanism more strongly.

The rest of the paper is structured as follows. Section 2 sets up the network model and

studies its volatility implications. Section 3 imposes three assumptions and describes the

factor structure in volatility generated by the model. Section 4 presents macro evidence

on the link between the firm size and the firm volatility distributions. Section 5 describes

micro evidence on the link between firms’ network structures and their volatility. Section 6

calibrates the model and studies the match with the macro and micro evidence. The proofs
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as well as some auxiliary empirical evidence, theoretical results, and alternative calibrations

are relegated to the appendix.

2 A Network Model of Firm Growth

We develop a dynamic network model of connections between firms. While the model is

general at this stage, we refer to it as a model of connections between suppliers and customers.

In this directed network, suppliers’ growth rates depend on their own idiosyncratic shocks

and the growth rates of their customers.

2.1 Firm Growth

Define Si,t as the size of firm i, and its growth rate as gi,t+1, where

Si,t+1 = Si,t exp(gi,t+1). (1)

Firm i’s growth rate is defined as a linear combination of its own shock and a weighted

average of the growth rates of its customers j:

gi,t+1 = µg + γ
N∑

j=1

wi,j,t gj,t+1 + εi,t+1. (2)

The parameter γ ∈ [0, 1) governs the rate of decay as a shock propagates through the

network. The weight wi,j,t determines how strongly firm i’s growth rate is influenced by the

growth rate of firm j; it governs the strength of the connection between i and j. If i and

j are not connected then wi,j,t = 0. By convention, we set wi,i,t = 0. The full matrix of

connection weights is W t = [wi,j,t]. We assume that all rows of W t sum to one so that its

largest eigenvalue λmax equals one. Connections are not symmetric: firm j can be a customer

of i without i being a customer of j.3 Let gt+1 and εt+1 ∼ N (0, σ2
εI) be the N × 1 vectors

3As an aside, these growth dynamics impute dynamics to the relative sizes, or shares, of firms that are
similar to those explored by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006). In contrast
to their work, there is no mean reversion built into our shares. Furthermore, only the customer shares in
W t are relevant for the cash flow dynamics of a firm. These shares divide by the sum of all customers not
by the sum of all firms in the economy.
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of growth rates and shocks, respectively, then:

gt+1 = µg + γW tgt+1 + εt+1 = (I − γW t)
−1 (

µg + εt+1

)
. (3)

We purposely imposes stark assumptions on the nature of the underlying innovations:

Each firm i experiences an idiosyncratic, homoscedastic growth rate shock εi,t+1 ∼ N(0, σε).

All dynamics in the volatility of growth rates will arise endogenously.

Acemoglu et al. (2012) derive a static version of (3) as the equilibrium outcome in a

multi-sector production economy. Theirs is also a directed network, but in their version the

productivity shocks are transferred downstream from suppliers to customers.4 The appendix

explores a version of our model where shocks are propagated downstream from suppliers to

customers.

Since we focuss on propagation from customer to supplier firms, a question arises as to

how to think of retail firms whose customers are households. Since households are not part of

the model, this would appear to be a source of leakage. Appendix A.2 discusses an extension

of the model where retail firms are exposed to the shocks of other firms through the labor

income and wealth shocks experienced by households.

2.2 Firm Volatility

Conditional on Wt, the variance-covariance matrix of growth rates gt+1 is given by:

V t

(
gt+1

)
= σ2

ε (I − γW t)
−1 (I − γW ′

t)
−1

. (4)

The vector of firm volatilities is the square root of the diagonal of the variance-covariance

matrix.

Let S̃ denote the vector of relative sizes, with S̃i = Si/
∑

k Sk. Then we can define the

4Theirs is a constant-returns to scale economy populated by a stand-in agent who has Cobb-Douglas
preferences defined over all of the N different commodities produced. Productivity shocks are transferred
downstream from suppliers to customers. In this economy, the weights wk,j , are the input weights of good
k for firm j in the production of commodity j while γ measures the input share in GDP. This specification
emphasizes upstream supply shocks as the only drivers of firm-level volatility, while our model focuses on
downstream demand shocks as the only drivers.

7



aggregate growth rate of the economy as:

ga,t+1 = S̃
′

tgt+1 = S̃
′

t (I − γW t)
−1 (

µg + εt+1

)
. (5)

The variance of the aggregate growth rate is given by:

Vt(ga,t+1) = σ2
ε S̃

′

t (I − γW t)
−1 (I − γW ′

t)
−1

S̃t. (6)

A standard approach to evaluating systematic versus idiosyncratic risk is to run factor

model regressions. The primary factor is typically a size-weighted average of the left hand

side variable. It is instructive to examine how the network model impacts this type of

analysis. Let β denote the N × 1 vector of factor exposures. Then the residual growth rate

is defined as:

gres
t+1 = gt+1 − βga,t+1 =

(
I − βS̃

′

t

)
(I − γW t)

−1 (
µg + εt+1

)
. (7)

The conditional variance of the residual growth rate is given by:

Vt(g
res
t+1) = σ2

ε

(
I − βS̃

′

t

)
(I − γW t)

−1 (I − γW ′

t)
−1
(
I − S̃tβ

′

)
. (8)

A key observation is that variation in W t and S̃t induces heteroscedasticity in both total

and residual growth rates, even though all underlying innovations are i.i.d. across firms and

over time.

2.3 First-order Effects on Volatility

To better understand the relation between volatility and network structure, we start by

studying first-order network effects. The first order approximation to the full network model

allows us to develop intuition because it admits analytical expressions for firm volatility.

Under our maintained assumption that γ ∈ [0, 1),

(I − γW t)
−1 = I + γW t + γ2W 2

t + γ3W 3
t + · · · ≈ I + γW t,
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which delivers a first-order approximation of the growth rate:

gt+1 ≈ (I + γW t)
(
µg + εt+1

)
. (9)

In this approximation, firm i’s growth rate depends not on its customers’ growth rates but

directly on their growth rate shocks :

gi,t+1 ≈ (1 + γ)µg + γ
∑

j

wi,j,tεj,t+1 + εi,t+1. (10)

Under the first-order approximation, the variance of firm’s i growth rate is given by:

Vt (gi,t+1) ≈ σ2
ε

(
1 + γ2Hi,t

)
, (11)

where

Hi,t ≡
N∑

j=1

w2
i,j,t (12)

is the Herfindahl index of supplier i’s network of customers. We refer to Hi,t as the customer

Herfindahl or the out-Herfindahl. The higher i′s out-Herfindahl, the more concentrated her

network of customers is, and the higher her variance. Hence, to a first order approximation,

the variance of a firm’s growth rate is determined by its customer Herfindahl Hi,t, the

volatility of the underlying innovations σ2
ε , and the importance of (rate of shock decay in)

the network captured by the parameter γ.

The first-order approximation of firm variance delivers a lower bound on the true variance

in the full network model.

Proposition 1. If γ ∈ (0, 1), average firm variance is bounded below by a quantity that

depends on the average out-Herfindahl:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ε

(
1 + γ2 1

N

∑

i

Hi,t

)
(13)

The proof of this and all ensuing propositions are in Appendix A.1. The higher-order
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feedback effects that the first-order approximation abstracts from can only increase firm-level

volatility.

2.4 Higher-order Network Effects on Volatility

The strength of higher-order network effects depends on γ and the properties of the network

matrixW t. We can derive bounds on firm volatility in two polar cases. The first case features

maximally strong feedback effects and no diversification benefits from linkages. Each firm

only has one connection, it’s neighbor to the right. The corresponding W t matrix has ones

above the main diagonal and zeros elsewhere, except for a one in the (N, 1) position. The

second polar case considers a network with maximal diversification. Each firm is connected

to all other firms in the network with equal strength. The corresponding W t matrix has

zeros on the main diagonal and 1
N−1

elsewhere.

Proposition 2. In a symmetric network, the variance of each firm i at each time t is bounded

by:

σ2
ε

[(
N−2
N−1

γ − 1
)2

+ 1
N−1

γ2

(
1

N−1
γ2 + N−2

N−1
γ − 1

)2

]
≤ Vt(gi,t+1) ≤

σ2
ǫ (1− γ2N )

(1− γ2)(1− γN)2
. (14)

As the number of firms in the economy goes to infinity these bounds become:

σ2
ǫ ≤ Vt(gi,t+1) ≤

σ2
ǫ

1− γ2

The lowest firm variance can be in a large economy is the original shock variance σ2
ǫ . The

upper bound for volatility obtained under maximal concentration grows without bound as γ

approaches one. In the limit, shocks do not decay as they propagate through the network. In

our calibration below, which does not impose symmetry, firm variances lie between these two

bounds. The data require a high value for γ, producing a wide range of possible volatilities.
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3 Size and Volatility

We now introduce two key assumptions on the probability and the strength of connections

between customers and suppliers. These assumptions connect the firms size distribution

to the network structure of the economy. We provide micro-economic evidence for these

assumptions in section 5.

3.1 Size Effects in Network Structure

The linkage structure at time t is determined by the firm size distribution coming into period

t. The existence of a link between i and j is captured by

bi,j,t =




1 if i connected to j at time t

0 otherwise,

Each element of the connections matrix, Bt = [bi,j,t], is drawn from a Bernoulli distribution

with P (bi,j,t = 1). This probability of connection is assumed to be linear in supplier size:

P (bi,j,t = 1) ≡ pi,t = Si,t/

(
Z
∑

j

(Sj,t)

)
, (15)

While the functional form only matters quantitatively, the crucial assumption is that the

probability of a connection depends on the size of the supplier, not on the size of the customer.

It follows immediately that larger suppliers have more connections on average. This is the

model’s first size effect.

Conditional on a link existing between supplier i and customer j (bi,j,t = 1), the strength

of that link is linear in customer size:

wi,j,t =
bi,j,tSj,t∑N

k=1 bi,k,tSk,t

, ∀i, j, t. (16)

This weighting scheme assumes that larger customers have a larger impact on a supplier’s

growth rate. This assumption is the second size effect in our network.
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3.2 Factor Structure in Volatility

Because all firms, large and small, draw their connections from the same economy-wide

size distribution, their customer networks have equal concentration in expectation. The

only difference in the network structure across suppliers of different size is the number of

customers they have. This commonality in network concentration naturally leads to a factor

structure in firm volatilities.

To derive closed-form approximations, we consider what happens to the network struc-

ture when the number of firms N becomes large. This allows us to appeal to the law of large

numbers. We characterize the expected network structure conditional on the size distribu-

tion, and the latter’s relation to firm volatility.

3.2.1 First-Order Network Model

Under the first-order approximation to the full network model, firm variance depends on the

firm’s out-Herfindahl Hi,t as in equation (11). In a large economy, a firm’s out-Herfindahl

converges to the economy-wide Herfindahl Ht divided by the probability pi:

Proposition 3. In the first-order approximation, firm variance displays a factor structure:

Vt (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2Ht

)
. (17)

as the number of firms N grows large.

Equation (17) shows that all firms’ volatilities are exposed to a common factor: the

Herfindahl index of the entire firm size distribution. It also shows that cross-sectional dif-

ferences in volatility are captured by one over the linkage probability, pi,t. Larger firms have

a higher pi and therefore lower exposure to the common factor than smaller firms. Intu-

itively, larger firms typically connect to more customers, achieve better shock diversification,

and display lower volatility. The lower exposure also makes large firms less sensitive to

fluctuations in Ht (the firm size distribution): they display lower volatility of volatility.

If the firm size distribution is log-normal with mean µs,t and variance σ2
s,t, the natural

candidate for the volatility factor is the firm size dispersion:
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Corollary 1. If the firm size distribution is log-normal, firm variance displays a factor

structure with the firm size dispersion as factor

V (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2

exp
(
σ2
s,t

)

N

)
, (18)

in the first-order version of the network for large N .

Proposition 4. If the size distribution is log-normal, the volatility distribution is also log-

normal with mean E [log (V (gi,t+1)− σ2
ε )] ≈ log(σ2

εγ
2Z)+3

2
σ2
s,t and volatility V (log (V (gi,t+1)− σ2

ε )) ≈
σ2
s,t. In the first-order version with large N .

Corollary 1 and Proposition 4 imply that the cross-sectional firm size dispersion at time

t drives both the cross-sectional mean and the cross-sectional dispersion of the firm variance

distribution, where the variance is measured between t and t + 1. Below, we show that the

log size and log variance distributions are accurately described by normal distributions in

the data and that the dispersion in log firm size distribution Granger-causes both the mean

and the dispersion of the log variance distribution.

3.2.2 Higher-Order Network Model

We can extend our large-N approximation to include higher-order network effects. The key

result is that the economy-wide Herfindahl survives as the common factor driving all firm

volatilities.

Proposition 5. If the number of firms N grows large, firm variance is given by:

Vt(gi,t+1) ≈ σ2
ε

(
1 + κ0

Si,t

NE[St]
+ κi,tHt

)

where κ0 =
2γ2

1−γ
and κi,t =

γ2

pi,t
+ 2γ3

1−γ
+ γ4

(1−γ)2
.

Once we include higher-order effects, there are two countervailing size effects. The first

effect is the standard diversification effect: larger firms have higher pi, larger networks, and

hence a smaller volatility. The second effect is a higher-order network effect captured by κ0:
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larger firms have more links and hence are more exposed to “echo” effects from their own

shocks. In our calibrated model, the first effect clearly prevails.

3.2.3 Residual Volatility

In the literature, idiosyncratic volatility is typically constructed by first removing the cor-

related component of growth rates (or returns) with a statistical model such as principal

component analysis, then calculating the volatilities of the residuals. In a granular network

model like ours, a standard factor regression is misspecified. There is no dimension-reducing

factor that can capture commonalities in growth rates since, by virtue of the network, every

firm’s shock may be systematic. A sign of the misspecification of the factor model is that the

residuals exhibit a volatility factor structure that looks very similar to the factor structure

for total firm volatility.

Proposition 6. In a first-order version, the volatility of residuals also inherits an approxi-

mate factor structure:

Vt(g
res
i,t+1) ≈ σ2

ε

(
1 +

1

pi,t
γ2Ht −

[
Si,t

NE[Si,t]
+ γHt

]2)
. (19)

3.2.4 Aggregate Volatility

Finally, we consider the impact on aggregate volatility. In the first-order version of our

economy, aggregate volatility also is governed by the same factor Ht.

Proposition 7. In the first-order version, aggregate volatility inherits an approximate factor

structure:

V (ga,t+1) ≈ σ2
εHt (1 + γ)2 . (20)
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4 Macro Evidence on Size Dispersion and Volatility

This section documents new stylized facts about the joint evolution of the firm size and firm

volatility distributions.

4.1 Data

We conduct our analysis using stock market data from CRSP over the period 1926–2010 and

cash flow data from CRSP/Compustat over 1952–2010. We consider market and fundamental

measures of firm size and firm volatility calculated at the annual frequency. For size, we use

equity market value at the end of the calendar, or total sales within the calendar year. Market

volatility is defined as the standard deviation of daily stock returns during the calendar year.

Fundamental volatility in year t is defined as the standard deviation of quarterly sales growth

(over the same quarter the previous year) within calendar years t to t+ 4.5

Appendix B.1 establishes that log size and log volatility are approximately normally dis-

tributed in the data. The near-log normality of size and volatility distributions is convenient

in that the dynamics of each distribution may be summarized with two time series: the cross

section mean and standard deviation of the log quantities. We next examine these time

series in detail.

4.2 Comovement of Size and Volatility Distributions

Figure 1 plots the cross-sectional average of log firm variance against two different measures

of lagged firm size dispersion: the dispersion of log sales and of log market equity across

firms. The correlation between average volatility and the market-based measure of size

dispersion is 67% while the correlation with the sales-based measure is 61%. Figure 2 plots

the cross-sectional dispersion of log firm variance against the same two measures of size

dispersion. The correlation between volatility dispersion and the market-based measure of

lagged size dispersion is 60% while the correlation with sales-based dispersion is 41%. Hence,

as predicted by the model, we observe a strong positive association relation between firm

5We also consider fundamental volatility measured by the standard deviation of quarterly sales growth
within a single calendar year. The one and five year fundamental volatility estimates are qualitatively
identical, though the one year measure is noisier because it uses only four observations.
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size dispersion on the one hand and the average firm volatility and the dispersion of firm

volatility on the other hand.

Figure 1: Average Volatility and Dispersion in Firm Size
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Notes: The figure plots the cross-sectional dispersion of log firm size, once measured based on market equity
values and once based on sales, and the cross-sectional mean of the log variance distribution, where the
variance is measured based on daily stock returns. All series are rescaled for the figure to have mean zero
and variance one.

Figure 3 plots the mean (top panel) and dispersion (bottom panel) of the log variance

distribution where variances are calculated either from stock return (solid line) or from sales

growth data (dashed line). Average return volatility and average sales growth volatility have

an annual time series correlation of 64% and their dispersions have a correlation of 49%. This

demonstrates a high degree of similarity between market volatilities and its (more coarsely

measured) fundamental counterpart. Any explanation of these volatility facts, including

“financial explanations,” must confront this similarity.

The positive correlations between firm size dispersion and both the mean and dispersion

of firm variance are very robust. Appendix B.2 shows that these correlations hold across

broad industries, across size terciles, for NYSE firms and non-NYSE firms, for firms that

have been publicly listed at least 50 years and for random samples of 500 firms. Hence, these

correlations unlikely to be driven by changes in the nature of publicly listed firms. Appendix

B.3 shows that the positive correlation between size dispersion and average volatility holds
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Figure 2: Dispersion in Volatility and Dispersion in Firm Size
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Notes: The figure plots the cross-sectional dispersion of log firm size, once measured based on market equity
values and once based on sales, and the cross-sectional dispersion of the log variance distribution, where the
variance is measured based on daily stock returns. All series are rescaled for the figure to have mean zero
and variance one.

both at low and business cycle frequencies.

Finally, the changes in the firm size distribution that drive these volatility dynamics are

not specific to publicly traded firms. Appendix B.4 documents that the dispersion in the log

size distribution, where size is measured by number of employees, displays similar dynamics

for publicly listed and privately-held firms. In particular, the sample of private companies

also displays a secular increase in firm size dispersion between the mid-1970s and mid-2000s.

While we do not aim to explain why the firm size dispersion grew -other than to provide a

model where firm size and volatility dynamics feed into each other- we conjecture that the

secular decline in firm exit and entry rates is related to the increase in size concentration

over this period (Appendix B.5).

4.3 Granger Causality Tests

Our network model predicts that movements in the size distribution precede changes in the

volatility distribution. When the size distribution spreads out (contracts) at time t, the net-

work structure for the subsequent period adjusts, and diversification of growth rate shocks is
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Figure 3: Fundamental and Market Volatility
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Notes: The figure plots the cross-sectional mean (top panel) and standard deviation (bottom panel) of the
log variance distributions based on returns and based on sales growth. All series standardized to have mean
zero and variance one.

hindered (enhanced). We use Granger causality tests to evaluate whether dispersion in firm

sizes predicts the mean and standard deviation of the volatility distribution, after controlling

for own lags of the dependent variable. Table 1 presents the results from these tests. We

find that firm size dispersion (based on log market equity) has statistically significant pre-

dictive power for mean firm volatility (based on returns), and dispersion in volatility. The

reverse is not true. After controlling for own lags of size moments, moments of the volatility
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Table 1: Granger Causality Tests

Dependent Variable Independent Variables

Intercept µσ,t−1 σs,t−1

µσ,t Coeff -1.18 0.74 0.07
t-stat. -2.82 8.31 2.21

σS,t Coeff -0.28 -0.11 0.97
t-stat. -0.47 -0.88 16.01

Intercept σσ,t−1 σs,t−1

σσ,t Coeff -0.02 0.61 0.04
t-stat. -1.48 5.86 3.12

σs,t Coeff 0.20 -1.19 1.04
t-stat. 1.47 -2.25 15.88

Notes: Annual data 1926–2010. The table reports results of Granger causality tests for the ability of log
firm size dispersion (σS,t−1) to predict the mean (µσ,t) and standard deviation (σσ,t) of the log volatility
distribution. We use the market based volatility measure constructed from stock returns and the market
equity measure of size.

distribution do not predict the size distribution.6 This evidence suggests that size dispersion

leads the volatility distribution, consistent with the model.

4.4 Volatility Factor Structure

Recent research has documented a puzzling degree of common variation in the panel of firm-

level volatilities. Kelly et al. (2012) show that firm-level stock return volatilities share a

single common factor that explains roughly 35% of the variation in log volatilities for the

entire panel of CRSP stocks.7 This R2 is nearly twice as high for the 100 Fama-French

6Lagged dispersion in log volatility appears to Granger-cause size dispersion, but the coefficient has the
wrong sign. The hypothesis has the one-sided alternative that volatility dispersion positively predicts size
dispersion; thus this negative result leads us to fail to reject the null.

7Similarly, Engle and Figlewski (2012) document a common factor in option-implied volatilities since 1996,
and Barigozzi, Brownlees, Gallo, and Veredas (2010) and Veredas and Luciani (2012) examine the factor
structure in realized volatilities of intra-daily returns since 2001. The contribution of this paper is to provide
an economic explanation for a common factor in firm-level volatility, and argue that the cross-sectional
dispersion of firm size is natural candidate for this volatility factor.
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portfolios. They also show that this strong factor structure is not only a feature of return

volatilities, but also of sales growth volatilities. The puzzling aspect of this result is that

the factor structure remains nearly completely intact after removing all common variation in

returns (or sales growth rates) by extracting principal components. Hence, common volatility

dynamics are unlikely to be driven by an omitted common return (or sales growth) factors.

The results of Section 3 suggest that our granular network model may be able to explain

the puzzling comovement in firm volatility. Propositions 3 and 5 show an approximate

factor structure among the volatilities of all firms, and suggests that concentration of the

lagged economy-wide size distribution is the appropriate factor. Furthermore, equation (24)

predicts that factor model residuals will possess a similar degree of volatility comovement,

despite residual growth rates themselves being nearly uncorrelated.

Panel A of Table 2 shows results of panel volatility regressions for three different factor

models. The left three columns uses the volatility of total returns and total sales growth rates,

while the next three columns use residual volatilities. Residual volatilities are calculated in a

one factor model regression of stock returns (sales growth rates) on the value-weighted market

return (sales-weighted average growth rates). In both cases, residuals have average pairwise

correlations that are below 2% in absolute value, despite the original series having average

correlations over 25% on average. Columns (1) and (4) considers the dispersion of lagged

log market-based firm size as a factor. Columns (2) and (5) consider the lagged weighted-

average volatility. This lagged cross-sectional average volatility is a natural benchmark for

factor model comparison because it is essentially a first principal component of volatilities

and because the lag maintains a comparable timing with the conditioning factor implied

by our model. The third column instead uses the contemporaneous average volatility as a

factor. Because it uses finer conditioning information, it can be considered an upper bound

on the explanatory power of a single factor. We report the panel R2 values based on each

factor.

The table shows that the lagged size dispersion has the same degree of explanatory power

as the lagged average volatility. Both factors capture about 25% of the panel variation

in return volatility. The contemporaneous mean volatility explains closer to 40% of the

variation. The results for sales-based volatility are similar, where our size dispersion factor
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explains about 22% of the panel variation, close to the 23% and 24% for the lagged and

contemporaneous average volatility factor. Columns (4) to (6) repeat these regressions for

the panel of residual volatilities, and find similar results.

Table 2: R2 of Volatility Factor Models

Total Volatility Residual Volatility

(10 (2) (3) (4) (5) (6)

Factors Factors

σS,t−1 µσ,t−1 µσ,t σS,t−1 µσ,t−1 µσ,t

Panel A: Factor Model R2, All Firms

Return Vol. 24.4 25.9 39.3 24.7 26.5 37.5

Sales Gr. Vol. 21.8 23.4 24.3 21.4 25.8 27.8

Panel B: Return Volatility Loadings by Size Quintile

Q1 1.25 1.09 1.18 1.32 1.10 1.19

Q5 0.80 0.65 0.84 0.81 0.55 0.71

Panel C: Return Volatility R2 by Size Quintile

Q1 47.9 76.5 90.9 52.6 77.2 90.6

Q5 37.7 53.7 87.2 48.9 49.2 79.1

Notes: The table reports factor model estimates for the panel of firm-year volatility observations. In Panel
A, total volatility is measured as standard deviation of daily returns within the calendar year, and residual
volatility is estimated from daily regressions of firm returns on the value-weighted market portfolio within
the calendar year. In Panel B, total volatility in year t is measured as standard deviation of quarterly
observations of year-on-year sales growth for each stock in calendar years t to t + 4. Residual volatility is
measured from regressions of firms sales growth on the sales-weighted average growth rate for all firms. All
volatility factor regressions take the form log σi,t = ai+ bifactort+ ei,t. We consider three different volatility
factors. The first, motivated by our network model, is the lagged cross section standard deviation of log
market equity, σS,t−1. The second and third factors we consider are the lagged and contemporaneous cross
section average log volatility, µσ,t−1 and µσ,t. We report the pooled factor model R2 in percent.

The model also predicts that larger firms have lower loadings on the size dispersion factor,

which lowers both the level of their volatilities relative to small firms and their volatility of

volatility. Panel B of Table 2 shows the loading of firm volatility on each factor, averaged

within each quintile of the firm size distribution. Small firms have loadings that are 50%
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larger on the factor than large firms. Panel C shows that the common factor explains a larger

share of the volatility dynamics of small firms than that of large firms. Finally, Figure 4 plots

the average log firm volatility each year (top panel) and the time-series volatility of average

volatility (bottom panel) for each size quintile. Large firms have lower levels of volatility

and also less variation in volatility. Table 2 and Figure 4 are consistent with the model’s

prediction that dispersion in firm sizes predicts the entire panel of firm-level volatilities.

Figure 4: Average Firm Volatility by Size Quintile
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Notes: The top panel plots average log return volatility within CRSP market equity quintiles. The bottom
panel reports time series standard deviation of average volatility within each quintile.
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4.5 Aggregate Volatility Accounting

The volatility of firm-level stock returns has increased from an average of 26% per year in

the 1950s to 63% per year since 1990 (see, for example, Campbell, Lettau, Malkiel, and Xu

(2001)). This increase is also present in residual volatilities from a factor model for returns.

The increase in total and residual firm volatility puzzles financial economists. Candidate

explanations can be divided into real and financial explanations. Our stylized facts about

the joint distribution of volatility and size are present in both fundamental- and market-

based measures, which would seem to point in the direction of a real explanation rather than

a financial one. We contribute to this literature a new explanatory variable for the dynamics

of firm volatility: firm size dispersion.

We find that accounting for changes in the size distribution nullifies the volatility trends

of the 1950s-1990s sample. Figure 5 plots average market-based log firm variance as well as

the residual from that same average variance on our market-based measure of size dispersion

(the cross-sectional dispersion in log market equity). This regression has an R2 of 51.3%.

The dotted lines show estimated time trends in the original volatility data (black) and in

the residual (gray). The figure shows that, after controlling for fluctuations in the firm size

distribution over time, there is no anomalous trend in average firm volatility in the post-war

era.

5 Micro Evidence of Granular Networks

This section discusses the micro evidence on business networks.

5.1 Firm-level Network Data

Our data for annual firm-level linkages comes from Compustat. It includes the fraction of

a firm’s dollar sales to each of its major customers. Firms are required to supply customer

information in accordance with Financial Accounting Standards Rule No. 131, in which a

major customer is defined as any firm that is responsible for more than 10% of the reporting

seller’s revenue. Firms have discretion in reporting relationships with customers that account
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Figure 5: Trends in Average Firm Volatility
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Notes: The figure plots the average of log stock return variance (black line) as well as the residual from a
regression of mean variance on our market-based measure of log firm size dispersion (gray line). It also shows
estimated time trends in the original volatility data (black dotted line) and in the residual (gray dotted line),
and reports the t-statistic for the time trend coefficient estimate.

for less than 10% of their sales, and this is occasionally observed (23% of firms). The

Compustat data has been carefully linked to CRSP market equity data by Cohen and Frazzini

(2008), which allows us to associate information on firms’ network connectivity with their

market equity size and their return volatility.8 The data set covers the period 1980-2009, and

includes 48,839 customer-supplier-year observations. Appendix B.6 provides more details on

the network data.

8Cohen and Frazzini (2008) used the same data to show that news about business partners does not
immediately get reflected into stock prices. We are grateful for sharing their data with us. Atalay, Hortaçsu,
Roberts, and Syverson (2011) also use these data to develop a realistic model of the buyer-supplier networks
in the U.S. economy.
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Table 3: Overview of Size, Volatility, and Customer-Supplier Network Struc-

ture

Supplier Customer
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
wi,j,t log Si,t logSi,t Hout

i,t Hout
i,t wi,j,t log Si,t logSi,t H in

i,t H in
i,t

Sj,t Kout
i,t Hout

i,t log σi,t(r) log σi,t(s) Sj,t Kin
i,t H in

i,t log σi,t(r) log σi,t(s)

Panel A: Raw data

Avg. 0.20 0.03 -0.31 0.15 0.27 0.78 0.37 -0.25 0.12 0.08
t− stat 3.61 0.86 -8.69 2.79 3.53 23.44 21.63 -4.34 0.93 0.80

Panel B: Truncated data

Avg. 0.19 0.01 -0.31 0.15 0.25 0.89 0.37 -0.26 0.13 0.08
t− stat 2.03 0.21 -7.08 3.49 5.53 35.92 22.79 -4.00 0.98 0.85

Notes: The table reports annual cross section correlations between various features of firm’s customer-
supplier network (based on Compustat data) with firm’s size and volatility. Annual data for 1980-2009. The
table reports the time-series average as well as the t-statistic, measured as the time-series average divided
by the time-series standard deviation estimated over the annual 1980-2009 sample. In Panel A, we use all
linkage data. In panel B, we impose the 10% truncations, which implies that we delete all customer-supplier
pairs that represent less than 10% of supplier sales.

5.2 Justifying Modeling Assumptions

The first use the customer-supplier linkage data is in providing direct evidence on the main

modeling assumptions we made in Section 2. Table 3 reports the relevant correlation statis-

tics. We calculate cross-sectional correlations for each yearly network realization in the

Compustat linkage data and report the time series average of annual correlations. We also

report a t-statistic, measured as the ratio of the time series mean of the correlation to its

time-series standard deviation. In these calculations, size is defined as annual firm sales.

Columns (1)-(5) take the perspective of the suppliers and the connections with their cus-

tomers while Columns (6)-(10) focus on costumers’ connections to their suppliers. In Panel

A we consider all customer-supplier linkages while in Panel B we only keep those pairs where

the customer represents at least 10% of the supplier’s sales. Thus, Panel B imposes the

truncation also on the firms that voluntarily report more customer data than required.

The model assumes that suppliers have stronger connections with their larger customers,

and Column (1) shows that this is indeed a strong feature of the data. Specifically, for each

supplier i, we calculate the correlation between its customers’ total sales and the fraction
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of i’s revenue that is due to each customer. We then average across all suppliers in a given

year. In an average year, that correlation is 20% and supports our assumption that linkage

weight wij is closely related to the size of the customer Sj .

We also assume that larger suppliers are connected to more customers on average (higher

Kout). The Compustat data cannot speak directly to this assumption due to the truncation

of all linkages whose weights fall below 10%. For example, a small firm that has a single

customer accounting for 100% of its revenue can show up as having more links than a firm

with 11 equally important customers with weights of 9.1% due to truncation. Column (2)

shows that any correlation that might exist between size and number of customers is largely

destroyed by truncation, with an average annual correlation of 3%. Our model simulations

below will confirm the large bias caused by truncation.

Column (3) reports the correlation between a supplier’s log size and the Herfindahl of its

customer network. As in the model, a supplier i’s out-Herfindahl Hout
i,t = Hi,t is calculated

based on the supplier’s weighted out-degrees with its customers. Our model predicts that

larger suppliers are more diversified and thus have lower out-Herfindahls. The average of

-31% is consistent with this prediction. Column (4) compares suppliers’ out-Herfindahls to

their log return volatilities calculated from stock return data. The model suggests that

well-diversified suppliers (those with lower out-Herfindahls) should have lower volatility.

This relationship is confirmed in the linkage data with a 15% average correlation between

Herfindahl and log firm variance. Column (5) repeats this calculation using quarterly sales

growth volatility in place of return volatility. It uncovers a similar association with average

correlations of 27%. All correlations in Columns (1)-(3) are statistically significant at the

1% level.

It is instructive to also study the network from the customer perspective. Columns (6)-

(10) report the corresponding correlations with the customer rather than the supplier as

the unit of observation. Column (7) reports a 37% correlation between customer log size

and the number of connections that customer has (Kin). In our model, the probability

that a connection exists between supplier i and customer j depends only on i’s size and

is independent of firm j’s size. Thus, the model predicts a zero correlation between size

and in-degree in the absence of link truncation. But because links with weights below 10%
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are not observed, and because larger customers are associated with higher linkage weights,

then we would expect to see a strong association between customer size and in-degree in

the truncated data. For instance, firms like Apple or Walmart dominate their suppliers’

sales due to their massive sizes. While we assume smaller firms are equally likely to be

customers as large firms, truncation will eliminate the links with small customers, leaving

large firms counted as customers far more often. Column (8) shows that there is a significant

-25% association between a customer’s log size and its in-degree Herfindahl. That is, large

customers have a less concentrated network of suppliers. However, Columns (9) and (10)

show that the correlation between volatility and in-Herfindahl is not statistically different

from zero.

A comparison of results in Columns (1)-(5), which summarize features of suppliers net-

works, to results on customer networks in Columns (6)-(9) suggests an interesting inter-

pretation of shock propagation through customer-supplier networks. First, the strength of

links depend strongly on customer size as in our model. Second, the association between

a supplier’s size and its number of customers in the data is also consistent with our model

assumption once the data truncation is taken into account. Third, customer network concen-

tration associates strongly with suppliers’ volatility, while this is not the case for customer

volatility and supplier network concentration. This is consistent with the notion that shocks

are propagated upstream, from customers to suppliers, and that the effects of these shocks

on firms’ volatility depends on how well-diversified a firm is in its customer base. We provide

additional evidence in the next subsection.

Appendix B.7 studies the association between size, out-degree, out-Herfindahl, in-degree,

and in-Herfindahl at the industry rather than at the firm level. It uses annual data from the

BEA on 65 industries between 1998 and 2011. This data has the advantage that it does not

suffer from the truncation issue that plagues the Compustat firm-level data. The results are

consistent with those at the firm-level, with one exception. Now we find a strong positive

correlation of 61% between log size and the number of customers (out-degree), which is

strongly significant. This finding lends credence to the positive association between size and

number of customers assumption we make in the model. It also confirms the large effect

truncation has in reducing this correlation in the Compustat data.
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5.3 Determinants of Firm-level Volatility

A large literature has examined the determinants of firm level volatility on the basis of firm

characteristics, including Black (1976) who proposed that differences in leverage drive het-

erogeneity in firm volatility, Comin and Philippon (2006) who argue for industry competition

and R&D intensity, Davis et al. (2007) who favor age effects, and Brandt et al. (2010) who

argue that institutional ownership is a key driver of volatility. Our model predicts a negative

correlation between volatility and firm size and a positive correlation between volatility and

customer network concentration (out-Herfindahl).

Table 4 shows results of panel regressions of firm-level log annual return volatility on

size and the out-Herfindahl, while controlling for a range of firm characteristics including log

age, leverage, industry concentration, institutional holdings, as well as industry and cohort

fixed effects. Consistent with our model, we find that the two most important determinants

of volatility are size and out-Herfindahl. A 100% increase in the size of the firm decreases

volatility by between 12% and 16%. An increase of customer Herfindahl from zero to one

increases volatility by 88% without controlling for size; the effect is 17% when we control

for size. Note that, in our model, size and network concentration are redundant since size

determines network structure. Within our network model, a supplier’s size and its customer

Herfindahl are strongly negatively correlated in the cross-section. Given that concentration

in the sales network is measured with substantial noise, it is likely that size captures an

important part of the true network concentration effect.

When we replace the out-Herfindahl with the in-Herfindahl in this multivariate regression,

network concentration is no longer a significant determinant of firm-level volatility after

we include the control variables. The results of this section further support the upstream

transmission of shocks we assume in our network model.
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Table 4: Determinants of Firm-Level Volatility

Dependent Variable: Log Firm Volatility

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Log Sales -0.16 -0.14 -0.15 -0.12 -0.14 -0.12 -0.13 -0.12 -0.13 -0.12

-16.71 -15.57 -25.56 -23.93 -19.32 -12.10 -33.10 -19.93 -20.61 -17.78

Hout 0.88 0.17 0.63 0.17 0.53 0.15 0.55 0.13 0.74 0.17

7.14 3.09 8.74 3.43 7.01 2.65 8.69 3.27 28.54 8.81

Log Age -0.05 -0.26 -0.11 -0.08 -0.22 -0.11

-3.07 -11.32 -6.60 -3.52 -6.58 -6.10

Leverage 0.29 0.10 0.24 0.30 0.04 0.23 0.32 0.13 0.26

3.32 1.08 3.10 4.53 0.48 3.45 4.71 1.87 3.95

Ind. Conc. 0.32 0.36 0.35 0.44 0.41 0.37 0.32 0.30 0.29

1.51 1.32 1.62 2.13 1.35 1.70 2.06 1.45 1.81

Inst. Hldg. -0.03 -0.50 -0.06

-0.39 -5.09 -0.61

Constant -3.91 -3.52 -3.78 -3.92 -3.03 -3.64 -3.80 -2.93 -3.60 -4.01 -3.64 -3.88 -3.86 -3.51 -3.75

-88.45 -54.43 -76.93 -49.72 -39.79 -42.73 -32.42 -30.61 -30.98 -72.31 -50.66 -59.97 -111.89 -94.74 -82.52

FE None None None None None None None None None Cohort Cohort Cohort Ind. Ind. Ind.

Obs. 171,034 38,030 37,202 145,070 32,887 32,887 113,425 31,318 31,318 145,247 32,901 32,901 171,034 38,030 37,202

Adj. R2 0.329 0.048 0.361 0.347 0.228 0.402 0.354 0.281 0.413 0.405 0.307 0.448 0.386 0.218 0.425

Notes: The table reports panel regressions of firm’s return volatility on a range of characteristics including size (log sales), customer network Herfindahl, age, book leverage,
competition measured by industry size concentration, ownership composition measures as fraction of shares held by 13f-reporting institutions, as well as cohort and industry
fixed effects in certain specifications.
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6 Joint Dynamics of the Size and Volatility Distribu-

tion

To develop a quantitative understanding of the interaction between the size and volatility

distribution, we introduce entry/exit and network persistence into the granular network

model of Section 2. The calibrated model aims to match dynamics of the aggregate firm size

and firm volatility distributions, as well as features of the customer-supplier network found

in Compustat data.

6.1 Feedback from Volatility to Size Distribution

In our multi-period network model there is feedback from volatility to the firm size distribu-

tion. To understand this feedback effect, consider a dynamic model with no exit/entry. The

persistence parameter γ governs the strength of the network effect. When γ is zero, there

are no network effects, and the model satisfies Gibrat’s law: The mean growth rate and the

variance of the growth rate are constant across firms, regardless of size, because the growth

innovations are i.i.d. over time. In the absence of exit/entry, the size distribution diverges

because the standard deviation of the log size distribution σS,t = σε

√
t grows at rate

√
t.

This is true even if the size drift, µg, is zero (see de Wit (2005)).

The network’s feedback effects contribute a term to the variance of the log size distribution

that grows exponentially in t. Hence, σS,t grows at a faster rate than
√
t, especially when γ

is large.

Proposition 8. If the higher-order cumulants are positive, then the variance of the log size

distribution at t is bounded below by:

E[σ2
S,0] + tσ2

ǫ + σ2
ǫ γ

2Z

t∑

τ=1

exp
[
2
(
τσ2

ǫ + σ2
S,0

)]
, t ≥ 0

The inequality follows directly from the recursive expression for the variance of the log

size distribution in Proposition 8. The network effects add an exponential growth term to
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the cross-sectional variance of size. This term increases in γ. To guarantee the existence of

a stationary firm size distribution, we introduce firm entry and exit.

6.2 Network Dynamics

The model begins at time 0 with an initial N × 1 firm size distribution S0, where each

Si,0 is drawn from a log normal distribution. The linkage structure at time 0 is determined

by the initial firm size distribution. Each element of the connections matrix B0 is drawn

from a Bernoulli distribution with P (bi,j,0 = 1) = pi,0 as in (15). To induce persistence in

links, we modify equation (15) for t > 1, giving suppliers a relatively high probability of

reconnecting to its customers from the previous period. The probability that a firm i that

was connected to firm j in period t − 1 is again connected to that same firm j at time t

is given by min {pi,j,t + κ, 1} , t > 0, where κ > 0. In each period, a fraction δ of firms die

randomly. These rules for the connection dynamics and firms’ birth and death completely

specify the network evolution and the growth rate process in (2).

6.3 Calibration

We simulate our model for N = 2000 firms and 1300 periods (years). We discard the first

300 observations to let the network settle down to its long run distribution, and compute

model statistics by averaging over the last T = 1000 years. In each period, we report

moments based on the sample of the largest 1,000 firms. Focusing on the largest firms is the

model’s way of recognizing that there are firms in the real world that are not measured in our

Compustat sample (e.g., private firms), and that the firms that are measured are connected

to these unmeasured firms affecting the former firms’ network, size growth, and volatility.

Our choice of N = 2000 is dictated by computational considerations. To further improve

comparability between model and data, we compare the model results for a constant sample

of 1000 firms to an appropriately corresponding Compustat subsample. We focus on the

top-33%, a sample which contains 1,000 firms on average in the data. For completeness, we

also report the empirical moments for the entire distribution of publicly traded firms (about

3,000 firms on average).
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Because network data are truncated, as explained above, we implement the same trun-

cation inside the model. That is, we set the weight wij,t equal to zero whenever wij,t < 10%.

By calibrating a censored simulation against censored data, we are able to draw inferences

about network relationships among firms in the full, uncensored model economy. 9

In order to compare variance moments in model and data, we want to take into account

that empirical variances are estimated with noise. Therefore, we report “estimated” variance

moments in the model, which we compute as:

log
(
V̂ art[gt+1]

)
= log (V art[gt+1]) + et+1

where e ∼ N (0, σ2
e) and σe is the time series average of the cross-sectional standard deviation

of log(V art[gt+1]).

We choose the following parameters for our benchmark model. We set the mean exoge-

nous firm growth rate µg equal to zero, which is the growth rate we observe for real market

capitalization in the full cross-section.10 The initial firm size distribution is log normal with

mean µS0
= 10.20 and standard deviation σS0

= 1.06. These numbers are chosen to match

the time-series average of the cross-sectional mean and variance of the top-33% firm-size

distribution. The exogenous firm destruction rate δ is set to 5%, close to the time-series

average firm exit rate in our sample of 4.2%. The probability of forming a supplier-customer

connection features parameter Z, which governs the baseline likelihood of a connection for a

firm i. We set Z = 0.35 which implies an average of 10 customer connections (out-degrees)

and an average of 2 truncated out-degrees. The parameter κ gives the additional probability

of a connection when firm i and j were already connected in the previous period. This

additive term is not there for new firms (with no pre-existing connections). Thus, κ governs

the persistence of connections. We set κ equal to 0.5 to match the observed 54% time-series

average death rate of truncated links. In our benchmark model the average death rate of

9The second step we take to address censoring issues is to show that the size and volatility dynamics
uncovered among public firms continues to hold when we pool public firm data with coarser data on private
firms available from the Census Bureau; see Appendix B.4.

10The observed growth annual rate is 8% per year in the top of the firm size distribution, but this number
is upwardly biased due to selection. Firms that leave the top of the size distribution are excluded from the
growth calculations while firms that enter the top group are newly included.
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truncated links is 57% whereas the average death rate of untruncated links is 46%. The two

key parameters are γ, which governs the persistence of the network, and σε, which is the

fundamental shock volatility. The parameter γ governs how important shocks to customers’

growth are to a supplier. The closer γ is to one, the more important are higher-degree

(indirect) effects, i.e., effects beyond the direct supplier-customer relationship. These two

parameters are set to match as best as possible the mean and dispersion of firm volatility.

6.4 Calibration Targets

This section documents the features of the size, volatility and in/out-degree distribution of

U.S. firms we would like our model to explain.

6.4.1 Size Distribution Target Moments

Table 5 reports moments of the cross-sectional log size distribution. All reported moments

are time-series averages unless explicitly mentioned otherwise. The first column reports

moments for the full cross-section of firms observed in Compustat. The second column

reports results for the top-33% largest Compustat firms in each year. Column 2 is the main

column of interest in the data. For example, 11.63 is the time-series average of the average log

size of the large-firm sample, which is naturally higher than the 9.61 for the full Compustat

sample. The dispersion of the log size distribution is 1.06 for the top-33% group and 1.79

for the full sample. Panel B reports aggregate moments of the size distribution. The first

two rows show that size dispersion (the cross-sectional standard deviation of log size) has

high variability over time and is highly persistent. The time series standard deviation is 14%

for the top-33% firms and 24% for all firms. The third row shows that the cross-sectional

standard deviation of size growth (log size changes) is also volatile over time. The time series

standard deviation is 15% for all firms and 11% for the top-33% firms. These results confirm

that the size distribution moves around considerably over time. Finally, the economy-wide

Herfindahl index is 0.012 on average over time, and similar across both samples of firms.
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Table 5: Firm Size Distribution Target Moments

All Top-33% Model

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.63

SD 1.79 1.06 1.07

5% 6.86 10.38 10.32

10% 7.39 10.47 10.44

25% 8.33 10.78 10.79

Med 9.48 11.39 11.42

75% 10.77 12.25 12.25

90% 12.05 13.10 13.10

95% 12.76 13.64 13.68

Panel B: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.19

AR(1) σS,t 0.947 0.939 0.995

SD of σg,t 0.15 0.11 0.05

Ht 0.010 0.012 0.020

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross-section of firms . The second column reports results for the top-33%
of firms in each year. Column 3 reports the corresponding moments for the model. Panel A reports moments
of the log size distribution, where size is defined in the data as market equity. Panel B reports the time-series
standard deviation and time-series persistence of size dispersion σS,t, defined as the cross-sectional standard
deviation of log size, the time-series standard deviation of the cross section standard deviation of log growth
rates σg,t and the time-series average of the economy-wide Herfindahl index Ht.
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6.4.2 Volatility Distribution

Table 6 reports moments of the cross-sectional log variance distribution. In columns (1) and

(2), we report market-based log variance. In columns (3) and (4), we compute sales-based

log variance. Because volatilities (standard deviations in levels) are more intuitive than log

variances, we exponentiate the moments of log variance and then take their square root,

which is what is reported in Table 6. All reported moments are time-series averages unless

explicitly mentioned otherwise.

Panel A shows that average market-based volatility is 30% per year for the large-firm

sample and 40% per year for the full cross-section. Average sales-based volatility is 24% for

the large-firm sample and 29% for the full sample. The range of return-based (sales-based)

volatilities goes from 17% (8%) at the fifth percentile to 54% (77%) at the 95th percentile

for the latter group. The cross-sectional dispersion in return volatility is 73% in Column (2)

and 97% in the full cross-section reported in Column (1). Sales-based volatility has even

larger dispersion of 142% and 151%, in Columns (4) and (3) respectively, possibly because

sales-based volatility is measured with more noise.

Panel B shows moments of the joint cross-sectional distribution of firm size and firm

volatility. The first row computes the cross-sectional correlation between log size at time

t and log variance at time t + 1, for each t and then reports the time-series average. The

second row reports the slope coefficient (beta) of a cross-sectional regression of log variance

at time t + 1 on a constant and log size at time t; it reports the time-series average of that

slope. Both are strongly negative in the data showing that large firms have lower volatility

over the next period.

Panel C reports aggregate moments of the the volatility distribution and the joint size-

volatility distribution. The first row shows the time-series standard deviation of average

volatility: 64% in the top-33% sample and 69% in the full sample. Average volatility is

highly variable over time. The second row shows that the cross-sectional standard deviation

of log variance moves substantially over time in both samples and for both ways of measuring

volatility. The time series standard deviation is 18% in the full sample and 12% in the top-

33% sample; both are lower than the time-series volatility of mean firm volatility. The
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third row reports two key moments in our paper (see Figures 1 and 2): the time-series

correlation between size dispersion at t (the cross-sectional standard deviation of log size)

and mean volatility (the cross-sectional mean of log variance) at time t + 1. The two are

strongly positively correlated in the data: 0.71 in the full sample and 0.55 in the top sample.

Similarly, size dispersion is strongly positively correlated with volatility dispersion (the cross-

sectional standard deviation of log variance) over time: 0.76 in both samples. The last row

reports the volatility of aggregate growth which is 20%.

6.4.3 Network Moments

Table 7 reports the median and 99th percentile of the cross-sectional distribution of the

number of customers that a supplier is connected to, Kout, and the number of suppliers

a customer is connected to, Kin. We also report the median and 99th percentile of the

cross-sectional distribution of the out- and in-degree Herfindahl indices Hout and H in. All

calculations impose the 10% truncation uniformly. We find a median (truncated) out-degree

of 1 and (truncated) 99th percentile of 3.3 connections. The median (truncated) in-degree is

1 with a 99th percentile of 17 or 32 connections depending on the sample. The Herfindahl

indices, which are also based on truncated degree information, are less biased because large

customers receive a large weight and are more likely to be in the database.

We repeat the cross-sectional correlations of in- and out-degrees and in- and out-Herfindahls

at time t with log size at t and log variance at t+1, previously reported in Panel B of Table

3. As discussed above, we find a nearly zero correlation between truncated out-degree Kout

and log size, which we argue is due to truncation. We find a strong negative -31% correlation

between supplier log size and out-Herfindahl. Large firms have a better-diversified portfolio

of customers, and hence small out-Herfindahls. We also find a positive relationship between

supplier log variance and out-Herfindahl: the correlation is 15% based on returns and 29%

based on sales. Firms with a more diversified portfolio of customers and smaller Herfindahls

have lower volatility because they more effectively diversify the shocks that hit their cus-

tomers. This also helps explain the negative correlation between firm size and firm volatility

in Panel B of Table 6. In Panel B, we find a positive 37% correlation between in-degree

and size, but we argue based on the model that truncation induces an upward bias in this
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Table 6: Firm Volatility Distribution Target Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Cross-Sectional Moments of Firm Volatility

Avg 0.40 0.30 0.29 0.24 0.37
SD 0.96 0.73 1.51 1.42 0.45
5% 0.19 0.17 0.09 0.08 0.26
10% 0.22 0.19 0.11 0.10 0.28
25% 0.29 0.24 0.17 0.14 0.31
Med 0.40 0.30 0.29 0.23 0.36
75% 0.56 0.38 0.48 0.38 0.42
90% 0.75 0.48 0.77 0.60 0.49
95% 0.90 0.54 1.05 0.77 0.54

Panel B: Cross-Sectional Moments of Size-Volatility Distribution

Corr(St, Vt+1) −0.57 −0.33 −0.33 −0.18 −0.42
β(St, Vt+1) −0.32 −0.23 −0.27 −0.22 −0.18

Panel C: Time Series Properties of Volatility Distribution

SD of µσ2,t 0.69 0.64 0.46 0.42 0.20
SD of σσ2,t 0.18 0.12 0.13 0.13 0.05
Corr(σS,t, µσ2,t) 0.71 0.55 0.51 0.51 0.95
Corr(σS,t, σσ2,t) 0.76 0.76 0.57 0.38 0.77
SD of gagg,t 0.21 0.20 0.21 0.20 0.20

Notes:All reported moments in Panels A and B are time-series averages of the listed year-by-year cross sectional moments (cross section average,
standard deviation, and percentiles) for the sample 1926–2010. The first and third columns report return volatility and sales growth volatility,
respectively, for the full cross-section of firms. The second and fourth columns report results for the largest 33% of firms by market capitalization in
each year. Annual variances in Columns (1) and (2) are calculated from daily stock return data, while variances in columns (3) and (4) are based
on 20 quarters of sales growth rates (in the current and the next four years). Moments are computed based on the log variance distribution, but are
expressed as volatilities in levels for exposition. That is, we exponentiate each moment of the log distribution and take the square root. Column (5)
reports the corresponding moments for the model. Log variances in the model are constructed with added estimation noise to make them comparable
to the moments in the data.
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Table 7: Network Target Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 1.71
99th % Kout 3.38 3.32 – – 4.66
median Hout 0.05 0.03 – – 0.60
99th % Hout 0.95 0.54 – – 1.00
Corr(Kout

t , St) 0.01 −0.07 – – 0.34
Corr(Hout

t , St) −0.31 −0.08 – – −0.71
Corr(Hout

t , Vt+1) 0.15 0.08 0.29 0.10 0.54

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90
99th % Kin 31.61 16.80 – – 7.39
median H in 0.00 0.00 – – 0.11
99th % H in 0.28 0.24 – – 0.85
Corr(Kin

t , St) 0.37 0.49 – – 0.49
Corr(H in

t , St) −0.26 −0.20 – – 0.03
Corr(H in

t , Vt+1) 0.13 0.08 0.08 0.08 0.01

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column (1)-(2) are calculated based on daily stock
return data, while the variance in Column (3)-(4) are based on 20 quarters worth of annual sales growth
(in the current and the next four years). Column (5) reports the corresponding moments for the model.
Log variances in the model are constructed with added estimation noise to make them comparable to the
moments in the data.

correlation. This provides evidence that the likelihood of a connection between a supplier

and a customer does not strongly depend on the customer’s size. We find a modestly positive

(and statistically insignificant) correlation between in-Herfindahl and volatility.

6.5 Simulation Results

This section reports the simulation results. We focus on the benchmark calibration and leave

a detailed discussion of the alternative calibrations for Appendix C.1.
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6.5.1 Benchmark Calibration

As can be seen from column (3) in Table 5, the benchmark model matches the main moments

of the firm size distribution. It matches the average and the dispersion in firm size exactly,

by virtue of the calibration. The other moments of the size distribution constitute over-

identifying restrictions. The inter-quartile range for log firm size is [10.79,12.25], matching

the [10.78,12.25] range in the top-33% sample closely. At both extremes of the distribution,

the model also compares favorably to the data. Panel B shows that size dispersion moves

around dramatically over time in the model and is very persistent. The model produces

the same high time-series variability in the size dispersion as observed (0.19 compared to

0.14 in column 2 and 0.24 in column 1), but not that of the dispersion in size growth rates

(0.05 versus 0.11 in column 2 and 0.15 in column 1). The benchmark model overstates firm

concentration somewhat: the economy-wide Herfindahl index is 0.020 compared to 0.012 in

the data.

Next, we turn to the volatility distribution. Column (5) of Table 6 shows that the model

generates high average firm volatility of 37%, in between the return volatility in the full

sample of 40% and that in the top-33% sample of 30%. The model is capable of generating

a wide range of volatility outcomes. The cross-sectional dispersion in volatility is 0.45,

compared to 0.73 for the return-based measure (column 2), and 1.42 for the sales-based

measure (column 4). The model generates the right volatility at the 90 and 95th percentiles.

The least volatile firms have a volatility of 26% in the model, but only 17% in the return

data. Panel B shows that the model generates a -42% correlation between size and volatility

at the firm level, similar to the -33% in the data. The slope of the relationship between

log variance and log size is similar to the one in the data (slope coefficient of -0.18 versus

-0.23). Panel C shows that the model generates substantial variability over time in both

the cross-sectional mean of firm variance and in its dispersion, but still under-predicts these

moments compared to the data. The model generates a high volatility of aggregate growth

rates of 20%, matching the data. In the time-series, size dispersion is strongly positively

correlated with both the mean of the log firm variance distribution (0.95 correlation) and its

dispersion (0.77 correlation). These correlations are high in the data as well (0.55 and 0.76).
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These correlations are some of the key moments we focus on in this paper.

Column (5) of Table 7 shows the network-related properties of the model. Like the

data, the model features a small median number of supplier-customer relationships after

truncation: 1.71 on average in the model. The 99th percentile of the truncated out-degree

distribution is 4.66 in the model and 3.32 in the data. Truncation severely affects the number

of out-degrees. The median of the untruncated Kout distribution in the model is 3.71 and

the 99th percentile is 112. In the model, larger firms have more connections.

The cross-sectional correlation between the truncated out-degree and log size is 0.34 in

the model, which is 0.26 lower than the 0.60 correlation between the untruncated out-degree

and log size in the model. This large downward bias means that the observed correlation

between truncated out-degree and log size in the data (0.01 for the full sample and -0.07

for the top-33% sample) is severely downward biased. Applying the model-generated bias,

the data would show a positive correlation between untruncated out-degree and log size

(albeit a smaller one as in the model). That is, larger suppliers have more connections. A

reverse bias occurs for the correlation between in-degree and log size. The observed value of

0.49 for the top-33% exactly matches the 0.49 value in the benchmark model, where both

numbers are based on the truncated in-degree distribution. However, the correlation between

untruncated in-degree and log size is 0.04 in the model, which implies that this correlation

is severely upward biased due to truncation. The magnitude of the bias is such that the

(unobserved) correlation between untruncated in-degree and log size could easily be zero.

That zero correlation between customer size and number of connections is an important

assumption of the model.

The model matches some properties of Herfindahls, but not others. The model generates

a strong negative correlation between out-degree Herfindahl and size (-71%) and a positive

correlation between out-degree Herfindahl and volatility (54%). Both are key features of

the data, as we discussed above. The model also matches the weak correlation pattern

between in-Herfindahls and volatility. In the model, these correlations are similar whether

we use truncated or untruncated Herfindahls, suggesting no bias in their empirical counter-

parts. The main shortcoming of the benchmark calibration is that its truncated out-degree

Herfindahl is too high. The median is 0.60, higher than the 0.05 value we observe in the data.
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The reason is that the number of connections a typical supplier has is small (the median

out-degree is 3.7), and that large customers receive a large weight (wij is strongly increasing

in size of the supplier Sj). To match the dispersion in firm volatilities in a setting with only

uncorrelated shocks, the model requires too much concentration in customer networks.

Finally, we re-estimate the volatility factor regressions of Table 2, but now based on

simulation-generated data from the model. The corresponding R2 statistics for panel regres-

sions of total volatility are 36%, 37%, and 40% for the three factors considered in that table

(from left to right). These numbers quite close to their empirical counterparts of 24%, 26%,

and 39%. Thus, the model quantitatively replicates the factor structure in volatilities.

6.5.2 Alternative Calibrations

We compute several other models that help illustrate the various ingredients of the model.

These are discussed at length in Appendix C.1. These alternative model features show that

strong network persistence is important (high γ, and a model with higher-order network

effects). They also show that we can match the low observed out-Herfindahls by changing the

parameters that govern the number and the importance of connections, without jeopardizing

the main predictions of the model. That calibration, however, cannot quite generate enough

dispersion in firm volatility.

6.5.3 Downstream Transmission

Finally, we study a version of our model with downstream transmission of shocks instead of

upstream transmission in Appendix C.2. That model delivers the same size and volatility

moments, except for the network moments, where in-degree and out-degree moments are

reversed. Truncation affects the network moments; see appendix for a detailed discussion.

This downstream version of our model matches the correlations between in-Herfindahl and

size and volatility better, but completely misses the correlation between out-Herfindahl and

size and volatility. In the data, the correlation of volatility with out-Herfindahl was statis-

tically much stronger than that with in-Herfindahl. We conclude that the data are most

supportive of an upward shock transmission.
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7 Conclusion

We document new features of the joint evolution of the firm size and firm volatility distri-

bution and propose a new model to account for these features. In the model, shocks are

transmitted upstream from customers to suppliers. Firms sell products to an imperfectly

diversified portfolio of customers. The larger the supplier, the more customer connections

the supplier has, the better diversified it is and the lower its volatility. Large customers have

a relatively strong influence on their suppliers, so shocks to large firms have an important

effect throughout the economy. When the size dispersion of the economy increases, such

large firms become more important and many firms’ network of customers becomes less di-

versified. In those times, average firm volatility is higher as is the cross-sectional dispersion

of volatility. We provide direct evidence of such linkages, and use the supplier-customer

relationship data to calibrate our model, and we show that the calibrated model replicates

the most salient features of the firm size and the volatility distribution.
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A Theoretical Appendix

A.1 Proofs of Propositions

• Proof of Proposition 1:

Proof. We will derive a lower bound on the average variance. We use the following notation to denote
the matrix inverse:

v = (I − γW t)
−1

= I + γW t + γ2W 2
t + γ3W 3

t+

The average variance is given by 1
N
σ2
ǫ

∑
i e

′
ivv

′e′i. First, note that:

e′iv ≥ e′i(I + γW t),

because the W matrix only has positive entries. Hence, in turn, it follows that:

e′ivv
′e′i ≥ e′i(I + γW t)(I + γW ′

t)e
′
i

We have derived the following lower bound on the average variance:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ǫ


1 +

2

N
γ

N∑

i=1

wii +
1

N
γ2

N∑

i=1

∑

j=1

w2
ij,t




We can restate this expression using the Herfindahl:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ε

(
1 + γ2

1

N

∑

i

Hi,t

)

• Proof of Proposition 2, upper bound

Proof. In a network where each firm i only has one connection to its neighbor to the right, firm growth
is given by:

gi = µg + γgi+1 + εi, (21)

where firmN+1 is firm 1 by convention. Without loss of generality, thisW t matrix can be represented
with ones above the main diagonal and zeros elsewhere, except in the (N, 1) position. By backward
substitution, we obtain the following expression for the growth rate of firm 1:

g1 =
1

1− γN

[
µ

N−1∑

i=1

γi +

N−1∑

i=1

γiǫi+1

]

Hence, the variance of a typical firm is given by

V (g) =
σ2
ǫ (1 − γ2N)

(1 − γ2)(1 − γN )2

• Proof of Proposition 2, lowerbound

Proof. Next, we consider a network structure in which each firm is connected to all other firms and
all links have the same weight on the other firms’ growth rate. That weight is given by 1

N−1 . The
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weighting matrix W has zeros on the diagonal and 1
N−1 everywhere else. The growth equation is

given by (I − γW )−1(µ + ε). (I − γW ) has ones on the main diagonal and −γ
N−1 everywhere else.

(I − γW )−1 has (N−2)γ−(N−1)
γ2+(N−2)γ−(N−1) on the diagonal and −γ

γ2+(N−2)γ−(N−1) on the off-diagonal. We

need to compute the diagonal elements of the variance-covariance matrix. This yields the following
expression:

V (gi) = σ2
εdiag

(
[I − γW ]

−1
[I − γW ]

−1
)

= σ2
ε

[
((N − 2)γ − (N − 1))

2
+ (N − 1) γ2

(γ2 + (N − 2)γ − (N − 1))2

]

= σ2
ε




(
N−2
N−1γ − 1

)2
+ 1

N−1γ
2

(
1

N−1γ
2 + N−2

N−1γ − 1
)2


 (22)

• Proof of Proposition 3:

Proof. Note E[bi,j,t] = pi,t, and bi,j,t is independent of customer j’s size. By the law of large numbers,
this implies that

1

N

∑

i

bi,j,tS
x
j,t → E[bi,j,tS

x
j,t] = pi,tE[Sxj,t], x = 1, 2.

Therefore, for sufficiently large N , a supplier’s customer concentration Herfindahl is approximately

Hi,t =
1
N

∑
j bi,j,tS

2
j,t

N
(

1
N

∑
j bi,j,tSj,t

)2 ≈
E[S2

j,t]

pi,tNE[Sj,t]2
.

This bears close resemblance to the Herfindahl of the economy-wide size distribution, Ht. By the
same law of large numbers rationale,

Ht =
1

N

∑

i

S2
i,t−1

(
∑

i Si,t−1)
2 ≈

E[S2
j,t−1]

NE[Sj,t−1]2
.

Together, these results imply the following common factor structure for growth rate volatilities of
firms in this network economy:

Vt (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2Ht

)
. (23)

• Proof of Corollary 1

Proof. If the firm size distribution is log normal at t, then

E[Sxi,t] = exp

(
xµs,t +

x2

2
σ2
s,t

)

where µs,t ≡ E[logSi,t] and σ
2
s,t ≡ V (logSi,t). As a result, the firm size Herfindahl is

Ht ≈
E[S2

j,t]

NE[Sj,t]2
=

1

N
exp

(
σ2
s,t

)
.
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Hence, in the first-order approximation, the common variance dynamics for all firms are determined
by cross section standard deviation of the size distribution, σ2

s,t:

V (gi,t+1) ≈ σ2
ε

(
1 + γ2

exp
(
σ2
s,t

)

Npi,t

)
.

• Proof of Proposition 4:

Proof. If pi,t = Si,t/
(
Z
∑

j(Sj,t)
)
, then approximate log normality of Si,t implies V (gi,t+1) is also

approximately log normal. Furthermore, the parameters of the V (gi,t+1) distribution depend only on
the dispersion in firm sizes. This is evident from Equation 17, which implies

log
(
V (gi,t+1)− σ2

ε

)
= log(σ2

εγ
2Z)− log(Si,t) + log


∑

j

Sj,t


+ log (Ht)

= log(σ2
εγ

2Z)− log(Si,t) + log (NE[Sj,t]) + log (Ht) .

Assuming that Si,t is log normal and noting that log
(∑

j Sj,t

)
≈ log (NE[Sj,t]), we see that V (gi,t+1)

is a shifted log normal where

E
[
log
(
V (gi,t+1)− σ2

ε

)]
≈ log(σ2

εγ
2Z) +

3

2
σ2
S,t

and
V
(
log
(
V (gi,t+1)− σ2

ε

))
≈ σ2

S,t.

• Proof of Proposition 5:

Proof. Let weight matrix W be given as in our paper. Consider (I − γW )−1 = I + γW + γ2W 2 + ....
We assume

wij =
BijSj∑
j BijSj

with Bij ⊥ Sj . I want to derive a large N approximation to the higher order matrix products. Begin
with W 2,

[W 2]ij =

∑
k BikSk

(
BkjSj∑
l
BklSl

)

∑
kBikSk

.

Recall ∑

k

BikSk ≈ piNE[S]

and

pi =
Si

Z
∑

i Si
=

Si
ZNE[S]
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which implies

[W 2]ij = Sj
∑

k

BikSkBkj
(
∑

lBklSl) (
∑
k BikSk)

≈ Sj
∑

k

BikSkBkj
pipkN2E[S]2

=
Sj

piNE[S]

∑

k

BikSkBkj
SkNE[S]/(ZNE[S])

, (using pk =
Sk

Z
∑

i Si
)

≈ Sj
piNE[S]

∑

k

ZBikBkj

≈ Sj
piNE[S]

Zpi
∑

k

pk, (using LLN and E[BikBkj ] = pipk)

≈ Sj
piNE[S]

Zpi
∑

k

Sk
ZNE[S]

=
Sj

NE[S]

that is, for large N, the rows of W 2 are identical, and are just the (scaled) vector of firm sizes. Denote
this matrix as W̄ . Next, consider multiplying W 2 by W . We have

[WW 2]ij ≈
∑

k

BikSkSj
(
∑

lBklSl)NE[S]

=
Sj

NE[S]
.

It follows by induction, then, that W z = W̄ , z ≥ 2. This further implies that the economy-wide
firm-size Herfindahl is the only quantity we need to describe firm i’s diversification (other than the
firm’s connection probability pi). For calculating growth variance, it’s also necessary to know the
following:

[WW ′]ij =
∑

k

BikBjkS
2
k

(
∑

lBilSl) (
∑

kBjkSk)
≈
{
H i 6= j

H/pi i = j

[WW̄ ′]ij ≈
∑

k

BikS
2
k

(
∑
l BilSl)NE[S]

≈ E[S2]

NE[S]2
= H

[WW̄ ′]ij ≈
∑

k

S2
k

N2E[S]2
≈ H

Large N growth rates can be written

g = (I − γW )−1(µ+ ǫ)

≈
(
I + γW +

γ2

1− γ
W̄

)
(µ+ ǫ)

≈
(
I + γW +

γ2

1− γ
W̄

)
(µ+ ǫ)
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and growth variance of firm i is the ith diagonal element of

V (g) ≈ σ2

(
I + γW +

γ2

1− γ
W̄

)(
I + γW +

γ2

1− γ
W̄

)′

= I + γW +
γ2

1− γ
W̄ + γW ′ + γ2WW ′ +

γ3

1− γ
W̄W ′

+
γ2

1− γ
W̄ ′ +

γ3

1− γ
WW̄ ′ +

γ4

(1− γ)2
W̄W̄ ′

V (gi) ≈ σ2

(
1 + κ0

Si
NE[S]

+ κiH

)

where κ0 = 2γ2

1−γ and κi =
γ2

pi
+ 2γ3

1−γ + γ4

(1−γ)2 .

• Proof of Proposition 6

Proof. The covariance between an individual growth rate and aggregate growth is approximated by

Covt(gi,t+1, ga,t+1) ≈ Covt


εi,t+1 + γ

∑

j

wi,j,tεj,t+1 ,
∑

j

εj,t+1

[
S̃j,t + γ

∑

i

S̃i,twi,j,t

]


≈ σ2
ε (1 + γ)

(
Si,t

NE[Si,t]
+ γHt

)

Therefore the regression coefficient is approximated by

βi,t =
Covt(gi,t+1, ga,t+1)

V (ga,t+1)
≈ 1

1 + γ

(
γ + Si,t

E[Si,t]

E[S2
i,t]

)
.

From here, the close similarity in volatility factor structure for raw growth rate volatility and residual
volatility becomes apparent. Residual growth from a factor model, defined as gresi,t+1 = gi,t+1−βiga,t+1

has variance

Vt(g
res
i,t+1) = Vt(gi,t+1)− 2βi,tCovt(gi,t+1, ga,t+1) + β2

i,tVt(ga,t+1)

= Vt(gi,t+1)− Covt(gi,t+1, ga,t+1)
2/Vt(ga,t+1)

≈ σ2
ε

(
1 +

1

pi,t
γ2Ht −

[
Si,t

NE[Si,t]
+ γHt

]2)
.

• Proof of Proposition 7

Proof. The first order approximation for ga,t+1 is

ga,t+1 ≈
∑

j

εj,t+1

(
S̃j,t + γ

∑

i

S̃i,twi,j,t

)
.

We can rewrite this expression (suppressing t) as

∑

i

S̃iwi,j =

∑
i Sibi,jSj∑

i Si
∑
j bi,jSj

≈
Sj
∑

i Si
bi,j
pi

N2E[Si]2
.
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Under weak regularity, 1
N

∑
i Si

bi,j
pi

−−−−→
N→∞

E
[
Si

bi,j
pi

]
= E

[
SiE

[
bi,j
pi

|Si
]]

= E[Si], where the last

equality follows from bi,j being Bernoulli(pi). As a result,
∑

k S̃kwk,j ≈ Sj/(NE[Sj]) = S̃j . Noting

that
∑

k S̃
2
k,t = Ht and

∑
k S̃k,twk,j,t ≈ Sj,t/(NE[Sj,t]), the aggregate growth rate variance can be

approximated as

V (ga,t+1) ≈ σ2
ε

∑

j

(
S̃j,t + γ

∑

i

S̃i,twi,j,t

)2

≈ σ2
εHt (1 + γ)

2
. (24)

• Proof of Proposition 8

Proof. If the firm size distribution is not log normal at t, then we can still use the cumulant-generating
function to characterize volatility. Note that the expected value of any moment of firm size is given
by:

E[Sxt ] = exp




∞∑

j=1

xj

j!
κs,j,t




where µs,j,t ≡ E[(log St)
j ] denotes the jth central conditional moment and κ1,s,t = µ1,s,t, κ2,s,t =

µ2,s,t, κ3,s,t = µ3,s,t and κ4,s,t = µ4,s,t− 3µ2
2,s,t. As a result, the economy-wide Herfindahl is given by:

Ht ≈
E[S2

j,t]

NE[Sj,t]2
=

1

N
exp




∞∑

j=2

2j − 2

j!
κs,j,t


 .

Hence, in the first-order approximation, the common variance dynamics for all firms are determined
by cross section moments of the size distribution:

V (gi,t+1) ≈ σ2
ε


1 +

γ2

Npi,t
exp




∞∑

j=2

2j − 2

j!
κs,j,t




 .

For large N , we can approximate the first-order growth dynamics of firm i as:

gi,t+1 ≈ µ+ ηt+1, ηt+1 ∼ N


0, σ2

ǫ


1 +

γ2

S̃i,tN
Z exp




∞∑

j=2

2j − 2

j!
κs,j,t−1








This follows directly from the variance approximation and the specification for pi. For large N , this
can be further simplified to yield:

gi,t+1 ≈ µ+ ηt+1, ηt+1 ∼ N


0, σ2

ǫ


1 +

γ2

Si,t
Z exp




∞∑

j=2

2j − 1

j!
κs,j,t−1








The log size of firm i at time t is given by logSi,t = log Si,0 +
∑t

τ=1 gi,τ . We use σ2
si,t

to denote the
variance of logSi,t conditional on Si,0. Hence, the variance of the log size distribution at t in the
first-order version of this economy is given by:

σ2
si,t

≈ σ2
si,t−1 + σ2

ǫ


1 +

γ2

S̃i,t−1N
Z exp




∞∑

j=2

2j − 2

j!
κs,j,t−1




 , t ≥ 1,
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which is the variance of the cumulative growth rate of firm i. This implies that the average variance
of the size of firms in the first-order version of this economy is given by:

E[σ2
si,t

] ≈ E[σ2
si,t−1] + σ2

ǫ


1 + γ2Z exp




∞∑

j=2

2j − 1 + (−1)j

j!
κs,j,τ−1




 , t ≥ 1

Finally, note that:
V ar(log St) ≥ E[σ2

si,t
] = E[V ar(log St|S0)].

This follows directly from the Cauchy-Schwarz inequality. Hence, in the first-order version of our
economy, for large N , there is a lower bound on the cross-sectional variance of the log size distribution
given by:

E[σ2
si,0] +

t∑

τ=1

σ2
ǫ


1 + γ2Z exp




∞∑

j=2

2j − 1 + (−1)j

j!
κs,j,τ−1




 , t ≥ 1.

In the log-normal case, the last sum reduces to exp(2σ2
s,τ−1):

E[σ2
si,0] +

t∑

τ=1

σ2
ǫ

(
1 + γ2Z exp(2σ2

s,τ−1)
)
, t ≥ 1

The result stated in the proposition follows directly if the higher-order cumulants are positive.

A.2 Incorporating Retailers

In the data, we also consider retailers who do not have any customer connections with other firms, at least not
in the standard sense. Our simple model can be extended to include retailers. Consider a group of retailers
l = N +1, .., N + k. In the strictest interpretation of the model, retailers have wlm = 0,m = 1, . . . , N . They
contribute k zero rows to the adjacency matrix W . However, if markets are incomplete, then some of the
labor income risk that is specific to firms would show up in the consumption decisions of workers at these
firms. That in turn would expose retail firms to some of the upstream risk.

Let vl,m,t denote the link strength of retailer l to customers working at supplier m.

gi,t+1 = µg + γ
N+k∑

j=1

wi,j,t gj,t+1 + εi,t+1, i = 1, . . . , N. (25)

gl,t+1 = µg + ψ

N+k∑

m=1

vl,m,t gm,t+1 + εl,t+1, l = N + 1, .., N + k. (26)

ψ governs howmuch firm-specific idiosyncratic risk is transferred to consumption; when markets are complete,
ψ = 0. We adopt specification (16) for these retail-customer weights and impose that they sum to one. Larger
retailers are connected to a larger number of consumers, and larger consumers are more important. Retail
firms create network leakage because of the zero rows in the W matrix.

B Empirical Appendix

This appendix discusses several additional empirical results.

B.1 Approximate Log Normality of Size and Volatility

We first we present evidence that the cross section distribution of size and volatility are approximately
log normal. There is an extensive literature studying the firm size distribution that we do not cover here.
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We merely note that our sample of firm sizes is approximately log normal. Hall (1987) characterized the
literature on US firm sizes saying “The size distribution of firms conforms fairly well to the log normal, with
possibly some skewness to the right.” Axtell (2001) provides evidence that firm sizes follow a power law in a
large sample including all private US firms. Cabral and Mata (2003) argue that firm sizes evolve toward a log
normal distribution over time. Rossi-Hansberg (2007) and Wright show that establishment and enterprise
sizes for public and private US non-farm businesses have tails that are thinner than power law. We discuss
the association between public and private firm size distributions in Appendix B.4.

Figure 6 plots histograms of the empirical cross section distribution of firms’ market equity value (Panel
A) and sales (Panel B), taking the log of both quantities. The left figure in each panel shows the distribution
of firm sizes pooling all firm-years from (1926–2010 for market equity, 1970–2010 for sales) and the right
figure shows a one-year snapshot for 2010. Overlaid on these histograms is the exact normal density with
mean and variance set equal to that of the empirical distribution. Each figure also reports the skewness
and kurtosis of the data in the histogram. The pooled empirical distribution, and the distributions for all
individual years, appear nearly normally distributed. They demonstrate only slight skewness (always less
than 0.5 in absolute value) and do not possess substantive leptokurtosis (always less than 3.3).

Figure 7 shows cross section distributions of yearly return volatility (Panel A) and sales growth volatility
(Panel B) in logs for all CRSP/Compustat firms. Volatility also appears to closely fit a log normal distri-
bution, with skewness no larger than 0.4 and kurtosis never exceeding 3.7. Figure 7 demonstrates near log
normality of total return and growth rate volatility. Kelly, Lustig and Van Nieuwerburgh (2012) show that
the same feature holds for idiosyncratic volatility.

B.2 Correlation Size Dispersion with Mean and Dispersion of

Volatility

Table 8 shows that the strong correlation between moments of the volatility distribution and lagged size
dispersion across markets, size quantiles and industries. We find that the the size distribution’s predictive
correlation with both mean volatility and dispersion in volatility is robust in each of these sample decom-
positions. Size dispersion predicts volatility moments among either NYSE or NASDAQ stocks, among large
and small stocks, and within all industries.

B.3 Frequency Decomposition

To study the trend and cycle in the size and volatility moments, we apply the Hodrick-Prescott filter with a
smoothing parameter of 50. The top panel of Figure 8 shows the trend component. The bottom panel shows
the cycle component. The top panel plots the trend in the cross-sectional average of log firm-level volatility
against the cross-sectional dispersion of log market equity and log market volatility. The correlation between
the trend components in average volatility and the market-based measure of lagged size dispersion is 90%.
The correlation between lagged size dispersion and the trend component in market volatility is 55%. The
correlation between the cyclical component in average log volatility and lagged market-based size dispersion
is 26%. These results suggest that the correlation between the dispersion in the firm size distribution and
moments of the volatility distribution occurs at lower frequencies. However, there is also significant evidence
of correlation between cyclical volatility and size dispersion.

B.4 Size Dispersion with Private Firms

We invetsigate whether the dynamics in the firm size distribution, and in particular the dynamics of size
dispersion, are similar for the same of publicly traded firms and the sample of all (public and private firms).
For this, we resort to employment data as our measure of firm size. We use Census data on private sector
firms sorted by employment, provided by the Business Dynamic Statistics. The sample is annual and covers
1977-2009. The Census reports employment data in 12 employment bins ranging from 1−4 at the low end to
10, 000+ at the high end. We construct the same bins using the Compustat employment data. We also create
a spliced series that divides the 10,000+ binds into 25 sub-bins using an imputation from the Compustat
size data. At the start of the sample, Census reports 728 firms with more than 10,000 employees, while
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Table 8: Composition

# Firms ρ(σsubset,s,t, σs,t) ρ(µσ,t, σs,t−1) ρ(σσ,t, σs,t−1)

All stocks 3004 - 71.7% 79.3%
By sample period / exchange

NYSE only 1158 64.2% 62.1% 77.6%

Non-NYSE 3018 89.9% 58.1% 40.7%

At least 50 yrs 347 78.1% 44.5% 62.7%

Random 500 500 90.5% 64.9% 80.7%
By size

Smallest third 1000 67.7% 71.7% 51.9%

Middle third 1000 87.7% 61.6% 69.8%

Largest third 1003 86.8% 55.9% 73.4%
By industry

Consumer Non-Dur. 248 91.4% 64.4% 72.3%

Consumer Durables 107 87.6% 33.4% 74.9%

Manufacturing 528 91.9% 53.1% 79.8%

Energy 140 72.9% 68.4% 67.9%

Technology 413 88.1% 85.2% 58.2%

Telecom 55 23.6% 14.3% 10.6%

Retail 310 86.5% 69.0% 69.8%

Healthcare 188 69.5% 69.4% 50.6%

Utilities 112 67.8% 19.7% 64.8%

Other 904 82.8% 63.3% 65.7%

Notes: Annual data 1926-2010. We use the market based volatility measure constructed from stock returns
and the market-based measure of size (market equity). The first column reports the time series average
of the cross section number of firms. The second column reports the time-series correlation between the
size dispersion of the sub-cross section and the dispersion of the full cross section. Column three reports
the correlation between average log volatility (µσ,t) and lagged log size dispersion (σS,t−1) and column four
reports the correlation between dispersion in log volatility (σσ,t) and lagged log size dispersion.
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Figure 6: Log Firm Size: Empirical Density Versus Normal Density

Panel A: Size Measured as Market Equity
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Panel B: Size Measured as Sales
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Notes: The figure plots histograms of the empirical cross section distribution of log annual firm market
equity (Panel A) and log annual firm sales (Panel B). The left-hand histogram pools all years (1926-2010)
and the right-hand histogram is the one-year snapshot for 2010. Overlaid on these histograms is the exact
normal density with mean and variance set equal to that of the empirical distribution. Each figure reports
the skewness and kurtosis of the data in the histogram.

Compustat reports 677. So, we have fairly comprehensive coverage at the start of the sample. However, at
the end of the sample, there are 1,975 with 10,000+ firms,only 1,016 of which show up in Compustat. There
are more large, private firms at the end of the sample.

Figure 9 plots the cross-sectional variance of log employment in Census and Compustat data. The
evolution of the size distribution when considering the entire universe of firms seems similar to the one in
Compustat. The correlation between the cross-sectional variance of log size in Compustat and the spliced
series (shown in Panel A) is 62%. The correlation between the non-spliced Census measure (shown in Panel
B) and the Compustat measure is 65%. Hence, the changes in the firm size distribution that we have
documented do not seem specific to the universe of publicly-traded firms.
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Figure 7: Log Volatility: Empirical Density Versus Normal Density

Panel A: Volatility Measured from Market Returns
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Panel B: Volatility Measured from Sales Growth
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Notes: The figure plots histograms of the empirical cross section distribution of annual firm-level volatility
(in logs). Panel A reports return volatility where, within each calendar year, we calculate the standard
deviation of daily returns for each stock. Panel B reports sales growth volatility where, for each year t, we
calculate volatility as the standard deviation of quarterly observations of year-on-year sales growth for each
stock in calendar years t to t + 4. The left-hand histogram pools all years (1926-2010) and the right-hand
histogram is the one-year snapshot for 2010 for returns and 2006 for sales growth (since sales growth volatility
is calculated over a five-year window).

B.5 Firm Exit and Entry Rates

What drives the evolution of the firm size dispersion in the U.S.? We do not aim to explain these dynamics,
other than to point out (and model) the two-way feedback effects between firm size distribution and firm
volatility distribution. However, a relevant piece of information would seem to be the secular decline in entry
and exit rates that we observe in the firm universe. Figure 10 plots the entry and exit rates for all U.S.
firms based on Census data for the period 1977 to 2009. These secular changes may have contributed to the
changes in the size distribution that we have documented.
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Figure 8: Trend and Cycle in Size and Volatility Distributions
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Notes: The figure plots HP-filtered trend and cycle components of time series moments of size and volatility
distributions using smoothing parameter of 50.

B.6 Summary Statistics Network Data

The number of customers a firm has, the “out-degrees,” ranges between 1 and 24 while the number of
suppliers a firm has, the “in-degrees,” ranges between 1 and 130. We expect that both of these distributions
are highly distorted due to the truncated nature of the data. Out-degrees can reach 24 since some suppliers
voluntarily report customers that fall below the 10% sales threshold. The maximum out-degrees falls to 5
when we strictly impose the 10% sales truncation.

Figure 11 provides a summary of network connections for customers and suppliers in the Compustat
linkage data. The left panel shows the distribution of number of links by supplier (out-degree) on a log-
log scale, while the right panel shows the distribution of links by customer (in-degree). Out-degrees range
between one and 24, while in-degrees range from one to 130. We expect that both of these distributions
are highly distorted due to the truncated nature of the data. Out-degrees can reach 24 since some suppliers
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Figure 9: Variance of Log Employment: Compustat vs. Census Data
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Notes: The figure plots the cross-sectional variance of log employment in the Compustat and Census data
(left-hand-side axis). The data is annual and the sample covers 1977-2009. Source: U.S. Small Business
Administration, Office of Advocacy, from data provided by the U.S. Census Bureau, Business Dynamics
Statistics.

Figure 10: Firm Dynamics
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Notes: The figure plots the entry and exit rates for all U.S. firms based on Census data. The data is annual
and the sample covers 1977-2009. Source: U.S. Small Business Administration, Office of Advocacy, from
data provided by the U.S. Census Bureau, Business Dynamics Statistics.
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Figure 11: Customer-Supplier Network Degree Distributions
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Notes: The figure plots log-log survivor plots of the out-degree and in-degree distributions of the Compustat
customer-supplier network data pooling all firm-years for 1980–2009.

(23%) voluntarily report customers that fall below the 10% sales threshold. The maximum out-degrees falls
to 5 when we strictly impose the 10% sales truncation.

Figure 12 reports histograms of weights of customer-supplier sales linkages pooling all supplier-year
observations. The distribution for the raw data, in which some suppliers voluntarily report customers below
the 10% sales threshold, is on the left. The right panel shows the weight distribution when we strictly impose
the 10% sales truncation in our calibration below.

These correlations are visualized in Figure 13, which presents a snapshot of the Compustat customer-
supplier network in 1980, zooming in on a region of the network dominated by retail firms (Sears, KMart
and JC Penney), automotive manufacturers (Ford and General Motors), technology/telecom firms (IBM and
AT&T) and industrials (General Electric and United Technologies). The size of each nodes is proportional to
a firm’s log sales, and edges between nodes are proportional to wi,j,t. Arrows on edges point from customer
to supplier.

B.7 Industry-level Network Data

In further support of the main assumptions in the model, we present evidence the industry-level input-output
networks appear largely consistent with the network structure that we have proposed. Industry input-output
data are from the Bureau of Economic Analysis (BEA). Because industry definitions vary quite dramatically
over time, we focus on a set of 65 industries we can track consistently over time between 1998 and 2011. This
data is informative for evaluating cross-sectional correlations between industry size and network structure
since it does not suffer the truncation issue that plagues the Compustat firm-level data. In related work,
Ahern and Harford (forthcoming) use the network topography implied by the BEA industry data to show
that the properties of these networks have a bearing on the incidence of cross-industry mergers.

Table 9 reports industry network correlations analogous to the firm network correlation in Table 3. We
find the log total output of a supplier industry and the number of industries that it supplies to has an average
correlation of 61%. The correlation is strongly positive and lends further credence to the positive association
between size and number of customers assumption we make in the model. It is also suggestive of the large
effect truncation may have in reducing this correlation in the firm-level data. Similarly to the firm-level
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Figure 12: Customer-Supplier Network Linkage Weights
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Notes: The figure plots the histogram of Compustat customer-supplier sales weights for the raw data (left
panel), and when we strictly imposed the 10% sales threshold in our calibration. Plots pool all firm-years
for 1980–2009.

evidence, we find a strong -39% correlation between an industry’s log size and its customer concentration
measure (out-Herfindahl). Both of these facts, that larger supplier industries have more connections and are
better diversified, are consistent with our model. On the customer side, we find an average correlation of
industry size with in-degree of 46%, and with supplier Herfindahl of 10%. Our model would not predict that
an industry’s number of suppliers would increase with its size. But neither do we find evidence to suggest
that purchaser industries are experiencing any diversification benefits from their supplier network, since
larger industries have a higher in-degree concentration, not lower. On balance, we find the BEA industry
network data to be consistent with the network structure we propose.

Table 9: BEA Industry Size, Volatility and Network Structure

Correlation between ... logSi,t logSi,t log Si,t log Si,t

and ... Kout
i,t Hi,t Kin

i,t Hi,t

Avg. 0.61 -0.39 0.46 0.10

t− stat 28.00 -12.63 19.33 5.99

Notes: Cross section correlations of industry size, out-degree, out-Herfindahl, in-degree, and in-Herfindahl
from BEA industry benchmark input-output tables. The number of industries is 65 and the data are annual
from 1998 until 2011.
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C Calibration Appendix

C.1 Alternative Calibrations

To better understand the various parts of the model, we explore a number of alternative models to our
benchmark model (M1). Table 10 lists the parameters. The results for size, volatility, and network moments
are reported in Tables 11, 12, and 13, respectively. In all simulations, we use the exact same random draws
(and seed for the random number generator) to enhance comparability across models. All variation across
models is thus produced by endogenously changing size and volatility distributions, not by random differences
across simulations.

Table 10: Calibration

Parameter Description M1 M2 M3 M4 M5

1. N # firms reported each period 1000 1000 1000 1000 1000

2. T # years in simulation (after burn-in) 1000 1000 1000 1000 1000

3. µg Exogenous firm growth rate 0 0 0 0 0

4. µSo Mean initial log size distribution 10.20 10.20 10.20 10.20 10.20

5. σSo Standard deviation initial log size distribution 1.06 1.06 1.06 1.06 1.06

6. δ Exogenous firm destruction rate 0.05 0.05 0.05 0.05 0.05

7. κ Governs the survival rate of connections 0.5 0.5 0.5 0.5 0.5

8. Z Governs likelihood of new connections 0.35 0.35 0.35 0.35 0.10

9. ψ Governs the importance of connections 1 1 1 1 0.1

10. γ Importance of the network 0.95 0.95 0.95 0.75 0.95

11. σ Fundamental shock volatility (i.i.d.) 0.22 0.22 0.22 0.30 0.25

12. network Full-degree or first-degree approximation F A F F F

13. p(·) Governs probability of a connection B B A B B

Notes: In row 12, F indicates full-degree network and A indicates first degree-approximation. In row 13, B indicates benchmark
and A indicates alternative assumption.

Model 2 (M2) is the first-degree approximation to the benchmark model, discussed in Section 3, with
all parameters left unchanged. It produces dramatically different size and volatility results, underscoring
the importance of network persistence. Out-degree Herfindahls in M2 are lower than in M1. Because of less
concentrated networks, firms are better able to diversify the shocks that hit their customer network. Mean
volatility (27%) and the dispersion in volatility across firms (26%) are substantially lower in the first-degree
approximation as in the full-degree network. The median firm is 15% smaller while the largest firms are
34% smaller than in M1. In terms of macro moments, the size dispersion fluctuations almost completely
disappear (4% time-series standard deviation versus 19%). The same is true for average firm volatility (3%
time-series standard deviation versus 20%), aggregate growth volatility (4% versus 20%), and the volatility
of the cross-sectional dispersion of volatility. The dramatic reduction in aggregate volatilities shows that
higher-order connectivity amplifies shocks and is crucial in producing the patterns in aggregate moments we
observe in the data.

Model 4 (M4) tells a similar story. Here, we revert to the full-degree network, but lower the persistence
parameter of the network to γ = 0.75. Because lowering γ lowers average volatility, we adjust the volatility
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Table 11: Model Comparison: Firm Size Distribution

(1) (2) (3) (4) (5) (6) (7)

All Top-33% M1 M2 M3 M4 M5

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.63 11.47 11.66 11.78 11.57

SD 1.79 1.06 1.07 0.97 1.19 1.30 1.00

5% 6.86 10.38 10.32 10.34 10.21 10.33 10.41

10% 7.39 10.47 10.44 10.43 10.34 10.44 10.50

25% 8.33 10.78 10.79 10.72 10.73 10.80 10.80

Med 9.48 11.39 11.42 11.26 11.43 11.47 11.34

75% 10.77 12.25 12.25 11.99 12.35 12.43 12.08

90% 12.05 13.10 13.10 12.78 13.30 13.54 12.91

95% 12.76 13.64 13.68 13.34 13.93 14.32 13.51

Panel B: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.19 0.04 0.43 0.11 0.15

AR(1) σS,t 0.947 0.939 0.995 0.959 0.995 0.981 0.997

SD of σg,t 0.15 0.11 0.05 0.01 0.01 0.02 0.03

Ht 0.010 0.012 0.020 0.018 0.036 0.088 0.034

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross-section of firms . The second column reports results for the top-33%
of firms in each year. Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations of
the full-degree network model for different parameter values, described in the main text, and labeled M2-M5.
Panel A reports moments of the log size distribution, where size is defined in the data as market equity.
Panel B reports the time-series standard deviation and time-series persistence of size dispersion σS,t, defined
as the cross-sectional standard deviation of log size, the time-series standard deviation of the cross section
standard deviation of log growth rates σg,t and the time-series average of the economy-wide Herfindahl index
Ht.
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of the shocks σ upwards to 0.30. This model behaves similarly to M2 in that it has a more compact firm
volatility distribution and much lower variability in size dispersion, mean variance, and variance dispersion
than M1. Unlike M2, M4 has a much higher economy-wide Herfindahl index (0.088) indicating strong firm
size concentration. This arises form the higher shock volatility which helps to produce large firms. The
largest firms are too large compared to the data. Matching mean volatility with weaker network effects thus
has some counterfactual effects for the firm size distribution, as well as for volatility dispersion.

In Model 3 (M3), we modify the probability that a supplier is connected to a customer and make it less
steep in size. Specifically, we change the probability of a connection from the benchmark equation (??) to
the alternative

pi,j,t =
1

Z + log
(

maxk{Sk,t}
Si,t

) ; prob of conn = max {pi,j,t + κ, 1}

where we use the same scalar values for Z and κ than in the benchmark specification. This radically changes
the average number of untruncated out-degrees from 10 in the benchmark to 441, while the truncated average
out-degree actually falls. The median (truncated or untruncated) out-Herfindahl drops from 0.60 to 0.06,
bringing it in line with the data. Because smaller firms now have bigger networks, they achieve better
diversification. The dispersion of volatility is dramatically lower (0.08 in M3 versus 0.45 in M1) and this
dispersion fluctuates much less over time. The cross-sectional correlation between size and volatility becomes
positive, but there is much less dispersion in volatility in the first place.

In Model 5 (M5) we consider a calibration that delivers a substantially lower out-degree Herfindahl than
the benchmark model, bringing it closer to the data. We change the function wi,j,t, which governs the
importance of customer j in supplier i’s network:

wi,j,t =
bi,j,tS

ψ
j,t∑

k 6=i bi,k,tS
ψ
k,t

∀j 6= i

We make the importance of a given customer less steep in customer size by setting the curvature parameter
ψ = 0.1. All other calibrations set ψ = 1. To further lower the out-degree Herfindahl, we lower Z from
its benchmark value of 0.35 to 0.10, making the probability of a connection steeper in supplier size. This
generates more connections on average. Finally, we increase the volatility of the shocks to 25% so that the
model generates the same mean variance as in the data. By giving large customers a smaller weight in the
network, M5 reduces the median out-degree Herfindahl from 0.60 in M1 to 0.11; the truncated counterpart is
0.05 matching the data. The average number of (untruncated) connections is 32 and the median is 12. The
larger number of connections helps to further lower the Herfindahls. M5 continues to generate substantial firm
size dispersion and the right amount of average firm volatility, in part because of the higher shock volatility
(σε =0.25 versus 0.22). However, the volatility dispersion (0.20) is severely curtailed, like in M3 (0.08),
compared to the 0.45 in M1 and the even higher numbers in the data. M5 cannot generate enough highly
volatile firms, compared to the data. Aggregate moments such as size dispersion, mean variance, variance
dispersion, and aggregate growth still display meaningful time variation, but less than in the benchmark
model. Despite this drawback, this model has arguably a more realistic network structure, and continues to
generate interesting variation in the key moments of interest.

C.2 Downstream Results

We study a version of our model where the direction of shock transmission is reversed from upstream to
downstream. A firm’s growth rate now depends on its own shock and on the growth rate of its suppliers. We
use the exact same calibration as in the benchmark model. If we abstract from truncation, then reversing the
direction only changes the network moments reported in Table 7; the moments in the size and volatility tables
5 and 6 are identical. In terms of network moments, the untruncated in-degree and out-degree moments
are reversed. However, after truncation (which operates at the level of suppliers), the results look different.
Table 14 reports results for the downstream transmission case. This version of the model has more success
matching the in-degree moments, but then it does considerably worse matching the out-degree moments
in the top panel. Most importantly, this version of the model implies counter-factually that there is no
correlation between out-Herfindahls and volatility. In the data, we found that this relation is statistically
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Table 12: Model Comparison: Firm Volatility Distribution

(1) (2) (3) (4) (5) (6) (7) (8) (9)
All Top-33% All Top-33% M1 M2 M3 M4 M5

Returns Returns Sales Sales

Panel A: Cross-Sectional Moments of Firm Volatility

Avg 0.40 0.30 0.29 0.24 0.37 0.27 0.51 0.40 0.31
SD 0.96 0.73 1.51 1.42 0.45 0.26 0.08 0.29 0.20
5% 0.19 0.17 0.09 0.08 0.26 0.22 0.48 0.31 0.27
10% 0.22 0.19 0.11 0.10 0.28 0.23 0.48 0.33 0.27
25% 0.29 0.24 0.17 0.14 0.31 0.24 0.49 0.36 0.29
Med 0.40 0.30 0.29 0.23 0.36 0.27 0.50 0.40 0.30
75% 0.56 0.38 0.48 0.38 0.42 0.29 0.52 0.44 0.32
90% 0.75 0.48 0.77 0.60 0.49 0.32 0.53 0.48 0.35
95% 0.90 0.54 1.05 0.77 0.54 0.33 0.54 0.50 0.36

Panel B: Cross-Sectional Moments of Size-Volatility Distribution

Corr(St, Vt+1) −0.57 −0.33 −0.33 −0.18 −0.42 −0.49 0.20 −0.50 −0.37
β(St, Vt+1) −0.32 −0.23 −0.27 −0.22 −0.18 −0.13 0.01 −0.11 −0.07

Panel C: Time Series Properties of Volatility Distribution

SD of µσ2,t 0.69 0.64 0.46 0.42 0.20 0.03 0.82 0.09 0.15
SD of σσ2,t 0.18 0.12 0.13 0.13 0.05 0.01 0.02 0.01 0.07
Corr(σS,t, µσ2,t) 0.71 0.55 0.51 0.51 0.95 0.86 0.76 0.90 0.93
Corr(σS,t, σσ2,t) 0.76 0.76 0.57 0.38 0.77 0.09 0.34 −0.54 0.94
SD of gagg,t 0.21 0.20 0.21 0.20 0.20 0.04 0.62 0.15 0.15

Notes:All reported moments in Panels A and B are time-series averages of the listed year-by-year cross sectional moments (cross section average,
standard deviation, and percentiles) for the sample 1926–2010. The first and third columns report return volatility and sales growth volatility,
respectively, for the full cross-section of firms. The second and fourth columns report results for the largest 33% of firms by market capitalization
in each year. Annual variances in Columns 1 and 2 are calculated from daily stock return data, while variances in columns 3 and 4 are based on
20 quarters of sales growth rates (in the current and the next four years). Moments are computed based on the log variance distribution, but are
expressed as volatilities in levels for exposition. That is, we exponentiate each moment of the log distribution and take the square root. Column 5
reports the corresponding moments for the benchmark model (M1). Column 6 shows the first-degree approximation of the benchmark model (M2).
Columns 7-9 show three variations of the full-degree network model for different parameter values, described in the main text. Log variances in the
model are constructed with added estimation noise to make them comparable to the moments in the data.
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Table 13: Model Comparison: Network Moments

(1) (2) (3) (4) (5) (6) (7) (8) (9)
All Top-33% All Top-33% M1 M2 M3 M4 M5

Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 1.71 1.99 0.75 1.12 1.03
99th % Kout 3.38 3.32 – – 4.66 4.94 2.24 4.05 7.93
median Hout 0.05 0.04 – – 0.60 0.51 0.04 0.88 0.05
99th % Hout 0.95 0.54 – – 1.00 1.00 0.23 1.00 0.72
Corr(Kout

t , St) 0.01 −0.07 – – 0.34 0.25 −0.08 0.45 −0.55
Corr(Hout

t , St) −0.31 −0.08 – – −0.71 −0.67 −0.12 −0.72 −0.53
Corr(Hout

t , Vt+1) 0.15 0.08 0.29 0.10 0.54 0.70 0.45 0.63 0.58

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90 2.00 0.00 1.35 2.06
99th % Kin 31.61 16.80 – – 7.39 7.42 45.41 5.90 6.93
median H in 0.00 0.00 – – 0.11 0.11 0.00 0.07 0.01
99th % H in 0.28 0.24 – – 0.85 0.83 0.00 0.76 0.05
Corr(Kin

t , St) 0.37 0.49 – – 0.49 0.46 0.31 0.38 0.16
Corr(H in

t , St) −0.26 −0.20 – – 0.03 0.03 0.21 −0.07 0.01
Corr(H in

t , Vt+1) 0.13 0.08 0.08 0.08 0.01 −0.00 0.17 0.05 0.03

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column 1 is calculated based on daily stock return
data, while the variance in Column 2 is based on 20 quarters worth of annual sales growth (in the current and
the next four years). Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations
of the full-degree network model for different parameter values, described in the main text. Log variances
in the model are constructed with added estimation noise to make them comparable to the moments in the
data.
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Table 14: Downstream Transmission: Network Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 3.88
99th % Kout 3.38 3.32 – – 6.15
median Hout 0.05 0.03 – – 0.25
99th % Hout 0.95 0.54 – – 1.00
Corr(Kout

t , St) 0.01 −0.07 – – 0.14
Corr(Hout

t , St) −0.30 −0.09 – – −0.09
Corr(Hout

t , Vt+1) 0.17 0.11 0.25 0.09 0.05

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90
99th % Kin 31.61 16.80 – – 7.39
median H in 0.00 0.00 – – 0.11
99th % H in 0.28 0.24 – – 0.85
Corr(Kin

t , St) 0.37 0.49 – – 0.59
Corr(H in

t , St) −0.44 −0.28 – – −0.39
Corr(H in

t , Vt+1) 0.25 0.19 0.09 0.12 0.32

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column (1)-(2) are calculated based on daily stock
return data, while the variance in Column (3)-(4) are based on 20 quarters worth of annual sales growth (in the
current and the next four years). Column (5) reports the corresponding moments for the benchmark model
(M1). Log variances in the model are constructed with added estimation noise to make them comparable to
the moments in the data.

strong (see Table 3) unlike that between volatility and in-Herfindahl. In addition, Table 4 showed that out-
Herfindahl is a robust determinant of firm volatility after controlling for other variables, while the relation
between supplier Herfindahls and volatility is not.
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